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Index Theorems in Quantum Mechanics

Kalyan B. Sinha

Abstract In this arricle. extensions of the ideas about index theorems for Fredholm
operators to pairs of nnbonnded (self-adjoint) operators and to pairs of projections in a
Hilbert space are introduced. leading to applications i Quantum mechanical problems.

1 Imtroduction

Herve two sets of circunstances in Quantiim Mechanies will be discussed where index
theorems occur naturally. In both sitnations. may be not so surprisingly, Krein’s shift
function makes it’'s appearance. The first oue is about Witten index for a pair of
Hamiltonians in Quantwm Mechanics which is a generalisation of the Fredholm index
for Fredholm operators, which these Hamiltonians are not. It is also shown that like
the Fredhobn index, the Witten index is invariant under “small” perturbations, the
physicist’s interpretation of which is to say that the number of bound states of a
Hamiltonian is invariant under “weak conupling™. since Witten index turns out to be
negative of the number of bound states (a kind of Levinson's theorem). This result is
next put in a perspective in the background of A'-theory. The second story is about
the Fredholm index for a pair of projections and application to Quantum Hall effect,
the Krein's shift function for the pair equalling the index.

2 Schrodinger operator in quantum mechanics and mathematical theory
of Scattering (a brief survey)

The physical states of a particle in Quantuin Mechanics are given by vectors in a (sepa-
rahle) Hilbert space (more specifieally. for our case) h = L2(R?) (d = the dimension of
the Euclidean space on which the particle lives). The Hamiltonian operator to describe
the dynamics of the particle is giveu by /I = —: + V. where A is the Laplacian in
BT and Vs a real-valued measnrable metion (called potential by physicists). Here
we have set all phvsical constants like 1.2 ete. equal to 1 50 as to delineate only the

mathematical ideas.

2.1 The self-adjoiutuess problem

Sinee in Qnantimm Mechanies, we would like to have the time-evolution of the states
to be described by one-parameter (strongly continuous) unitary group in h, their
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infinitesimal gencrator should be self-adjoint, leading to the question of self-adjointness
of H.

Set Hy = — A, defined suitably i.e.,
D(Ho) = {f c LQ(Rd)//\ka(k)l2dk < oo}

(where f is the Fourier Transform of f in L2(RY)) is clearly a self-adjoint operator.
It is also known [1,2] that for a large class of functions V (e.g. if V = V1 + V2 with
Ve LP (Rd),p =2ford<3and p > d/2 for d > 4 and Vo bounded and vanishing at
infinity), H is self-adjoint with D(H) = D(Hg).

2.2 Scattering and spectral problem

The operator Hy being unitarily equivalent to a multiplication operator by the function
R? S 20— \3@\2 ¢ R is spectrally positive and absolutely continuous. But what about
H? For that it is convenient to introduce the wave operators {24 as

iHt ~iHot
e e

24 =5 — lim

t—too ’

if they exist.
In fact, it is also known that for the class of potentials given in (i) with Vo =0, 2+
exist and are isometries. A simple calculation shows that H24 = {24+ Hy or equivalently

RLH|po,)+ = Ho

i.c.. the ranges R((21) of the isometries 24 (which is a closed subspaces of k) reduce
H and the restrictions of H to R(§2+) are unitarily equivalent to Hy and hence are
positive and absolutely continuous, so that

R(£24) C hac(H).

That these two subspaces are indeed equal in many situations is the so called com-
pleteness problem and has indeed been proven for a large class of Vs ([1,2]), i.e,

R($24) = hao{H).

If we. now assume that the (physically ‘nasty’ and ‘untenable’) singularly continuous
subspace with respect to H is trivial, then we have that

R(£24)" = Ph,

where P is the projection onto the eigenspaces (or the set of bound states) of H.

The scattering operator § = 2% f2_ (well-defined and unitary since R(£2}) =
R(£2_)) commutes with Hy and hence can be “diagonalized” simultanously with Hg
as follows:

h / LS4 N du(N)
0

with Hp =~ multiplication by XA and S ~ {S,} in this representation; where p is a
measure on K. absolutely continuous with respect to the Lebesgue measure, 541 g
the unit sphere in & and for almost all A, S is unitary on L2(S§971).
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One can now introduce a self-adjoint operator Ay (called phase-shift operator at
energy A) such that Sy = exp(2iAX). Under suitable conditions on V e.g. V € L'n
L?(RY)(d = 3), it is known [2] that Sy —I) and hence, consequently Ay are trace-class
operators in L2(5?) and we set £(H, Ho; A) = E(\) = 77 VTr (Ay) for almost all A. This
function € is called Krein’s shift function ([3-5]).

There are very interesting results on the nature of Krein's shift function ([3-5]) of
which we reproduce two without proof.

Theorem 2.1. Let, H and Hy be two self-adjoint operators (not necessarily bounded)
in a Hilbert space h such that V = H — Hy is trace-class. Then there exists a unique
real-valued L' (R)-function € with support in the union of the spectra of H and Hqo with
the properties:

(0
[remiors i [ expar=mv,
(i)
for 9:R— ¢ with ¢(A)= /(it)_l(eit’\ — 1)dv(t) + constant,

where v is a complex measure, one has that [@(H) — ¢(Ho)] is trace-class, and

T ()~ o(He)) = [ ¢/ NN
(iii) If we define the perturbation determinant

Az) = det [I+V(Ho - z)#l] for Imz >0, then
EN) = a ! liln(')l Im log A(M + i€).
£
Theorem 2.2. Let H and Hy be two self-adjoint operators in h such that for some z

with Tmz > 0, [(H — 2) " — (Ho - 2)~Y is trace-class. Then there exists a function §
on R, unique upto an additive constant such that

(i)
/<1+A2>‘1|5<A>|dx < oo,
(ii)
- —1, £\)
Tr((H — 2)~" = (Ho — 2) ]~—/mdx. and

(iii) For ¢ € 8(R), the class of smooth functions of rapid decrease, [p(H) — @(Ho)] is
trace-class and

Tr [p(H) — ¢(Ho)| = /ap/(/\)ﬁ()\)d/\.
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3 Index theorem in Scattering theory

Let H and Hy, as introduced above, be such that [(H—2)"'—(Ho— 2) 71 is trace-class
for some non real complex z (e.g. for d = 3, the potential function V' € L' n L3 (R3)
will imply this). The Witten index of the pair. 6(H, Ho) is defined as

S(H,Ho)=  lm  {(-2)Tr[(H - 2) 7 (Ho— 2 Y]}, if it exists.
|Rez\z_<jé|1mz[

A bounded linear operator A in h is said to be Fredholm if its range is closed with
finite codimension (the dimension of the orthogonal complement) and if its null space
is finite dimensional, and in such a case the (Fredholm) index of A is defined as:

ind (A) = dim(Null space of A)-codim(Range of A),

which is an integer. The following sets of results [6,7] show the importance of this
concept:

(i) If A is Fredholm and B a compact operator in h, then
ind (A + B) = ind (4).

Also if A and B are bounded operators in h and A is Fredholm, then there exists
ap > 0 such that

ind (A + aB) = ind (A)
for all & with |a] < ap.
(i) Let A be a densely defined closed operator and set

Hy = A"A Hy = AA"

such that
(Hi—2)" ' = (Hy—2)""

is trace-class for z € ¢\ [0,00). If furthermore, A is Fredholm, then the Witten
index equals Fredholm index, i.e.,

(5(H1, HQ) = ind (A)

(iit) If the shift function £(Hy, Ha; \) is piecewise continuous on [0, co) and bounded,
then

§(Hy, Ha) = —€(Hy, Ho; 04).

Unlike ind (A), (-, -) makes sense for a much larger class of (self-adjoint) operators,
but at the same time enjoys certain invariance property under “small perturbations”
like that of Fredholm index as mentioned in (ii) in the paragraph above. Furthermore,
the Witten index (which can be thought of as a generalization of Fredholm index) has
a nice relation with the Krein’s shift function £. The following theorem (whose proof
can be bound in [8]) sums up these results.

Theorem 3.1. Let Hy = —A in L2(R®) and let V; € L' 0 L*(R?) (j = 1,2) be two
potentials. Assume furthermore that {0} is not an eigenvalue for either of the self-
adjoint operators H; = Hy+V;. Then
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(i; {here exists ag > O such that for all a with

la] < ag, O6(Ho+ Vi +aVe, Hy + aVa) =6(Ho+ Vi, Ho).

(ii* issume that £(A) = &(H, Ho; A) is locally bounded and piecewice continuous, then

§(Ho + aVz, Hp;0—) =0
s
£(Hp + V1 + oV, Hy + aVy; 0+) = £(Hg + V, Hy; 04) for |a] < ap.

(iii

8(Ho + Vi + aVy, Hp + aVe) = £(Ho + Vi + aVa, Ho + aVa;0-)

~&(Ho + Vi + aVa, Hy + aVa; 04) = —€(Ho + Vi + aVy, Ho + aV2;0+)
—&(Hg + Vi, Hy;04+) = —n = -Tr P,

where P was the projection onto the bound states of the Hamiltonian H.

'hus for many Quantum Mechanical systems, the Witten index turns out to be the
~itive of the number of bound states of the associated Hamiltonian and furthermore,
integer is invariant under “small perturbations”.

n«
th

s

4 Mon-commutative K-theory and Scattering

Here we shall deal with concrete, C*-algebras as relevant to the Scattering theory,
described earlier (see [9] and [10] for K-theory for C*-algebras).

For our discussions, it is convenient to introduce the generator of the group of
dilations in R%: for A € R

(Yaf)(x) = exp(—Ad/2) f(e'z).

It is easily seen that this describes a strongly continuous one-parameter group of uni-
taries in L2(Rd), whose Stone-generator is A = —i/2(z -V +V - z), where z € R and
V is the gradient. If we set B = 1/21n Hy (where Hyp = —A in Lz(Rd)), then A and
B are self-adjoint operators in L2(R%) with whole real line as their (absolutely contin-
uous) spectra and [A, B] = —i, just like the momentum P and position @ operators
in Quantum Mechanics in one dimension. There is however, a major difference: while
P and Q have no spectral degeneracy, A and B are infinitely degenerate (infact, for
almost all points in R, the space of degeneracy is L2 (8971)) because of their obvious
rotational invariance. ’ l

Set K = Bo(L?(S%™1)), the C*-algebra of compact operators on the degeneracy
space, A = Span{p(A)p(B)} (for ¢,¥ € Cp(R), continuous functions on R, vanishing
at ), J = A® K, A = (A + {n(B)}) ® X (with 5 € Co(R) and {n(B)} signifying
the commutative C*-algebra generate by B), and € = {n(B)} ® X. Note that all these
C*-algebra are without identity and also recalling the discussions on Scattering theory
in section 2, we observe that S — I € €, since under the hypothesis there Sy — I) is
trace-class and hence belongs to X. Also note that A C Bo(L%(R)) (since products of
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the type o(A)w(B) gives a compact operator ([1,2])) and § C Bo(L?(RY)). Thus we
have the following short exact sequence ([10]):

0-95% AT A/g~e -0,
where x is the inclusion map and 7 is the projection map. Incidentally. it is worth
noting that J =~ Co(R;X) xr R.A ~ Co(RU {c0};X) ¥+ R and € =~ X x4 R, where

action 7 of the group R is that of translation and « is the trivial action and x - is the
crossed product (see [9]).

In the context of Scattering theory, the map # can be understood as follows:
[1(as) [T = m(D)]ll =0 for T € A.

This happens because
T — w(T) € A C Bo(L*(R) ~ Bo(L*(sp(A))) and 1(4>¢),

the family of characteristic functions converge strongly to 0 as t — oco.
For some special operators one can complete 7(-).

Theorem 4.1. Assume that 22— — I € A. Then
(iy 7(P- —-I)=S-T€¢C,

(ii) the projection operator point the bound state of 3 belong to J and one has at the
level of K -theory

ind [S}1 = —[P)o.
Here [S]1 in the Ki-class of S and [Plo is the Ky-class of Py and ind is the indez
map of Pimsner-Voiculeseu from K1 (€) into Ko(J).

For the proof of (i) the reader is referred to (11,12] and for (ii) [9]. This demonstrates
how abstract K-theory can be used in a nice way to understand some of the results in
Quantum Mechanics in a different perspective.

5 The story of a pair of projections

The story begins with an interesting article by Effros with an intriguing title “why the
circle is connected” ([13]) in which the following result is stated and proved “” if P
and ) are two orthogonal projections in a Hilbert space such that P — @ is trace-class,
then Tr(P — Q) € Z, the set of integers. In two papers [14,15] the authors revived an

old geometric idea of Halmos [16] to prove the above result, relate the trace with the
relative Fredholm index and Krein’s shift function.

Theorem 5.1 ([{13-186]).

(i) Let P and Q be two orthogonal projections in h. Then setting v=UHel=

L=\ =), h decomposes as direct sum. of five subspaces (all reducing both
P and Q):

h = hoo ® hor © hip ® h1y ® hy,

where hg (called the subspace ‘generic’ with respect to the pair P, Q) consisting of

vectors, none if which are eigenvectors of P or Q and with respect to this, P and
@ decompose as

P=0OoOo®lIalaPp,
RL=00Ip06I15Q,
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(ii} FPurthermore, if P and Q is a generic pair of projections (i.c. like the Py.Qq
in the above decomposition), then Ranges of P, PL,Q and QF are all rnutually
unitarily isomorphic and with respect to the decomposition of the (generic) subspace
= R(P)® R(PL), P and Q assumes the canonical forms:

Ilo c?cs
P‘[OOJ’Q‘ [05 52}’

where C and S are two commuting positive contractions satisfying C> + 8% = I.
From this theorem Effros result follows eastly since P — Q trace-class implies
that Py — Qg is trace-class, but on the other hand Py — Qg lakes the matriz form

[j(fs :ng , leading to the result that Tr [(Py — Q)] =0 if p is odd and therefore

Tr (P — Q)p =dimhig —dimhg; €Z

if p is odd (each of these dimensions are finite because cach of the associated
projections are trace-class).

In [14], the authors introduced the notion that two projections P and Q are said
to be Fredholm pair when

G = QP : Range (P) — Range (Q)

is Fredholm, and in such a case the relative Fredholm index of the pair, ind (P, Q) is
defined to be the Fredholm index of the operator G. Then it follows easily ([15]) from
the Theorem 5.1 that (P, Q) is a Fredholm pair if and only if dim h1g and dim hg1 are
both finite and the pair (Py,Qy) is a Fredholm pair. Furthermore, ind (Py, Qg) = 0 so
that

ind (P, Q) = dim h1g — dim hg1 € Z.

How does the two sets of results compare with each other? For this one needs to
observe ({15]) that if P — @ is a compact operator in h, then (P, Q) is a Fredholm pair
and therefore, in the light of the earlier observations, one can say that if P—(Q is a trace-
class, then ind (P, @) = Tr(P — Q). One can also think of P and @ as “Hamiltonians’
such that the perturbation P — Q is trace-class and as discussed in section 2, consider
the Krein's shift function £(A) = £(P,@Q; ) and find that when P — @ is trace-class,
§(A) =dimhyg — dim hg1, for A € 0,1} and = 0 for A ¢ [0, 1].

One nice application of these ideas was given in [17] in the context of the Landau
model of paramangnetism and considering an idealized model of Quantum Hall effect
by introducing a “quantized flux tube” through the origin.

Consider an electron in uniform, constant magnetic field B perpendicular to the
Z-y plane, the associated Landau Hamiltonian (after factoring out the free motion in
the z-direction) in R? is given as:

252
— . e“ B 2 eB
H = (2m) ™ (s +py) + —g—(«

where e and m are the electric charge and mass of an electron respectively, px and py are
the momentum operators in x and y directions and L = xpy — ypz is the z-component
of the angular momentum operator. We introduce a convenient (unbounded) operator
DasD= —C% + %z, where z is the complex variable z = x + iy and the relevant Hilbert
space h = L[*(R?) gets unitarily transformed by the change of variable to h (by an
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abuse of notation) made up of (the equivalance classes of) complex-valued measurable
functions of z and %, square-integrable with respect to the planar Lebesgue measure.
Then the Hamiltonian looks like

H=2D"D+I)

(where we have set for convenience m = i = 1 and eB = 2}. Then the (simultaneous)
eigenstates of H and L are:

Uno(z) = (enl) 122" exp(~1/2]2]*)
Lipno =ntno0;  Hino=1vno: and

if we set
Pnm(z) = (M) ™D M 0)(2),
then
Ld’n,m = (Tl — m)'(/)n,m and H’L/)nym = (2m + 1)d)n,m7

with n,m € NU{0}. Next, let P, be the (infinite-dimensional) projection onto the mth
(energy) eigenstate of H and let Qps = UPn U™ be another projection where U is the
unitary multiplication operator in h by the function U(z) = 2/|z| for z € ¢\ [0,00); = 1
for z € [0, 00). Then we have

Theorem 5.2 ([15,17,18]).

(i) For every m €& NU{0},(Pm,Qm) is a Fredholm pair of projections and
ind (P, Qm) = +1.

(i) In particular, Py — Qq is not compact even though the pair (Py, Qo) 1is Fredholm
showing that compactness of the difference of projections is a sufficient, but not a
necessary condition for the pair to be Fredholm.

The operator U is supposed to represent the introduction of an (idealized) thin
fluxtube along the Z-direction through the origin and the index (Pm,Qm) = +1 is
interpreted as the charge transport of the system by one unit of electronic charge
(Quantum Hall effect).
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