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Abstract: A new class of binary sequences called here 'm-like cipher sequences' are introduced which have
rather interesting properties for use as cipher sequences. These are derived by interleaving the so-called 'elemen-
tary m-sequences' along with some null sequences in a particular order. The resulting composite sequences are
not m-sequences, but require deciphering and storage of a much larger number of bits for their complete predic-
tion from the observed cipher text than that needed for predicting m-sequences of the same length. At the same
time, the method of construction of these sequences ensures that their autocorrelation function is identical to
that of an m-sequence of the same length.

1 Introduction

In many applications such as communications, radar and
cryptography, it is required to design binary sequences
with the following features: (i) have a peaky autocorrela-
tion function, (ii) have an evenly balanced number of ones
and zeros in the sequence length (or period), (iii) have a
maximum 'period' or 'length' for a given shift register
length, and (iv) be difficult to predict from partial observa-
tion.

The well known Barker codes yield the best possible
autocorrelation function (ACF) for a given length of the
sequence. Unfortunately, however, these codes are known
only up to a length of 13. A well known class of binary
sequences which satisfy most of the above features are the
'm-sequences' generated by a linear feedback shift register
(LFSR) using 'primitive' generating polynomials. The nor-
malised ACF of an m-sequence is given by

em(i) =
1, / = 0 mod L

—, / ^ 0 mod L

where L(= 2m — 1) is the sequence length (or period) and m
is the degree of the generating polynomial. The number of
ones and zeros in the m-sequence is given by

Ll=(L+ l)/2

L0 = (L- l)/2

For L sufficiently large, Lx ~ Lo. In spite of these useful
properties, however, these m-sequences have an important
drawback, in that they are not very suitable for use in
encryption applications. This is because they do not satisfy
requirement (iv) as discussed above. It is well known [1],
in fact, that only 2m consecutive bits are needed to deter-
mine the initial state of the register and the primitive poly-
nomial associated with the LFSR.

There has therefore been a great deal of interest in
finding new, possibly nonlinearly constructed, shift register
sequences having all the features discussed above. A non-
linear set of sequences which meet the unpredictability
requirement (iv) quite well had been introduced in Refer-
ence 1. However, the behaviour of these sequences with
respect to other properties is not well understood. More
recently, Jennings [2] has introduced a class of multi-
plexed sequences which are claimed to satisfy some of
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these requirements more effectively. However, the ACFs of
these sequences have sidelobes larger than those of m-
sequences. The same is also true of a class of nonlinear
sequences called the 'bent function sequences', introduced
in Reference 3.

In this paper we propose a new class of binary
sequences which satisfy all these four requirements rather
effectively. The new sequences thus have an ACF identical
to that of an m-sequence of the same length and, in addi-
tion, have a much greater complexity (and therefore
unpredictability) associated with them. We will refer to
these as 'm-like cipher sequences' in this paper. A brief
outline of the paper is now given.

In Section 2 we first briefly introduce some useful pre-
liminary concepts for the representation of m-sequences via
an integer mapping and their decomposition into simpler
(or elementary) m-sequences. A simple method for the cal-
culation of the ACF of these composite m-sequences using
the 'integer series' representation is then outlined to high-
light the structure of a class of binary sequences having an
ACF identical to that of an m-sequence. This insight is
exploited in Section 3 to construct m-like cipher sequences.
Finally, the complexity and predictability aspects of these
sequences are taken up in Section 4.

Preliminaries

2.1 Integer series representation of m -sequences and
sequences derived from them

It is well known that all the m-sequences generated by a
primitive polynomial for a given LFSR are shifted versions
of each other. Let W(d) denote a reference m-sequence in
the d-domain,* with respect to which the phase of all other
shifted m-sequences is measured. Thus we have

TrW{d): rth cyclic shift of W(d) (1)

Therefore each cyclic shift of the reference m-sequence can
be specified in terms of an index number r.

We now introduce the following integer series represent-
ation of an m-sequence and its shifted versions:

W(d):(0, 1,2, 3 , . . . , L - l )

T 1 ^ ^ ) :(1, 2, 3, 4, . . . , L - 1 , 0)

frty(d) :(r, r + 1 , . . . , L - 1 , 0, ..

(2a)

(26)

(2c)

Here the L-tuples on the right-hand side are used to rep-
resent the bit values in one period of the m-sequence in the
following sense: an integer j in the kth position is inter-
preted to denote that the /cth bit value ik in the first (or

* It would be appropriate to choose W(d) as the so-called 'phase-normalised' or
'characteristic' m-sequence which has the in-phase decimation property vvn = \v2n [4]
(see example in Table 1).
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reference) segment of the sequence is given by the zeroth or
the starting bit value of the sequence TJW(d). Similarly, the
kth bit lying in the next segment (i.e. (k + L)th bit value in
the above examples) is the next bit of TJW(d) etc. In other
words, the integers in this representation show the order of
interleaving of the cyclic shifts of W(d) to be used in the
construction of the sequence.

Thus, for the above example, we have

ik + v.L for W{d) = uth bit value in TkW{d) (3a)

ik + v-L f o r TrW(d) = uth bit value in Tk+rW{d) (3b)

and so on, or briefly

i[k] for W(d) = successive bit values in TkW(d)

have

^ = number of ones in uL(d) =

Lo = number of zeros in uL(d) =

+ (7)

(8)

(3c)

where [•] denotes an integer modulo L. Usually, represent-
ation of a single segment of the sequence suffices as in eqn.
2, although it is possible to represent a complete period (or
length) of the sequence through an appropriately extended
integer series, as follows:

and

Lx - Lo = S (9)

However, for uL(d) to be an m-sequence, we must have

L i - L o - 1 (10)

thus proving the point in italics above.
Consider now a sequence uL(d) obtained by multi-

plexing P /resequences wN(d) and (S — P) null sequences
0N(d) of length N, where P is chosen as

(11)
(JV+1)

W{d): {(0, 1, 2, . . . , L - 1), (1, 2, . . . , L - 1, 0), ...} (3d) It is easy to verify that for this case the required property

This integer series representation of an m-sequence can be
obviously extended to represent any class of binary
sequences which are derived from m-sequences. The advan-
tage of this representation lies in the insight it yields into
the underlying structure of a given composite binary
sequence derived from an m-sequence, which is not avail-
able in the direct binary representation. This mapping has
earlier been shown to be very effective in studying the ACF
and CCF properties of 'composite sequences' like the
'interleaved' or 'multiplexed' m-sequences etc. [5]. In the
following we now introduce the composite nature of some
long m-sequences in terms of some elementary m-sequences
using this representation.

2.2 Decomposition of long m-sequences into
elementary m-sequences: composite m-sequences

When m is nonprime, we can write

(4)

- Lo = (12)

m = mxm2

and

L = 2 - 1 (5)

where L is the 'length' or 'period' of the m-sequence. It is
obvious that (2mi — 1) divides L [6]. Furthermore, it has
been shown in Reference 7 that an m-sequence uL(d) of
length L can be obtained by multiplexing some smaller
(mi-sequences) wN(d) of length N, where N = (2"" — 1). Let

L = NS (6)

It seems then that a total of S wN(d) are needed to yield an
interleaved sequence uL(d). Nofe, however, that, in order for
uL(d) to be an m-sequence, not all the S elementary sub-
sequences can be permitted to be m—sequences. This is
because in that event the number of ones and zeros in uL(d)
will no longer be balanced. Thus, in that case, we would

is indeed satisfied, so that the resulting sequence uL(d) is a
possible candidate for being an m-sequence. A method of
decomposition of the sequence uL(d) in terms of a set of
smaller m^sequences wN(d) is outlined in Reference 7.

Thus, an m-sequence with a nonprime value of m can be
obtained by P elementary mj-sequences and (S — P) 'null'
sequences, each of length N = (2mi — 1). It is convenient to
represent the resulting sequence uL(d) by the following
notation:

uL(d) ^ IP{Tjiw, Thw, ..., Tjpw

and (5 — P) null sequences of length N} (13)

where IP denotes a Pth-order 'interleaving' or multiplexing
of the indicated sequences, and where each j{ is a specifi-
cally selected value between 0 and (N — 1), as indicated in
the construction procedure of Reference 7. Alternatively, a
more explicit and useful representation for uL(d) can be
obtained by using the integer series representation dis-
cussed above, in view of the fact that uL(d) is essentially
derived from (smaller) mj-sequences. This is best illustrated
by an example.

Consider the m-sequence uL(d) generated by the poly-
nomial

<f>(d) = 1 L = 63 (14)

The resulting sequence uL(d) can be decomposed into ele-
mentary sequences wN(d), its shifted versions TjwN(d) (with
properly selected values of j) and null sequences, where
wN(d) is generated by the polynomial

4>1(d)= 1 +d + d2; JV = 7 (15)

The sequences {TjwN(d), j = 0,
integer maps are shown in Table 1.

N — 1} and their

Table 1: Integer maps of two sets of elementary m-sequences generated by
<(>,(</) = 1 +d + d3and <\>2(d) = 1 + d2 + d3

Elementary m-sequences of ct>,(c/)
Sequence

T°w 1 1 1 0 1 0 0
Vw 1 1 0 1 0 0 1
T^w 1 0 1 0 0 1 1
T*w 0 1 0 0 1 1 1
T*w 1 0 0 1 1 1 0
T^w 0 0 1 1 1 0 1
r w 0 1 1 1 0 1 0

Integer map

0
1
2
3
4
5
6

Elementary m-sequences of 0 2 ( c ' )
Sequence

7°z 1 0 0 1 0 1 1

r z o o 1 o 1 1 1
7 - ^ 0 1 0 1 1 1 0
Tz 1 0 1 1 1 0 0
^z 0 11 1 0 0 1
ft 1 1 1 0 0 1 0
7*z 1 1 0 0 1 0 1

Integer map

0
1
2
3
4
5
6
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Here 5 = 9 and P = 8. Following the procedure of Ref-
erence 7, and using the integer representations of Table 1,
the interleaving order of wN(d) for obtaining uL(d) is given
by

The entries eu of the matrix (representing the element in
row i and column)) are now filled up as follows:

= { - , 4 , 0 , 6 , 6 , 3 , 4 , 6 , 4 } (16)

where ' —' represents the mapping of a position onto a
'null' sequence. A more complete expansion of uL (L = 63)
would read as follows:

uL = {'-', 4, 0, 6, 6, 3, 4, 6, 4 , ' - ' , 5, 1, 0, 0, 4, 5, 0, 5,
' - ' , 6, 2, 1, 1, 5, 6, 1, 6 , ' - ' , 0, 3, 2, 2, 6, 0, 2, 0,
' - ' , 1, 4, 3, 3, 0, 1, 3, 1 , ' - ' , 2, 5, 4, 4, 1, 2, 4, 2,
' - ' , 3, 6, 5, 5, 2, 3, 5, 3} (17)

The complete expansion can be seen to have N (seven in
this case) segments following each other. The S elements
(nine in this case) of any segment, however, can be
obtained simply by incrementing (modulo N) each of the
corresponding elements of the previous segment. Any one
of these segments is therefore sufficient to specify the
integer series representation of the complete sequence
uL{d). In Section 2.3 it will be seen that it is sufficient to
expand out two successive segments of this representation
for the calculation of the ACF of the composite sequence
uL(d).

2.3 Autocorrelation function of composite
m-sequences

Although the ACF of the longer (composite) m-sequence is
well known, it is instructive to obtain it from its integer
series representation in terms of component m-sequences,
as was discussed in the preceding Sections. The motivation
for this exercise here lies in the insight it yields in identify-
ing the structure of other, not necessarily maximal length
sequences, having an ACF identical to that of m-sequences.

A simple procedure to calculate the ACF of a composite
(not necessarily maximal length) sequence based on the
integer series representation is outlined in the form of a
matrix computation in Table 2.f The S x 2S matrix (where
S is the size of each of the N segments in uL(d)) has its /cth
row and column designated by rk and ck, respectively,
where

rk = ck = integer map of /cth position of
sequence uL(d), k = 0, 1, . . . , S - 1 (18)

Note that several of the rows and columns may have the
same designation, and (S — P) of these will be designated
by the symbol ' —', corresponding to the mapping of a
position onto a null sequence.

t The matrix in Table 2 can in fact have a dimension of L x L if one complete
period of the sequence u,{d) is chosen for its construction. It is, however, sufficient to
construct a smaller S x 2S matrix, based only on two segments of the sequence
uL{d), to derive the necessary conclusions about the ACF properties of interest in
this Section.

u = (cj - ri) m o d N> hj = 0,1,2, ... (19)

The following subtraction rules are used whenever r,- or c}

takes up a 'null' value ' —':

(a - b) mod N =

oo, when one of the two operands
a and b has a null value
' —', when both a and b have
'null' values

The value of eu represents the amount of shift required to
make the subsequences r, and Cj in the composite sequence
uL(d) have coincident bit values (i.e. become identical in
phase). The rules of eqn. 20 are therefore motivated by the
fact that no amount of shifting of the column uL{d) with
respect to its row counterpart would render rt and c}

phase-coincident if one of these represents a null sequence
and the other does not.

As illustrated in Table 2 for the example uL(d) of Section
2.2, the main diagonal thus has only zero and null value
entries, indicating that all the subsequences have identical
phases (and are therefore completely bit-coincident) when
the row and column sequences have no mutual phase shift.
In general, the jth diagonal will contain information
regarding the relative phases of the subsequences in the
corresponding positions of the j-shifted and unshifted com-
posite sequences.

The matrix as constructed above contains important
information regarding the ACF properties of the sequence
uL(d) and also yields an understanding of the structure of
alternate sequences having similar ACFs. These properties
are taken up in the following remarks.

Remark 1: The;th diagonal,; 41 0, has exactly (S — P) zero
or null entries for a given composite m-sequence uL(d).
Proof: A zero or null value in the ith position of the jth
diagonal indicates that the subsequences in the ith posi-
tions of uL(d) and TJuL(d) are identical. It therefore implies
that the sum sequence

v\d) ^ uL(d) (21)

would also have a null subsequence at its ith position (in
the integer map domain). Conversely, a null subsequence
in any position of v*{d) would also imply a zero or null
entry at the corresponding position on the 7th diagonal.

However, y'(d) as defined above can be identified to be
another shifted m-sequence having exactly (S — P) null
subsequences. It follows, therefore, that the jth diagonal
has exactly (S — P) null or zero entries.

Remark 2: The proof given above also shows that the
various null values on the 7th diagonal have a one-to-one
correspondence with the null subsequences in v*(d), with
each of the remaining entries on the diagonal (including
00) corresponding to an mx-subsequence. It must be

Table 2: Procedure for ACF calculation of composite 'm-derived sequences

uL — 4 0 6 6 3 4 6 4 — 5 1 0 0 4 5 0

C O C O C O C O O O O O C O C O CO

0 3 2 2 6 0 2 0 o o 3
0 6 6 3 4 6 4 o o 5 0

0 0 4 5 0 5 o o 6 2 5
0 4 5 0 5 o o 6 2 1 6

0 1 3 1 o o 2 5 4 4 4
0 2 0 « 1 4 3 3 0

0 5 co 6 2 1 1 5 6
0 . co 1 4 3 3 0 1 3

\ .

/ = / = 8 / = 11, y = 2
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emphasised here that an integer p in the diagonal of the
matrix denotes the value of the relative phase between the
concerned row and column subsequences, and not the sub-
sequence TpwN(d). This correspondence between the yth
diagonal and i/(d), in turn, implies that both of them
contain an identical distribution of ones and zeros, since
both contain (S — P) null entries and P mx-subsequences.

Remark 3: The normalised ACF of uL(d) with lag; can be
obtained from the well known relation

00) = 1 - 2F/1) (22)

where P,(l) is the probability of a one in ^(d), or, as was
discussed above, in the binary version of the yth diagonal
sequence. Since the latter contains (S — P) null entries and
P mx -subsequences, it can be said that the number of ones
in vJ(d) is given by

L, = L - (S - P)N - | (N - 1) = (23)

as each mj-subsequence contains (N — l)/2 zeros.
It may be noted that eqn. 23 also follows trivially from

the fact that vJ(d) itself is a composite m-sequence having a
similar structure. However, our emphasis here is on
obtaining Ly from the diagonal sequence rather than u-'(d)
itself for exploitation in the construction of new sequences,
as in Section 3.

It follows from eqn. 23 that

2(N + 1)
2L

so that

6(j) = 1 -
L+ 1

(24)

(25)

as expected for an m-sequence of length L.

Remark 4: Although the sequence u contains N segments,
each of length S, it suffices to obtain the first S diagonals,
since all the rest can be obtained from these in a simple
manner. Thus, for the /th diagonal, / = nS +j, we have

eu = eu + n(mod N), I e (0, 1, ...,),j 6 (0, 1, . . . , 5 - 1)

(26)

with the rules oo + n = oo and ' —' + n ^ ' —', as before.
This is illustrated for / = 11 in Table 2.

3 Construction of m-like interleaved cipher
sequences

An important conclusion that emerges from the ACF
studies of Section 2 is that the ACF 0U() of a composite
sequence u(d), consisting of S interleaved mx -subsequences
each of length N, depends only on the structure of the
diagonals of the matrix comprising the modulo-N differ-
ence, or relative phases of the subsequences in the shifted
and unshifted composite sequences u(d) and Tju(d). Note,
however, that the properties of the diagonal sequences
considered in Section 2 are invariant to the actual choice
of the mj-subsequences wN(d), as long as the chosen sub-
sequence, say, zN{d), is interleaved in the same manner as in
the composite m-sequence, i.e. using the same interleaving
order IP. This invariance is a result of the fact that such a
modification leaves the integer series representation of the
new sequence, say, u'(d), unaltered.

It therefore follows that, if we replace the subsequences
TjwN(d) (chosen earlier so as to render uL(d) an m-sequence

of length L) by alternative mt -subsequences TjzN(d) and
interleave these along with null sequences as for uL(d), ther
resulting composite sequence u'(d) will yield an identical
diagonal structure to that of uL(d), and will therefore have
ACF properties identical to that of uL(d), even though u\d)
may no longer be an m-sequence. It is these sequences u\d)
which we call here 'm-like cipher sequences'. The following
theorem highlights the important properties of the com-
posite sequences u'.

Theorem: The composite sequence u', having the same
integer series representation as the m-sequence uL(d) but
obtained by replacing the elementary subsequences TJw
with Tjz, where z is a different m,-subsequence of length
N, has the following properties:

(a) 6 u . ( j ) = - l / L j ± 0 (27)

{b) Lu. = lengthy or periodicity of u'(d) = S • N (28)

(c) L^u') = number of ones in u\d) = (L + l)/2 (29)

(d) u'(d) is not an m-sequence. (30)

Proof:
(a) This, as discussed above, follows from the fact that

the diagonals of Table 2 remain unchanged if TJw is
replaced with Tjz, where z is an mj-subsequence of the
same length as w. The ACF therefore has the same proper-
ties as any m-sequence of length L

(b) Lu. = S • N by construction
(c) Lx(u') = P((N + l)/2) = (L + l)/2 by construction;

therefore L0(u') = (L - l)/2
(d) The premise that the sequence u'(d) is not an re-

sequence is based on the fact that there exists a unique
interleaving order IP for which the composite sequence in
terms of Tjw (eqns. 13 and 6) is an m-sequence [7]. When
w is replaced by z, the corresponding interleaving order I'P
required to produce the longer m-sequence would therefore
be different, i.e. l'P =f=- IP [7]. Since, in our construction of
u'(d), the old interleaving order IP is employed, it follows
that u\d) is not an m-sequence. Two examples of m-like
sequences and their construction procedure are presented
in Table 3 for illustration.

Table 3: Construction of m-like sequences

Composite sequences Subsequences Interleaving order

1 m-sequence u

2 m-sequence v

{ -4 0 6 6 3 4 6 4} or
{0, T*w, T°w, h

{ 6 4 6 0 4 4 3 6 - } or
* * * °

3 m-like sequence u' z

4 m-like sequence v' w

T*z, T^z, T*z, 0}
{0, T*z, 7°z, T*z, T*z, T^z,
T^z, T*z, T*w}
{T*w, T*w, T^w, T^w, T*w,
T*w. J^w, T*w, 0}

5 m-like sequences in binary form
u'\ 001 11 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 •

0 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 - 0 0 1 0 0 0 0 0 0 -
0 1 1 1 1 0 111

v': 0101 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 0 1 0 -
1 1 1 0 1 1 0 1 0 - 0 1 0 1 1 1 1 0 0 - 1 1 1 0 1 1 1 1 0 -
0 0 0 0 0 0 1 0 0 .

4 Predictability of m-like interleaved cipher
sequences

It is well known that it is possible to identify an entire
m-sequence after deciphering 2m consecutive bits of the
sequence. This arises because of the linear recursive rela-
tion that exists among the bit patterns comprising an m-
sequence. This can also be appreciated from the fact that it
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is only necessary to identify the mth-order generating poly-
nomial and the m-bit initial state of the shift register to
completely define an m-sequence.

The story, however, is quite different for the interleaved
sequence u(d) constructed in Section 3. Observation of 2m
consecutive bits will not help here, since u'(d) is not an
m-sequence. The identification of the sequence u'(d) will
now require the implementation of the following pro-
cedure.

Assume first that the values of L, S and JV are somehow
known to an interceptor. The degree ml of the character-
istic polynomial generating the m-sequence z(d) is there-
fore also known. In order to identify the subsequence z(d),
it is once again necessary to decode its 2m t consecutive bit
values from the message. These bits are, however, dis-
persed over 2mlS consecutive bits of the sequence u(d). It
is, therefore, necessary now to decipher 2miS consecutive
bits and then decimate them by a factor S in order to iden-
tify z(d) and hence u'(d). This procedure assumes that the
interleaving order IP is also known to the interceptor.
Even so, the complexity of the sequence u'(d) can be said to
be of 2mtS bits against 2m bits of the m-sequence uL(d).
For long sequences

2mlS

2m
1

so that the interceptor now has to correctly decipher and
store a much larger number of bits before he can hope to
identify the sequence u'{d).

This estimate of complexity is, in fact, somewhat pessi-
mistic, in that it assumes prior knowledge of the values of
L, S and JV. In practice, such knowledge is rarely justifi-
able. In fact, for a given large value of L, there are many
ways of choosing S and L with L = S • JV, along with cor-
responding different choices of the subsequences z of
length JV. Similarly, the knowledge of interleaving order IP

assumed in the above procedure adds to the pessimistic
nature of the above estimate of complexity.

To appreciate the magnitude of increased complexity,
consider the case with m = 12, so that

L = 2 1 2 - 1 =4095 bits

Two choices for S and JV are as follows:
(a) S = 65, JV = 63; in this case the ratio m^S/m = 32.5

and the value for 2m1S = 780 bits
(b) S — 237 and JV = 15; in this case the ratio

m i S / m i = 91 and the value of 2mxS = 2184 bits.

Thus, in (a) the interceptor has to obtain and store 780
bits of u'(d) from the ciphered text and in (b) 2184 bits from
the ciphered text, as compared to the 24 bits required for
identifying uL(d). Note that the value of 2mlS =s (1/2)L in
case (b).

This argument and the above example only serve to
illustrate the increased complexity associated with the
m-like sequences. An appropriate measure of the complex-
ity of nonlinear sequences is the so-called 'equivalent span'
(ELS), which may be defined to be the least length of a
linear feedback shift register which can produce the
sequence of interest [8]. This quantity, however, is usually
difficult to compute, and the value mxS used above is only
an upper bound of the ELS value for the m-like sequences.
The exact estimation of the complexity of these sequences
via the calculation of the ELS is still being considered [9].

5 Conclusion

A new class of cipher sequences, called 'm-like cipher
sequences', are introduced which have the same ACF
properties as an m-sequence, but which are much more
complex to decode from partial observation. The construc-
tion of the m-like cipher sequences is based on interleaving
elementary m-sequences and null sequences in a particular
order.
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