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Abstract —We consider the problem of supervision errors in training samples in two-group discriminant 
analysis based on normal distributions. Using a model for training sample misclassification, we derive 
Efron’s Asymptotic Relative Efficiency (ARE) of the discriminant function estimated under this model, 
relative to the case when classification is perfect. We tabulate this ARE for certain values of the Mahalanobis 
distance between the groups and for various levels of supervision errors. We show that training samples are 
useful even if prone to a certain amount of misclassification. Our formulae and tables give, for a training 
sample prone to a certain amount of error, sample size equivalent to that o f one error-free training sample 
as well as that of an unsupervised sample, the equivalence being in terms o f estimation efficiency.

Normal discrimination Supervision error

1. INTRODUCTION

In many applications o f pattern recognition, classify
ing a training sample is expensive and difficult and is 
subject to error; some examples o f this situation are 
remote sensing112,3’ and medical diagnosis.*7,8,12’ In a 
problem o f remote sensing o f crop patterns, the 
training samples may be visually classified and hence 
may be prone to error; in a medical diagnosis problem, 
the training samples may be classified by experts on the 
basis of the same vector variable x  as the one used for 
learning and hence may be prone to error. In the first 
case, the errors in supervision may be presumed to be 
independent of the observable x  and in the second 
dependent on x. These two situations are called 
respectively random and nonrandom misclassifica- 
tion.O'7’8)

Studies have been made on the effect o f supervision 
errors on the estimates o f  the Bayes discriminant 
function for the special case o f two multivariate 
normal populations with a common covariance 
matrix. Lachenbruch(7) started these studies using a 
random misclassification model studying the means 
and variances o f  conditional error rates. He used a 
combination o f theoretical and Monte Carlo studies. 
McLachlan<9) studied conditional error rates using 
their asymptotic expansions for the case where one 
group does not get misclassified. Lachenbruch<8) 
studied by M onte Carlo methods the conditional error 
rates under two types o f nonrandom misclassification 
models where the probability o f  misclassification 
depended on the vector variable x  through the 
distance o f  x from its group mean. Chhikara and 
McKeon111 used models more general than those of

Asymptotic relative efficiency

Lachenbruch17'8’ and derived the asymptotic 
distribution o f  the discriminant boundary and the 
asymptotic means and variances o f conditional error 
rates and o f  the average error rate; they pointed out the 
adverse effects o f  misclassification on the boundary 
and on  these error rates. Michalek and Tripathi*10’ 
used Efron’s Asymptotic Relative Efficiency (ARE) 
and studied the effect on the estimate o f  the 
discriminant function. All these authors are concerned 
with the effect o f  supervision errors when the 
discriminant function and other parameters are 
estimated using methods suitable for the perfectly 
supervised case. The general conclusion is that under 
nonrandom misclassification, the true error rates are 
only slightly affected and apparent error rates 
considerably affected and give an optimistic picture. 
Under random misclassification, the estimates o f  the 
discriminant function and the true error rates are 
biased and maximum likelihood estimates converge to 
false values and the efficiency o f the discriminant 
function estimates decreases.

Chittineni(2,3) considers random misclassification 
and compares misclassified -and correctly classified 
situations for the general case using Bayes and nearest 
neighbour classifiers. He also develops nonparametric 
learning techniques and methods for correction o f 
supervision errors.

Thus, if training sample misclassification occurs in 
such a way that observations falling in the “ doubtful” 
region are more prone to misclassification, then 
ignoring supervision errors does not lead to much 
harm. However, if training sample misclassification 
occurs at random, then ignoring supervision errors 
does distort the learning process. Thus it is clear that,



especially in the case o f  random misclassification, it 
would be helpful to have methods o f estimating the 
discriminant function taking such misclassification 
into account. This is quite a different objective from 
thnw nf most o f  the papers discussed above.

In Katre and Krishnan,16’ we have discussed the 
problem o f maximum likelihood estimation under a 
random misclassification model and have developed 
the EM  algorithm,<4) for the case o f  two multinormal 
populations with a com m on dispersion matrix. In this 
paper, our object is to examine, for the same case, the 
extent to which a training sample subject to 
misclassification with constant probability a, is useful 
in learning the parameters. This extent o f  usefulness 
will also depend on other parameters, the Mahalanobis 
distance A between the two populations and the prior 
probabilities o f  the two groups. Values o f  a. from 0 to \ 
will cover a range o f  situations; a =  0 implies perfect 
supervision (the usual supervised learning) and a =  }  
implies no supervision at all (the usual unsupervised 
case). In other words, we examine the relative sample 
sizes required under these types o f supervision, to 
achieve the same error rate for the discriminant 
function when maximum likelihood estimates are 
used.

We consider the case o f  two p-variate normal 
populations with a com m on covariance matrix Np 
(fio, 2 ) and Np(fiUT) occurring in proportions r\0 ( =  *i) 
and tj i (1 — rj) respectively. The Bayes rule here is to use

Po +  P'x ( 1.1)

where

0o = Iog(>?i|qo)-Wi2 V i -  h'oZ [Ho)

,3 =  £ - ' ( / * , -Mo). (1.2)

The Bayes rule is the one with the least error rate. The 
Asymptotic Error Rate (AER) o f a procedure based on

estimates

regarded as an extension o f  O ’Neill’s work. W e derive 
a formula for ARE o f the error-prone supervision 
relative to a correctly supervised scheme similar to 
O ’Neill’s*11’ formula (3.1). In fact, we use similar 
techniques too; these techniques require the computa
tion o f  the information matrix o f  the logistic regression 
estimators o f  /?o> fi while computing the A R E of 
maximum likelihood estimators.

2. ASYMPTOTIC RELATIVE EFFICIENCY

Since error rates o f  discriminant rules based on  /?<*, fl 
or its estimates are invariant under linear transforma
tion on x, we assume the canonical form for (/Iq, E) and

(fiu E) to be I - e „  J’ ) and( “  2e'Jp) where A is the

Mahalanobis distance between the two groups, e t is 
the vector (1 ,0 ,... ,  0) and I p is the p x p identity matrix; 
this canonical form can be obtained by a linear 
transformation on x. Let (a0, a)„ denote the estimate of 
(Po, ft) based on a sample o f  n by a certain procedure 
and let ER(a0, a)„ denote the error rate on using (%  <4 
for ([!„, P) in (1.1). Let A =  log (nt | n0).

Efron(5) shows that if

■Np+i(0 ,M )

then

n [ER(a„, a)n -  ER(/?o, /?)]

' A
2A

G) z\ +  z\ +  . . .  + z j

o f  vector ^ frorn a sample o f  size

n is defined to be the limiting value (as n -> oo) o f  the

additional error rate o f  over the Bayes error.

This AER will naturally depend on the nature o f the 
procedure and the parameters. For supervised and 
unsupervised procedures it will be different and for the 
same parameters, the unsupervised procedure will 
have a larger AER. The ratio o f the AER o f two 
procedures gives the Asymptotic Relative Efficiency o f 
one procedure with respect to the other. When several 
procedures less efficient than the supervised one are 
considered, such as unsupervised, combined super
vised and unsupervised or error-prone supervised, the 
supervised procedure may be used as the basis o f 
comparison. This leads to Efron’s15’ Asymptotic 
Relative Efficiency (ARE). These ideas are defined 
precisely in the next section.

O ’Neill111’ adopts this approach in studying the 
efficiency o f  a procedure where the training sample has 
a proportion y o f  unsupervised samples and (1 — y) o f 
(correctly) supervised samples. Thus our work can be

where — > means convergence in law (distribution), 
z =  (zq, zy, . . . ,  zp) ~  N p+, (0, M ), 4> is standard normal 
density function, and 0 the (p  +  l)-null vector. The 
Asymptotic Error Rate o f  a procedure with estimates 
(a0, a)„ is then defined to be the expectation o f  the limit 
above, which is equal to

2A

mn +  m22 +  . . .  +  m .

when ((m9)) =  M . This is denoted for convenience by 
AER(tfo, a). Then the Asymptotic Relative Efficiency 
(ARE) o f a procedure with (co, c)„ with respect to a 
procedure yielding estimate (fto, b)„ is

Eff. =  AER (ft,,, i»)/AER (c0, c). (2.1)

In order to compute this efficiency for error-prone 
initial samples relative to a supervised sample w e need 
the matrices M  for these cases for the maximum 
likelihood estimates. This is done by com puting the 
information matrix o f  [So, P and inverting it; Efron has 
already computed this for the supervised case as



Ic =  l>o riil

where 

/ /  1 =

H  0
0 (1 + A 2rj0tll)~ lIp_ l

1 +

l +  A2/4  - (^ o -V i )A /2  
— (»7o — »7i) A/2 1 +  2t]0rjlA2

(2.2)

3. EFFICIENCY OF ERROR-PRONE SCHEME

We denote by

x : p-dimensional observation vector:
z: the group (0 or 1) to which the observed unit is
allotted.

The observation thus has the form (x, z). In our 
formulation z is a random variable. Let

y : actual class to which an observation belongs 
(unknown or unobserved).

Let w: 1 — 2z (w is 1 or — 1 as z is 0 or 1).

Thus z may not be the same as y  and

P ( z  *  y \ y )  =  a

according to our model; further z and x  are 
independent given y, by our model. In our model, the 
probability o f  misclassification o f group 1 into group 2 
is the same as that o f  misclassifying group 2 into group 
1.

We have n observations (xj, zj), j  =  1, 2 
Denoting by f ix ) ,  the multivariate normal density Np 
( I),  i =  0,1 , we write the density o f (x„ z() in the two 
groups 0 and 1 as

fo(x, z) = /o (x )a z(l -  a)'~2;

fi (x ,z )  =  /,(x )(l - a ) 2a‘ ~z.

We assume that random sampling was done from the 
mixture

tlofoix, z) +  riJAx, z).

To compute the information matrix, we need full, 
various marginal and conditional likelihoods. W e use 
I to denote log-likelihood; the arguments o f  I and the 
conditioning symbol | indicate which likelihood is 
being considered.

l(x ,z ,y )  =  log { [f/i/,(jc, z )] ylVoMx, z)V ~ y} 

l(x ,y ) =  log { [ ^ , /1(jc)]yĈ 0 J'o(Jc)]1 _>l 

l(x, z) =  log  [ t j j x(x, z) +  riJoix, z)] 

l(x) =  log 0 /, / , (* )  +  % / o « ]

l(y\x,z) =  log { [j?i(x, z)2y [>1o(x, z ) ]1 _>l} 

where t]0(x ,z) =  1 — z)

tlofoix, z) 1 _______

az(l -  a)1- 2

=  1/[1 +  exp (/?o +  P'x +  (5w)]

where 5 =  log [a /(l — a)].

Finally ?(y|x) =  lo g {[> ](x )] , [ t?oU )]1“ >'},

where tj0(x) =  1/[1 +  exp (Jia +  /5'x)] =  1 -  >/,(*).

Maximum likelihood estimation o f the parameters 
under the given observational structure involves 
maximising

Z  l (Xi,Zi).
i = 1

This situation can be regarded as similar to estimation 
under an unclassified observational structure, but with 
the addition o f  one more dimension z. Thus the 
likelihoods l(x, z) and l(x) are analogues both referring 
to unsupervised initial samples. Just like O ’NeiH’s '"1 
study o f  efficiency o f unsupervised initial samples 
compared to supervised initial samples, required the 
likelihoods l(x, y) and /(_y|x), in our study also we need 
the analogous likelihoods l(x, z, y) and l(y\x, z). Note 
that when y  is actually known z does not provide any 
information about the parameters t \ n h 2  but only 
about c l.

As in O ’Neill0 '1, we denote the information matrices 
based on a single observation for the parameters fig, fi 
by I  with suffixes C, UC and LR to denote Classified, 
Unclassified and Logistic Regression log-likelihoods. 
Further, we use I with superfix * if the observation 
used is (x, z) and without if x. From the log-likelihoods 
Z(x, y, z) and l(x, z) it is immediately seen that Jc =  Ic*. 
Further, I vc* corresponds to the case o f  error-prone 
initial samples.

W e reparametrise q,, ft,, /%, 2, a as follows:

u =  ihHi +  riotio

R =  I. +  M i(/« i -  o)(^i “

Po, p and S.

Let A, B, C denote information matrices o f (u, R, /Jo, /8, 
(5) based on l(x, y, z), /(x, z) and l(y\x, z) respectively. 
Then since

l(x, y, z) =  l(x, z) +  l(y\x, z) 

and A, B, C  are expection matrices 

A =  B  +  C.

These are different from / c *, Iuc* and JLR* which are 
information matrices for /?0, P only. In the Appendix, 
we derive a formula for / uc* as follows:

tlofoix,z) +  >7i/i(x ,z ) 1 +  t]J i(x){\ - a y a l- z 
tlofo(x) cc!(l — a)1 -3

Let A

X

Aril, A ) =  |
e A2/8 x'tj) (x)dx 

t\ ieix/2 +  »7o e ” Ax/2
, i =  0 ,1 ,2



4>{x): standard normal density.

«o =  »/o(l -  a) +  W ,  «i =  »/o« +  >h(l -  a)

Po =  Pi =  »7i(l -  *)/«i

=  [A (P o  A)/a0]  +  [v4,(Pi, A)/a,], i =  0,1,2 

Bi =  [A,(po, A)/a0]  -  t-4,(Pi, A)/aJ, i =  0,1.

discriminate effectively and not too much to make 
formal discriminant analysis unnecessary.

The interpretation o f our table is as follows: for 
instance, if the misclassification rate is 5, Jtj =  0.5, 
A =  2.5, the asymptotic relative efficiency o f  an initial 
sample is 0.756. From O ’Neill’s formula, for ti, =  0.5, 
A =  2.5, such an efficiency is attained when the initial

D =  a (l — a) Fa + [MoSoAl -  WoF'dlFi + [Mo^o-Bi/d -  Mo^o)] 
F i +  -  M o fo ) ]^  +  -  WoFo)-]

Thus I vc* =  Ic  -  ritfoD,

where Ic* =  Ic is given in (2.2).

For the case a =  we have a0 =  ax =  pQ=  pi =  
and the F ’s are exactly Efron’s A;, B, =  0 for i =  0,1. 
This makes the D matrix the same as the information 
matrix for /Jo, /? under logistic regression yielding the 
result that

Ajc* =  Ic* ~  ^lr = I c ~  I lr

which when compared to O ’Neill’s011 Lemma 3 that 
/ uc =  Ic — ^lr shows that this case is like a completely 
unsupervised scheme and the z-values are totally 
useless; this indeed, is evident, since in such a case, the 
initial samples are merely classified with equal 
probability in each group.

Substituting these in the formula (2.1), we can write 
the ARE as

Effp (A, A, a) =

<?(A, A,a) Eff] (A,A,tt) +  (p -  l)E fl^(A ,A ,«) 
q(X,A,a) +  p -  1

where

q(X, A, a) =  (1, -A /A ) (H  -  D)~' (1, —A/A)'

(1 -  a(l -  a)F0(l +  rhfjnA2)) /[ l  +

For p =  1 and p - » oo, Effp becomes 

Eff, (A, A, a) =  (1, — A/A)

H ~ \  1, — A/A)'/(l, -A /A ){H -  D ) - 1̂

Eff00(A,A,a) =  1 - a ( l  - a ) F 0(l +r)j»}0A2)

which are called Intercept (f}0) and Angle (fi) 
Efficiencies respectively by Efron.

4. VALUES OF EFFICIENCY AND DISCUSSION

Table 1 gives Efft and Efl*, for n, =  0.5, 0.667, 0.9, 
A =  2.0 (0.5) 4.0 and a =  0.01,0.05,0.20,0.35,0.50. W e 
also give values o f  y, the proportion o f  unclassified 
observations at which the same efficiency is obtained 
by O ’Neill’s formula. This gives an idea o f the 
usefulness o f error-prone supervision. Values o f A from 
2 to 4 were considered by Efron151 and O ’Neill1111 as 
statistically most interesting in the sense that enough 
separation exists between the populations to be able to

sample o f the same size contains y =  0.31 proportion 
o f unsupervised observations. Thus for these 
parameter values if we have an initial sample o f  100 
units, subject to a misclassification rate o f  0.05, it is like 
having a correctly supervised sample o f 76 or an initial 
sample o f 100 consisting o f a mixture o f 69 correctly 
classified units and 31 unclassified units.

Thus our formula and table put into perspective the 
relative amount o f information contained in super
vised, unsupervised, mixed and error-prone super
vision schemes. If in a situation, the costs of 
unclassified, error-prone, and correctly classified 
schemes are known, and are say 0.25, 0.5 and 1 
respectively, then the unit cost efficiency are respec
tively 0.84, 1.5 and 1 for the three schemes for these 
parameter values, and the error-prone scheme is to be 
preferred.

As the groups are better separated, the efficiency of 
error-prone observations increase. As tji goes away 
from the efficiency decreases. As the distance 
between the groups increases, the equivalent y 
generally increases but only slightly. Indeed as a 
increases, the efficiency decreases and the equivalent y 
increases to 100 at a =  0.5. Values o f  y are affected only 
a little by values o f  A and »/i, more by A than by t/i.

Clearly, if a. =  0.5, then the supervision is useless and 
it is ARE-equivalent to y =  1, which is precisely what 
happens with our formula.

For a misclassification rate o f 10%, the ARE ranges 
from 0.93 to 0.96 and the equivalent y between 7 and 
12.

The corresponding figures for 5% misclassification 
rate are 74-90%  and 30-45% ; 20% misclassification 
rate are 35-80%  and 74-79% ; 35% misclassification 
rate are 18-70%  and 94-95% ; and 50% misclassifica
tion rate are 13—75% and 100%.

SUMMARY

Discriminant analysis is usually carried out assum
ing that the training samples are classified 
deterministically and correctly. Recently, there has 
been interest in discriminant analysis with incorrectly 
classified training samples, motivated by examples 
from remote sensing and medical diagnosis. In this 
paper, we consider the case o f supervision errors 
occurring at random with a constant probability in a 
two-group discriminant problem with normal 
distributions. W e compute Efron’s Asymptotic



Table 1. Asymptotic relative efficiency of normal discrimination based on an initial sample with misclassification probability
a and equivalent proportion y of unclassified observations

A a EFF, EQUIy e f f ^ E QU Iy f/! A a EFF, EQUIy EFF* EQUI

2.0 0.01 0.933 0.07 0.933 0.07 3.5 0.01 0.942 0.11 0.944 0.12
0.05 0.744 0.28 0.744 0.28 0.05 0.825 0.35 0.836 0.35
0.20 0.347 0.73 0.347 0.73 0.20 0.616 0.76 0.644 0.76
0.35 0.159 0.94 0.159 0.94 0.35 0.523 0.94 0.559 0.94
0.50 0.109 1.00 0.109 1.00 0.50 0.495 1.00 0.533 1.00

2.5 0.01 0.930 0.09 0.930 0.09 4.0 0.01 0.955 0.13 0.958 0.13
0.05 0.756 0.31 0.756 0.31 0.05 0.871 0.36 0.880 0.36
0.20 0.417 0.74 0.417 0.74 0.20 0.726 0.77 0.748 0.77
0.35 0.262 0.94 0.262 0.94 0.35 0.662 0.95 0.690 0.95
0.50 0.214 1.00 0.214 1.00 0.50 0.642 1.00 0.672 1.00

3.0 0.01 0.934 0.10 0.934 0.10 0.90 2.0 0.01 0.944 0.07 0.845 0.19
0.05 0.787 0.33 0.787 0.33 0.05 0.765 0.28 0.666 0.42
0.20 0.518 0.75 0.518 0.75 0.20 0.342 0.75 0.370 0.79
0.35 0.396 0.94 0.396 0.94 0.35 0.127 0.95 0.239 0.95
0.50 0.359 1.00 0.359 1.00 0.50 0.059 1.00 0.199 1.00

3.5 0.01 0.943 0.12 0.943 0.12 2.5 0.01 0.927 0.09 0.896 0.16
0.05 0.830 0.35 0.830 0.35 0.05 0.740 0.32 0.746 0.38
0.20 0.630 0.76 0.630 0.76 0.20 0.364 0.76 0.488 0.77
0.35 0.541 0.94 0.541 0.94 0.35 0.189 0.95 0.374 0.95
0.50 0.514 1.00 0.514 1.00 0.50 0.136 1.00 0.340 1.00

4.0 0.01 0.956 0.13 0.956 0.13 3.0 0.01 0.921 0.11 0.927 0.13
0.05 0.876 0.36 0.876 0.36 0.05 0.751 0.34 0.809 0.37
0.20 0.737 0.77 0.737 0.77 0.20 0.438 0.76 0.606 0.77
0.35 0.676 0.95 0.676 0.95 0.35 0.300 0.95 0.516 0.95
0.50 0.657 1.00 0.657 1.00 0.50 0.254 1.00 0.489 1.00

2.0 0.01 0.935 0.07 0.910 0.10 3.5 0.01 0.928 0.12 0.948 0.12
0.05 0.745 0.28 0.728 0.31 0.05 0.789 0.36 0.861 0.37
0.20 0.339 0.72 0.353 0.74 0.20 0.544 0.77 0.714 0.77
0.35 0.145 0.93 0.176 0.94 0.35 0.435 0.95 0.649 0.95
0.50 0.085 1.00 0.121 1.00 0.50 0.402 1.00 0.630 1.00

2.5 0.01 0.930 0.09 0.923 0.10 4.0 0.01 0.942 0.13 0.964 0.14
0.05 0.753 0.31 0.755 0.32 0.05 0.838 0.37 0.905 0.38
0.20 0.404 0.74 0.431 0.75 0.20 0.660 0.77 0.805 0.78
0.35 0.243 0.94 0.283 0.94 0.35 0.582 0.95 0.761 0.95
0.50 0.193 1.00 0.238 1.00 0.50 0.558 1.00 0.749 1.00

3.0 0.01 0.933 0.10 0.932 0.11
0.05 0.782 0.33 0.792 0.34
0.20 0.502 0.75 0.533 0.76
0.35 0.376 0.94 0.417 0.94
0.50 0.338 1.00 0.382 1.00

Relative Efficiency (ARE) o f the estimator o f  the linear 
discriminant function in this case relative to the 
correctly supervised case. This ARE gives an idea o f 
the amount o f information contained in an error- 
prone training sample relative to an error-free training 
sample. We present formulae for ARE and values o f 
ARE for certain ranges o f  the parameters. It is found 
that moderately error-prone training samples are still 
fairly useful and efficient and should be used under 
appropriate models to estimate the discriminant 
function.
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APPENDIX

F O R M U L A  FOR EFFICIEN CY O F  E R R O R-PRO N E 
IN ITIAL SAM PLES

Let the matrix A be partitioned corresponding to (u, R), (Jl0, fi) 
and d as

b22- ( b21bm)[ ® “  f e )

= B22- (B 21c 23)^ ® “  ( c ‘22)

=  B-n — B „B ," 2 1 "  n — C 2 3 B 3 3 1 C 3 2

=  B22 Bn B u'B l2 C23fa (l — a) — C „ j  1C32.
Hence i c =  Iuc* +  C22 +  C23[a(l — a) — C „ ] -1 C )2. (A .l)

Following Efron<5), we make a linear transformation on the 
x-variable to make N ^ iiq, X) and 2 ) respectively

where e, =  (1 ,0 ,... ,0) and A

x-variable to make N p(p0, X) 

- | e „  I^j and

1̂1 ■̂ 12 An
A2i ^22 A 23 C
A}l A 32 A 33_

the Mahalanobis distance between the two groups based on  
x. Then /J0 =  k, f}‘ =  Ae,. The matrix Ic* =  i c  was computed 
by Efron'5’ as (2.2). Thus to compute Juc* from (A. 1) for use in 
(2.1) for AER we need to  com pute matrix C. For this, we 
follow the technique o f  Efron'5* for his Lemma 3 (pp. 
895-896), which makes essential use o f  the exponential family 
form o f l{y  |x, 2). Here it is convenient to use w rather than 2; 
then the parametrisation turns out directly in terms o f  S. Then 
from the theory o f  exponential families

im -C
-a, n

and similarly B  and C. It is easily checked that

p u A l2 0 “ o 0 0
A  = a 2, A 22 0 . c  = 0 C22 £-23

0 0 ^33- 0 C 32 C33 _

Further, as already observed A =  B +  C.

W e partition the inverses o f  A, B ,C  in a similar manner and 
denote the blocks by A n, A 12 etc. From  above

An A 12 0
B = A 2l A 22- C 22 C-23

_ 0 C 32 A33~C}3 _

X  -S x V(1 x ' w)»i,(x,w)fj0(x,w )dF (x,w )
£pw=—l. + l ^ WJ

where dF is the mixture density >i0f 0{x, z) +  f^ /^x , z). This 
now yields a formula analogous to (3.16) o f Efron.(S) W e thus 
obtain

Further, l(x ,y ,z )  breaks up in to tw o factors one involving <5, 
z and y  on ly and another y, x  and parameters other than <5, 
yielding easily

A n =  E\ - d2(x ,y ,z ) 
dd2

a (l — a). r  £-22 c 23i
I c 32 c 33 j »j,»foa(l -  a)

N ow , l c * =  / c  =  (A12) - '

=  A 22 — A2iA lt1 A i2 =  B2 2 +  C 22 — ^21^11* ®12- 

But / uc* =  (B 22) - 1

F, 0 
F 2 0 
0 ,40

0 0

B, 0

0
0
0

B0
B

F0 . 0
1

0 1 F

giving C22 + C23[a(l — a) — C33]  1 C32 as D defined earlii 
Thus Ivc* =  I c -W o D .
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