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Some inequalities for commutators and an application to spectral variation

RAJENDRA BHATIA, CHANDLER DAVIS AND FUAD KITTANEH

Dedicated to the memory of Alexander M. Ostrowski on the occasion of the
100th anniversary of his birth

Summary. If T — I is a positive semidefinite operator and 4 and B are ecither both Hermitian or both
unitary, then every unitarily invariant norm of 4 — B is shown to be bounded by that of AT" — I'B. Some
related inequalities are proved. An application leads to a generalization of the Lidskii—Wielandt
inequality to matrices similar to Hermitian.

1. Introduction

Let #(#) be the space of bounded linear operators on a complex separable
Hilbert space ##. The main problem considered in this paper is that of comparing
the norm of the operator 4 — B with that of a commutator AT —I' B, where A4, B,
I are elements of B(#) satisfying some additional conditions. Problems of this
kind have been studied by several authors and the results obtained have been found
useful in numerical analysis and physics. See, e.g., [5], [12].

Apart from the usual operator norm ||-| on %8(#) we are interested in unitarily
invariant or symmetric norms. Properties of such norms may be found in [2] or [7].
When the space # is infinite-dimensional, a unitarily invariant norm [|-|| is defined
only on a norm ideal associated with it. We will make no explicit mention of this
ideal, it being understood that when we talk of [|A| we are assuming that 4
belongs to the norm ideal associated with |[-]].

Of special interest are the Schatten p-norms defined as

i/p
HAH,,=(zsf<A>) C l<peo, )

J

where s,(A4) are the singular values of the compact operator A arranged in
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decreasing order s,(A) > s,(A4) > - -. When p = oo, the norm |4 || coincides with
the operator norm || A|| = s,(4). The norm |4 |, is called the Hilbert - Schmidt norm
or the Frobenius norm; the norm || 4|, is called the trace norm.

We shall prove the following:

THEOREM 1. Let A, B be Hermitian operators and let T be a positive (semi-

definite) operator satisfying T =yl for the positive real number y. Then, for every
unitarily invariant norm |[-||. we have

AT —TBi = y]4 - B} (2)

THEOREM 2. Let A, B be Hermitian operators and let T be a positive operator
such that T 2 + (4 — B). Then, for every unitarily invariant norm ||-||, we have

- (3)

4T —TB] > |4 - By

We will also obtain some extensions of these results. One of them says that the
inequality (2) is true also when A, B are unitary instead of being Hermitian. We
conjecture that this is so even when A, B are arbitrary normal operators. When the
norm |[-{| is chosen to be the Hilbert-Schmidt norm |||, then the inequality (2)
does remain true whenever A, B are normal. This was proved by J. G. Sun [11), and
our methods lead to a different proof of this result.

An important consequence of Theorem 1 is a generalization of the Lidskii—
Wielandt inequality for spectral variation of Hermitian matrices, which we now
recall. If A, B are Hermitian matrices, we may write them as A = UD, U,
B=VD,V ' where U,V are unitary and where D, =diag(x,,...,®,) and
D, =diag(f,, ..., f,) are diagonal matrices whose diagonal entries are the eigen-
values of 4 and B respectively. The Lidskii—Wielandt inequality [2, Chapter 3] says
that

minl| D, ~ 11D,11 || < |4 ~ 8]} 4

for every unitarily invariant norm, where IT ranges over the class of permutation
matrices.

The following theorem generalizes this result to the case where A and B are
diagonalizable matrices with all real eigenvalues. In the statement, we use the
familiar concept of the condition number of an invertible matrix P, defined by

cond(P) = |P|| | P~ | (5)
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THEOREM 3. Let A, B be matrices such that A = PD,P"', B=QD,Q"", for
some invertible matrices P, Q and real diagonal matrices Dy, D,. Then for every
unitarily invariant norm |H|H we have

min D, = TID,I1~ || < cond(P) cond(Q) |4 — B]|. (6)

Notice that when A, B are Hermitian then P, Q are unitary and hence have
condition numbers 1. Thus (6) is indeed a generalization of (4).

Sun [11] has proved the inequality (6) for the special case of the Frobenius
norm ||, but without the restriction that 4 and B have all real ecigenvalues.
Sun proves this by using the inequality analogous to (2) valid in this situation.
The passage from the first result to the second is effected by him using the
Hoffman—Wielandt inequality for normal matrices [8)}; we achieve this by the use
of (4).

If our conjecture that the inequality (2) is true when 4, B are any two normal
operators can be proved, then known spectral variation results for normal ma-
trices [2], [4], [5] will yield inequalities corresponding to (6) for general diagonaliz-
able matrices.

Proofs of the above theorems and some corollaries are given in Section 2;
some related matters are discussed in Section 3.

2. Proofs and extensions

Proof of Theorem 1. Let T =3I 2 0. Then it follows from known results that,
for every operator X and for all unitarily invariant norms, we have

Zyfixil < flxT +rxf. (7

See, e.g., [5, Theorem 3.3], or [12]. Let now A, B be Hermitian operators and let
T =AT —T'B. Then

T+T*=(A4—-B)I'+T(4—B).
Hence, from (7) we get
ylla - Bl <||T+ T+ <2 T|| =2j4aT - TB].

This proves Theorem 1. U
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Partly for the convenience of the matrix theorist who might be primarily
interested in Theorem 3 and partly because of its intrinsic interest another “‘ab initio™
proof of Theorem 1 is given below.

We need two well-known theorems of Ky Fan. One, called the Fan Dominance
Theorem, says that for two operators T, and T, the following two conditions (8) and
(9) are equivalent:

7)) < || 7| for all unitarily invariant norms, (8)
k k
Y os(T)< Y s,(T) forallk=1,2.... (9

j=1 i=1

The other theorem [7. p. 47). called Fan’s Maximum Principle, says that

k I3
S (1) =max| ¥ ¢Te.f >’, (10)
Jj=1 J— 1
where the maximum is taken over all choices of orthonormal k-tuples e,, . . ., ¢, and
Siseo e In .

Another Proof of Theorem 1. Assume, without loss of generality, that y = 1. We
will prove the Theorem when 4, B are n x n matrices. (The same proof works for
compact operators and can be extended to arbitrary operators as in [5].)

For brevity let s, denote s5,(4 — B). Label the eigenvalues of 4 — B as 4, and
eigenvectors as x; in such a way that s; = |/1j|, the x; are orthonormal, and
(4 —B)x;=Xx;,j=1,2,...,n Define y, = £ x;, the sign being chosen as positive
if /1]- = 0 and negative if 4; < 0. Then (4 — B)x; = s;y;and the y; are also orthonormal.

By Fan’s Dominance Theorem and the Maximum Principle, our Theorem will

be proved if we show

k
2 (AT —TB)y, x| > i S : (D

ji=1 j=1

fork=1,2,...  n
Note first that

(AT —~TB) — (4 — BT = BT —TB,
which is a skew-Hermitian matrix. Hence, for every vector x

Re{(AT —TB)x, +x) = Re{(4 — B)Tx, +x).
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Therefore,
k k
Re Y (AT — I'B)y;, x;>=Re Y {(4— By, x;>
Jj=1 Jj=1
k
= Z <l_yj7sjyj>
j=1
k
= z Sj<ryj’ yj>
j=1
k
= Z 5
j=1
because I > 1. This proves (11) as required. O

Proof of Theorem 2. Let X be a Hermitian operator and let T = + X. It follows
from {3, Theorem 2] that

1T +Tx[ > 2 x7]. (12)

The inequality (3) can be obtained from (12) just as (2) was obtained from (7) in
our first proof of Theorem 1 above. O

REMARK. The two theorems of Fan we used in our second proof of Theorem

1 were also used in [3] to prove the result from which the inequality (12) above
follows.

We can extend these results to non-Hermitian operators by a familiar device of
going to 2 x 2 operator matrices.

THEOREM 4. Let A, B € B(H) and let T be a positive operator, I 2yl = 0. Then
for every unitarily invariant norm on B(H @ H) we have

(AT —=TB) @ (4*r —TB*)|| >

(4 —B)®(4 - B). (13)

B* 0
. . . r o].
Hermitian. Apply Theorem 1 taking these in place of 4 and B and 0 in place
of I'.

. B
Proof. The operators with block decompositions [AO* g] and l:o } are
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COROLLARY 5. Let A, B be unitary operators and let T = y1 2 0. Then, for every
unitarily invariant norm,

4T -8 > 7114 - B o9
Proof. If A, B are unitary then for every operator X we have
5,(AX —XB) = s,(X — A*XB) = 5,(A*X — XB*).
Hence the operator (AT —I'B) @ (4*[ — 'B*) has the same singular values as
those of AT —I'B but each with twice the multiplicity. The inequality (14) now

follows from (13) and the Fan Dominance Theorem. !

COROLLARY 6 (J. G. Sun). Let A, B be normal operators and let T 2 yI > 0.
Then

AT —TB|, =7

A—B|,. (15)

Proof. We use the Fuglede—Putnam Theorem modulo the Hilbert—Schmidt
Operators [13]. This says

|4X — XB|,=|4*X — XB*|, : (16)

for normal operators 4, B and for all X. The inequality (15) now follows from (13)
and (16). d

Sun’s proof of (15) is much different from ours.
In the same spirit we can prove the following, in which |X]| stands for the

positive operator (X*X )2

THEOREM 7. Let A, B € B(H#) and let T be a positive operator such that
I'>|A — B| and [>|4*— B*|. Then

(AT —TBy®(4A*T —TB*)|| = ||(|4 — BP) @ (|4 — BP)

. (17)
Sor every unitarily invariant norm on B(H @ ).
Proof. This can be proved using Theorem 2 exactly in the same way as Theorem

4 was proved using Theorem 1. One must also recall that |X|* and |X*|* have the
same non-zero singular values. U
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COROLLARY 8. If A, B are normal operators and T is a positive operator such
that T >|A — B| and T 2 |A* — B*| then

|AT —TB|,> [|4 — Bf|.. (18)
Proof. Use (16) and (17). ]

We now turn to Theorem 3. To prove it, we need the following property of
unitarily invariant norms: for any two operators X, Y we have {2, p. 29]

vl <iixi 1y,

where |-|| is any unitarily invariant norm and || is the operator bound norm. It
follows that, if X and Z are invertible, then

Ivib<lx="yllxyzijz=". (19)
Proof of Theorem 3. Using (19) we can write

li4 =Bl =[P P10 = P~'0D)Q |
=3 L P e G o R (o] R (20)

Now let s, = - =5, denote the singular values of P ~'Q. We can find unitary
matrices U and V such that P~'Q = USV, where S is the diagonal matrix with
diagonal entries s, . .., s,. Note that S >,/ and s, > 0. Using unitary invariance,
Theorem 1, and the inequality (4), we find

ID.P 0~ P=0D || = | D, USV — USVD, |

=||U*D, US — SVD, V*||

25, [U*D,U — VD, V*||
> s, min|| D, — LD, 1T~ |]. (21)
Note also that
se= IS Tt=le etz e e (22)

Combining the inequalities (20), (21) and (22) we get the result (6). O
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3. Remarks
(1) It is tempting to attempt a generalization of Theorem 1 which

(2

3)

(4)

would say that for T';2T,>0 and Hermitian 4,B we have
[T, ~T\B|| = ||AT, — I',B||. This is refuted by the example

2 0 2 0 0 1
= 5 r.,: ) =B= .
I [o 7} : [0 1} 4 [1 0]

The Lidskii-Wielandt inequality (4) clearly gives a tight bound. The
bound (6) is less so when A4, B are not Hermitian. Just look at the
seemingly favourable case when 4 and B commute; still the left-hand side
of (6) is generally smaller than ||4 — B||, and this is only aggravated by
introducing the condition number coefficients.

In Section 1 we conjectured that Theorem 1 can be generalized to
the situation when A4 and B are normal operators. Corollary 6 says
this does hold for the Hilbert—Schmidt norm. For other Schatten
p-norms we can get a weaker result. In a recent paper Abdessemed
and Davies [1] have proved that there exist constants ¢,, depending
on p alone, such that whenever A, B are normal and X is any operator we
have

|4X —XB, > ¢, | 4*X — XB*|,,

for 2<p < o0; and when dim # < oo also for 1 <p < 2. Using this result
we can conclude from Theorem 4 that there exist constants kp, depending
on p alone, such that, whenever A4, B are normal and I" > y/ > 0, then

[ AT ~TB, > k,y 4 - B

o

for 2<p < c0; and, when dim # < o, also for 1<p <2.

We take this opportunity to make two remarks on the results of
Abdessemed and Davies [1]. First, following the arguments used in [9]
the inequality of [1} quoted in Remark 3 above can be shown to be
valid also when the operators 4 and B* are subnormal. Second,
in [10] and (6] inequalities relating the p-norm of a block operator
matrix to the norms of the blocks have been obtained by two of the
present authors. These results can be used to improve some of the esti-
mates in [1].
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