PARAMETRIC HOMOTOPY PRINCIPLE OF SOME PARTIAL DIFFERENTIAL RELATIONS

Mahuya Datta* — Amiya Mukherjee**

(Communicated by Július Korbaš)

ABSTRACT. An rth order partial differential relation is a subspace in the space of r-jets of C^r sections of a fibre bundle $p \colon E \to X$. In this paper we consider an open G-invariant relation for equivariant sections of a G-fibre bundle, where G is a compact Lie group, and consider the homotopy classification of equivariant solutions of the differential relation. We also obtain an equivariant analogue of the Smale-Hirsch immersion theorem.

1. Introduction

The open extension theorem of Gromov [4] provides a unifying principle for the work of Smale [9], Hirsch [5], Phillips [8], Feit [3], and others on immersion and submersion problems. The main purpose of the present paper is to study the theorem in an equivariant context, and obtain as applications a generalization of the transversality theorem of Gromov, and an equivariant version of the Smale-Hirsch immersion theorem.

Let G be a compact Lie group, X a differentiable G-manifold with a G-invariant Riemannian metric, and $p \colon E \to X$ a G-locally trivial differentiable G-fibre bundle. Recall that a G-fibre bundle $p \colon E \to X$ is a locally trivial G-map, and that this is G-locally trivial if for every x in X there exists a G_x -invariant open neighbourhood U_x of x such that $p^{-1}(U_x)$ is differentiably G_x -equivalent to the trivial G_x -fibre bundle $U_x \times p^{-1}(x)$. As has been shown in Bierstone [1; Theorem 4.1], a differentiable G-fibre bundle is G-locally trivial if and only if it has the equivariant covering homotopy property.

Let $p^{(r)}: E^{(r)} \to X$ be the bundle of r-jets of local sections of p. Then $p^{(r)}$ inherits a natural differentiable G-fibre bundle structure, where the action of G on $E^{(r)}$ is given by $g \cdot j_x^r f = j_{qx}^r (gfg^{-1})$, for a local section f of p at $x \in X$ and

AMS Subject Classification (1991): Primary 58A30, 58D10, 57S25.

Key words: equivariant parametric homotopy principle, transversality, immersion, submersion, partial differential relation.

 $g \in G$. Then a partial differential relation, or simply a relation, is a G-invariant subspace $\mathcal R$ of $E^{(r)}$.

Let $E_G^{(r)} \subset E^{(r)}$ be the subspace of $E^{(r)}$ consisting of r-jets of equivariant local sections of p defined on G-invariant open sets of X. Then $E_G^{(r)}$ is a G-invariant subspace of $E^{(r)}$. We shall denote the subset $\mathcal{R} \cap E_G^{(r)}$ by \mathcal{R}_G .

A section $f: X \to E$ of p is called a *solution* of the partial differential relation \mathcal{R} , if the corresponding r-jet map $j^r f$ has its image in \mathcal{R} .

We shall denote the space of equivariant C^{∞} solutions of \mathcal{R} by $\operatorname{Sol} \mathcal{R}$, and the space of equivariant C^0 sections of $p^{(r)}$ with images in \mathcal{R}_G by $\Gamma(\mathcal{R})$. The former space has the C^{∞} compact-open topology, whereas the latter one has the C^0 compact-open topology. The r-jet map j^r maps $\operatorname{Sol} \mathcal{R}$ into $\Gamma(\mathcal{R})$, and is continuous with respect to the above topologies.

A relation $\mathcal{R} \subset E^{(r)}$ is said to satisfy equivariant parametric h-principle (h for homotopy), if the r-jet map $j^r \colon \operatorname{Sol} \mathcal{R} \to \Gamma(\mathcal{R})$ is a weak homotopy equivalence.

The manifolds $X \times \mathbb{R}$ and $E \times \mathbb{R}$ are G-manifolds under the diagonal G-action on them, the G-action on \mathbb{R} being the trivial one. Moreover, $p \times \mathrm{id} \colon E \times \mathbb{R} \to X \times \mathbb{R}$ is a G-locally trivial G-fibre bundle. Let $\pi \colon X \times \mathbb{R} \to X$ be the canonical projection on the first factor. There is a natural bundle map $\pi^{(r)} \colon (E \times \mathbb{R})^{(r)} \to E^{(r)}$ covering the projection π which sends the r-jet $j_{(x,t)}^r f$ onto the r-jet $j_x^r (\pi \circ f \circ i_t)$, where $i_t \colon X \to X \times \mathbb{R}$ is given by $i_t(y) = (y,t)$ for $y \in X$. We call a relation $\widetilde{\mathcal{R}} \subset (E \times \mathbb{R})^{(r)}$ an extension of \mathcal{R} , if $\pi^{(r)}$ sends $\widetilde{\mathcal{R}}_G$ onto \mathcal{R}_G .

Let $\mathcal{D}_G(X \times \mathbb{R})$ denote the pseudogroup of equivariant local diffeomorphisms on $X \times \mathbb{R}$. We shall be interested in the subpseudogroup $\mathcal{D}_G(X \times \mathbb{R}, \pi)$ of $\mathcal{D}_G(X \times \mathbb{R})$ consisting of fibre-preserving diffeomorphisms, which are local diffeomorphisms λ such that $\pi \circ \lambda = \pi$. The pseudogroup $\mathcal{D}_G(X \times \mathbb{R}, \pi)$ has a natural action on $E \times \mathbb{R}$. This action may be described by a map $\varrho \colon \mathcal{D}_G(X \times \mathbb{R}, \pi) \to \mathcal{D}_G(E \times \mathbb{R})$ in the following way. If $\lambda \colon U \times J \to U \times J'$ is in $\mathcal{D}_G(X \times \mathbb{R}, \pi)$, where J and J' are open intervals of the real line \mathbb{R} , then we define $\varrho(\lambda) \colon p^{-1}(U) \times J \to p^{-1}(U) \times J'$ by $\varrho(\lambda)(e,t) = (e,\lambda'(p(e),t))$, where $\lambda' \colon U \times J \to J'$ is the G-equivariant map satisfying $\lambda(x,t) = (x,\lambda'(x,t))$ so that $\pi_2 \circ \lambda = \lambda'$ (π_2 denotes the projection on the second factor). The map ϱ is continuous with respect to C^∞ compact-open topologies, and it induces an action of $\mathcal{D}_G(X \times \mathbb{R}, \pi)$ on the space of local sections of $p \times \mathrm{id}$, and hence an action on the jet space $(E \times \mathbb{R})^{(r)}$. The actions are given by $(\lambda, f) \mapsto \lambda^* f = \varrho(\lambda)^{-1} \circ f \circ \lambda$ and $(\lambda, j_{\lambda(x,t)}^r f) \mapsto j_{(x,t)}^r (\lambda^* f)$, where $\lambda \in \mathcal{D}_G(X \times \mathbb{R}, \pi)$ is a local G-diffeomorphism at x and f is a local G-section of $p \times \mathrm{id}$ at $\lambda(x,t)$.

A relation \mathcal{R} is said to be $\mathcal{D}_G(X \times \mathbb{R}, \pi)$ -invariant, if $\lambda^*(\mathcal{R}) \subset \mathcal{R}$ for every $\lambda \in \mathcal{D}_G(X \times \mathbb{R}, \pi)$.

The main theorem of the paper is:

THEOREM 1.1. If $\mathcal{R} \subset E^{(r)}$ is an open relation which admits a G- and $\mathcal{D}_G(X \times \mathbb{R}, \pi)$ -invariant open extension $\widetilde{\mathcal{R}} \subset (E \times \mathbb{R})^{(r)}$, then \mathcal{R} abides by the equivariant parametric h-principle.

The main theorem reduces to the "open extension theorem" of G romov [4; p. 86] when G is trivial, and generalizes the theorems of Bierstone [2], and Izumiya [6] in the sense that we do not require the invariance of the basic partial differential relation \mathcal{R} under the action of the pseudogroup of local diffeomorphisms.

Our next theorem is an application of Theorem 1.1, and is a generalization of the transversality theorem of Gromov [4; p. 87]. First recall that if X is a G-manifold, then its tangent bundle TX is a G-vector bundle over X under the differential action of G. In fact, since TX has a Lie structure group, TX is actually G-locally trivial (see Bierstone [1; Theorem 4.2]). Also, if H is a closed subgroup of G, then the H-fixed point set X^H is a submanifold of X, and $T(X^H) = (TX)^H$ ([7; §11.13]). Thus $(TX)^H$ is a vector bundle over X^H . Now consider a G-locally trivial G-fibre bundle $p\colon E\to X$, and let ξ and η be G-subbundles of TE and TX respectively. Let $\mathcal{R}\subset E^{(1)}$ be the relation consisting of 1-jets of germs of local sections, $j_x^1\sigma$ for $x\in X$, such that $j_x^1\sigma(\eta_x)\cap \xi_{\sigma(x)}=\{0\}$. Thus the solutions of \mathcal{R} are sections of p which are transversal to ξ on η .

THEOREM 1.2. If for each isotropy subgroup H of the action of G on X we have locally

 $\dim X^H + \dim \xi^H < \dim E^H$,

where $\dim \xi^H$ means the fibre dimension of ξ^H , then $\mathcal R$ satisfies equivariant parametric h-principle.

Explicitly, the condition means that for each $x \in X^H$ and each $e \in p^{-1}(x) \cap E^H$, dim X^H at x is strictly less than dim $E^H - \dim \xi^H$ at e.

This theorem leads to an equivariant version of the Smale-Hirsch immersion theorem. Let X and Y be smooth G-manifolds with $\dim X < \dim Y$. Let $\operatorname{Imm}_G(X,Y)$ denote the space of equivariant smooth immersions of X in Y, and $\operatorname{R}_G(TX,TY)$ denote the space of equivariant continuous monomorphisms $F\colon TX\to TY$ such that $F_x|_{T_x(Gx)}$ is given by the differential of the map $gx\mapsto gf(x)$ of the orbit Gx onto the orbit Gf(x), where $f\colon X\to Y$ is the map covered by $F\colon TX\to TY$.

THEOREM 1.3. The differential map d: $\mathrm{Imm}_G(X,Y) \to \mathrm{R}_G(TX,TY)$ is a weak homotopy equivalence, provided $\dim X^H < \dim Y^H$ locally for every isotropy subgroup H of the G-action on X.

This theorem may be compared with earlier work on equivariant immersions by Bierstone [2] and Izumiya [6]. Bierstone used a dimension con-

dition which may be described as follows. Recall that an invariant component of a G-manifold X is the inverse image under the orbit map $X \to X/G$ of a component of X/G, and that the saturation of a fixed point set X^H is the closed G-subspace $X^{(H)} = G \cdot X^H$ of X. Let $\{X_i^j\}$ be the set of invariant components of the saturations $X^{(H_j)}$ partially ordered by inclusion, where H_j runs over the isotropy subgroups of G over X. Then the equivariant immersion theorem of B i e r s t o n e demands that $\dim(X_i^j)^{H_j}$ for each minimal component X_i^j should be strictly less than the dimension of each component of Y^{H_j} . On the other hand, if $n = \max\{\dim X^H\}$ where H runs over isotropy subgroups of G over X, and if $m = \min\{\dim Y^K\}$ where K runs over isotropy subgroups of G over Y, then the equivariant immersion theorem of I z u m i y a assumes that n < m. It follows then that I z u m i y a 's theorem is weaker than Theorem 1.3, and Theorem 1.3 is weaker than B i e r s t o n e 's theorem.

2. Proof of Theorem 1.1

We shall resort to the sheaf theoretic treatment of $G r \circ m \circ v$ [4]. Let Φ be the sheaf on X with $\Phi(U)$, where U is an open set in X (not necessarily G-invariant), as the space of equivariant C^{∞} solutions of \mathcal{R} over GU, and with obvious restriction maps which are continuous with respect to the C^{∞} compact-open topologies. If C is a subset of X, we let $\Phi(C)$ to be the direct limit of the spaces $\Phi(U)$ over all open sets U containing C. Thus $\Phi(C)$ consists of germs of equivariant C^{∞} solutions of \mathcal{R} near C, and $\Phi(C) = \Phi(GC)$. We endow $\Phi(C)$ with the following quasi-topological structure, in order to avoid certain awkward situations (see $G r \circ m \circ v$ [4; p. 35]). If P is any topological space, then the space $C^0(P, \Phi(C))$ of quasi-continuous maps (which will also be referred to as continuous maps) from P to $\Phi(C)$ is the direct limit of the spaces $C^0(P, \Phi(U))$ of continuous maps $P \to \Phi(U)$ over all open sets U containing C. Thus the restriction maps $P \to \Phi(U)$ over all open sets U containing U. Thus the restriction maps U is the composition U of U over all open sets U containing U. Thus the restriction maps U over all open sets U containing U over all open sets U containing U.

Similarly, we define the sheaf Ψ of equivariant C^0 sections of $p^{(r)}$ whose images lie in \mathcal{R}_G .

It is easy to see that $\Phi(X)$ and $\Psi(X)$ are respectively the spaces $\text{Sol } \mathcal{R}$ and $\Gamma(\mathcal{R})$, and the r-jet map induces a continuous sheaf homomorphism $j^r \colon \Phi \to \Psi$.

In view of the sheaf homomorphism theorem of G r o m o v [4; p. 77], the proof of our theorem consists in showing that the sheaf Φ is flexible, which means that for every pair of compact sets (C, C') in X the restriction map $r \colon \Phi(C) \to \Phi(C')$ is a Serre fibration. The other prerequisites, namely, flexibility of Ψ , and local weak homotopy equivalence of $j^r \colon \Phi \to \Psi$ can be worked out easily following

respectively the arguments of the Flexibility sublemma of Gromov [4; p. 40], and Lemma 5.4 of Bierstone [2] (\mathcal{R} being open).

To prove the flexibility of Φ , we need to consider the solution sheaf $\widetilde{\Phi}$ of the relation $\widetilde{\mathcal{R}}$. Using the fact that $\widetilde{\mathcal{R}}$ is an open extension of \mathcal{R} , it is not difficult to show that the canonical restriction $\alpha\colon\widetilde{\Phi}|_X\to\Phi$ is a microextension. Therefore, our objective is to show that the sheaf $\widetilde{\Phi}|_X$ is flexible, because once this is done, the flexibility of Φ will follow directly from the Microextension theorem of G r o m o v [4; p. 85].

Before taking on the relation $\widetilde{\mathcal{R}}$, we observe the following simple but extremely important fact. Let S be a compact G-invariant hypersurface lying in a G-invariant open set $U\subset X$ and δ be a positive real. Let $\mathcal{E}_G(U,U\times(-\delta,\delta))$ be the space of equivariant C^∞ embeddings of $\operatorname{Op} U$ in $U\times(-\delta,\delta)$ with C^∞ compact-open quasi-topology, where $\operatorname{Op} U$ denotes an arbitrary open invariant neighbourhood of U in $U\times(-\delta,\delta)$ which may be different for different embeddings. Suppose that for some $\tau>0$, the τ -neighbourhood U_τ of S is contained in U. Then we have:

LEMMA 2.1. For every real number a, $0 < a < \delta$, there exists an isotopy $\sigma: I \to \mathcal{E}_G(U, U \times (-\delta, \delta))$ such that

- (i) for each $t \in I$, σ_t is a fibre-preserving diffeomorphism; in particular σ_0 is the inclusion map,
- (ii) for each t, $\sigma_t(x,s) = (x,s)$ whenever x lies outside U_τ ,
- (iii) for each x lying in a fixed neighbourhood of S, $d(\sigma_1(x,s),X) > a$, where d denotes the distance with respect to the G-invariant metric on $X \times \mathbb{R}$.

Note that following G r o m o v, the diffeotopy σ_t may be said to sharply move X locally in $X \times \mathbb{R}$ at the hypersurface S.

Proof. Let $f: \mathbb{R} \to \mathbb{R}$ be a smooth function defined by

$$f(u) = \begin{cases} \exp 1/(u^2 - 1) & \text{if } |u| < 1, \\ 0 & \text{if } |u| \ge 1. \end{cases}$$

Next, define a 1-parameter family of maps

$$\sigma_{\star} : \operatorname{Op} U \to U \times (-\delta, \delta), \quad 0 \le t \le 1,$$

by

$$\sigma_t(x,s) = \Big(x, tcf\big(d(x,S)/\tau\big) + s\Big)\,,$$

where c is a constant (the value of which will be determined later according to our requirements).

It is clear from the definition that σ_0 is the inclusion map, σ_t is fibre-preserving, and $\sigma_t(x,s)=(x,s)$ if x lies outside the τ -neighbourhood of S in X. Also, each σ_t is an equivariant map, because d(gx,S)=d(gx,gS)=d(x,S).

To prove that σ_t is an embedding, it is enough to observe that σ_t is fibre-preserving, and that, for a fixed x, the map $s\mapsto tcf\left(d(x,S)/\tau\right)+s$ is a one-one immersion.

Now observe that $\max_{t,x} tcf\left(d\left(x,S\right)/\tau\right) = cf(0)$, and choose c so that $a/f(0) < c < \delta/f(0)$. Then, it is easy to verify that there exists an $\varepsilon > 0$ such that $\sigma \colon I \to \mathcal{E}_G(U \times (-\varepsilon,\varepsilon), U \times (-\delta,\delta))$ has all the required properties. \square

We now turn to the proof of flexibility of the sheaf $\widetilde{\Phi}|_X$. Since compressibility of deformations over compact sets is equivalent to flexibility of the sheaf [4; p. 80–81], it is sufficient to prove that an arbitrary deformation $\psi\colon Q\times I\to \widetilde{\Phi}(A)$, where $A\subset X$ is a compact set, is compressible. To see this, let us take a G-invariant open neighbourhood \widetilde{U} of A in $U\cap X$, where $U\subset X\times \mathbb{R}$ is a common domain for the family of maps $\psi(q,t)$ parametrized by $Q\times I$ (such an U exists by the quasi-continuity of ψ). Since A is compact, we get a G-invariant open neighbourhood U_1 of A in X (with closure cl U_1 compact) and an a>0 such that

$$U_1 \subset \bar{U}$$
 and $\operatorname{cl} U_1 \times [-2a, 2a] \subset U$.

Choose $G\mbox{-invariant}$ open sets $\,V_0\,$ and $\,V\,$ such that $\,{\rm cl}\,V_0\,$ and $\,{\rm cl}\,V\,$ are compact and

$$A \subset V_0 \subset \operatorname{cl} V_0 \subset V \subset \operatorname{cl} V \subset U_1 \, .$$

Set

$$X_0 = \operatorname{cl} V_0 \times [-a/2, a/2],$$

 $Y_0 = \operatorname{cl} U_1 \times [-2a, 2a] \setminus V \times (-a, a).$

The sets X_0 and Y_0 are compact, G-invariant and disjoint from each other. Let Δ denote the diagonal subset of $I \times I$. Define a map $\varphi_1 \colon Q \times \Delta \to \widetilde{\Phi}(\operatorname{cl} U_1 \times [-2a, 2a])$ by

$$\varphi_1(q,t,t) = \psi(q,t)$$
 for $(q,t) \in Q \times I$.

Define another map $\varphi_2 \colon Q \times I \times I \to \widetilde{\Phi}(X_0 \cup Y_0)$ by

$$\varphi_2(q,t,s)(x) = \left\{ \begin{array}{ll} \psi(q,s)(x) & \text{if } x \in X_0 \,, \\ \psi(q,t)(x) & \text{if } x \in Y_0 \,. \end{array} \right.$$

Observe that $r \circ \varphi_1 = \varphi_2 |_{Q \times \Delta}$, where r is the restriction $\widetilde{\Phi}(\operatorname{cl} U_1 \times [-2a, 2a]) \to \widetilde{\Phi}(X_0 \cup Y_0)$. Since $\widetilde{\mathcal{R}}$ is open, there exists a neighbourhood N of $Q \times \Delta$ in $Q \times I \times I$ and a map $\widetilde{\psi} \colon N \to \widetilde{\Phi}(\operatorname{cl} U_1 \times [-2a, 2a])$ such that $\widetilde{\psi}|_{Q \times \Delta} = \varphi_1$ and $r \circ \widetilde{\psi} = \varphi_2$. Since $Q \times \Delta$ is compact, we can find a positive number $\varepsilon \leq 1$

such that $(q, t, s) \in N$ whenever $|t - s| < \varepsilon$. We now partition the interval [0, 1] as follows:

$$0 = t_0 < t_1 < \dots < t_n = 1 \qquad \text{ such that } \ |t_k - t_{k+1}| < \varepsilon \text{ for all } k\,,$$

and define, for each k, a map

$$\lambda_k \colon Q \times [t_k, t_{k+1}] \to \widetilde{\Phi}(\operatorname{cl} U_1 \times [-2a, 2a])$$

by the rule

$$\lambda_k(q,t)(x) = \widetilde{\psi}(q,t_k,t)(x) \ .$$

Then λ_k has the following properties:

- (i) for all x, $\lambda_k(q, t_k)(x) = \psi(q, t_k)$,
- (ii) for $x \in X_0$, $\lambda_k(q,t)(x) = \psi(q,t)(x)$, (iii) for $x \in Y_0$, $\lambda_k(q,t)(x) = \psi(q,t_k)(x)$, that is, non-fixed points of λ_k lie inside $V \times (-a, a)$.

We are now in a position to define the required deformation $\bar{\psi}$ using the above λ_k 's and the sharply moving diffeotopies. Suppose that, for some $k, 1 \leq$ $k \leq n-1$, we have an $\varepsilon_k > 0$ and a map $\psi_k \colon Q \times [0, t_k] \to \widetilde{\Phi} (U_1 \times (-\varepsilon_k, \varepsilon_k))$ such that, for all $q \in Q$ and $t \in [0, t_k]$,

- (iv) $\psi_k(q,t)=\psi(q,t)$ on $V_k\times (-\varepsilon_k,\varepsilon_k)$, where V_k is a G-invariant neighborhood bourhood of A in V_0 ,
- (v) $\psi_k(q,0) = \psi(q,0)$,
- (vi) supp $\psi_k \subset V \times (-\varepsilon_k, \varepsilon_k)$, where supp ψ_k denotes the set of non-fixed points of ψ_k ([4; p. 80]).

We shall construct $\psi_{k+1}\colon Q\times [0,t_{k+1}]\to \widetilde{\Phi}\big(U_1\times (-\varepsilon_{k+1},\varepsilon_{k+1})\big)$ for some positive number $\varepsilon_{k+1}<\varepsilon_k$. Choose open G-invariant neighbourhoods V_k' and W_k (with compact closures) of A in V_k satisfying

$$A \subset W_k \subset \operatorname{cl} W_k \subset V_k' \subset \operatorname{cl} V_k' \subset V_k$$
.

Now, if τ is such that $0 < \tau < \min \left(d \left(A, \partial (\operatorname{cl} W_k) \right), d \left(W_k, \partial (\operatorname{cl} V_k') \right) \right)$, where d is the G-invariant Riemannian metric on X, then the au-neighbourhood of $\partial(\operatorname{cl} W_k)$ in X is contained in $V'_k \setminus A$.

Let us consider the open subset $U' = U_1 \times (-2a, 2a)$ of $X \times \mathbb{R}$. By Lemma 2.1, there exists a positive number $\varepsilon_{k+1} < \varepsilon_k$, and an isotopy

$$\sigma \colon I \to \mathcal{E}_G(U_1 \times (-\varepsilon_{k+1}, \varepsilon_{k+1}), U')$$

which lies in $\mathcal{D}_G(X \times \mathbb{R}, \pi)$ and sharply moves U_1 at $\partial(\operatorname{cl} W_k)$. Then, $\sigma_t^* \lambda_k(q, s) \in \mathbb{R}$ $\widetilde{\Phi}(U_1 \times (-\varepsilon_{k+1}, \varepsilon_{k+1}))$ for each $t \in I$, $q \in Q$ and $s \in [t_k, t_{k+1}]$, since \mathcal{R} is invariant under the action of $\mathcal{D}_G(X \times \mathbb{R}, \pi)$.

Let $\bar{\sigma}_t: U_1 \times (-\varepsilon_{k+1}, \varepsilon_{k+1}) \to U'$, $0 \le t \le t_{k+1}$, be the isotopy obtained by shrinking σ_t :

$$\bar{\sigma}_t = \left\{ \begin{array}{ll} \sigma_{t/t_k} & \text{if } 0 \leq t \leq t_k \;, \\ \sigma_1 & \text{if } t_k \leq t \leq t_{k+1} \;. \end{array} \right.$$

Now define $\psi_{k+1}: Q \times [0, t_{k+1}] \to \widetilde{\Phi}(U_1 \times (-\varepsilon_{k+1}, \varepsilon_{k+1}))$ in the following way:

$$\psi_{k+1}(q,t)(x,s) = \begin{cases} \psi_k(q,t)(x,s) & \text{if } x \notin V_k' \,, \ 0 \leq t \leq t_k \,, \\ \left[\bar{\sigma}_t^* \psi(q,t)\right](x,s) & \text{if } x \in \operatorname{cl} V_k' \,, \ 0 \leq t \leq t_k \,, \\ \left[\bar{\sigma}_t^* \lambda_k(q,t)\right](x,s) & \text{if } x \in \operatorname{cl} W_k \,, \ t_k \leq t \leq t_{k+1} \,, \\ \left[\bar{\sigma}_t^* \psi(q,t_k)\right](x,s) & \text{if } x \in \operatorname{cl} V_k' \setminus W_k \,, \ t_k \leq t \leq t_{k+1} \,, \\ \psi_k(q,t_k)(x,s) & \text{if } x \notin V_k' \,, \ t_k \leq t \leq t_{k+1} \,, \end{cases}$$

where $q \in Q$ and $s \in (-\varepsilon_{k+1}, \varepsilon_{k+1})$.

Observe that ψ_n is the required $\bar{\psi}$ with $\varepsilon = \varepsilon_n$, because $\mathrm{supp}\,\psi_n \subset V \times (-\varepsilon_n, \varepsilon_n)$, and hence we can extend ψ_n to $U \cap (X \times (-\varepsilon_n, \varepsilon_n))$ by defining it to be fixed on the complement of $U_1 \times (-\varepsilon_n, \varepsilon_n)$.

To start the induction we must now define $\psi_1\colon Q\times [0,t_1]\to \widetilde{\Phi}(\operatorname{Op} U_1)$. For this construction we simply repeat the above arguments for k=0. Note that we must take $t_k=t_0=0$, $V_k=V_0$ and $\bar{\sigma}_t=\sigma_1$ for $0\le t\le t_1$. Then the definition of ψ_1 can be read out from the definition of ψ_{k+1} .

3. Proof of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. It is easy to see that \mathcal{R} is a G-invariant open subset of $E^{(1)}$. If we show that \mathcal{R} has a G-, and $\mathcal{D}_G(X \times \mathbb{R}, \pi)$ -invariant open extension, then the theorem will be proved in view of Theorem 1.1.

A section $\tau \colon X \times \mathbb{R} \to E \times \mathbb{R}$ is of the form $\tau(x,t) = (\tau'(x,t),t)$ so that $\pi \circ \tau = \tau'$, where $\tau' \colon X \times \mathbb{R} \to E$ is a map such that, for each $t \in \mathbb{R}$, $\tau'(\cdot,t)$ is a section of p. Define a G-subbundle $\widetilde{\eta}$ of $T(X \times \mathbb{R})$ by $\widetilde{\eta}_{(x,t)} = \eta_x \times \mathbb{R}$.

Let $\widetilde{\mathcal{R}} \subset (E \times \mathbb{R})^{(1)}$ consist of 1-jets of local sections $j_{(x,t)}^1 \tau$ satisfying the following two conditions:

(a)
$$j_{(x,t)}^1 \tau' |_{\widetilde{\eta}_{(x,t)}}$$
 is injective,

(b)
$$j_{(x,t)}^1 \tau'(\tilde{\eta}_{(x,t)}) \cap \xi_{\tau'(x,t)} = \{0\}.$$

Then $\widetilde{\mathcal{R}}$ is a G-, and $\mathcal{D}_G(X \times \mathbb{R}, \pi)$ -invariant open relation. Moreover, $\pi^{(1)}$ maps $\widetilde{\mathcal{R}}$ into \mathcal{R} . The proof of the theorem will be complete if we show that $\pi^{(1)}$ maps $\widetilde{\mathcal{R}}_G$ onto \mathcal{R}_G .

Let $\sigma\colon U\to E$ be a local G-section of p defined on a G-invariant neighbourhood U of $x\in X$ such that $j^1_x\sigma\in\mathcal{R}_G$. We will produce an equivariant local section τ at (x,0) defined on some G-invariant open neighbourhood \widetilde{U} of (x,0) such that $j^1_{(x,0)}\tau\in\widetilde{\mathcal{R}}_G$ and $\pi^{(1)}j^1_{(x,0)}\tau=j^1_x\sigma$. If there exists such a τ , then

- (i) $\tau(y,t)$ can be expressed as $(\tau'(y,t),t)$ for $(y,t) \in \widetilde{U}$, where τ' is an equivariant map from \widetilde{U} to E, and it satisfies the relation $p \circ \tau'(y,t) = y$. Moreover, $\tau'(x,0) = \sigma(x)$.
- (ii) Since τ' is equivariant, it maps \widetilde{U}^H into E^H , where H denotes the isotropy subgroup G_x at x. Let p^H denote the restriction of p to E^H . The relation $p^H \circ \tau'(x,t) = x$ gives $\mathrm{d} p^H_{\sigma(x)} \circ \mathrm{d} \tau'_{(x,0)}(0,w) = 0$ for $(0,w) \in T_x X^H \times T_0 \mathbb{R}$. Then $\mathrm{d} \tau'_{(x,0)}(0,w) \in \mathrm{Ker} \, \mathrm{d} p^H_{\sigma(x)}$. Since $p^H \colon E^H \to X^H$ is a fibre-bundle with fibre $(E_x)^H$, which is the same as $(E^H)_x$ (E_x being the fibre of p over x), we have $\mathrm{Ker} \, \mathrm{d} p^H_{\sigma(x)} = T_{\sigma(x)}(E_x^H)$ ($\subset (TE)^H_{\sigma(x)}$). Hence $\mathrm{d} \tau'_{(x,0)}(0,w) \in T_{\sigma(x)}(E_x^H)$.
 - (iii) Also, by hypothesis, $d\tau'_{(x,0)}(0,1) \notin d\sigma_x(\eta_x) \oplus \xi_{\sigma(x)}$.

Therefore, to obtain τ' , it is required to find a vector $\mathbf{u} \in T_{\sigma(x)}E^H_x$ which does not belong to the intersection $\left(\mathrm{d}\sigma_x(\eta_x) \oplus \xi_{\sigma(x)}\right) \cap T_{\sigma(x)}E^H_x$. Now, since the local condition $\dim X^H + \dim \xi^H < \dim E^H$ is equivalent to $\dim \xi^H < \dim E^H$, and since $\mathrm{d}\sigma_x(\eta^H_x) \cap T_{\sigma(x)}(E^H_x) = \{0\}$, $T_{\sigma(x)}(E^H_x)$ is not contained in $\mathrm{d}\sigma_x(\eta^H_x) \oplus \xi^H_{\sigma(x)}$. Also, since η and ξ are G-invariant subbundles, σ is equivariant, and $\mathrm{d}\sigma_x$ is injective, we can prove that

$$\left(\mathrm{d}\sigma_x(\eta_x^H) \oplus \xi_{\sigma(x)}^H\right) \cap T_{\sigma(x)}E_x^H = \left(\mathrm{d}\sigma_x(\eta_x) \oplus \xi_{\sigma(x)}\right) \cap T_{\sigma(x)}E_x^H \;.$$

We may, therefore, choose **u** as required.

We shall now construct τ' described in (i) above. First identify $E|_U$ with the trivial G_x -bundle $U\times Y$, where Y is G_x -homeomorphic to the fibre E_x . Then σ can be expressed in the following way

$$\sigma(y) = (y, \bar{\sigma}(y)) \in U \times Y$$
,

where $y\in U$, and $\bar{\sigma}\colon U\to Y$ is a G_x -equivariant map. Therefore, because of (ii), we may assume without loss of generality, that $\boldsymbol{u}\in T_{\bar{\sigma}(x)}Y^H\subset T_xX\times T_{\bar{\sigma}(x)}Y$.

Next, note that we can always find a smooth function \bar{f} (not necessarily equivariant) from a neighbourhood of $(x,0) \in X \times \mathbb{R}$ to Y such that at the point (x,0) it satisfies the following relations

$$\bar{f}(x,0) = \bar{\sigma}(x), \qquad \frac{\partial \bar{f}}{\partial x_i} = \frac{\partial \bar{\sigma}}{\partial x_i}, \qquad \frac{\partial \bar{f}}{\partial t} = \boldsymbol{u},$$

where x_i 's are coordinate functions on a neighbourhood of $x \in X$ and \boldsymbol{u} is as chosen above. These conditions imply that the map $f' \colon \operatorname{Op}(x,0) \to E$ defined by

the formula $f'(y,t) = (y,\bar{f}(y,t))$ has all the properties of τ' , except (perhaps) equivariance. Thus $\widetilde{\mathcal{R}}$ is a non-equivariant extension of \mathcal{R} . We may also assume that f' agrees with σ on X.

We shall now modify f' to get the required equivariant map τ' . Define a map τ'_1 on the domain of f' by the following rule:

$$\tau'_1(y,t) = \int_H h^{-1} f'(h \cdot (y,t)) dh,$$

where dh is the normalized Haar measure on $G_x=H$. Then τ_1' is a G_x -equivariant map agreeing with f' (and hence with σ) on $U\times\{0\}$, and is such that, for each $t\in\mathbb{R},\ \tau_1'(\cdot,t)$ is a local section of p, provided the composition $f\circ i_t$ is defined (in fact for a fixed $t,\ f'\big(h\cdot(y,t)\big)\in E_{hy}$, and therefore $h^{-1}\cdot f'\big(h\cdot(y,t)\big)\in E_y$; consequently, $\tau_1'(y,t)\in E_y$). Moreover, since H fixes both (x,0) and \mathbf{u} , we have

$$\frac{\partial \tau_1'}{\partial t}(x,0) = \int_H h^{-1} \frac{\partial f'}{\partial t}(x,0) \, dh = \int_H h^{-1} \cdot \boldsymbol{u} \, dh = \boldsymbol{u}.$$

Therefore, if S_x is a slice at $x \in U$, we may define $\tau' \colon G \times_H S_x \times \mathbb{R} \to E$ by

$$\tau'([g,y],t) = g\tau'_1(y,t).$$

This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Consider first a general situation:

LEMMA 3.1. Let X, Y be smooth G-manifolds, ξ a G-subbundle of TY, and η a G-subbundle of TX such that $\dim \eta + \dim \xi < \dim Y$. Let $\mathcal R$ be the subspace of $J^1(X,Y)$ consisting of 1-jets of germs of local G-maps defined on G-invariant open sets in X, $j_x^1 f$ for $x \in X$, such that

$$j_x^1 f \big|_{\mathcal{H}_x}$$
 is injective and $j_x^1 f(\eta_x) \cap \xi_{f(x)} = \{0\}$.

Then \mathcal{R} satisfies equivariant parametric h-principle (in an obvious sense), if for each isotropy subgroup H of the action of G on X we have locally

$$\dim \eta^H + \dim \xi^H < \dim Y^H.$$

Proof. Consider the G-locally trivial G-fibre bundle $E=X\times Y\to X$. Then G-sections of E are in one-one correspondence with the G-maps of X in Y and we may write a section σ as $(1_X,\bar{\sigma})$ where $\bar{\sigma}\colon X\to Y$ is a smooth G-map.

Consider the bundle $\bar{\xi}$ on $X\times Y$ defined by $\bar{\xi}_{x,y}=\eta_x\times \xi_y$. Then a section $\sigma\colon X\to E$ satisfies

$$d\sigma_x(\eta_x) \cap \bar{\xi}_{x,\bar{\sigma}(x)} = \{0\}$$

if and only if $\bar{\sigma} \colon X \to Y$ satisfies the following two conditions:

$$\mathrm{d}\bar{\sigma}_x\big|_{\eta_x} \ \text{is injective} \ \text{ and } \ \mathrm{d}\bar{\sigma}_x(\eta_x) \cap \xi_{\bar{\sigma}(x)} = \{0\}\,.$$

Also, the condition $\dim X^H + \dim \bar{\xi}^H < \dim E^H$ is equivalent to $\dim \xi^H + \dim \eta^H < \dim Y^H$. This completes the proof.

The proof of the theorem now follows from the above lemma by taking $\eta = TX$ and $\xi = 0$.

REFERENCES

- [1] BIERSTONE, E.: The equivariant covering homotopy property for differentiable G-fibre bundles, J. Differential Geom. 8 (1973), 615-622.
- [2] BIERSTONE, E.: Equivariant Gromov theory, Topology 13 (1974), 327-345.
- [3] FEIT, S.: k-mersions of manifolds, Acta Math. 122 (1969), 173-195.
- [4] GROMOV, M.: Partial Differential Relations. Ergeb. Math. Grenzgeb. (3) 9, Springer-Verlag, Berlin, 1986.
- [5] HIRSCH, M.: Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276.
- [6] IZUMIYA, S.: Homotopy classification of equivariant regular sections, Manuscripta Math. 28 (1979), 337-360.
- [7] PETRIE, T.—RANDALL, J. D.: Transformation Groups on Manifolds. Monogr. Text-books Pure Appl. Math. 82, Marcel Dekker, Inc., New York, 1984.
- [8] PHILLIPS, A.: Submersions of open manifolds, Topology 6 (1967), 170-206.
- [9] SMALE, S.: The classification of immersions of spheres in Euclidean spaces, Ann. of Math. (2) 69 (1959), 327-344.