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PARAMETRIC HOMOTOPY PRINCIPLE OF
SOME PARTIAL DIFFERENTIAL RELATIONS
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(Communicated by Jilius Korbas)

ABSTRACT. An rth order partial differential relation is a subspace in the space
of r-jets of C" sections of a fibre bundle p: E — X . In this paper we consider an
open G-invariant relation for equivariant sections of a G-fibre bundle, where G
is a compact Lie group, and consider the homotopy classification of equivariant
solutions of the differential relation. We also obtain an equivariant analogue of
the Smale-Hirsch immersion theorem.

1. Introduction

The open extension theorem of Grom o v [4] provides a unifying principle
for the work of Smale [9], Hirsch [5], Phillips [8], Feit [3], and others
on immersion and submersion problems. The main purpose of the present paper
is to study the theorem in an equivariant context, and obtain as applications
a generalization of the transversality theorem of Gromov, and an equivariant
version of the Smale-Hirsch immersion theorem.

Let G be a compact Lie group, X a differentiable G'-manifold with a
G-invariant Riemannian metric, and p: E — X a G-locally trivial differen-
tiable G-fibre bundle. Recall that a G-fibre bundle p: £ = X is a locally
trivial G-map, and that this is G-locally trivial if for every z in X there exists
a G -invariant open neighbourhood U, of x such that p~!(U,) is differentiably
G ,-equivalent to the trivial G -fibre bundle U, x p~!(z). As has been shown
in Bierstone [1; Theorem 4.1], a differentiable G-fibre bundle is G-locally
trivial if and only if it has the equivariant covering homotopy property.

Let p(): B — X be the bundle of r-jets of local sections of p. Then p!”/
inherits a natural differentiable G-fibre bundle structure, where the action of G
on E) is given by g-jrf = jgz(gfg"l), for a local section f of p at z € X and
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g € G. Then a partial differential relation, or simply a relation, is a G-invariant
subspace R of E(.

Let E) € E") be the subspace of E(") consisting of r-jets of cquivariant
local sections of p defined on G-invariant open sets of X . Then E(Gr) is a
G-invariant subspace of E("). We shall denote the subset R N E(Gr ) by R -

A section f: X — E of p is called a solution of the partial differential
relation R, if the corresponding r-jet map j”f has its image in R.

We shall denote the space of equivariant C* solutions of R by SolR, and
the space of equivariant C® sections of p(”) with images in Rg by I(R). The
former space has the C* compact-open topology, whereas the latter one has
the C° compact-open topology. The r-jet map j* maps SolR into I'(R), and
is continuous with respect to the above topologies.

A relation R C E(" is said to satisfy equivariant parametric h-principle
(h for homotopy), if the r-jet map j": SolR — I'(R) is a weak homotopy
equivalence.

The manifolds X xR and E xR are G-manifolds under the diagonal G-action
on them, the G-action on R being the trivial one. Moreover, pxid: ExR— X xR
is a G-locally trivial G-fibre bundle. Let 7: X x R — X be the canonical pro-
jection on the first factor. There is a natural bundle map 7("): (ExR)(" — FE(")
covering the projection 7 which sends the r-jet j(rzﬁt)f onto the r-jet j7(wofoi,),
where 7,: X — X xR is given by 4,(y) = (y,¢t) for y € X. We call a relation
R C (E x R)\") an eztension of R, if n(") sends ﬁG onto R;.

Let D,(X xR) denote the pseudogroup of equivariant local diffeomorphisms
on X x R. We shall be interested in the subpseudogroup D (X x R,7) of
D (X xR) consisting of fibre-preserving diffeomorphisms, which are local diffeo-
morphisms A such that 7o) = 7. The pseudogroup D (X xR, 7) has a natural
action on E x R. This action may be described by a map ¢: Dy(X x R,7w) —
D (E xR) in the following way. If A: UxJ = UxJ' isin D (X xR, 7), where
J and J’ are open intervals of the real line R, then we define po(\): p~H{U)xJ —
p~H(U) x J' by o(M(e,t) = (e, N(p(e),t)}, where N: U x J - J' is the
G-equivariant map satisfying A(z,t) = (z,N(z,t)) so that myo X = X (m,
denotes the projection on the second factor). The map g is continuous with re-
spect to C*> compact-open topologies, and it induces an action of D (X xR, )
on the space of local sections of p x id, and hence an action on the jet space
(E x R)) . The actions are given by (), f) = A*f = p(A\)"'ofo) and
()\,j;(z’t)f) = J(p (A" f), where A € Do(X xR, ) is a local G -diffeomorphism
at ¢ and f is a local G-section of p x id at A(z,t).

A relation R is said to be Dy(X x R, 7)-invariant, if A*(R) C R for every
ANeDL(X xRm).

The main theorem of the paper is:
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THEOREM 1.1. If R ¢ EU) is an open relation which admits a G- and
Do(X x R, 7)-invariant open extension R C (E x R\, then R abides by
the equivariant parametric h-principle.

The main theorem reduces to the “open extension theorem” of Gromov
[4; p. 86] when G is trivial, and generalizes the theorems of Bierstone [2],
and Izumiya [6] in the sense that we do not require the invariance of the
basic partial differential relation R under the action of the pseudogroup of local
diffeomorphisms.

Our next theorem is an application of Theorem 1.1, and is a generalization
of the transversality theorem of Gromov [4; p. 87]. First recall that if X is
a G -manifold, then its tangent bundle TX is a G-vector bundle over X under
the differential action of G. In fact, since TX has a Lie structure group, T'X
is actually G-locally trivial (see Bierstone [1; Theorem 4.2]). Also, if H is
a closed subgroup of G, then the H-fixed point set X is a submanifold of
X, and T(X¥) = (TX)¥ ([7; §11.13]). Thus (TX)¥ is a vector bundle over
XH . Now consider a G-locally trivial G-fibre bundle p: E — X, and let &
and 77 be G-subbundles of TE and TX respectively. Let R C EM be the
relation consisting of 1-jets of germs of local sections, jlo for z € X, such that
jio(n) N $o(z) = {0}. Thus the solutions of R are sections of p which are

transversal to £ on 7.

THEOREM 1.2. [f for each isotropy subgroup H of the action of G on X we
have locally

dim X + dimé¢¥ < dim EX |
where dim M means the fibre dimension of £, then R satisfies equivariant
parametric h-principle.

Explicitly, the condition means that for each z € X¥ and each e €
p Y z)NEX, dimXH at z is strictly less than dim E¥ — dim¢¥ at e.

This theorem leads to an equivariant version of the Smale-Hirsch immersion
theorem. Let X and Y be smooth G-manifolds with dimX < dimY . Let
Imm(X,Y) denote the space of equivariant smooth immersions of X in Y,
and R (TX,TY) denote the space of equivariant continuous monomorphisms
F:TX — TY such that Fm,Tm(G'x) is given by the differential of the map

gz + gf(z) of the orbit Gz onto the orbit Gf(z), where f: X - Y is the map
covered by F: TX - TY .

THEOREM 1.3. The differential map d: Immg(X,Y) — R (TX,TY) s
a weak homotopy equivalence, provided dim X* < dim YH locally for every
isotropy subgroup H of the G -action on X.

This theorem may be compared with earlier work on equivariant immersions
by Bierstone [2] and Tzumiya [6). Bierstone used a dimension con-
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dition which may be described as follows. Recall that an invariant component
of a G-manifold X is the inverse image under the orbit map X — X/G of
a component of X/G, and that the saturation of a fixed point set X" is the
closed G-subspace XH) = G - X¥ of X. Let {X/} be the set of invariant
components of the saturations X (i) partially ordered by inclusion, where H f
runs over the isotropy subgroups of G over X. Then the equivariant immersion
theorem of Bierstone demands that dim(X7)#+ for each minimal component
X! should be strictly less than the dimension of each component of Y+ On
the other hand, if n = max{dim X} where H runs over isotropy subgroups of
G over X, and if m = min{dim Y¥} where K runs over isotropy subgroups of
G over Y, then the equivariant immersion theorem of Izumiya assumes that
n < m. It follows then that Izumiya’s theorem is weaker than Theorem 1.3,
and Theorem 1.3 is weaker than Bierstone’s theorem.

2. Proof of Theorem 1.1

We shall resort to the sheaf theoretic treatment of Gromov [4]. Let &
be the sheaf on X with ®(U/), where U is an open set in X (not necessarily
G-invariant), as the space of equivariant C*® solutions of R over GU, and
with obvious restriction maps which are continuous with respect to the C*
compact-open topologies. If C 1is a subset of X, we let ®(C) to be the direct
limit of the spaces ®(U) over all open sets U containing C. Thus ®(C) consists
of germs of equivariant C°° solutions of R near C, and $(C) = ®(GC). We
endow ®(C) with the following quasi-topological structure, in order to avoid
certain awkward situations (see Gromov [4; p. 35]). If P is any topological
space, then the space C°(P, ®(C)) of quasi-continuous maps (which will also be
referred to as continuous maps) from P to ®(C) is the direct limit of the spaces
C°(P, ®(U)) of continuous maps P — &(U) over all open sets U containing C'.
Thus the restriction maps r: ®(C) = ®(C'), ¢' ¢ C C X, are continuous in
the sense that for any f € C?(P, ®(C)) the composition 7o f € C°(P,(C")).

Similarly, we define the sheaf ¥ of equivariant C° sections of p!”) whose
images lic in R.

It is easy to see that ®{X) and W(X) are respectively the spaces Sol R and
I'(R), and the 7-jet map induces a continuous sheaf homomorphism j™: & — ¥.

In view of the sheaf homomorphism theorem of G rom o v [4; p. 77], the proof
of our theorem consists in showing that the sheal ¢ is flexible, which means that
for every pair of compact sets (C, C') in X the restriction map r: ®(C) — ®(C")
is a Serre fibration. The other prerequisites, namely, flexibility of ¥, and local
weak homotopy equivalence of j7: & — ¥ can be worked out easily following
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respectively the arguments of the Flexibility sublemma of Gromov [4; p. 40],
and Lemma 5.4 of Bierstone [2] (R being open).

To prove the flexibility of @, we need to consider the solution sheaf & of the
relation R. Using the fact that R is an open extension of R, it is not difficult to
show that the canonical restriction a: (I)l x — @ is a microextension. Therefore,
our objective is to show that the sheaf Ef>| x is flexible, because once this is
done, the flexibility of ® will follow directly from the Microextension theorem
of Gromov [4; p. 85].

Before taking on the relation R, we observe the following simple but ex-
tremely important fact. Let S be a compact G-invariant hypersurface lying in
a G-invariant open set U C X and ¢ be a positive real. Let £, (U,U x (-4, 8))
be the space of equivariant C'*° embeddings of Op U in U x (-6,8) with C*°
compact-open quasi-topology, where OpU denotes an arbitrary open invariant
neighbourhood of U in U x (—4§,d) which may be different for different embed-
dings. Suppose that for some 7 > 0, the 7-neighbourhood U_ of S is contained
in U. Then we have:

LEMMA 2.1. For every real number a, 0 < a < §, there ezists an isotopy
g: I = E,(U,U x (—4,8)) such that
(i) for each t €1, o, is a fibre-preserving diffeomorphism; in particular o
15 the inclusion map,
(ii) for each t, o (x,s) = (x,s) whenever z lies outside U_,
(iii) for each z lying in a fized neighbourhood of S, d(o,(z,s), X) > a, where
d denotes the distance with respect to the G -invariant metric on X x R.

Note that following Gromov, the diffeotopy o, may be said to sharply
move X locally in X x R at the hypersurface S.

Proof. Let f: R~ R be a smooth function defined by
expl/(u?-1) if |u] <1,
fW=14 it ul > 1.
Next, define a 1-parameter family of maps
0,: OpU — U x (=4,9), 0<t<1,
by
o(z,s) = (a:,tcf(d(x,S)/T) + s) ,
where ¢ is a constant (the value of which will be determined later according to
our requirements).
It is clear from the definition that o, is the inclusion map, o, is fibre-

preserving, and o,(z,s) = (x, s) if z lies outside the 7T-neighbourhood of 5" in
X . Also, each ¢, is an equivariant map, because d(gz, ) = d(gz, g5) = d(z, 5).
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To prove that o, is an embedding, it is enough to observe that o, is fibre-
preserving, and that, for a fixed z, the map s — tcf (d(z, S)/7)+s is a one-one
immersion.

Now observe that max tef(d(z,S)/7) = cf(0), and choose ¢ so that a/ f(0) <

¢ < 6/f(0). Then, it is easy to verify that there exists an ¢ > 0 such that
o: 1 = E,(U x (~¢,€),U x (—6,6)) has all the required properties. a

We now turn to the proof of flexibility of the sheaf S | x - Since compressibility
of deformations over compact sets is equivalent to flexibility of the sheaf [4;

p. 80-81}, it is sufficient to prove that an arbitrary deformation ¢: @xI — 5(/1) ,
where A C X is a compact set, is compressible. To see this, let us take a
G-invariant open neighbourhood U of 4 in UN X, where U ¢ X x R is a
common domain for the family of maps 1(g,t) parametrized by @ x I (such an
U exists by the quasi-continuity of ¢). Since A is compact, we get a G-invariant
open neighbourhood U; of A in X (with closure clU, compact) and an a > 0
such that

U cl and cdlU; x [-2a,2a¢) CU.

Choose G-invariant open sets V;, and V' such that clV, and clV are compact
and

ACV,CadVycVvcedV cl;.
Set
X, =clVy x [-a/2,a/2],
Y, =clU, x[-2q¢,2a]\V x (—a,a).

The sets X and Y, are compact, G-invariant and disjoint from each other.
Let A denote the diagonal subset of I x I. Define a map ¢,: @ x A —

®(clU, x [-2a,2d]) by
ei(gtt) = d(g,t)  for (gt) € Q x 1.
Define another map ¢,: Q@ x I x I — 5(X0 uY,) by

P(g,s)(z) if xe Xy,

(’02((],15,8)(113) = { ’(/)(q,t)(z) if z € Yo .

Observe that rop, = <p2[Q % A »Where 7 is the restriction @ (clU, x[~2a,2a]) —

<f>(X0 U Y,). Since R is open, there exists a neighbourhood N of @ x A in
Q@x I x I and amap y: N — ®(clU; x [~24,2a]) such that ¥|p x A = ¥

and r o 1; = ¢,. Since ) x A is compact, we can find a positive number ¢ < 1
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such that (g,t,s) € N whenever |t —s| < ¢. We now partition the interval [0, 1]
as follows:

0=ty <t <---<t, =1 such that ¢, —¢, .| <¢ forall k,
and define, for each k, a map
Aot @ X [ty ty 1] = B(clU, x [—2a, 2a])

by the rule
A (Q7t)( ) ((I1tk7 )( )
Then A, has the following properties:

(i) forall z, A (g, t,)(x) =v¥(q,t,),

(ii) for z € X, A (g, t)(z) =¥(q,t)(z),

(iii) for z € Yy, M.(q,t)(z) = ¥(g,t;)(z), that is, non-fixed points of A, lie

inside V X (—a,a).

We are now in a position to define the required deformation v using the
above A, ’s and the sharply moving diffeotopies. Suppose that, for some k£, 1 <
k<n—1, wehavean ¢, > 0 and amap ¢, : @ x [0,%,] = (U, x (—€;,€4))
such that, for all ¢ € Q and t € [0,¢,],

(iv) (g, t) = ¥(g,t) on V x (—¢,,€,), where V, is a G-invariant neigh-

bourhood of A in V,

(v) ¥,(q,0) =4(q,0),
(vi) supp®y, C V x (—&,,¢€,), where suppy, denotes the set of non-fixed
points of ¢, ([4; p. 80}).

We shall construct 9, ., : @x[0,t; ] = <I>(U X(—=€j411Exy1)) for some positive
number €, < ¢,. Choose open G-invariant neighbourhoods Vy and W, (with
compact closures) of A in V, satisfying

ACW, CcadW, CcV/cdV,CV,.

Now, if 7 is such that 0 < 7 < min(d(A,é?(Cl Wk)),d(Wk,a(clef))), where
d is the G-invariant Riemannian metric on X, then the 7-neighbourhood of
d(clW,) in X is contained in V}/\ A.

Let us consider the open subset U’ = U; x(—2a, 2a) of X xR. By Lemma 2.1,
there exists a positive number g, ., <¢,, and an isotopy

o: 1 — EG(UI X ("Ek+1a5k+1)aUl)

which lies in D (X xR, 7) and sharply moves U; at 8(cl W,). Then, ot")\,&(q, s) €
é(Ul X (—€p41:6441)) foreach t €I, g€ Q and s € [t ty4], since R is in-
variant under the action of Dg(X x R, 7).
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Let 7,: U; x (=€, 1,644,) = U, 0<t <ty , be the isotopy obtained by
shrinking o,:

o [ o HOSE<E,
¢ o it <t<t .

Now define ¢, ,: @ x [0,t,, ] — $(U, x (=€k41> 1)) in the following way:

Vg, t)(z, s) fz¢Vy, 0<t<t,

[Bry(g t)](z,s) ifzecdV), 0<t<ty,
Y1 (g, t)(z,8) = [Er;'/\k(q, ) (z,s) f zecdW,, t, <t< bt s

(g, t))(z,s) i zedVI\W,, t, <t<t..,

P la, t. )z, ) ifz¢ V., t, <t <t

where q € Q and s € (~¢,,,,&4,,)-

Observe that v, is the required P with ¢ = €,, because suppvy, C
V x (—€,,€,), and hence we can extend %, to UN (X x (—sn,sn)) by defining
it to be fixed on the complement of U, x (—¢,,¢,,).

To start the induction we must now define 9;: @ x [0,t,] —= d(Op U,). For
this construction we simply repeat the above arguments for k£ = 0. Note that we
must take t, =t, =0, V, =V, and &, =0, for 0 <t < ;. Then the definition
of 1, can be read out from the definition of ¥, -

3. Proof of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. It is easy to see that R is a G-invariant open
subset of E() . If we show that R has a G-, and D, (X x R, 7)-invariant open
extension, then the theorem will be proved in view of Theorem 1.1.

A section 7: X x R & E x R is of the form 7(z,¢) = (7'(z,t),t) so that
moT = 7', where 7': X x R — FE is a map such that, for each t € R, 7'(-, 1) is
a section of p. Define a G-subbundle 7 of 7(X x R) by 7, ,, =1, X R.

Let R C (B x R)(Y) consist of 1-jets of local sections j(lx 0T satisfying the
following two conditions:

1 1 P .
(a) T )T In(z,t) 13 injective,
(1) 3y (Fay) N Erisgy = {0}

Then R is a G-, and D,(X x R, m)-invariant open relation. Moreover, (V)

maps 7§ into R. The proof of the theorem will be complete if we show that ()
maps R onto K.
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Let o: U — E be a local G-section of p defined on a G-invariant neigh-
bourhood U of z € X such that jlo € R,. We will produce an equivariant
local section 7 at (2,0) defined on some G invariant open neighbourhood U of
(z,0) such that j(l T E R( and 7(1 ( 20T = jlo. If there exists such a T,
then

(i) 7(y,t) can be expressed as (7'(y,t),t) for (y,t) € U, where 7/ is an
equivariant map from U to E, and it satisfies the relation po 7'(y,t) = y.
Moreover, 7/(x,0) = o(z).

(ii) Since 7/ is equivariant, it maps U¥ into EH | where H denotes the
isotropy subgroup G, at z. Let p* denote the restriction of p to Ef . The
relation pfor'(x,t) = = gives dpf(z)odﬂr(’z‘o)(o,w) =0 for (0,w) € T,XH xT,R.
Then dT(II’O)(07’Ll)) € Ker dpf(x). Since p: E¥ — X" is a fibre-bundle with
fibre (E,)!, which is the same as (E#)_ (E, being the fibre of p over z), we
have Kerdpll ) =T, ,(E") (C(TE)Y,)). Hence dr{, ,(0,w) € T, (B

(iii) Also, by hypothesis, d7, ,,(0,1) ¢ do,(n,) ® &,

Therefore, to obtain 7/, it is required to find a vector u € To(z)Ef which
does not belong to the intersection (do,(n,) EB{G(E)) NT, . EH . Now, since the
local condition dim X + dim ¢ < dim E¥ is equivalent to dim¢? < dim EX |
and since do, (nf)NT,,,(EHF) = {0}, T, (EL) is not contained in do LnH )EB

U(z Also, since 1 and £ are G-invariant subbundles o is equivariant, and do,
is injective, we can prove that

(do, (n) @ a(z)) NT, (a:)EH (do,(n,) ® &) N T, Ef

We may, therefore, choose u as required.

We shall now construct 7' described in (i) above. First identify E|;; with
the trivial G -bundle U x Y, where Y is G -homeomorphic to the fibre £ .
Then o can be expressed in the following way

a(y) = (y,0(y)) €U x Y,
where y € U,and : U — Y is a G_-equivariant map. Therefore, because of (i),
we may assume without loss of generahty, that u € T} I)Y CT,X xT,.,Y.
Next, note that we can always find a smooth function f (not necessarily

equivariant) from a neighbourhood of (z,0) € X x R to Y such that at the
point (x,0) it satisfies the following relations

of oo of _ ”
oz, Oz,’ ot ’

where z,’s are coordinate functions on a neighbourhood of z € X and u is as
chosen above. These conditions imply that the map f’: Op(z,0) =+ E defined by

f(2,0) = 5(z),
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the formula f'(y,t) = (y, f(y,t)) has all the properties of 7', except (perhaps)

equivariance. Thus R is a non-equivariant extension of R . We may also assume
that f’ agrees with o on X.

We shall now modify f’ to get the required equivariant map 7'. Define a
map 7, on the domain of f' by the following rule:

(y,t) = /h“lf’(h~(y,t)) dh

H

where dh is the normalized Haar measure on G, = H. Then 7] is a G -equi-
variant map agreeing with f' (and hence with ¢) on U x {0}, and is such
that, for each t € R, 7/(-,t) is a local section of p, provided the composi-
tion f o, is defined (in fact for a fixed t, f'(h- (y,t)) € E,,, and therefore

Rt fi(h- (y,t) € E,; consequently, 7{(y,t) € E, ). Moreover, since H fixes
both (z,0) and u, we have

aT‘ 2,0 /h‘ —( 0) dh = /h-l-udhzu.

H

Therefore, if S, is aslice at £ € U, we may define 7': G x; S, x R = E by
({9, yl, 1) = g7{(y,1).
This completes the proof of Theorem 1.2. O
Proof of Theorem1.3. Consider first a general situation:

LEMMA 3.1. Let X, Y be smooth G-manifolds, & a G -subbundle of TY ,
and n a G -subbundle of TX such that dimn + dim€& < dimY . Let R be the
subspace of JY(X,Y) consisting of 1-jets of germs of local G -maps defined on
G -invariant open sets in X, jLf for z € X, such that

jﬂlﬂflﬁx is injective and jif(nz)ﬁff(x) = {0}.

Then R satisfies equivariant parametric h-principle (in an obvious sense), if for
each isotropy subgroup H of the action of G on X we have locally

dimn® + dim 7 < dimY¥? .
Proof. Consider the G-locally trivial G-fibre bundle £ = X x YV =+ X.
Then G-sections of E are in one-one correspondence with the G-maps of X

in ¥ and we may write a section ¢ as (1,,5) where 6: X = Y is a smooth
G -map.
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Consider the bundle & on X x Y defined by fx,y =1, x §,. Then a section
o: X — F satisfies

if and only if G: X — Y satisfies the following two conditions:

da—z]nz is injective and d&,(n,) N&;(,) = {0}.

Also, the condition dim X + dimé&” < dim E¥ is equivalent to dim & +

dimnf < dim Y. This completes the proof. O

The proof of the theorem now follows from the above lemma by taking

n=7TX and £ =0. O
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