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Fig. 7. Multiple fault coverage ratio dr of T..

In the three above approximations the relative error does not
exceed m2~°, 27°/m and 2°*~™, respectively. This results in a rela-
tive cumulative error in the last expression of the order m2™°, which
form = 20 and s = 20 is less than 0.002 percent. That means that
the coverage ratio d of all multiple contact faults by a complete
single fault detection test set 7. in an irredundant PLA is
approximately

d = m2”°.

IV. CONCLUSION

In this correspondence we have investigated the masking phe-
nomenon of contact faults in irredundant PLA’s and its influence on
the capability of a complete single test set to detect multiple contact
faults. As a result of these studies it was shown that any test set 7.
detects at least 25 percent of multiple faults of size 5 containing the
four-way masking cycle, and, respectively, 37, 52, and 45 percent
of faults of size 6, 7, and 8. The ratio increases with m, and as the
number of rows goes to infinity the ratio of multiple contact faults
with four-way masking cycle detected by T. of size 5, 6, 7, and 8
reaches 50, 75, 86, and 94 percent, respectively. All these faults
were considered as nondetectable by 7.. Combining the results of
this and the previous paper [10] the more realistic bounds of the
multiple coverage capability of a complete single contact fault de-
tection test set were established. The coverage ratio f, of multiple
faults of size r not exceeding 8 reaches in the worst case 99 percent
for the number of rows equal to 24 and increases even more for
larger PLA’s. This worst case analysis is based on the assumption
that the number s, of used crosspoints in a product line is equal to
half the total number of crosspoints, s = n + p/2. Then, the num-
ber of multiple faults including a four-way masking cycle, i.e.,
multiple faults which may not be detected by 7., is maximal. In a
real but irredundant PLA where s < n + p/2, the coverage is even
better. These results, however, cannot be used for PLA’s having
redundant points, unless the PLA’s are converted to crosspoint irre-
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dundant for testing purposes. We may expect that each undetected
contact fault decreases the coverage but more work has to be done
to find quantitative measures.
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On the Impossible Class of Faulty Functions in Logic Networks
Under Short Circuit Faults

BHARGAB B. BHATTACHARYA AND BIDYUT GUPTA

Abstract —The important problem of recognizing a priori the class of
Boolean functions which are never obtainable from a given combinational
network under short circuit faults is almost unexplored, primarily due to
lack of understanding of the functional and structural factors that influ-
ence the fault behavior in the network. In view of this, a new concept of
impossible class of faulty functions (ICFF) is introduced in this correspon-
dence. Several intriguing properties of ICFF are uncovered, namely, the
undetectability of input bridging faults, the impossibility of the trans-
formation of a fault free function F, to a subset or superset of F,, and to
other functions belonging to the same P- and N-equivalence classes of F,,
etc. The closure amongst the fan-out-free and unate functions under bridg-
ing faults is investigated. The impact of ICFF on the testability of the
network is also discussed.
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Index Terms — Bridging faults, combinational logic, fan-out-free func-
tions, fault detection, N-equivalence classes, P-equivalence classes, short
circuit faults, stuck-at faults, unate functions.

1. INTRODUCTION

With the advent of MOS LSI/VLSI technology, the study of short
circuit or bridging faults has received considerable interest in recent
times [1]-[10]. The occurrence of such faults is mainly due to the
circuit malfunction caused by accidental shorts between two or more
conducting paths in the circuit, or due to the breakdown of some
insulating medium. In a MOS LSI environment, bridging faults
have a substantial probability of occurrence and its physical fault
behavior cannot always be modeled by stuck-at faults on its equiva-
lent logic circuit [9], [18].

A bridge fault between two lines h, and h, can be logically
modeled as either wired-AND or wired-OR function [1]. This fault has
the effect of an AND function for positive logic, and that of an OR
function for negative logic. In other words, a bridge fault between
lines A, and h, would change both the functional values f(h;) and
f(hy) atlines k, and h; to {f(h,) * f(h,)} in case of AND bridging, and
to {f(h;) + f(h2)} in case of OR bridging [1], [2]. In addition, all
lines that are directly connected to h, and , in the physical layout
of the network would equally be affected [2]. The AND (OR) bridging
fault between lines h;, and h, is usually denoted by *(h,/h,)
(+(h1/h2)). Unfortunately, the detection of bridging faults in an
arbitrary network is a difficult problem and moreover, some un-
detectable bridging fault might invalidate a valid stuck-at fault test
set [7] which, consequently, makes the test generation approach
more complex. Recently a syndrome testable design for easy de-
tection of bridging faults in LSI/VLSI circuits has been reported in
[10]. The design philosophy is based on the motivation of devising
a network structure in which the set of possible faulty functions is
so restricted, that under the assumed fault model, the syndromes of
all faulty functions differ from that of the fault free function. There-
fore, the awareness of how a short circuit fault can influence the
functional behavior of the network, will not only uncover many
mysterious properties of faults in a logic circuit but also would be
of promising practical importance, in context to design for test-
ability, signature analysis, better characterization of fault-free test
data, to name a few. In view of this, the present correspondence
introduces the concept of impossible class of faulty functions
(ICFF) under short circuit or bridging faults in a logic circuit, and
several interesting aspects of fault behavior and their dependence on
the network structure are examined in the following sections.

II. BEHAVIOR OF SHORT CIRCUIT FAULTS IN A LOGIC NETWORK

The study of the impossible class of faulty functions (ICFF) is a
challenging problem in digital circuit theory. Since the effect of a
fault on the functional behavior of the network is intimately en-
twined with the network topology, an exploration of ICFF with all
of its endless ramifications is rather a complex task. The character-
ization of ICFF under short circuit faults in particular, is more
difficult as compared to its stuck-at fault counterpart. Before
presenting our main results, we will introduce some definitions and
notations.

Definition 1: Given a circuit realization N of a Boolean function
F,, the functions which are never obtainable under any fault in N are
called impossible class of faulty functions (ICFF) of F, with respect
to N. To be more particular, ICFF can be defined separately for
stuck-at and bridging faults.

Definition 2: If in a network N realizing a Boolean function
F,, a fault f causes to create a faulty function F;, we symbolize the
event as

F,—> F;.

Definition 3: Two Boolean functions F, and F;, are said to be in
the same P(N)-equivalence class [15], if one can be transformed in
the other by permitting (negating) the primary input literals.

Some results regarding the behavior of ICFF under stuck-at faults
are due to Hayes [11], [12], and Fujiwara [13]. For instance, it is
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known that no single stuck-at fault in an irredundant network real-
izing a nonconstant function F, can change it to F, [11], [12]. The
result is also true for multiple faults in two-level irredundant net-
works and in special class of EX-OR tree networks. Fujiwara [13]
presented some closure properties among the possible class of faulty
functions, particularly among the unate and fan-out-free functions.
Some anomalous behavior of stuck-at faults has recently been re-
ported in [14] where it has been shown that even a single stuck-at
fault in an irredundant combinational network can change the fault
free function F, to its P-equivalence class, which focuses on a new
kind of logical redundancy. We will now investigate whether similar
results also hold good for bridge fault model.

A. ICFF Under Short Circuit or Bridging Faults

Given a Boolean function F, and its realization N, it would be
interesting it we could foresee the class of the faulty functions which
are never obtainable under any bridge fault in N. The following
theorem presented below depicts an interesting property of bridging
fault in this respect. We assume that the bridging fault does not
create a feedback.

Theorem 1: Let N be any single-output irredundant combina-
tional network of arbitrary topology realizing a nonconstant func-
tion F, = f(x1, X2, * *,x,). Then there does not exist a bridge fault
f» between any two lines in N which changes F, to a nonconstant
faulty function F; such that

F;=F, or F,CF, or F,DF,.

In other words,

~ 3F, AN 3f(F, 2> F)),

where F;=F,, or F,CF, or F;DF,
is always true.

Proof: Let us assume that f, involves two arbitrary lines, say
handm inN, and itis of OR type, i.€., f»: +(h/m). Let the functional
values of lines & and m be f(h) and f(m), respectively. Note that if
any arbitrary line, say h, happens to be a fanout stem or fanout
branch line having line function f(k), then all lines emanating from
the parent stem line have the same line function f(4). Incorporating
this fact, we can always express the function F, in terms of the
functional values of lines 4 and m as follows:

F, = Ai f(h) f(m) + A. f () f(m)
+ As f(h) f(m) + Ay f (h) f (m) + As

where A,, A,, A;, A;, As are Boolean functions of literals
(x1,X2,***,x,). Since, f, is an OR bridging fault, both lines 4 and
m would assume a functional value {f(k) + f(m)} under f,. There-
fore, the faulty function F; can be expressed as

Fy= Ay (f(h) + f(m)) + Asf(h) F(m) + As.

Note that since N is irredundant, f(k) and f(m) are nonconstant
functions. Now the intersection between the fault free function F,
and faulty function F; would become

F, - F; = A, f(h) f(m) + A, A, f(h) f(m)
+ A Asf(R) F(m) + AuF(W) F(m) + As. (D)

To prove the theorem by contradiction, we assume that the bridge
fault f, creates a faulty function F; such that F; C F,. If it so hap-
pens, then one must have F, * F; = 0, which means that each term
of expression (1) must be individually zero. In particular, therefore,

A, f(h) f(m) = 0, Asf(h) f(m) = 0, and As = 0
which implies that the fault free function F, must be of the form
F, = A2 f(h) f(m) + As f(h) f(m) .
Therefore, the faulty function F; under +(h/m) wouid be
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Fr = A; (f(h) + f(m)) (f(h) + f(m))
+ As (f(h) + f(m)) (f(h) + f(m)) = 0.

Thus, the faulty function F; under f; can be a subset of, or equal to
F, if and only if F; = 0, i.e., a null function, which means that so
long as F; is a nonconstant function, F; ¢ F,.

To prove that F;  F, under any bridge fault f,, we assume the
existence of a network N realizing F, such that under some bridge
fault f,, the faulty function F; becomes a superset of F,, i.e.,
F, —%> F;such that, F; D F,. Let us now construct a network N’ by
adding an inverter at the output of N. N’ would therefore realize a
fault free function F,. The occurrence of the same bridge fault f, in
-N’ would therefore create a faulty function F; which is equal to F}.
Therefore, we have

F, —2> F} where F} = F;.

Now, F, - F} = F, + F; = O since F, C F; by assumption, mean-
ing that in the network N' there exists a bridge fault f, under which
the intersection between the fault free and faulty function is null or
in other words, the faulty function is a subset of the complement of
the fault free function. This is clearly a contradiction as proved
earlier. Therefore, F; P F,. The case for the AND type bridging fault
*(h/m) can be similarly proved. Hence, the theorem follows.

Q.E.D.

Note that similar things also happen in case of single stuck-at
faults in a nonredundant network [11], [12]. Moreover, for multiple
stuck-at faults (f,) in irredundant circuits, no example is yet known
[12] where F, L,(,'W F,. In contrast, there exist logic nets in which a
multiple bridging fault can change the fault free function F, to F,
even if the circuit realization is irredundant. The following example
makes this transparent.

Example 1: Consider the network shown in Fig. 1, which real-
izes the function F, = x; @ x,. Clearly it is an irredundant real-
ization of F,. Consider now a multiple bridging fault: {+(h,/h,),
+(h3/hs), +(hs/he)}. The faulty function becomes F; = x; x, +
%1 x» = F,. Note that, inverters I, I, I5, I, are included in the circuit
to inhibit the flow of the logical effects of faults +(k,/h,) and
+(h3/hs) toward the primary stem lines.

B. ICFF Under Bridging Faults at Primary Inputs in Logic
Circuits

The detection of input bridging faults, and some of its properties
have been discussed in [8]. Here we will concentrate mainly on the
problem of undetectability of bridging faults at the primary input
lines in a logic circuit. Some other interesting properties of ICFF are
also discussed. The logical model of input bridging faults is shown
in Fig. 2.

Theorem 2(a): Let N be any single-output combinational network
realizing a Boolean function F, = f(x;, x>, * * *,x,). Then a multiple
OR bridging fault f,, involving s input lines x,,x,,***,x,, § = n, is
undetectable if and only if F, can be expressed as

F0=A1(X1+x2+"‘+X,)+Azf1;2"‘is+A3 (2)

where, A;, Az, A; are Boolean functions independent of literals
X1,%2,°**,Xs. In other words, F, € ICFF(F,), under a multiple
OR bridging fault involving primary inputs, whenever (2) does not
hold well.

Theorem 2(b): A multiple AND bridging fault of multiplicity s,
involving s input lines in a network N is undetectable, if and
only if

F0=A;(xl.X2"'x5)+A£(xl+Ez+"‘+;s)+Aé (3)

where, A1, A3, A; are functions independent of x;, x5, * * * , x,.
The proof of theorem 2 is trivial and is therefore omitted.
Corollary 1: If an OR bridging fault +(x,,x,, -+, x,) among s

primary inputs is detectable, then all bridging faults of the following

types, namely,
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are detectable. Similar things will also be valid for AND bridging
faults.

Theorem 3: Let 4, and f%, denote multiple OR and AND bridging
faults, respectively, involving s input lines in a network N. Then if
fom (k) is undetectable, f%, (fi) is detectable. In other words,

F,-Z&> F,, and F, X2 F,

cannot be simultaneously true.
Proof: Let fou:+(x1, %2, ,x;) and fl:#(xi, X2, * +, X,).
Assume, Fa% F,. Then by theorem 2(a),

F0=A1 (xl +.X2 + .- +Xs) +Azi1.;2"‘fs+A3.
Also if F, 28> F,, then by theorem 2(b),
Fo=Alxix x, +tA; (% + X+ - +X,) + A}

where A’s and A”’s are independent of x;, x5, * * + , x,. Clearly, this
is a contradiction unless the cardinality of the set {1,2,---,s}is 1,
thereby completing the theorem. Q.E.D.

Corollary 2: If an OR (AND) bridging fault of multiplicity s = 2
at the primary inputs in N is undetectable, then any AND (OR)
primary input bridging fault of multiplicity ¢ <5, (¢ = 2) is
detectable.

It may be noted that the AND (OR) bridging fault model is appro-
priate for a positive (negative) logic environment. Therefore,
corollary 2 has the following interpretation: the presence of an un-
detectable input bridging fault in a network realized with positive
logic implies detectability of the same when the same network
topology is realized with negative logic, and vice-versa.

The above theorems describing properties of undetectable input
bridging faults are generalized versions of those presented in [8].
We will now investigate some other properties of ICFF, namely the
possibility of changing the fault free function to some other func-
tions belonging to the same P or N-equivalence class under bridging
faults at primary inputs. In this context it may be noted that even a
single stuck-at fault in a nonredundant network can change the fault
free function to its P or N-equivalence class [14], whereas for
stuck-at faults at primary inputs and in special class of networks,
such transformation is inhibited.

Theorem 4: Let N’ be an arbitrary n input, single-output net-
work realizing a nonvacuous n variable Boolean function F, =
fG1, X2, , X, %, **,x,). Then any AND (OR) bridging fault
between two primary inputs |x;, x;| cannot change the function F, to
its N equivalence class with respect to x;, x; or both, i.e., F, cannot
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be transformed to the faulty function by negating the variable x; or
x; or both.

Proof: Without any loss of generality we consider an AND
bridging fault f, between two primary lines x;, x;, i.e., fo:*(x;/x;).
We can always express F, as

F,=A xix; + AaXix; + AsxiX; + Aa X X + As 4)

where, A;, A,, A3, A4, As are Boolean functions independent of x;,
x;. Under fault *(x;/x;), the faulty function F; would become

Fr=Axix;+As(xi +'X) + As. (5

Assume without any loss of generality, that F; is in N-equivalence
class of F, with respect to the literal x;, i.e., F, % F;, such that
F; € N(F,). Changing x; to x; and vice-versa in (5) and equating it
to (4), we therefore get the following equality:

(Al.X,'j +A3.Ej + As) Xi + (Asz +A4Ej + As)f,*
= (A4+A43c',~ +A5)Xi+ (A] X;j +A4.-x—j+A5)i,

A little simplification will now yield
Xi [(A] X;j + A3 Ej + A5) @ (A4 + As)]
= E,‘ [(Az Xj + A4 ._X,"j + As) @ (A] Xj + A4 ._x-j + As)]

Since all A’s are independent of x;, x;, the equality can be satisfied
if and only if both sides are individually zero, implying that

Ay x; + Asx; + As = Ay + As (6)
and
Arxy+ AsX; + As = A x; + A X + As. (7
From relation (6) it is easy to observe that
As[A, x; @ As X;] = A5 As
or
As[Aix, DA X, DA)=0
or
As[(A @A) @ (A D A)X;]=0.
Therefore, As (A; @ Aas) x; = As (As @ A4) X,. By similar reason-
ing, this can happen only if both sides of above relation are individu-
ally zero, i.e.,
As[A; @ A =0 =45 [As @ A4
implying that
A, @ As C As
As @ A, C As. 8)
Similarly, from relation (7) it is evident that
As A, x; = A5 A, x; .

In other words, As [A; @ A,] x; = 0. Because of the independence
of A’s on x; this implies

A @ A CAs. 9)
Note that, if X,Y,Z are Boolean functions such that, X C Z and

Y CZ,thenX @ Y C Z. Applications of this idea on relations (8)
and (9) therefore yields the following series of logical implications:
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A @ As C As
A; D Ay C As
A D A; CAs
A @ A; C As
A, @ AL C As
A, @ As C As.

’ (10)

From (10) it is easy to observe that

AsD A+ A+ A+ A)A + A + 4 + A (11)

We will now consider three cases separately.

Case 1: F, is such a function that As = 0. Then from (10) we
obtain, A; = A, = A; = A,, which means that F, = A, [from (4)],
thereby contradicting the hypothesis that F, is nonvacuous in
(.xi,Xj).

Case 2: As # 0 and any one of four functions A;, A, A3, A, is
0. LetA, = 0. Then, from (10), A, C As;A; C As; A, C As. There-
fore, from (4), F, = As, again contradicting the nonvacuousness
of F,.

Case 3: A, # 0,A, # 0,43 # 0,A, # 0,As # 0. Since,
As D (A, + A, + Ay + A A, + 4, + A, + A,) from (11), F,
can be expressed as [from (4)] follows:

F,, = A1A2A3A4 XiX;j + A1A2A3A4 f,«x,-
+ A1A2A3A4 xﬁj + A|A2A3A4 )7,-33; + A5
= A1A2A3A4 + A5
implying that F, is vacuous in x;,x;. The case that F; cannot be
transformed to F, by negating both x;,x; can be similarly shown,
thereby completing the proof. Q.E.D.
Theorem 5: Let N' be any arbitrary n-input, single-output net-
work realizing an n variable nonvacuous function F, = f(xi,
X2, ,XiyXj, Xk, " * *,X,). Then no AND (OR) bridging between any

two primary inputs say, (x;, x;), can change F, to a faulty function Fy
where F; can be transformed to F, by negating a third literal x., i.e.,

Foi/x)
F, = F;
where F; € N (F,), with respect to negation of literal x,, can never

be true.
Proof: Let F, be expressed as follows:

Fa = A) Xi Xj Xk + Azf,»x,»xk + A3xi3c-jxk + A4J—c,~fjxk
+ A{x;x,-fk + Aéf,‘xj;k + Aéx,-f,-fk + At’t;i;j};k + As
where, all A’s and A "’s are independent of x;, x;, x,. Assume that a

fault f,:*(x;/x;) occurs at primary inputs x;,x; of N'. The faulty
function F; is therefore

F}": A] Xi Xj Xk + AAG:‘ + EJ) Xk
+ A; Xi x,-fk + A‘;(E, + Ej)fk + As.

If F, 25205 F. where F; lies in N-equivalence class of F,, with
respect to x, then negating literal x, in F;, we can equate it to F,.
It is not difficult to see that such an equality implies that
A @D AL C A,
A, @ AL C A,

Aé ®A4 QAs,
A, @ As C As,

AL @D A C As
As @ AL C As
from which we get, A, @ A; C As, As @D Aj C As.
Using these relations one can easily conclude that F, is indepen-

dent of x,, which contradicts the nonvacuousness of F,, thereby
proving the theorem. Q.E.D.
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Based on the same proof technique as that used in proving
Theorems 4 and 5, we can claim the following general result regard-
ing the effect of a bridging fault at primary inputs of the network.

Theorem 6: Let N' be any arbitrary network realizing an n vari-
able nonvacuous Boolean function F,. Then there does not exist any
AND (OR) bridging fault (excluding the undetectable faults) involving
primary inputs of N’ which can change F, to its N- or P-equivalence
class. In other words, for all detectable faults f,’s at primary inputs,

{F;|F; € P(F,),F; € N(F,)} C ICFF(F,)
in all networks having irredundant primary input leads.

C. Further Study of ICFF Under Bridge Faults

The general problem of determining under what conditions there
exists an irredundant network in which any arbitrary bridge fault f,
can change the fault free function to its P- or N-equivalence class is
still an open problem. However, for special classes of bridging
faults, not necessarily at the input level, one can present the follow-
ing theorem.

Definition 4: Let h be any path from a line in a network to the
output and let N, denote the number of inversions along . Then the
parity of path k, denoted by p, is defined as N, (mod 2).

Theorem 7: Let h and k be any two lines in a single-output
combinational network N’ realizing a nonvacuous Boolean function
F, of n variables. If all paths emanating from A to the network
output (if » happens to be a fanout stem or a fanout branch line
directly connected to the stem (i.e., without any inverter in be-
tween) then the path list also includes those emanating from all
branch lines of the parent stem line) are of equal parity, say p, and
similarly if all paths from line k to the network output are of equal
parity, say pi and if p, = p, then no AND (OR) bridging fault be-
tween h and k, if it is detectable, can change the fault free function F,
to its P- or N-equivalence class.

Proof: Letf(h)and f(k) denote functional values atlines & and
k, respectively. Without any loss of generality, we assume
pr = pr = 0. We can now express the fault free function as follows:

F,= A, f(h) + A, f(k) + As f(h) f(k) + A4

where A;, Ay, A3, A4 are Boolean functions of input literals but are
independent of f(h) and f(k).

Let the fault be f,: +(h/k). The faulty function F; is therefore
given by

Fr= A (f(h) + f(k)) + Ax (f(R)
+ f(k)) + As (f(h) + f(k)) + As.

Clearly, F; D F,, and for detectable faults F; # F,. Therefore,
F; D F,, implying that F; ¢ P(F,) and F; & N(F,). For AND type
bridging similar reasoning will do, thereby completing the theorem.
_ Q.E.D.
Like ICFF under stuck-at faults, we have characterized several
impossible class of faulty functions under bridging or short circuit
faults in a logic circuit. In [13], Fujiwara described some closure
properties among fan-out free and unate functions under stuck-at
faults. In other words, in a tree network, all possible faulty functions
will be fan-out-free functions and in a network realizing a unate
function, in which the number of inversions along any path con-
necting two points in the circuit, are the same (unate composition),
all faulty functions would be unate functions when stuck-at faults
occur. In case of bridging faults however, the effect of the fault is
to introduce a fanout point in the network [Fig. 2] and therefore the
closure with respect to unateness and fan-out-freedom, is in general,
not preserved. But for a restricted class of short circuit faults this
closure property can still be maintained. In view of this we present
the following observations.
Lemma 1: LetN be any two-level AND-OR or OR-AND tree network
(with inverters if any, only at the primary inputs) realizing a fan-
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~————

Fig. 3. Network N with subcircuits N{, N5, N3.

out-free function F,. Let f, be a nonfeedback bridge fault in be-
tween lines 4 and m in N, such that neither 2 nor m is an input to
any inverter. Then the faulty function F; under f; is a fan-out-free
function.

The proof of lemma 1 is simple and is omitted. As an immediate
consequence of this we now get the following theorem.

Theorem 8: Let F, be an arbitrary fan-out-free function realized
by a multilevel tree network N composed of AND/OR gates with
inverters, if any, only at the input level. Assume that the inverter-
inputs are not vulnerable to any circuit fault. Let f, be a bridging
fault involving two lines A and m, such that 4 and m belong to a
two-level AND-OR or OR-AND subcircuit N’ of N. Then the fault
function F; is a fan-out-free function.

Example 2: Consider the network N shown in Fig. 3, realizing
a fan-out-free function F, = (A + B)-(C + D) + (E + F) -
(G + H). The embedded two-level subcircuits N.i, N5, N3 in N are
shown within dotted lines. Any bridging fault which is confined
within any of these subcircuits will result a fan-out-free faulty func-
tion. For a bridging fault #(h,/h,) in N, the faulty function would be
F;=(A +B)-(C + DE) + (DE + F) - (G + H), which how-
ever, is not a fan-out-free function. Note that fault *(k,/h,) does not
belong to any two-level subcircuit of N.

It is well known that any fan-out-free function can be realized by
a multilevel tree network with only AND-OR gates with inverters at
the input level. Theorem 8 illustrates the fact that, albeit the effect
of a bridging fault is logically equivalent to creation of a fanout
point in the circuit, the class of fan-out-free functions satisfies the
closure property with respect to bridging faults confined within all
two-level subcircuits in a tree network. The next theorem presents
similar properties regarding the closure amongst unate functions.

Theorem 9: LetN be a network realizing a unate function F, such
that number of inversions in any path connecting two points in N are
same (unate composition). Let f, denote a bridging fault between
two lines & and m such that p, = p,,. Then the faulty function F;
must be a unate function.

II]. CONCLUSION

In this correspondence, several interesting properties reflecting
the behavior of short circuit faults in logic networks are explored.
There exist however, many other complex situations, which require
further investigation in order that ICFF under short circuit faults can
be more well-defined in an arbitrary circuit. Needless to say, the
cardinality of ICFF would be a potential candidate for providing a
measure of the testability of the network. This happens because,
when exhaustive testing methodologies like syndrome testing [16],
testing by verifying Rademacher—Walsh transformations [17], etc.,
are used for implementing built-in-tests (BIT), the presence of a
larger set of ICFF in a network will constrict the possible set of
faulty functions, and consequently the test data, i.e., the informa-
tion about the fault free circuit need not have to distinguish the fault
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free function from each of the remaining (2*" — 1) functions for an
n-input circuit. In view of LSI/VLSI technology, the difficult prob-
lem of generating test sets for detecting bridging faults can be
circumvented by resorting to a syndrome testable design which
takes care of detecting short circuit faults as well [10]. Better com-
prehension of ICFF and its application to testable design with an
objective of having higher fault coverage in LSI/VLSI circuits
would be a challenging area of future research.
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of the units of the system have failed intermittently and some have failed
permanently). Presence of intermittent faults can lead to incomplete diag-
nosis and usually complicates the diagnosis problem in comparison to
permanent fault situation. Alternative characterizations for hybrid fault
diagnosability of a system to those originally presented in [3] are derived
in this paper. It is shown that these conditions lead to the testing of the
hybrid diagnosability of a system with fewer computations than that in [3].

Index Terms — Hybrid faults, intermittent faults, permanent faults, sys-
tem level diagnosis.

I. INTRODUCTION

The study of diagnosable systems under different models
[1], [7]1-[11] received considerable attention in recent years. The
model introduced in [1] is possibly the most well-studied model in
connection with diagnosability analysis under different measures.
This model assumes a system to be composed of a number of units,
each of which is tested by some other units of the system. Most
studies on this model [1], [6]-[9], [12] assume that whenever any
unit of the system is faulty, the fault is of permanent nature. In
general, the fault situation is hybrid in the sense that some of the
faulty units can fail intermittently while the others fail permanently.
The problem of diagnosability of a system under intermittent or
hybrid fault situation was studied in [2] and [3].

A system modeled as in [1] can be represented as follows. A
system S having n units or components is represented by a directed
graph G with n vertices. Each unit of the system is tested by some
of the other units but never by itself. The feature of testing of each
unit by other units is represented by directed edges of G. If the ith
unit of the system tests the jth unit, then G will have a directed edge
from the ith vertex v; to the jth vertex v; and this edge will be
represented by (v;,v;). Throughout this correspondence, the
vertices of G and the corresponding units of S will be used inter-
changeably. The result of testing of one unit by another is repre-
sented by labeling the edge representing the testing. An edge (v;, v;)
is labeled 0 if v; “finds” v; good and is labeled 1 if v; “finds” v,
faulty. If v; is faulty, intermittently or permanently, its finding is
unreliable and thus the labeling of (v;, v;) does not convey any
information about the status of v;. If v; is fault free, then its finding
about v; is reliable if v; is fault free or permanently faulty. If v; is
intermittently faulty, the fault can escape detection by v; if v; was
working in a fault free manner when v; tested it. Thus, if v; is
intermittently faulty, the finding of v; about v; could be unreliable
even when v; is fault free. Because the intermittently faulty units
can escape detection by fault free units, the identification of faulty
units from the test results will usually lead to incomplete identi-
fication. One way to reduce the incompleteness is possibly to repeat
the testing several times with an expectation that the intermittently
faulty units will show some evidence of fault during this repetition
and will be ultimately detected. A system is said to be diagnosable
if all the permanently faulty units and possibly some of the intermit-
tently faulty units can be uniquely identified from the test results. In
this correspondence, we will derive an alternative characterization
to those originally presented in [3] for the diagnosability of a system
assuming upper bounds on the number of faulty units and the num-
ber of intermittently faulty units. It will be shown that these charac-
terizations lead to the testing of the diagnosability of a system with
fewer computations than that in [3].

II. DEFINITIONS AND NOTATIONS

LetG = (V, E)represent asystem S where V is the set of vertices
and E is the set of directed edges of G, such that each vertex of V
represents an unit of S and each edge represents the testing feature
of one unit by another. Every element of E is an ordered pair of
vertices, thatis, E C V X V. Let X(v;) represent the set of vertices
tested by v,, i.e., X(v;) = {v;|(v:,v;) € E} and X '(v;) =
{v;|(v;,v:) € E}. For any V, C V, we define, X(V,) =
X(v)) — Viand X 7'(V1) = Uyev, X ') — Vi
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