Principal components of finger ridge-counts: their universality

T. Krishnan and B. Mohan Reddy
Indian Statistical Institute, Calcutta, India
Received September 17 1990; revised February 251991

Abstract

Summary. A principal component analysis was carried out on radial and ulnar finger ridgecount data on a sample of fishermen of the sea coast of Puri in the state of Orissa in India. The component structure is very similar to that obtained earlier by Roberts and Coope for some English populations, by Arrieta and Lostao for a Basque population, by Siervogel et al. for a White American population, by Jantz and Hawkinson, and Jantz et al. for American and African populations, and by other authors for other populations. The initial components are bilaterally symmetric and the structure of these components is the same whether the two sides are taken separately or together. Only the latter components represent a certain amount of bilateral asymmetry. The first component is a 'size' component, indicating total finger ridge-count; the second component is a radial-ulnar contrast. From a comparison with previous studies on other populations, it appears that the component structure corresponding to the larger eigenvalues is fairly universal; there is a certain lack of universality in the structure of the components corresponding to smaller eigenvalues as well as in the order of these components, especially the rotated ones, when the corresponding eigenvalues are very close. As observed by previous authors, components corresponding to larger eigenvalues do not necessarily exhibit larger inter-population differences. However, there is lack of universality in the order of the components and in the structure of the components that exhibit large inter-population differences.

1. Introduction

The need for a multivariate approach to finger ridge-counts and the advantages it offers, compared to the summary measures such as TFRC/ATFRC, in tracing population relationships at local and racial levels has been amply demonstrated (Knussmann 1967, Chopra 1971, Jantz and Owsley 1977, Jantz and Hawkinson 1979, 1980, Jantz, Hawkinson, Brehme and Hitzeroth 1982). Many of the above studies show interpopulation consistency in the components derived, within major racial/geographical stocks, suggesting biological validity of the underlying component structure obtained by principal component analysis. Such a set of possible primary components of dermal patterns, which are universal in nature, has been explored by Lin, Crawford and Oronzi (1979). However, less obvious is the nature of variation in these components among the populations of different races. Therefore, Roberts and Coope (1975) stressed the need for elucidating this structure in samples of different races, geographical regions and/or continents, to ascertain if the component structure found in European populations is universal. Later, Jantz and Owsley (1977), Jantz and Hawkinson (1979, 1980) and Jantz et al. (1982), studying American White and Black and subsaharan and other African populations, found some evidence of racial variation, although a remarkable degree of overall consistency was seen in the component structure. Studies by Reed, Norton and Christian (1978) on an American population of twins, by Meier (1981) on Eskimo and East Polynesian populations, by Arrieta and Lostao (1988) on a Basque population, and by Santos, Meier and VieiraFilho (1990) on an Amazonian Amerindian population demonstrated the universality of the component structure. Significant racial differences are also known to exist in the average inter-finger correlation of ridge-counts (Jantz 1977, Malhotra and Reddy 1986)
which may reflect in the component structure as well. However, to date, no attempt has been made to study samples from Asia to discern their dermatoglyphic component structure. The present study essentially aims to fill this gap.

Principal component analysis is a general technique for reducing the dimensions of variability. This reduction technique looks for linear combinations of the original measurements which preserve as much of the variation as possible. The problem with 20 finger ridge-counts is to examine what linear combinations (variously called factors or components) of the counts explain the variations between individuals, and to determine whether these factors have natural interpretations and whether they have further genetic significance in terms of their ability to differentiate between genetically different groups. The computational technique of extracting principal components consists in the calculation of eigenvalues and eigenvectors of appropriate covariance or correlation matrices (Press 1972, Morrison 1976, Gower and Digby 1981).

2. Materials and methods

The populations studied are marine fishermen at Puri, a coastal town in the state of Orissa in India. There are three endogamous groups called Vadabalija of Penticotta (VP), Vadabalija of Vadapeta (VV) and Jalary (J). They are migrants and speak Telugu, a language spoken in the neighbouring state of Andhra Pradesh. While VP migrated some 35 years ago from about 48 villages distributed in East and West Godavari and Visakapatnam districts of Andhra Pradesh, the VV and J groups did so some 100 years ago from 42 and 17 villages respectively of the Srikakulam district of Andhra Pradesh and contiguous Ganjam district of Orissa. At Puri, the population sizes of the three groups are about 8000,4000 and 800 respectively. More details of these populations, including their demographic structures and biological variations, can be found in Reddy (1984), Reddy, Chopra and Mukherjee (1987), Reddy, Chopra, Karmakar and Malhotra (1988) and Reddy, Chopra, Rodewaldt, Mukherjee and Malhotra (1989).

Finger ridge-count data on 676 individuals, both male and female, of these groups were utilized for the present study. Fingerprints were obtained during the years 1977-78 by ink-and-roller method (Cummins and Midlo 1961) and the ridge-counting was done by one of the authors (B.M.R.), following standard procedures (Holt 1968). Each individual is represented by a vector of 20 counts, a radial and an ulnar count for each digit. Sample sizes of males and females of these three groups are given in table 1.

3. Results

Table 1 presents the mean radial and ulnar ridge-counts in each digit for each of the six caste-sex groups as also the within-group standard deviation (SD). It is noticed that the means and SDs are of the same magnitude as in Jantz et al.'s (1982) data for some subsaharan African populations, for each of the digits. As is the case with other populations, the radial counts are much higher than ulnar counts and the digits 4 and 1 record higher counts. Previous authors have found evidence of variation in ridgecounts and components due to race and sex. Hence we computed the principal components for the six caste-sex groups separately; we found that there was very little variation in the component structure between the six groups. Hence we decided to compute a single set of principal components for the six groups after eliminating the caste-sex mean effects. To this end, we carried out a multivariate analysis of variance of all the 20 counts by caste and sex, to obtain an estimate of an assumed common covariance matrix of the six groups as the within-group covariance matrix. We

Table 1. Mean radial (R) and ulnar (U) ridge counts for each of the six caste-sex groups in each digit and within-group standard deviation.

Castesex group	Sample size	Side	Digit									
			5		4		3		2		1	
			R	U	R	U	R	U	R	U	R	U
VP		Left	14.106	$2 \cdot 161$	$16 \cdot 391$	$6 \cdot 894$	$13 \cdot 870$	$3 \cdot 702$	$9 \cdot 491$	6.497	16.199	7.907
Male	161	Right	$13 \cdot 851$	$2 \cdot 714$	$16 \cdot 199$	7.820	13.012	$3 \cdot 516$	9.559	6.677	$18 \cdot 180$	$7 \cdot 733$
VP		Left	13.680	1.930	$15 \cdot 500$	$6 \cdot 660$	$12 \cdot 660$	$3 \cdot 830$	9.830	6.030	$15 \cdot 080$	6.460
Female	100	Right	13.490	1.660	$16 \cdot 350$	7.230	12.760	2-130	10.670	$5 \cdot 160$	$16 \cdot 770$	5.340
VV		Left	14.676	3-108	$17 \cdot 333$	$8 \cdot 863$	$14 \cdot 510$	$5 \cdot 176$	11.804	$7 \cdot 804$	16.441	8.745
Male	102	Right	$14 \cdot 127$	$3 \cdot 382$	16.971	9.471	13.392	$4 \cdot 216$	11.500	9.147	$17 \cdot 814$	10.098
VV		Left	13.977	2.565	16.901	8.618	13.000	6-107	10.496	7.931	$14 \cdot 168$	7.771
Female	131	Right	13.901	1.947	16.588	$8 \cdot 267$	12.977	$4 \cdot 992$	11.244	$8 \cdot 206$	$16 \cdot 130$	$6 \cdot 863$
J		Left	14-206	1.931	17.366	8.427	13.947	$5 \cdot 641$	$10 \cdot 359$	$5 \cdot 962$	16.275	$6 \cdot 229$
Male	131	Right	$13 \cdot 748$	2.725	$16 \cdot 176$	9.855	12.092	5-237	9.824	7.511	$18 \cdot 191$	$8 \cdot 473$
J		Left	$12 \cdot 275$	1-196	$15 \cdot 902$	$7 \cdot 902$	$14 \cdot 118$	$5 \cdot 157$	9.941	6.627	14.647	8.471
Female	51	Right	11.902	2.059	15.020	$9 \cdot 176$	13.020	$4 \cdot 353$	10.745	7.549	15.392	7.039
All		Left	13.985	$2 \cdot 231$	16.652	$7 \cdot 864$	13.652	$4 \cdot 895$	10.287	6.809	15.574	7.359
Groups	676	Right	13.682	$2 \cdot 463$	$16 \cdot 320$	8.565	$12 \cdot 848$	$4 \cdot 099$	10.484	$7 \cdot 416$	17.311	7.658
Within-		Left	$4 \cdot 59$	4.40	5.49	$7 \cdot 26$		$7 \cdot 43$	$6 \cdot 30$	7.48	$6 \cdot 10$	8.11
groups SD		Right	$4 \cdot 70$	$4 \cdot 56$	5.65	$7 \cdot 28$	5.05	7.08	6.05	7.71	$6 \cdot 21$	8.07
Caste		Left	$1 \cdot 31$	$0 \cdot 17$	$0 \cdot 40$	$0 \cdot 22$	1.09	0.43	1.02	0.27	0.53	0.51
F(2,670)		Right	1.54	$0 \cdot 32$	$0 \cdot 62$	$0 \cdot 12$	$0 \cdot 89$	1.47	0.84	0.26	0.60	0.56
Sex		Left	$7 \cdot 28$	1.93	$4 \cdot 24$	0.31	$3 \cdot 41$	$0 \cdot 10$	0.79	0.31	$11 \cdot 11$	1.18
F(1,670)		Right	$4 \cdot 40$	$7 \cdot 87$	0.99	$1 \cdot 89$	0.04	0.73	1.42	1.07	$14 \cdot 71$	$12 \cdot 58$

extracted the correlation matrix from the within-group covariance matrix for a component analysis. In general, the principal components obtained from the covariance matrix and the correlation matrix are not the same, since principal components are not invariant under linear transformations. We chose to use the correlation matrix rather than the covariance matrix since the former is somewhat more standard and most of previous authors have used the correlation matrix; Roberts and Coope (1975), however, have used the covariance matrix.

The within-group correlation matrix has certain interesting features. The highest level of correlation is between homologous counts; for instance, radial left 5 count is most correlated with radial right 5 ; this kind of correlation is of the order of $0 \cdot 6-0.7$. The next level of correlation is between neighbours on the same side; for instance, radial left 5 is fairly highly correlated with radial left 4 and the correlations decrease gradually from digit 5 to digit 1 ; the range is from about $0 \cdot 6$ to $0 \cdot 3$. The third level of correlations is between a count and its neigbours on opposite sides; this varies between $0 \cdot 35$ and $0 \cdot 25$. The least correlations are between radial and ulnar counts and the above pattern is followed in the same order. That is, the least correlation is between a radial count and an ulnar count on different sides between digits far apart. This is as low as $0 \cdot 2$. The following correlations between radial left 3 (RL3) and other counts is a typical example of this description:

Correlations between RL3 and other counts

RL5	UL5	RL4	UL4	UL3	RL2	UL2	RL1	UL1	
0.38	0.44	0.59	0.47	0.45	0.63	0.42	0.42	0.31	
RR5	UR5	RR4	UR4	RR3	UR3	RR2	UR2	RR1	UR1
0.40	0.43	0.56	0.46	0.72	0.44	0.60	0.41	0.42	0.27

The pattern of the correlation matrix described here is similar to that presented by previous authors (Holt 1951, Siervogel, Roche and Roche 1978). Holt (1951) and Singh, Aitkin and Westwood (1977) have described the correlation structure in terms of three levels similar to the first three levels described here. We carried out principal component analysis on this correlation matrix. Often, in principal component analysis and in factor analysis, components or factors are 'rotated'; that is, a linear transformation on the initially obtained components is carried out, in order to make them more easily interpretable by having, for instance, a large number of zero coefficients. We also rotated the components so that we could compare the rotated components with such components obtained by other authors.

The results of component analysis are given in tables 2 and 3. Besides the first six components, we have presented components 12 and 16 , in view of the fact that there are significant differences in these components between castes. Although we have also computed the rotated components, we have not presented the details, and have included here only a discussion of their comparison with rotated components of previous authors. The components-the unrotated as well as the rotated ones-are strikingly similar to those presented by Roberts and Coope (1975), Jantz and Owsley (1977), Siervogel et al. (1978), Reed et al. (1978), Jantz and Hawkinson (1979, 1980), Meier (1981), Jantz et al. (1982), Arrieta and Lostao (1988) and Santos et al. (1990). There are, of course, a few differences. We first describe the unrotated components and compare them mainly with those of Jantz et al. (1982) for subsaharan African populations and of Arrieta and Lostao (1988) for a Basque population. The first component explained 49% of the variance, the next $8 \cdot 5 \%$, then $6 \cdot 4 \%$, etc. The first

Table 2. Eigenvalues $\left(\lambda_{k}\right)$ of within-group correlation matrix, proportion of variance explained, χ^{2} for equality of last eigenvalues and test for significance of last eigenvalues.

k	λ_{k}	$\frac{\lambda_{k}}{20}$	χ^{2}	d.f.	$\frac{\sqrt{n} \sum_{i=k+1}^{20} \lambda_{i}}{\sqrt{2 \sum_{i=k+1}^{20} \lambda_{i}^{2}}}$
1	$9 \cdot 80$	0.490	3100	189	$113 \cdot 19$
2	$1 \cdot 70$	0.085	2200	170	$65 \cdot 77$
3	$1 \cdot 28$	0.064	1597	152	$65 \cdot 41$
4	$1 \cdot 18$	0.059	1223	135	$64 \cdot 63$
5	0.90	0.045	686	119	$64 \cdot 14$
6	$0 \cdot 66$	0.033	560	104	$64 \cdot 12$
7	0.55	0.027	368	90	$62 \cdot 88$
8	$0 \cdot 52$	0.026	298	77	$61 \cdot 25$
9	0.43	0.022	226	65	59.08
10	0.41	0.021	153	54	56.85
11	0.33	0.017	127	44	54.04
12	$0 \cdot 32$	0.016	100	35	51.08
13	$0 \cdot 30$	0.015	82	27	$47 \cdot 88$
14	$0 \cdot 29$	0.014	59	20	44.53
15	$0 \cdot 26$	0.013	47	14	$40 \cdot 71$
16	$0 \cdot 24$	0.012	39	9	$36 \cdot 46$
17	$0 \cdot 23$	0.012	34	5	$31 \cdot 60$
18	$0 \cdot 22$	0.010	32	2	$25 \cdot 87$
19	$0 \cdot 19$	0.010	-	-	$18 \cdot 32$
20	$0 \cdot 18$	0.009	-	-	-

component has its weights fairly evenly distributed over all the 20 counts, the weights ranging from 0.50 to 0.78 , the radial counts getting somewhat larger weights. The homologous digits get similar weights. This could be called the 'size' component. The second component, which explains 8.5% of the variance, seems to be a contrast between radial and ulnar counts, the radial counts getting a positive sign and ulnar negative sign; in this component, too, the homologous digits have similar weights; however, there is a great deal of variation in the inter-digit weights; the ulnar 1 and radial 5 carry very little weight, the dominating digits being 4 and 3 . This is slightly different from Jantz et al.'s second component in that it excludes digit 2 but includes digit 1 . The third component, which explains 6.4% of the variance, is a contrast between digit 1 and the others, notably digit 4 ; here again there is no left-right difference; the ulnar counts play a minor role in this component except for digit 1. This is exactly like Jantz et al.'s fourth component, but it is the same as Arrieta and Lostao's third component. Our fourth component is a contrast between ulnar 5 and ulnars 3 and 2; other digit counts have very little weights; left and right weights once again are similar. This is somewhat like Jantz et al.'s third component and Arrieta and Lostao's male fourth component. Thus our third and fourth components correspond to Jantz et al.'s fourth and third components respectively, but are similar to corresponding components of Arrieta and Lostao. This may well be due to sampling fluctuations in view of these two eigenvalues being very close: 1.28 and 1.18 in our case, 1.49 and 1.24 in Jantz et al.'s case and 1.27 and 1.23 in Arrieta and Lostao's case. The fifth component is the difference between radial 5 and radials 3 and 2 , but is not very clearcut; the left and right weights are, however, similar; this component is different from Jantz et al.'s. The sixth component has significant weights only for digits 2 and 1 ,

Table 3. Loadings of the first six and the twelfth and sixteenth principal components.

Digit	Radial (R)/ulnar (U)	Component							
		1	2	3	4	5	6	12	16
L5	R	0.78	$0 \cdot 11$	$-0 \cdot 15$	$0 \cdot 07$	-0.40	0.06	0.04	-0.18
	U	$0 \cdot 50$	-0.47	0.03	$0 \cdot 59$	-0.04	0.05	$0 \cdot 15$	$0 \cdot 11$
L4	R	0.78	$0 \cdot 22$	-0.28	$0 \cdot 16$	-0.19	0.05	$0 \cdot 11$	-0.05
	U	0.78	-0.23	0.09	0.07	$0 \cdot 09$	-0.03	$0 \cdot 10$	-0.24
L3	R	$0 \cdot 78$	0.28	-0.17	-0.01	$0 \cdot 17$	-0.08	-0.31	-0.01
	U	0.70	-0.39	-0.00	-0.26	$0 \cdot 21$	0.05	$0 \cdot 00$	-0.04
L2	R	0.72	$0 \cdot 18$	-0.07	0.09	$0 \cdot 20$	-0.35	$0 \cdot 10$	0.03
	U	0.73	-0.22	$0 \cdot 11$	-0.30	0.05	0.14	-0.14	0.15
L1	R	0.64	0.39	0.39	$0 \cdot 20$	$0 \cdot 13$	0.27	0.03	0.07
	U	0.59	-0.09	0.59	-0.08	-0.20	-0.29	-0.01	-0.05
R5	R	0.77	0.14	-0.16	$0 \cdot 00$	-0.41	0.01	-0.16	0.04
	U	0.54	-0.47	-0.04	$0 \cdot 54$	-0.08	0.07	-0.16	-0.07
R4	R	0.76	0.23	-0.27	-0.14	-0.23	0.02	0.22	$0 \cdot 10$
	U	0.76	-0.18	-0.23	0.02	-0.04	$0 \cdot 00$	0.04	$0 \cdot 26$
R3	R	0.79	0.28	0.13	0.09	$0 \cdot 19$	0.00	-0.11	-0.01
	U	$0 \cdot 70$	-0.38	-0.03	-0.30	0.25	0.08	-0.06	0.01
R2	R	0.67	$0 \cdot 21$	-0.10	0.18	0.35	-0.34	0.08	-0.01
	U	0.70	-0.27	0.05	-0.32	0.05	0.18	0.15	-0.11
R1	R	0.61	0.44	0.37	$0 \cdot 17$	0.15	0.36	0.06	-0.04
	U	$0 \cdot 61$	-0.04	$0 \cdot 56$	$-0 \cdot 13$	-0.23	-0.23	-0.01	0.05

positive weights for radial 1 and ulnar 2 and negative weights for ulnar 1 and radial 2 -this could be described as interaction between radial vs. ulnar and digit 2 vs. digit 1 .

We made an attempt to interpret the remaining components but they are not clearly interpretable. Other authors (for instance Siervogel et al. 1978) have noted that components after the tenth display bilateral asymmetry, although as noted earlier this asymmetry is not represented in the initial components. We notice that the latter components do contain a certain amount of bilateral asymmetry in the sense of homologous digits having opposite signs; however, the weights are not similar in magnitude. Further, none of these components reflects exclusively bilateral asymmetry; this asymmetry is mixed up with digital differences; more importantly, some components appear to be interactions between digital differences and bilateral asymmetry. For instance the twentieth component is: (digit 5 vs. digit 4) \times (left vs. right). In view of lack of clarity of the latter components we have not presented them all.

The structure of the components described above establish this universality of a clear tripartite division of digits observed by Siervogel et al. (1978), Reed et al. (1978), Meier (1981) and Santos et al. (1990). Thus there seem to be distinct digital regions, digit 1 , digits 2 and 3 , and digits 4 and 5 , digit 4 being unstable, sometimes with digits 2 and 3 and sometimes with digit 5 , depending upon the population and the component. Lin, Crawford and Oronzi (1979) explored possible universally valid dermal patterns, using the technique of principal component analysis; they present six components based on 24 variables. In their analysis they use only the left side observations; besides the 10 ulnar and radial ridge-counts they use the 10 radial and ulnar side numbers of triradii and three interdigital ridge-counts ($a-b, b-c, c-d$) and atd angle. In view of these differences from our analysis, it is rather difficult to compare our results with theirs.

Except for a few of the latter components, no component included left-right difference and hence perhaps the analysis could as well be carried out pooling left and right ridge-counts. Tables 4 and 5 give the eigenvalues and the components in terms of

Table 4. Eigenvalues $\left(\lambda^{k}\right)$ of within-group correlation matrix and proportion of variance explained on the basis of left-right pooling.

k	λ_{k}	$\frac{\lambda_{k}}{10}$	k	λ_{k}	$\frac{\lambda_{k}}{10}$
1	5.71	0.571	0.099	7	0.39
2	0.99	0.74	0.074	0	0.31
3	0.69	0.069	0.25	0.031	
4	0.051	10	0.23	0.025	
5		0.18	0.023		

Table 5. Loadings of the first six principal components on the basis of left-right pooling.

Digit	Radial (R)/ulnar (U)	Component					
		1	2	3	4	5	6
5	R	0.57	0.51	-0.12	-0.61	0.05	-0.07
	U	0.81	-0.14	-0.15	-0.02	0.43	-0.18
4	R	0.83	$0 \cdot 22$	-0.18	-0.01	-0.01	0.13
	U	0.81	-0.24	-0.24	$0 \cdot 20$	0.26	-0.03
3	R	0.75	0.41	0.02	$0 \cdot 30$	-0.24	-0.07
	U	$0 \cdot 84$	-0.31	-0.17	-0.01	-0.17	0.02
2	R	0.79	0.27	$0 \cdot 14$	0.33	-0.06	-0.16
	U	0.78	0.24	$0 \cdot 13$	-0.13	$0 \cdot 32$	0.36
1	R	$0 \cdot 66$	0.08	0.65	-0.15	$0 \cdot 20$	0.29
	U	$0 \cdot 66$	-0.45	$0 \cdot 36$	-0.25	-0.15	-0.36

these 10 pooled counts. It is clear that more or less the same components are obtained with the pooling of left and right counts.

Table 2 contains also the results of testing the significance of the components and of testing the equality of the eigenvalues after a certain stage. The χ^{2} statistic tests whether the eigenvalues from k onwards are equal, that is, $\lambda_{k}=\lambda_{k+1}=\ldots=\lambda_{20}$. The statistic

with a standard normal distribution tests whether the eigenvalues after the k th are significantly different from zero, that is, $\lambda_{k+1}=\lambda_{k+2}=\ldots=\lambda_{20}=0$. Our results show that both hypotheses are rejected even at 1% for any value of k. This means that from no stage could we consider the eigenvalues to be equal or equal to zero.

Jantz et al. (1982) have pointed out that the first components need not necessarily be the most important with respect to explaining inter-population differences. Considering the original counts on each digit, we found that none of the 20 counts presented significant differences between castes (the largest $F(2670)$ is 1.54 with a p-value of $0 \cdot 216)$. However, UL5, UL4, UL1, RR5, UR5, RRI, UR1 all presented significant sex differences at the 5% level. We carried out individual analysis of variance by caste and sex of each of the 20 components. Results are presented in table 6 . No component has a

Table 6. Mean values of the 20 components for each of the six caste-sex groups and F-ratios for caste and sex differences thereof.

Component	Caste-sex group						All Groups	F-Ratios	
	VP		VV		J			$\begin{gathered} \text { Caste } \\ F(2,670) \end{gathered}$	$\begin{gathered} \text { Sex } \\ F(1,670) \end{gathered}$
	M	F	M	F	M	F			
1	$29 \cdot 31$	29.32	$31 \cdot 34$	30.01	28.78	$29 \cdot 27$	29.61	$2 \cdot 54$	1.58
2	1.55	1-19	$0 \cdot 46$	0.05	$1 \cdot 68$	$0 \cdot 58$	0.99	$3 \cdot 47$	$2 \cdot 50$
3	$6 \cdot 45$	$6 \cdot 50$	$5 \cdot 25$	4.87	$6 \cdot 50$	$4 \cdot 72$	$5 \cdot 85$	$5 \cdot 40$	$3 \cdot 28$
4	$12 \cdot 57$	$10 \cdot 15$	12.93	$10 \cdot 86$	13.47	$10 \cdot 41$	11.95	$0 \cdot 58$	$23 \cdot 35$
5	$15 \cdot 94$	$15 \cdot 60$	$16 \cdot 21$	$15 \cdot 66$	$16 \cdot 56$	$14 \cdot 88$	$15 \cdot 91$	0.08	$3 \cdot 31$
6	14.69	$13 \cdot 43$	13.55	$12 \cdot 64$	14.97	11.90	$13 \cdot 78$	$2 \cdot 32$	$18 \cdot 57$
7	$9 \cdot 86$	9.24	$9 \cdot 83$	8.49	9.66	7.87	$9 \cdot 31$	$0 \cdot 86$	$6 \cdot 81$
8	$12 \cdot 22$	11.45	12.44	$11 \cdot 70$	12.74	$10 \cdot 96$	$12 \cdot 04$	$0 \cdot 15$	$7 \cdot 20$
9	$10 \cdot 26$	9.75	9.93	$10 \cdot 34$	$10 \cdot 14$	$9 \cdot 66$	$10 \cdot 08$	$0 \cdot 11$	$0 \cdot 25$
10	$19 \cdot 80$	17.91	$18 \cdot 63$	$16 \cdot 85$	18.91	$16 \cdot 68$	$18 \cdot 36$	2.41	$15 \cdot 40$
11	26.06	$25 \cdot 15$	27.40	$25 \cdot 15$	26.82	$24 \cdot 42$	25.97	0.45	7.07
12	0.75	$0 \cdot 32$	-0.29	-1.34	0.64	-0.84	-0.15	4.08	5.44
13	8.14	$6 \cdot 76$	$7 \cdot 49$	$6 \cdot 64$	$7 \cdot 51$	$6 \cdot 26$	$7 \cdot 28$	0.57	$6 \cdot 71$
14	$8 \cdot 76$	7.09	$8 \cdot 27$	$6 \cdot 80$	9.41	$6 \cdot 74$	$8 \cdot 03$	0.73	$25 \cdot 84$
15	19.06	18.00	$19 \cdot 50$	$17 \cdot 75$	19.08	$17 \cdot 10$	$18 \cdot 57$	$0 \cdot 32$	8.88
16	11.80	10.96	$9 \cdot 62$	8.93	10.57	$7 \cdot 56$	$10 \cdot 23$	$11 \cdot 40$	$10 \cdot 82$
17	17.61	$16 \cdot 44$	$18 \cdot 56$	$16 \cdot 13$	17.75	$16 \cdot 08$	$17 \cdot 21$	$0 \cdot 19$	$8 \cdot 53$
18	8.06	6.85	$8 \cdot 15$	$7 \cdot 28$	$8 \cdot 12$	$5 \cdot 46$	$7 \cdot 56$	1.97	$18 \cdot 64$
19	$12 \cdot 84$	11.90	$12 \cdot 85$	$11 \cdot 15$	11.77	11.69	$12 \cdot 08$	0.75	4.44
20	23.91	21.90	23.96	$21 \cdot 90$	$24 \cdot 18$	$21 \cdot 09$	$23 \cdot 07$	0.07	$13 \cdot 31$
								$2 \cdot 22$	3.05
Sample size	161	100	102	131	131	51	676	$\begin{gathered} (F(40,1304)) \\ p=0 \cdot 000 \end{gathered}$	$\begin{gathered} (F(20,651)) \\ p=0 \cdot 000 \end{gathered}$

$F(2,670)$ upper 5% point $=3 \cdot 00$; upper 1% point $=4 \cdot 61$.
$F(1,670)$ upper 5% point $=3 \cdot 84$; upper 1% point $=6 \cdot 63$.
significant caste \times sex interaction. Only for components $2,3,12$ and 16 is there a significant (at the 5% level) caste difference, the sixteenth being the highest. The twelfth and sixteenth components, however, appear peculiar and are not easily interpreted; the twelfth is UL5-RL3-RR5-UR5 + RR4 + UR2 and the sixteenth is -RL5 + UL5-UL4 + UL2 + RR4 + UR4 - UR2. All components except the first, second, third, fifth and ninth showed sex differences, the fourteenth being the most significant.

In table 7 of Jantz et al. (1982), quite a few of the latter components showed significant population differences while the initial ones did not. In table 2 of Jantz and Hawkinson (1980), components 6 and 15 showed significant population differences. If the object of getting linear components is to exhibit large population differences, then the canonical variables of discriminant analysis are the best candidates; for they maximize inter-group differences. There is no reason why the initial principal components should display large population differences; they only display large withingroup differences. An approximate picture that emerges out of an examination of Jantz et al.'s (1982) tables 6 and 7, Jantz and Hawkinson's (1980) tables 2 and 3 and the last columns of our table 6, is as follows: what components, whether initial or latter ones, display larger population differences will depend upon the distances between the populations under consideration. The major groups of subsaharan African populations showed more differences in the initial components; the mixed-up groups of American Black and White and Black African Yoruba populations showed differences in the earlier (sixth) as well as in later (fifteenth) components; in the relatively more homogeneous Black African groups the significant components were down the table, and in our case of caste groups belonging to the same village, the significant components went further down the table. Our populations showed significant overall differences on the basis of all the 20 ridge-counts, but our sample size and the degrees of freedom were large. The Mahalanobis distances between our caste groups were: between 1 and $2: 0.41$; between 2 and 3: 0.63 ; between 1 and $3: 0.65$; these are considerably lower than those between the groups in Jantz et al.'s displayed in their table 6, as well as in Jantz and Hawkinson's table 3. We carried out a caste discriminant analysis and the canonical variables in that discriminant analysis turned out, as expected, to be a combination of our components 12 and 16 . This supports Jantz et al.'s (1982) contention that the first components need not necessarily be genetically the most important.

We rotated the components using Varimax rotation. The rotated components are quite similar to the rotated components of Jantz and Owsley (1977), Siervogel et al. (1978), Meier (1981), Arrieta and Lostao (1988) and Santos et al. (1990). The first factor is a general radial factor with large and somewhat equal weights for radial counts and small weights for ulnar counts. The second factor is dominated by radial 1 and 3 . The third factor is ulnar 1,2 and 3 . The fourth factor is radial 2 and 3. The fifth is radial 4 and 5. The sixth is ulnar 5 left. The seventh is ulnar 1 and the eighth is ulnar 5 right. There were hardly any purely bilateral asymmetry components; this was also the case with Siervogel et al. (1978). Jantz and Owsley (1977) discern three general types of factors-radial count factors, ulnar count factors and thumb factors, specifically, radial $1,2,3$; radial 4,5 ; ulnar $1,2,3$; ulnar 5 ; and ulnar 1 . Our components match fairly well with this structure. Arrieta and Lostao (1988) discern a radial vs. ulnar component, which is not present in either ours or in Jantz and Owsley's. Arrieta and Lostao discern components for digit 1 , for digits $2,3,4$ and for digit 5 , with instability for digit 4 which sometimes appears with digits 2 and 3 and sometimes with digit 5 . Our component structure is also similar to this. Our component structure is also fairly
similar to that of Siervogel et al. (1978); however, the order of the components is slightly different. There is an interchange of rotated components 1 and 2 between ours and Siervogel et al.'s (1978); in their digits 1, 2 and 3 dominate the first component and digits 4 and 5 the second. Component 3 is similar in both cases. Component 4 is a combination of our 5 and 6 . Component 5 is like our 7. These differences could be attributed to the small differences in the corresponding eigenvectors, subjecting the order of the components to sampling fluctuations.

Most of the computations presented here were done using SPSS facility at the Indian Statistical Institute.

4. Discussion

There is a remarkable degree of universality in the correlation and the component structures in terms of the percentage variance explained by components, the components themselves and their variations over populations and sex. There are some minor differences, which may be attributable to the relative homogeneity of the three caste groups when compared to those of the populations considered by previous authors. The ethnohistorical information on our groups suggests that they are offshoots of a common stock in the relatively recent past and are observed to be at the initial stages of genetic differentiation (Reddy et al. 1989). In fact, two of these three groups are reproductive isolates of the same caste (Reddy 1984).

The three-level pattern of the correlation matrix observed in previous studies is reflected in our data and hence it is not surprising that the component patterns are also similar to those of the previous studies. The three-zone pattern of digit 1, digits 2 and 3, digits 4 and 5 noted by Siervogel et al. (1978) is observed here in a slightly different form. Our results in general confirm the field theory proposed by Roberts and Coope (1975). The absence of bilateral asymmetry in the initial components is also a universal phenomenon and is somewhat stronger in our case compared to those of the previous studies; we wonder whether this could also be due to the lower hierarchical level of the populations that we have worked with; there was not enough information on the latter components in the previous published work for us to make a conjecture on this issue. Another aspect of the consistency is that the most important components in terms of the variance explained are not necessarily the most important in terms of their ability to explain population and sex differences. As in previous studies, the components that discriminate best are some of the components corresponding to small eigenvalues-the sixth, twelfth and sixteenth, for instance.

On the basis of the overall consistency and similarity in the component structure observed not only between subgroups within racial/geographical groups, but also between racial/major geographical groups, it is tempting to conclude that these components are universal and may have biological validity as well; it must nevertheless be remembered that neither the present samples nor those of the previous studies are adequate representations of the racial/major geographical stocks that they stand for. However, taking into account the overall consistency, the nature of the differences and the types of populations used in various studies, it may at least be surmised that although the component structure has a large degree of universality, different components are useful in differentiating populations at different levels; to get a clear picture of this phenomenon it seems necessary to carry out a unified study of the role of the components in differentiating populations at various levels of hierarchy of the human species. Such a study would need more extensive data. We are currently attempting to carry one out using published and other available data on populations from across the world.

Acknowledgements

The authors are thankful to two anonymous referees for their comments and suggestions, which led to improved presentation of this paper.

References

Arrieta, M.I., and Lostao, C.M., 1988, Principal components analysis of digital dermatoglyphic patterns in a Basque population. Human Biology, 60, 191-204.
Chopra, V. P., 1971, Biostatische Analyse der Hautleisten von Geistig Gestorten Kindern. In Hautleisten und Krankenheiten, edited by W. Hirsch (Berlin: W. Hirsch), pp. 341-362.
Cummins, H., and Midlo, C., 1961, Finger Prints, Palms and Soles (New York: Dover).
Gower, J. C., and Digby, P.G.N., 1981, Expressing complex relationships in two dimensions. In Interpreting Multivariate Data, edited by V. Barnett (New York: John Wiley), pp. 83-118.
Holt, S. B., 1951, The correlations between ridge-counts on different fingers. Annals of Eugenics, 16, 287-297.
Holt, S. B., 1968, The Genetics of Dermal Ridges (Springfield: Charles C. Thomas).
Jantz, R.L., 1977, Sex and race differences in finger ridge-count correlations. American Journal of Physical Anthropology, 46, 171-176.
$J_{\text {ANTZ, R. L., and Hawkinson, C. H., 1979, Finger ridge-count variability in sub-saharan Africa. Annals }}$ of Human Biology, 6, 41-53.
Jantz, R.L., and Hawkinson, C.H., 1980, Components of racial variation in finger ridge-counts. American Journal of Physical Anthropology, 52, 139-144.
Jantz, R. L., Hawkinson, C. H., Brehme, H., and Hitzeroth, H. W., 1982, Finger ridge-count variation among various subsaharan African groups. American Journal of Physical Anthropology, 57, 311-321.
Jantz, R. L., and Owsley, D. W., 1977, Factor analysis of finger ridge-counts in blacks and whites. Annals of Human Biology, 4, 357-366.
KnUSSMANN, R., 1967, Interkorrelationen im hautleistensystem des menschen und ihre factorenanalytische auswertung. Human Genetics, 4, 221-243.
Lin, P.L., Crawford, M. H., and Oronzi, M., 1979, Universals in dermatoglyphics. In Dermatoglyphics—Fifty Years Later, edited by W. Wertelecki and C. C. Plato (New York: Alan R. Liss), pp. 63-84.
Malhotra, K. C., and Reddy, B. M., 1986, Ethnic variation in interfinger correlation of ridge counts. Current Anthropology, 27, 74-76.
Meier, R. J., 1981, Sequential developmental components of digital dermatoglyphics. Human Biology, 53, 557-573.
Morrison, D. F., 1976, Multivariate Statistical Methods, 2nd edn (New York: McGraw-Hill).
Press, S. J., 1972, Applied Multivariate Analysis (New York: John Wiley).
REDDY, B.M., 1984, Demographic structure of the migrant groups of fishermen of Puri coast, India. Journal of Biosocial Science, 16, 385-398.
Reddy, B.M., Chopra, V.P., and Mukherjee, D.P., 1987, Biological affinities between the migrant groups of fishermen of Puri coast, Orissa, India. American Journal of Physical Anthropology, 74, 407-415.
Reddy, B. M., Chopra, V.P., Karmakar, B., and Malhotra, K. C., 1988, Quantitative palmar dermatoglyphics and assessment of population affinities: Data from marine fishermen of Puri, India. Anthropologischer Anzeiger, 46, 235-244.
Reddy, B. M., Chopra, V. P., Rodewaldt, A., Mukherjee, B. N., and Malhotra, K. C., 1989, Genetic differentiation among the four endogamous groups of fishermen of eastern coast, India. Annals of Human Biology, 16, 321-333.
Reed, T., Norton, Jr, S. A., and Christian, J. C., 1978, Fingerprint pattern factors. Human Heredity, 28, 351-360.
Roberts, D.F., and Coope, E., 1975, Components of variation in a multi-factorial character: a dermatoglyphic analysis. Human Biology, 47, 169-188.
Santos, R. V., Meier, R. J., and Vieira-Filho, J.P.B., 1990, Digital dermatoglyphics of three Amerindian populations of the Brazilian Amazonia: a further test of field theory. Annals of Human Biology, 17, 213-216.
Siervogel, R.M., Roche, A.F., and Roche, E.M., 1978, Developmental fields for digital dermatoglyphic traits as revealed by multivariate analysis. Human Biology, 50, 541-556.
Singh, S., Artkin, M. A., and Westwood, N.H., 1977, Structural analysis of the ridge-count data of Australian Europeans using multivariate analysis. Acta Genetica et Medica Gemellologica (Roma), 26 167-171

Zusammenfassung. Radiale und ulnare Hautleistendaten einer Stichprobe von Fischern aus der Küstenregion von Puri im indischen Bundesstaat Orissa wurden mittels der Principal Component Analyse ausgewertet. Die Komponentenstruktur ăhnelt stark der von Roberts und Coope fur einige englische Populationen, von Arrieta und Lostao für eine baskische Population, von Siervogel et al. für eine Population amerikanischer WeiBer, von Jantz und Hawkinson sowie Jantz et al. fur amerikanische und afrikanische Populationen sowie von anderen Autoren für weitere Populationen beschriebenen. Die ersten Komponenten sind bilateral symmetrisch und die Struktur dieser Komponenten ist unabhăngig davon, ob die beiden Seiten getrennt oder gemeinsam betrachtet werden. Ledliglich die nachfolgenden Komponenten repräsentieren ein gewisses $\mathrm{Maß}$ bilateraler Asymmetrie. Die erste Komponente ist eine "Größen"-Komponente, die die Gesamtleistenzahl anzeigt, die zweite Komponente spiegelt einen radialulnaren Kontrast wider. Ein Vergleich mit den Ergebnissen anderer Studien eigt, daß die Komponentenstruktur, die den größeren Eigenwerten entspricht, ziemlich universal ist. Es gibt einen gewissen Mangel an Universalität in der Struktur der Komponenten, die kleineren Eigenwerten entsprechen, wie auch in der Reihenfolge dieser Komponenten, speziell der rotierten, wenn die entsprechenden Eigenwerte eng beieinander liegen. Wie von anderen Autoren bereits gezeigt, reflektieren Komponenten, die großeren Eigenwerten entsprechen, nicht notwendigerweise großere Differenzen zwischen den Populationen. Es gibt jedoch einen Mangel an Universalităt in der Reihenfolge der Komponenten und in der Struktur derjenigen Komponenten, die grwße Differenzen zwischen den Populationen widerspiegeln.

Résumé. Une analyse en composantes principales a été effectuée sur des données du nombre de crètes ulnaires et radiales d'un échantillon de pêcheurs de la côte de Puri dans l'état d'Orissa en Inde. La structure des composantes est très proche de celles obtenues antérieurement par Roberts et Coope pour quelques populations anglaises, par Arrieta et Lostao dans une population basque, par Siervogel et al. pour une population blanche américaine, par Jantz et Hawkinson et Jantz et al. pour des populations américaines et africaines et par d'autres auteurs pour d'autres populations. Les composantes intiales sont bilatéralement symétriques et leur structure est la même, que les deux côtés soient pris séparément ou ensemble. Seuls les composantes suivantes présentent une certaine quantité d'asymétrie bilatérale. La première composante est une composante de 'taille", indiquant le nombre de crête digitales total, la seconde traduit le contraste entre ulnaire et radial. En comparant ces résultats avec ceux d'autres études, il apparait que la structure des composantes correspondant aux valeurs propres les plus grandes est universelle; c'est moins vrai pour ce qui concerne les composantes aux valeurs propres plus petites, ainsi qu'en ce qui concerne l'ordre de ces composantes, en particulier aprés rotation, lorsque les valeurs propres en cause sont très voisines. Ainsi que d'autres auteurs l'ont observé, les composantes de plus grandes valeurs propres ne manifestent pas nécessairement des différences interpopulationnelles plus élevées. Il y a cependant une absence d'universalité dans l'ordre des composantes et dans la structure des composantes qui présentent de grandes différences interpopulationnelles.

