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Abstract

Inference procedures based on the Hellinger distance and other disparities
provide attractive alternatives to likelihood based methods for the statisti-
cian. The minimum disparity estimators are asymptotically efficient under
the model. Several members of this family also have strong robustness prop-
erties under model misspecification. Similarly, the disparity difference tests
have the same null distribution as the likelihood ratio test but are often
superior than the latter in terms of robustness properties. However, many
disparities including the Hellinger distance put large weights on the empty
cells which appears to be responsible for a somewhat poor efficiency of the
corresponding methods in small samples. An artificial empty cell penalty has
been shown to greatly improve the small sample properties of these proce-
dures. However all studies involving the empty cell penalty have so far been
empirical, and there are no results on the asymptotic properties of the mini-
mum penalized disparity estimators and the corresponding tests. In view of
the usefulness of these procedures this is a major gap in theory, which we
try to fill through the present work.

AMS (2000) subject classification. Primary 62F12, 62F05; Secondary 62F35.
Keywords and phrases. Hellinger distance, empty cell penalty, minimum pe-
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1. Introduction

In recent times, density based divergences have been studied in the con-
text of discrete models by, among others, Cressie and Read (1984) and Lind-
say (1994). Pardo (2006) provides a good general reference for results re-
lating to density based divergences in discrete models. Within the class
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of minimum divergence procedures, the methods based on the minimum
Hellinger distance stand out in terms of their popularity, and often repre-
sent the standard against which other minimum divergence procedures are
judged. Beran (1977), Tamura and Boos (1986), and Simpson (1987, 1989)
provide much of the basic background and properties of minimum Hellinger
distance inference.

Lindsay (1994) considered a large class of density based divergences called
disparities. This includes the Hellinger distance and many other common
density based divergences. The popularity of the minimum Hellinger dis-
tance procedures and those based on other robust disparities are partially
tempered by a relatively poor efficiency of these methods compared to the
likelihood based methods in small samples. However this trade off between
robustness and small sample efficiency appears to be primarily caused, at
least in discrete models, by the large weight that the Hellinger distance and
the other robust disparities put on the empty cells. It has been empirically
observed that an artificial empty cell penalty can greatly improve the small
sample performance of the minimum disparity methods (see, e.g., Harris and
Basu, 1994, Basu, Harris and Basu, 1996, Basu and Basu, 1998). In view
of the improvements that result from the imposition of this penalty, the
asymptotic properties of the minimum penalized disparity estimators and
the corresponding tests are of great practical importance. However, such
asymptotic properties of these methods have not been theoretically deter-
mined so far. In this paper we provide these asymptotic results.

The minimum disparity estimator is a member of the class of best asymp-
totically normal (BAN) estimators investigated and discussed by Lindsay
(1994). The asymptotic distribution of the penalized estimators is an im-
portant piece in the theoretical results concerning BAN minimum distance
estimators. Because the empty cell penalty is applied on a random subset of
the sample space with vanishing probability, a theoretical comparison of the
ordinary and penalized estimators based on higher order asymptotic proper-
ties appears to be very difficult. Yet there is overwhelming empirical evidence
of improved performance of the penalized estimators in small samples over
the ordinary estimators. Limited glimpses of such improved performance
are provided in Section 7 with some heuristic justifications. However, the
authors acknowledge that the scope remains for a more theoretical investi-
gation about the precise source of the improvement in efficiency due to the
application of the penalty.
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2. Minimum Disparity Inference and the Empty Cell Penalty

Let X1, X2, . . . , Xn be n independent and identically distributed obser-
vations from a discrete distribution F having probability mass function f
with respect to the appropriate dominating measure. As we are dealing with
density based divergences, we will represent our chosen model in terms of
the corresponding probability mass functions mθ(x), where θ ∈ Θ ⊆ � p and
x ∈ X , the sample space.

Suppose dn(x) be the proportion of sample observations at x. The Pear-
son residual function δnθ(x) at x is defined as

δnθ(x) =
dn(x) − mθ(x)

mθ(x)
.

When there is no scope of ambiguity we will simply write δnθ, dn and mθ to
denote the functions δnθ(x), dn(x) and mθ(x) respectively.

Suppose that G(·) is a real-valued, thrice differentiable, strictly convex
function on [−1,∞), with G(0) = 0. The disparity between dn(x) and mθ(x)
based on G is denoted by ρG(dn,mθ) and defined as

ρG(dn,mθ) =
∑

x∈X

G(δnθ(x))mθ(x). (2.1)

The convexity of G and Jensen’s inequality immediately imply, together with
the condition G(0) = 0, that the disparity in (2.1) is non-negative. We can
get many well known disparities by choosing specific forms of the function
G. For example, G(δ) = (δ + 1) log(δ + 1) − δ generates the well known
likelihood disparity (LD) given by

LD(dn,mθ) =
∑

x∈X

[

dn log

(

dn

mθ

)

+ (mθ − dn)

]

=
∑

x∈X

dn log

(

dn

mθ

)

,

which is a form of the Kullback–Leibler divergence (Kullback and Leibler,
1951). Here log denotes the natural logarithm. The (twice, squared) Hell-
inger distance (HD) has the form

HD(dn,mθ) = 2
∑

x∈X

(

d1/2
n − m

1/2
θ

)2
,
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which corresponds to G(δ) = 2[(δ + 1)1/2 − 1]2.

There are several important subfamilies of the class of disparities which
include the power divergence family (see Cressie and Read, 1984), indexed
by a parameter λ ∈ �

and having the form

Iλ(dn,mθ) =
1

λ(λ + 1)

∑

x∈X

dn

{

(

dn

mθ

)λ

− 1

}

=
∑

x∈X

[

(δnθ + 1)λ+1 − (δnθ + 1)

λ(λ + 1)
− δnθ

λ + 1

]

mθ. (2.2)

The power divergence family contains many well known divergences as spe-
cial cases. The likelihood disparity corresponds to λ = 0 defined via the
continuous limit of the quantity in the right hand side of (2.2) as λ → 0.
The (twice, squared) Hellinger distance is also a member of the power diver-
gence family for λ = −0.5.

Let θ̂n be the estimator of θ that minimizes ρG over θ ∈ Θ; then θ̂n is the
minimum disparity estimator (MDE) of θ corresponding to ρG. Provided it
exists, θ̂h satisfies

ρG(dn,mθ̂n
) = min

θ∈Θ
ρG(dn,mθ).

Notice that the minimizer of the likelihood disparity is the maximum like-
lihood estimator, so that the latter estimator is a member of the class of
minimum disparity estimators. Under differentiability of the model, the es-
timating equation for θ is of the form

−∇ρG(dn,mθ) =
∑

x

[

G′(δnθ)
dn

mθ
− G(δnθ)

]

∇mθ = 0, (2.3)

where ∇ = (∇1,∇2, . . . ,∇p)
T denotes the gradient operator with respect to

θ, and G′ is the first derivative of G. The estimating equation above can be
written as

∑

x

AG(δnθ(x))∇mθ(x) = 0, (2.4)

where

AG(δ) = (1 + δ)G′(δ) − G(δ).

The function AG is called the residual adjustment function (RAF) of the
disparity. Since A′

G(δ) = (1 + δ)G′′(δ) and G is strictly convex, the function
AG(δ) is a strictly increasing function on δ ∈ [−1,∞). As

∑

x ∇mθ(x) = 0,
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we can redefine the function AG(δ) by AG(δ) = AG(δ) − AG(0), so that
AG(0) = 0. Similarly without changing the solution of the estimating equa-
tion we can rescale the function AG to make A′

G(0) = 1 (since A′
G(0) =

G′′(0) > 0). These two conditions are automatic if, in addition to its usual
properties, the associated G function satisfies

G′(0) = 0, and G′′(0) = 1. (2.5)

Notice also that for any disparity satisfying G(0) = 0 and G′(0) = 0, the
convexity of G guarantees that each term in the summand of (2.1) is itself
non-negative. Equation (2.4) shows that within the class of minimum dis-
parity estimators the estimating equation of the MDE can be distinguished
by the function AG(·). Thus the theoretical properties of the MDE are con-
trolled by the nature of the RAF. For more details see Lindsay (1994) and
Basu, Harris and Basu (1997).

To analyze the robustness properties of these minimum disparity estima-
tors, one has to characterize the outliers probabilistically. If an observation
x in the sample space has a large positive value of δnθ(x), it will be called
an outlier in the sense that the actual observed proportion is much larger at
that point than what is predicted by the model. For robust estimation, one
should choose such disparities which give very small weights to the observa-
tions having large positive values of δnθ. For such disparities, the RAF AG(δ)
would exhibit a severely dampened response to increasing δ. For a qualita-
tive description, one can take the RAF of the likelihood disparity ALD(δ) as
the basis for comparison. For this disparity, ALD(δ) = δ, and thus to com-
pare the other minimum disparity estimators with the maximum likelihood
estimator, one must focus on how their RAFs depart from linearity for large
positive δ. A graph of the RAFs of some of the common disparities within
the power divergence family is given in Figure 1. Disparities with large neg-
ative values of λ, for which the RAFs curve sharply down on the right hand
side of the δ axis, are expected to perform better in terms of robustness.

It may be noted from Figure 1 that the robust disparities also curve down
sharply on the left tail, and put large negative weights on the empty cells
(i.e. at δ = −1). In small sample sizes, where a large number of empty cells
is likely, this large negative weight on the the empty cells appears to have
a strong adverse impact on the performance of the estimator. Therefore an
artificial empty cell penalty may be expected to give better small sample
performance. In the subsequent sections we will show that the penalty does
not affect the asymptotic distribution of the minimum disparity estimator or
the corresponding null distribution of the disparity difference test statistic.
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Figure 1: Plot of the RAFs AG(δ) for different values of λ for the power
divergence family.

3. The Penalized Disparity

Consider the setup of the previous section where X1, X2, . . . , Xn are n
independent and identically distributed observations from a discrete distri-
bution having probability mass function modeled by {mθ(x)}, where θ ∈
Θ ⊆ � p and x ∈ X . Assume that the disparity generating function G(·) sat-
isfies the conditions in (2.5) in addition to its usual properties. The disparity
in (2.1) can be rewritten as

ρG(dn,mθ) =
∑

x:dn(x)>0

G(δnθ(x))mθ(x) + G(−1)
∑

x:dn(x)=0

mθ(x). (3.1)

Now the penalized disparity for the tuning parameter h between the densities
dn and mθ is defined as

ρGh
(dn,mθ) =

∑

x:dn(x)>0

G(δnθ(x))mθ(x) + h
∑

x:dn(x)=0

mθ(x), h > 0. (3.2)

It is clear that the penalized disparity in (3.2) is non-negative; also evident is
the fact that if the probability mass functions dn and mθ are identically equal
the penalized disparity must equal zero. Again, for h > 0, two probability
mass functions which are not identically equal must necessarily produce a
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positive penalized disparity. If the support of mθ is independent of θ, the
range of h can be increased to include h = 0.

Comparing with the likelihood disparity

LD(dn,mθ) =
∑

x:dn(x)>0

[

dn(x) log

(

dn(x)

mθ(x)

)

+ (mθ(x) − dn(x))

]

+
∑

x:dn(x)=0

mθ(x),

we observe that the penalized disparity in (3.2) will put the same weight
on the empty cells as given by the likelihood disparity when the tuning
parameter h equals 1. The natural weight applied on the empty cells by the
ordinary disparity corresponds to h = G(−1).

The minimum penalized disparity estimator (MPDE) θ̂h
n is obtained by

minimizing ρGh
(dn,mθ) over θ ∈ Θ, where ρGh

is as given in (3.2). So

ρGh
(dn,mθ̂h

n
) = min

θ∈Θ
ρGh

(dn,mθ),

provided such a minimum exists. We will suppress the superscript h in θ̂h
n,

whenever there is no scope for confusion.

For a parametric model mθ with infinite support, the set {x : dn(x) = 0}
is also infinite where dn(x) is based on a sample of size n as described above.
Thus the proper control of the term

∑

x:dn(x)=0 mθ(x) can lead to large
benefits when the natural weight is too large.

In general the penalized disparity is a function of h. All the results and
proofs in the rest of this paper correspond to general values of h. In Section 7
we provide a thorough numerical investigation involving the role of h.

4. Consistency of the Minimum Penalized Disparity Estimator

Let X1, X2, . . . , Xn be n independent and identically distributed obser-
vations from a discrete distribution within the model family having proba-
bility mass function mθ(x), where θ ∈ Θ ⊆ � p and x ∈ X . Let θ0 ∈ Θ
be the true value of the parameter. We define the score function and its
successive derivatives as uiθ(x) = ∇i log mθ(x), uijθ(x) = ∇ij log mθ(x) and
uijkθ(x) = ∇ijk log mθ(x). Here and elsewhere we will assume that the
family {mθ} is identifiable in the sense that θ1 6= θ2 implies that the set
A = {x : mθ1

(x) 6= mθ2
(x)} has positive measure.
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Consider an ordinary disparity ρG(dn,mθ) and the corresponding pe-
nalized disparity ρGh

(dn,mθ). Let AG represents the residual adjustment
function of the ordinary disparity. We define the function Ah as

Ah(δ) =

{

AG(δ), if δ > −1,

−h, if δ = −1,
(4.1)

and denote it as the residual adjustment function of the penalized disparity.
Note that the estimating equation of the minimum penalized estimator is
given by

∑

x

Ah(δnθ(x))∇mθ = 0.

We prove the consistency of the minimum penalized disparity estimator in
the following theorem.

Theorem 4.1. Assume that the following conditions are satisfied.

(A0) The probability mass function mθ of the observations X have common
support so that the set X = {x : mθ(x) > 0} is independent of θ.

(A1) There exists an open subset ω of Θ for which the true parameter θ0

is an interior point, and for almost all x the density mθ(x) admits all
third derivatives of the type ∇ijkmθ(x) for all θ ∈ ω.

(A2) The first two derivatives of mθ(x) with respect to θ satisfy the following
equations

Eθ[uiθ(X)] = 0 for all i = 1, 2, . . . , p,

and

Ijk(θ) = Eθ[ujθ(X)ukθ(X)] = −Eθ [ujkθ(X)] , for all j, k,

where the matrix I(θ) = ((Ijk(θ)))p×p is the Fisher information matrix
at mθ. We assume that I(θ) is positive definite for all θ ∈ ω.

(A3) The quantities

∑

x

m
1

2

θ (x)|uiθ(x)|,
∑

x

m
1

2

θ (x)|uiθ(x)ujθ(x)| and
∑

x

m
1

2

θ (x)|uijθ(x)|

are bounded for all i and j and all θ ∈ ω.

(A4) For almost all x there exist functions Mijk(x),Mij,k(x),Mi,j,k(x) that
dominate |uijkθ(x)|, |uijθ(x)ukθ(x)| and |uiθ(x)ujθ(x)ukθ(x)| for all i, j,
and k, and that are uniformly bounded in expectation Eθ for all θ ∈ ω.
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(A5) The RAF AG(δ) is such that A′
G(δ) and (1 + δ)A′′

G(δ) are bounded
in absolute value by positive real constants M and N respectively on
[−1,∞).

Under the above conditions, with probability tending to 1 as n → ∞, the
minimum penalized disparity estimating equation

∂

∂θ
ρGh

(dn,mθ) = 0 (4.2)

has a root θ̂n such that θ̂n is consistent for estimating θ0.

Proof. Suppose Qa is the sphere with center at the true parameter
θ0 and radius a > 0. We will first show that for any sufficiently small a,
ρGh

(dn,mθ0) < ρGh
(dn,mθ), for all θ on the surface of Qa, with probability

tending to 1. Thus the disparity measure ρGh
(dn,mθ) has a local minimum in

the interior of Qa with probability tending to 1. Hence the minimum dispar-
ity estimating equation (4.2) has a solution θ̂n(a) within Qa with probability
tending to 1.

Taking a Taylor series expansion of ρGh
(dn,mθ) about θ0 we get

ρGh
(dn,mθ0) − ρGh

(dn,mθ)

= −
{

∑

j

(θj − θ0
j )∇j ρGh

(dn,mθ)
∣

∣

∣

θ=θ0

+
1

2

∑

j,k

(θj − θ0
j )(θk − θ0

k)∇jk ρGh
(dn,mθ)

∣

∣

∣

θ=θ0

+
1

6

∑

j,k,l

(θj − θ0
j )(θk − θ0

k)(θl − θ0
l )∇jkl ρGh

(dn,mθ)
∣

∣

∣

θ=θ∗

}

=S1 + S2 + S3 (say), (4.3)

where θ∗ lies on the line segment joining θ and θ0; θj and θ0
j are the j-th

components of the indicated vectors. From Lemma 9.1 we get

∇j ρGh
(dn,mθ)

∣

∣

∣

θ=θ0
= −

∑

x

dn(x)ujθ0(x) + op(n
−1/2)

→ 0, as n → ∞, (4.4)

so that the left hand side of (4.4) is bounded in absolute value by a2 with
probability tending to 1. Thus on Qa we have

|S1| < pa3 (4.5)
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with probability tending to 1.

Now from Lemma 9.2, we get

∇jk ρGh
(dn,mθ)

∣

∣

∣

θ=θ0
=
∑

mθ0(x)ujθ0(x)ukθ0(x) + op(1)

=Ijk(θ
0) + op(1).

Hence
∇jk ρGh

(dn,mθ)
∣

∣

∣

θ=θ0
−→ Ijk(θ

0) as n → ∞.

So
∣

∣

∣
∇jk ρGh

(dn,mθ)
∣

∣

∣

θ=θ0
− Ijk(θ

0)
∣

∣

∣
is bounded by a with probability tend-

ing to 1. Now

2S2 =
∑

j,k

(θj − θ0
j )(θk − θ0

k)
{

−∇jk ρGh
(dn,mθ)

∣

∣

∣

θ=θ0
− (−Ijk(θ

0))
}

+
∑

j,k

(−Ijk(θ
0))(θj − θ0

j )(θk − θ0
k)

<p2a3 + (θ − θ0)T (−I(θ0))(θ − θ0) (4.6)

with probability tending to 1. The second term in the right hand side of (4.6)
is a negative definite quadratic form in the variables (θj − θ0

j ). Letting λ1

be the largest eigenvalue of −I(θ0), this quadratic form is less than λ1a
2.

Combining the two terms we see that there exists c > 0 and a0 > 0 such
that for a < a0,

S2 < −ca2 (4.7)

with probability tending to 1. For the cubic term S3 notice that

S3 ≤ a3

6

∑

j,k,l

|∇jkl ρGh
(dn,mθ)|

∣

∣

∣

θ=θ∗
. (4.8)

From Lemma 9.3 we can find a positive number γ, such that with probability
tending to 1

|∇jklρGh
(dn,mθ)|

∣

∣

∣

θ=θ∗
< γ < ∞,

for all j, k and l. So from (4.8) it follows that

S3 < ba3, (4.9)

for a positive constant b. Hence combining (4.5), (4.7) and (4.9) we get
from (4.3)

S1 + S2 + S3 < −ca2 + (b + p)a3 (4.10)
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with probability tending to 1, which is less that zero for a < c/(b + p).

Thus for any sufficiently small a there exists a sequence of roots θ̂n =
θ̂n(a) to equation (4.2) such that

Pθ0(||θ̂n − θ0|| < a) → 1 as n → ∞, (4.11)

where || · || represents the L2 norm. Let θ∗n be the root closest to θ0 (it
exists as limit of a sequence of roots is again a root by the continuity of
ρGh

(dn,mθ)). Then clearly Pθ0(||θ∗n − θ0|| < a) → 1 as n → ∞, and the
sequence θ∗n does not depend on a. Hence there exists a root of (4.2) which
tends to the true value θ0 in probability. 2

5. Asymptotic Distribution of the Minimum Penalized Disparity

Estimator

Let X1, X2, . . . , Xn be n independent and identically distributed observa-
tions from a discrete distribution within the model family having probability
mass function mθ(x), where θ ∈ Θ ⊆ � p and x ∈ X . Let θ0 ∈ Θ be the true
value of the parameter.

Theorem 5.1. Under Assumptions (A0)–(A5) of Theorem 4.1, the min-
imum penalized disparity estimator, θ̂h

n, satisfies

n1/2(θ̂h
n − θ0)

a∼ Np

(

0, I−1(θ0)
)

,

where the
a∼ notation represents asymptotic distribution, and I(θ) is the

Fisher information matrix as defined in assumption (A2) of Theorem 4.1.

Proof. Let us assume the set up and notation of Section 4. Let

∑

x

Ah(δnθ(x))∇mθ(x) = 0 (5.1)

be the penalized estimating equation, where Ah is as defined in (4.1). Equa-
tion (5.1) is solved by θ̂h

n, the minimum penalized disparity estimator of θ.
Let us expand the j-th component of the left hand side of the above equation
around θ = θ0. This gives

∑

x

Ah(δnθ(x))∇jmθ(x)

=
∑

x

Ah(δnθ0(x))∇jmθ0(x) +
∑

k

(θk − θ0
k)∇k

∑

x

Ah(δnθ(x))∇jmθ(x)
∣

∣

∣

θ=θ0
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+
1

2

∑

kl

(θk − θ0
k)(θl − θ0

l )∇kl

∑

x

Ah(δnθ(x))∇jmθ(x)
∣

∣

∣

θ=θ∗
, (5.2)

where θ∗ lies on the line segment joining θ and θ0. We replace θ with θ̂h
n, the

minimum penalized disparity estimator, so that the the left hand side of the
above equation becomes zero. Multiplying by n1/2 and rearranging terms,
the equation (5.2) can then be rewritten as

− n1/2
∑

x

Ah(δnθ0(x))∇jmθ0(x)

=n1/2
∑

k

(θ̂h
nk − θ0

k)
[

∇k

∑

x

Ah(δnθ(x))∇jmθ(x)
∣

∣

∣

θ=θ0

+
1

2

∑

l

(θ̂h
nl − θ0

l )∇kl

∑

x

Ah(δnθ(x))∇jmθ(x)
∣

∣

∣

θ=θ∗

]

. (5.3)

Now from Lemma 9.1,

∑

x

Ah(δnθ0(x))∇jmθ0(x) =
∑

x

dn(x)ujθ0(x) + op

(

1√
n

)

,

and hence

−n1/2
∑

x

Ah(δnθ0(x))∇jmθ0(x) = − n1/2
∑

x

dn(x)ujθ0(x) + op(1)

= − n1/2 1

n

n
∑

i=1

ujθ0(Xi) + op(1), (5.4)

which shows that −n1/2
∑

x Ah(δnθ0(x))∇jmθ0(x)
a∼N(0, Ijj(θ

0)). Thus the
p dimensional vector

Y = −n1/2
(

∑

x

Ah(δnθ0(x))∇1mθ0(x), . . . ,
∑

x

Ah(δnθ0(x))∇pmθ0(x)
)T

is asymptotically equivalent to

Zθ0 = −n1/2
( 1

n

∑

i

u1θ0(Xi), . . . ,
1

n

∑

i

upθ0(Xi)
)T

, (5.5)

and has an asymptotic multivariate normal distribution with mean vector 0
and covariance matrix I(θ0).



388 A. Mandal, A. Basu and L. Pardo

From Lemma 9.2 it follows that

∇k

∑

x

Ah(δnθ(x))∇jmθ(x)
∣

∣

∣

θ=θ0
− (−Ijk(θ

0))

converges to zero in probability. Again from Lemma 9.3, the quantity

∇kl

∑

x

Ah(δnθ(x))∇jmθ(x)
∣

∣

∣

θ=θ∗

is bounded in probability. Since, by Theorem 4.1, θ̂h
n is consistent for θ0, the

bracketed quantity on the right hand side of (5.3) goes to −Ijk(θ
0) in proba-

bility. It then follows from Lehmann (1983, Lemma 4.1) that the asymptotic
distribution of n1/2(θ̂h

n − θ0) is multivariate normal with mean vector 0 and
covariance matrix I−1(θ0)I(θ0)I−1(θ0) = I−1(θ0). This establishes the re-
quired result. 2

Essentially the above shows that the n1/2(θ̂h
n−θ0) is asymptotically equiv-

alent to I−1(θ0)Zθ0 , where Zθ0 is defined in equation (5.5), and hence is also
asymptotically equivalent to n1/2(θ̂ML

n − θ0) in the sense

n1/2(θ̂ML
n − θ̂h

n) = op(1),

where θ̂ML
n is the maximum likelihood estimator of θ.

Other approaches, such as the one by Seo and Lindsay (2009) may also be
adopted to prove the consistency and asymptotic normality of the minimum
penalized disparity estimators.

6. Asymptotic Null Distribution of the Penalized Disparity

Difference Test Statistic

Now consider the parametric hypothesis testing problem under the set
up described in Section 4. Let Θ0 be the subset of Θ with r ≤ p restrictions
on the vector θ such that Ci(θ) = 0, i = 1, 2, · · · , r. Let us present the
composite null hypothesis H0 : θ ∈ Θ0 against H1 : θ ∈ Θ − Θ0. Under
the null H0 may be described by the parameter γ = (γ1, γ2, · · · , γp−r)T with
p−r independent components, where γ ∈ Γ ⊆ � p−r. In this case there exists
a function η :

� p−r → � p such that θ = η(γ), where θ ∈ Θ0 and γ ∈ Γ. If H0

is true, then there exists a γ0 ∈ Γ such that θ0 = η(γ0), where θ0 ∈ Θ is the
true value of θ. We assume that η has continuous second derivatives in an
open set containing γ0. Suppose the first derivative η̇(γ) of order p× (p− r)
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has full column rank at γ = γ0. Under the set up of the previous sections
the ordinary disparity difference test statistic is given by

Tn = 2n
{

ρG(dn,mθ̂0
) − ρG(dn,mθ̂)

}

, (6.1)

and the penalized disparity difference test statistic is given by

T p
n = 2n

{

ρGh
(dn,mθ̂0

) − ρGh
(dn,mθ̂)

}

, (6.2)

where, depending on the case, θ̂ represents the unrestricted minimizer of ρG

or ρGh
, while θ̂0 is the corresponding minimizers under the null.

Theorem 6.1. Under assumptions (A0)–(A5) in Theorem 4.1, the null
distribution of the penalized disparity difference test statistic tends to a χ2

distribution with r degrees of freedom.

Proof. Let θ0 ∈ Θ be the true value of θ. In the unrestricted situation
we get from Theorem 5.1 that

n1/2(θ̂ − θ0) = I−1(θ0)Zθ0 + op(1),

where Zθ0 is defined in (5.5). If θ̂ML is the unrestricted maximum likelihood
estimate of θ, then

n1/2(θ̂ − θ0) = n1/2(θ̂ML − θ0) + op(1). (6.3)

If H0 is true, then there exists a γ0 ∈ Γ such that θ0 = η(γ0). Let γ̂0

be the minimum penalized disparity estimate of γ under H0, then θ̂0 =
η(γ̂0). Suppose γ̂0ML is the maximum likelihood estimate of γ under H0.
By Theorem 5.1 it is easy to show that, under H0,

n1/2(γ̂0 − γ0) = n1/2(γ̂0ML − γ0) + op(1). (6.4)

So using delta method we get

n1/2(θ̂0 − θ0) = n1/2(θ̂ML
0 − θ0) + op(1), (6.5)

where θ̂ML
0 is the maximum likelihood estimate of θ under H0. Combin-

ing (6.3) and (6.5) we get

n1/2(θ̂0 − θ̂) = n1/2(θ̂ML
0 − θ̂ML) + op(1). (6.6)

From Therorem 4.4.4 of Serfling (1980), n1/2(θ̂ML
0 − θ̂ML) is Op(1), so

n1/2(θ̂0 − θ̂) = Op(1). (6.7)
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Now taking a Taylor series expansion of (6.2) about θ̂0 = θ̂ gives

T p
n =2n{ρGh

(dn,mθ̂0
) − ρGh

(dn,mθ̂)}

=2n
∑

j

(θ̂0j − θ̂j)∇j ρGh
(dn,mθ)

∣

∣

∣

θ=θ̂

+ n
∑

j,k

(θ̂0j − θ̂j)(θ̂0k − θ̂k)∇jk ρGh
(dn,mθ)

∣

∣

∣

θ=θ∗
, (6.8)

where θ∗ lies on the line segment joining θ̂0 and θ̂; θ̂0j and θ̂j are the j-th

components of the indicated vectors. Since ∇j ρGh
(dn,mθ)

∣

∣

∣

θ=θ̂
= 0, we get

T p
n =n

∑

j,k

(θ̂0j − θ̂j)(θ̂0k − θ̂k)∇jk ρGh
(dn,mθ)

∣

∣

∣

θ=θ∗

=n(θ̂0 − θ̂)T I(θ0)(θ̂0 − θ̂)

+ n(θ̂0 − θ̂)T [∇2ρGh
(dn,mθ∗) − I(θ0)](θ̂0 − θ̂), (6.9)

where
∇2ρGh

(dn,mθ∗) = ((∇jkρGh
(dn,mθ)))p×p

∣

∣

∣

θ=θ∗
.

Now we will show that

∇2ρGh
(dn,mθ∗) − I(θ0) = op(1).

For this we need to establish, for each j and k,

∇jk ρGh
(dn,mθ)

∣

∣

∣

θ=θ∗
= Ijk(θ

0) + op(1). (6.10)

Using Taylor series expansion we get

∇jk ρGh
(dn,mθ)

∣

∣

∣

θ=θ∗
=∇jk ρGh

(dn,mθ)
∣

∣

∣

θ=θ0

+
∑

l

(θ∗l − θ0
l )∇jkl ρGh

(dn,mθ)
∣

∣

∣

θ=θ∗∗
, (6.11)

where θ∗∗ lies on the line segment joining θ∗ and θ0. From Lemma 9.3

we find that ∇jkl ρGh
(dn,mθ)

∣

∣

∣

θ=θ∗∗
is bounded in probability. Again from

Theorem 4.1 we get (θ̂−θ0) = op(1) and equation (6.5) gives (θ̂0−θ0) = op(1).
Therefore (θ∗ − θ0) = op(1). So

∑

l

(θ∗l − θ0
l )∇jkl ρGh

(dn,mθ)
∣

∣

∣

θ=θ∗∗
= op(1).



Minimum disparity inference and the empty cell penalty 391

Hence equation (6.11) can be written as

∇jk ρGh
(dn,mθ)

∣

∣

∣

θ=θ∗
= ∇jk ρGh

(dn,mθ)
∣

∣

∣

θ=θ0
+ op(1).

Thus using Lemma 9.2 we get

∇jk ρGh
(dn,mθ)

∣

∣

∣

θ=θ∗
= Ijk(θ

0) + op(1). (6.12)

Now using (6.7) equation (6.9) reduces to

T p
n = n(θ̂0 − θ̂)T I(θ0)(θ̂0 − θ̂) + op(1). (6.13)

Using (6.6) we get from the above equation

T p
n = n(θ̂ML

0 − θ̂ML)T I(θ0)(θ̂ML
0 − θ̂ML) + op(1). (6.14)

From the proof of Theorem 4.4.4 of Serfling (1980) it follows that the asymp-
totic distribution of n(θ̂ML

0 − θ̂ML)T I(θ0)(θ̂ML
0 − θ̂ML) is chi-square with r

degrees of freedom. Thus the proof is complete. 2

7. The Role of h

In this section we present the results of some numerical investigations
providing confirmation of the improved performance due to application of
the penalty over a moderately wide range of models, parameters and sample
sizes. We use the Hellinger distance and its penalized versions for illustration.

7.1. A Data Dependent Choice for the Penalty Weight. Theorem 5.1
shows that MPDEs are BAN estimators irrespective of the choice of h. It
verifies our intuition that when the sample size is large, the probability of
the empty cells eventually becomes sufficiently small, and the amount of the
empty cell penalty does not affect the asymptotic distribution of the estima-
tor. But empirical studies show that in small sample sizes, where the number
of empty cells may be large, the estimators are, in fact, quite sensitive to the
choice of h. In order to choose the optimum penalty we need to express the
mean square error (MSE) of the MPDE for a fixed sample size as a function
of h and then choose that h for which the MSE is minimum. This is a very
difficult thing to do in practice; however in this section we present an ap-
proximate method with the aim of minimizing the error in estimation based
on Rao’s (1963) expression for the estimated bias in multinomial model for
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the power divergence family, which determines an estimate of the optimal
choice of h.

Suppose θ̂h
n denotes the MPDE obtained as a solution of equation (4.2).

Let us denote the estimating function ∂
∂θρGh

(dn,mθ) by f(dn, θ, h). Our aim

here is to linearly approximate the change in θ̂h
n as a function of h. From

Lemma 9.4 we get

η(dn, θ̂h
n, h) = −

(

∂
∂hf(dn, θ, h)
∂
∂θf(dn, θ, h)

)
∣

∣

∣

∣

∣

θ=θ̂h
n

, (7.1)

where η(dn, θ̂h
n, h) = ∂θ̂h

n

∂h is the rate of change of θ̂h
n as a function of h. For the

power divergence family in equation (2.2) we get, after some simple algebra,

∂

∂h
f(dn, θ, h)

∣

∣

∣

θ=θ̂h
n

= −
∑

x

m′

θ̂h
n

(x)I(dn(x)),

and

∂

∂θ
f(dn, θ, h)

∣

∣

∣

θ=θ̂h
n

= −
∑

x

(

dn(x)

mθ̂h
n
(x)

)λ+1 m′2
θ̂h
n

(x)

mθ̂h
n
(x)

+
1

λ + 1

∑

x

(

dn(x)

mθ̂h
n
(x)

)λ+1

m′′

θ̂h
n

(x)

+

(

1

λ + 1
− h

)

∑

x

m′′

θ̂h
n

(x)I(dn(x)),

where I(y) = 1 if y = 0 and 0 otherwise.

The expression η(dn, θ̂h
n, h) may be viewed as the increment in the es-

timator for unit change in h. Let θ̂n be the ordinary minimum disparity
estimator without using the penalty, and let θ0 be the true value of θ. If
we use the linear approximation based on (7.1) the ‘optimal’ h, which will
eliminate the error (θ̂n − θ0) in estimation, is

hopt = G(−1) − (θ̂n − θ0)

η(dn, θ̂n, G(−1))
. (7.2)

As hopt is a function of θ, we can not compute it directly. So we replace

(θ̂n − θ0) in (7.2) by the estimated bias of the ordinary minimum disparity
estimator. In calculating the bias for a real-valued parameter (i.e. when
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dimension of θ is unity) we follow the approach of Rao (1963). Putting
λ = −(k + 1) in Haldane’s minimum discrepancy (see page 204 of Rao,
1963) we get the bias for the power divergence family as

E(θ̂n − θ0) =
1

2nI(θ0)

{

λ
∑

x

m′

θ0(x)

mθ0(x)
− λµ30 + µ11

I(θ0)

}

+ o

(

1

n

)

, (7.3)

where

µuv =
∑

x

mθ0

(

m′

θ0

mθ0

)u(m′′

θ0

mθ0

)v

,

and I(θ0) is the Fisher information defined in Theorem 4.1.

We estimate E(θ̂n − θ0) by the first term on the right hand side of (7.3)
evaluated at θ0 = θ̂n, and replace (θ̂n−θ0) in (7.2) by the estimated value. If
the estimated hopt comes out to be negative it is replaced by zero. We then

follow it up by finding the minimum penalized disparity estimator θ̂
hopt
n , and

choose that as our final estimator. Thus this case involves the use of a data
dependent penalty.

In Figure 2 we present the mean square errors of four different estima-
tors in a particular numerical example. Data are randomly generated from a
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Figure 2: The MSE (multiplied by n) of the estimators for the truncated
geometric distribution with parameter θ, where the number of cells is 5 and
n = 15.
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truncated geometric distribution with 5 cells having probability mass func-
tion

mθ(x) =

{

θ(1 − θ)x, if x = 0, 1, 2, 3,

1 −∑3
x=0 mθ(x), if x = 4.

The values of the parameter θ are chosen to be between 0.3 and 0.7. Sam-
ples of size 15 are drawn each time, and the exercise is repeated 1000 times.
The four estimators chosen are (a) the ordinary minimum Hellinger distance
estimator (MHDE) of θ, (b) the minimum penalized Hellinger distance es-
timator (MPHDE) of θ based on the estimated optimal choice of hopt as in
(7.2), (c) the minimum penalized Hellinger distance estimator of θ based on
a fixed penalty of h = 1, and (d) the minimum penalized Hellinger distance
estimator of θ based on a fixed penalty of h = 0.5.

The plot shows that all the minimum penalized Hellinger distance es-
timators of θ provide substantial improvements on the ordinary minimum
Hellinger distance estimator. It appears that the MPHDE for h = 1 is
slightly inferior than the other two penalized estimators. The estimator in
(b) does not necessarily beat out the one in (d), and the performance of the
estimators in (b) and (d) appear to be competitive. We realize that the esti-
mation of the optimal choice of h in (7.2) involves some approximations and
perhaps it should be viewed generally as a ‘good, suitable, data dependent’
choice.

The distribution of the optimal choice of h, at least in this example, also
reveals that the values of hopt are almost always smaller than 2, the natural
empty cell weight of the Hellinger distance, although there is some variation
based on the true value of θ. For θ = 0.5, for example, the median value of
hopt equals 0.623 over the 1000 replications. In this illustration, reducing the
weight of the empty cells clearly improves the performance of the minimum
Hellinger distance estimator.

7.2. 3D Plots for Three Models. To get better insight about the nature
of variation in the MSE of the estimators, we present 3D plots of the MSE
surface for three different models – binomial, Poisson and geometric. We use
2000 replications in each cases.

In the first example data are generated from a binomial (15, θ) distribu-
tion, so that

mθ(x) =

{

(15
θ

)

θx(1 − θ)15−x, if x = 0, 1, . . . , 15,

0, otherwise.
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We have taken different values of θ in (0, 1). Figure 3 shows the 3D plot of
the MSEs of the MPHDEs for different fixed values of h and θ. The sample
size is 20.
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Figure 3: MSE of the MPHDEs using different values of h for the binomial
model with parameters 15 and θ, where n = 20.

In Figure 4 we have plotted the MSEs in case of Poisson distribution
where the values of mean parameter θ are 3, 4, · · · , 10. The sample size is
n = 20 in each replication. Similarly in Figure 5 we have presented the MSE
surface in case of geometric model with θ ∈ (0, 1) and sample size n = 15. In
practically all the cases it appears that the optimum value of h is close to 0.5
or slightly higher when one takes a fixed h approach. The surfaces clearly
slope downward at h = 2 for each of the cases considered. By the time
the penalty weight slides down to 1, the gain is already substantial over the
natural weight h = 2 in each case. The gain seems to be further enhanced at
h = 0.5. In almost all of these cases the mean square error surface appears to
reach a minimum at some point between 0.8 and 0.5 before curving upward
again.

7.3. The Score Functions. We also look at the contributions of the differ-
ent terms in the score equation to get an idea of how the estimating function
changes with h. For this we look at the estimating equation of the penalized
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Figure 4: MSE of the MPHDEs using different values of h for the Poisson
model with parameter θ, where n = 20.

estimator
∑

x:dn(x)>0

AG(δnθ(x))∇mθ(x) + h
∑

x:dn(x)=0

∇mθ(x) = 0 (7.4)

at the true parameter value θ = θ0. Denoting

S1 =
∑

x:dn(x)>0

AG(δnθ0(x))∇mθ0(x), and S2 =
∑

x:dn(x)=0

∇mθ0(x),

our aim is to identify the value of h for which the score function S1 − hS2

closest to zero.

We look at our three different models, and consider two sets of parame-
ters. In each case we present the average values of the score functions and
the individual terms S1 and S2 in a simulation of 1000 replications. The
results are given in Tables 1 and 2. We present the average values (over the
1000 replications) of S1, S2 and corresponding average score for three dis-
parities, including the ordinary Hellinger distance (h = 2) and the penalized
Hellinger distances at h = 1 and 0.5. Since the average score S1 − hS2 van-
ishes at h = S1/S2, the ‘ideal’ h for each of the models, calculated according
to this criterion is also presented in the last row of each table. Among the
three values of h, h = 0.5 takes the average score closest to zero. In each of
the above cases the ideal h lies between 0.6 and 0.75.
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Figure 5: MSE of the MPHDEs using different values of h for the geometric
model with parameter θ, where n = 15.

7.4. The Role of the Sample Size n. We conclude with a small simulation
example demonstrating the behavior of the penalized estimators and the
penalized disparity difference tests in the geometric model as a function
of increasing sample size. Data are randomly generated from a geometric
distribution with parameter θ = 0.5. First we compare the empirical mean
square errors of the ordinary MHDE, the MPHDEs with h = 1, and h =
0.5, and the MLE. Next we consider the hypothesis H0 : θ = 0.5 against
H1 : θ 6= 0.5 and compare the observed levels of the disparity difference
tests based on the Hellinger distance, the corresponding penalized tests with
h = 1 and h = 0.5, and the likelihood ratio test (LRT) statistics. As the
value of θ is taken to be 0.5 the Fisher information I(θ) in this case is
1/(0.52(1− 0.5)) = 8, and n times the asymptotic variance of the estimators
are all the four equal to 1/8 = 0.125.

The empirical mean square errors of each of these estimates are com-
puted for 1000 replications at each sample size between 10 and 200. These
observed MSEs (multiplied by n) are plotted as a function of the sample size,
and presented in the same graph (Figure 6) for comparison. The straight
line in the figure is the theoretical asymptotic variance of

√
n times of the

estimators. Clearly the MSEs of the MPHDEs are substantially closer to
that of the maximum likelihood estimator compared to that of the MHDE.
The penalty weight h = 0.5 again provides a slight improvement on h = 1.
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Table 1: Score functions of the ordinary Hellinger distance (HD)
and the penalized Hellinger distance (PHD) estimators, where
sample size is 20.

Geo(0.3) Bin(20,0.3) Poi(3)

S1 −0.581 0.194 0.033
S2 −0.931 0.290 0.048
HD Score: S1 − 2S2 1.281 −0.386 −0.063
PHD (h = 1) Score: S1 − S2 0.350 −0.096 −0.015
PHD (h = 0.5) Score: S1 − S2/2 −0.115 0.049 0.009
Ideal h 0.624 0.669 0.687

Table 2: Score functions of the ordinary Hellinger distance (HD)
and the penalized Hellinger distance (PHD) estimators, where
sample size is 15.

Geo(0.5) Bin(10,0.7) Poi(5)

S1 −0.319 −0.207 0.022
S2 −0.524 −0.287 0.029
HD Score: (S1 − 2S2) 0.729 0.367 −0.036
PHD (h = 1) Score: S1 − S2 0.205 0.080 −0.007
PHD (h = 0.5) Score: S1 − S2/2 −0.057 −0.063 0.007
Ideal h 0.609 0.721 0.754

The most remarkable point in the graph is the extremely poor small sample
performance of the ordinary MHDE. This estimator appears unsatisfactory,
from the efficiency stand point, even at a sample size of 200. This defi-
ciency appears to be almost completely eliminated by the proper choice of
the penalty.

In Figure 7 the observed levels, computed as the proportion of test statis-
tics exceeding the chi-square critical value, are plotted for the disparity dif-
ference test based on the ordinary Hellinger distance (the test in (6.1) with
ρG = HD), the corresponding penalized tests in (6.2) with h = 1 and h = 0.5,
and the likelihood ratio test. Once again it is observed that the levels of
the penalized disparity difference tests are quite close to those of the LRT
(and to the nominal value of 0.05) except at very small sample sizes, where
h = 0.5 appears to produce a more conservative test. The observed level of
the ordinary disparity difference test based on the Hellinger distance remains
significantly higher than the nominal level even at a sample size of 200, while
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Figure 6: MSE (multiplied by n) of the MHDE, the MPHDE with h = 1,
the MPHDE with h = 0.5 and the MLE.

such deficiencies are again almost entirely eliminated by appropriate choice
of the penalty. The label DDT represents the ordinary disparity difference
test based on the Hellinger distance in Figure 7, while the labels PDDT
represent the indicated penalized disparity difference tests.

8. Concluding Remarks

In this paper we have established the asymptotic results about penalized
minimum disparity methods, and provided a series of numerical investiga-
tions to get a good idea about the nature of improvement due to the appli-
cation of the penalty. In most examples the optimal value of the penalty in
the minimum Hellinger distance estimation turned out to be in the range
0.5 to 0.8. In general h = 0.5 appears to be a good choice for the minimum
Hellinger distance estimator. In case of hypothesis testing problems, how-
ever, h = 0.5 appears to be a bit conservative for small samples, and h = 1
appears to do better in terms of the closeness of the achieved level with the
nominal level.

We feel that this present work gives enough indications to suggest that
further investigation about the use of penalized disparity methods in min-
imum disparity inference is well warranted. Also it is very likely that the
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Figure 7: Observed levels of the DDT, the PDDT with h = 1, the PDDT
with h = 0.5 and the likelihood ratio test (LRT) statistics. The nominal
level is 0.05.

choice of the optimal penalty weight will be a function of the original dis-
parity, which may be confirmed by future studies.

9. Appendix

Let X1, X2, . . . , Xn be n independent and identically distributed observa-
tions from a discrete distribution modeled by the family having probability
mass function mθ(x), where θ ∈ Θ ⊆ � p and x ∈ X . Let θ0 ∈ Θ, be the
true value of the parameter. Denote

A
(n)
j =∇j ρGh

(dn,mθ)
∣

∣

∣

θ=θ0
,

B
(n)
jk =∇jk ρGh

(dn,mθ)
∣

∣

∣

θ=θ0
and

C
(n)
jkl (θ) =∇jkl ρGh

(dn,mθ).

Then, under assumptions (A0)–(A5) as presented in the statement of The-
orem 4.1, the following results hold.

Lemma 9.1. A
(n)
j = −∑x dn(x)ujθ0(x) + op

(

n−1/2
)

.

Lemma 9.2. B
(n)
jk =

∑

x mθ0(x)ujθ0(x)ukθ0(x) + op(1).
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Lemma 9.3. With probability tending to 1 there exists a finite number γ
such that

∣

∣

∣
C

(n)
jkl (θ)

∣

∣

∣
< γ,

for all j, k and l and for all θ ∈ ω, where ω is defined in (A1) of Theorem 4.1.

Lemma 9.4. Suppose θ̂h
n is the MPDE, which is a root of equation (4.2).

Let us denote the function ∂
∂θρGh

(dn,mθ) by f(dn, θ, h). Then, for the multi-
nomial model

∂θ̂h
n

∂h
= −

(

∂
∂hf(dn, θ, h)
∂
∂θf(dn, θ, h)

)
∣

∣

∣

∣

∣

θ=θ̂h
n

.

Proof of Lemma 9.1. Let

Rn(θ) =ρG(dn,mθ) − ρGh
(dn,mθ)

=(G(−1) − h)
∑

x:dn(x)=0

mθ(x)

=(G(−1) − h)
∑

x

mθ(x)I(dn(x)), (9.1)

where I(y) = 1 if y = 0 and 0 otherwise. We use the notation Rjn(θ) =
∇jRn(θ) and mjθ(x) = ∇jmθ(x), where ∇j represents the gradient with
respect to θj. Then

Rjn(θ) =(G(−1) − h)
∑

x

mjθ(x)I(dn(x))

=(G(−1) − h)
∑

x

mθ(x)ujθ(x)I(dn(x)),

where ujθ(x) = ∇j log mθ(x). So

E
[

n1/2|Rjn(θ)|
]

=n1/2|G(−1) − h|
∑

x

|mθ(x)ujθ(x)|E [I(dn(x))]

=n1/2|G(−1) − h|
∑

x

|mθ(x)ujθ(x)|{1 − mθ(x)}n

=|G(−1) − h|
∑

x

∣

∣

∣
mθ(x)

1/2
ujθ(x)

∣

∣

∣

[

n1/2mθ(x)1/2{1 − mθ(x)}n
]

.
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Suppose gn(x) = n1/2x1/2(1 − x)n, where 0 < x < 1. Note gn(x) → 0 for all
0 < x < 1 as n → ∞. Now

max
0<x<1

gn(x) =
1√
2

{

2n

2n + 1

}
2n+1

2

≤ 1√
2
.

Therefore, using assumption (A3) it follows from dominated convergence
(DCT) theorem that

E
[

n1/2|Rjn(θ)|
]

→ 0 as n → ∞.

Thus it follows from Markov’s inequality that

Rjn(θ) = op

(

n−1/2
)

. (9.2)

Differentiating (9.1) with respect to θj we get

∇j ρG(dn,mθ) −∇j ρGh
(dn,mθ) = Rjn(θ). (9.3)

By substituting θ0 for θ in equations (9.2) and (9.3) we get

∇j ρGh
(dn,mθ)

∣

∣

∣

θ=θ0
= ∇j ρG(dn,mθ)

∣

∣

∣

θ=θ0
+ op

(

n−1/2
)

. (9.4)

Lindsay (1994) has shown that, under assumptions (A0)–(A5),

∇j ρG(dn,mθ)
∣

∣

∣

θ=θ0
= −

∑

x

dn(x)ujθ0(x) + op

(

n−1/2
)

. (9.5)

Combining (9.4) and (9.5) the lemma is proved. 2

Proof of Lemma 9.2. Here we consider the second order partial
derivative of Rn(θ). From (9.1) we have

Rjkn(θ) = ∇jkRn(θ) = (G(−1) − h)
∑

x

mjkθ(x)I(dn(x)),

where mjkθ(x) = ∇jkmθ(x). Then

E [|Rjkn(θ)|] = |G(−1) − h|
∑

x

|mjkθ(x)|E [I(dn(x))]

=|G(−1) − h|
∑

x

|mjkθ(x)|{1 − mθ(x)}n
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=|G(−1) − h|
∑

x

∣

∣

∣
mθ(x)ujθ(x)ukθ(x) + mθ(x)ujkθ(x)

∣

∣

∣
{1 − mθ(x)}n.

Now {1 − mθ(x)}n → 0 as n → ∞. Again {1 − mθ(x)}n ≤ 1. Therefore,
using assumption (A3) it follows from DCT that

E [|Rjkn(θ)|] → 0 as n → ∞.

Hence using Markov’s inequality we can prove that

Rjkn(θ) = op(1). (9.6)

Differentiating (9.1) with respect to θj and θk we get

∇jk ρG(dn,mθ) −∇jk ρGh
(dn,mθ) = Rjkn(θ). (9.7)

By substituting θ0 for θ in equations (9.6) and (9.7) we get

∇jk ρGh
(dn,mθ)

∣

∣

∣

θ=θ0
= ∇jk ρG(dn,mθ)

∣

∣

∣

θ=θ0
+ op(1). (9.8)

Lindsay (1994) has shown that, under assumptions (A0)–(A5),

∇jk ρG(dn,mθ)
∣

∣

∣

θ=θ0
=
∑

x

mθ0(x)ujθ0(x)ukθ0(x) + op(1). (9.9)

Combining (9.8) and (9.9), the lemma is proved. 2

Proof of Lemma 9.3.

∇jkl ρGh
(dn,mθ)

= −
∑

x

ξ(dn(x))
[

A′′
G(δnθ)(1 + δnθ)

2ujukulmθ

− A′
G(δnθ)(1 + δnθ){ujukl + ukujl + ulujk + ujukul}mθ

+ AG(δnθ){ujukl + ukujl + ulujk + ujukul + ujkl}mθ

]

,

where ξ(dn(x)) = 1 −
(

1 − h
G(−1)

)

I(dn(x)), and I(y) = 1 if y = 0 and zero

otherwise. So

∇jkl ρGh
(dn,mθ)

= −
∑

x

ξ(dn(x))
[

A′′
G(δnθ)(1 + δnθ)

2ujukulmθ
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− A′
G(δnθ)(1 + δnθ){ujukl + ukujl + ulujk + ujukul}mθ

+ δnθA
′
G(δ∗){ujukl + ukujl + ulujk + ujukul + ujkl}mθ

]

,

where δ∗ lies on the line segment joining 0 and δnθ. Let c = max
{

1, h
G(−1)

}

.

So ξ(dn) ≤ c for all dn. From assumption (A5) we get

|∇jkl ρGh
(dn,mθ)|

≤cN
∑

x

∣

∣

∣
(1 + δnθ)ujukulmθ

∣

∣

∣

+ cM
∑

x

∣

∣

∣
(1 + δnθ){ujukl + ukujl + ulujk + ujukul}mθ

∣

∣

∣

+ cM
∑

x

∣

∣

∣
δnθ{ujukl + ukujl + ulujk + ujukul + ujkl}mθ

∣

∣

∣
. (9.10)

Now applying the Central Limit Theorem and using (A4) it can be shown
that each term in (9.10) is bounded in probability for all j, k and l and for
all θ ∈ ω, where ω is defined in (A1). 2

Proof of Lemma 9.4. The estimating equation is given by

f(dn, θ, h) = 0, (9.11)

which results in a functional θ = T (dn, h). Hence for a r cell multinomial
the differential of θ can be expressed as

dθ =
r
∑

u=1

∂T

∂dn(u)
ddn(u) +

∂T

∂h
dh. (9.12)

Similarly from equation (9.11) we get

df =

r
∑

u=1

∂f

∂dn(u)
ddn(u) +

∂f

∂h
dh +

∂f

∂θ
dθ. (9.13)

Substituting dθ from (9.12) in equation (9.13) we get

df =

r
∑

u=1

(

∂f

∂dn(u)
+

∂f

∂θ

∂T

∂dn(u)

)

ddn(u) +

(

∂f

∂h
+

∂f

∂θ

∂T

∂h

)

dh.

As df = 0, it must follow that the coefficient of dh is identically zero, i.e.,

∂f

∂h
+

∂f

∂θ

∂T

∂h
= 0.
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Hence
∂θ

∂h
=

∂T

∂h
= −

∂f
∂h
∂f
∂θ

.

For the specific case where dn and h are specified, we have

∂θ̂h
n

∂h
=

∂T (dn, h)

∂h
= −

(

∂f(dn,θ,h)
∂h

∂f(dn,θ,h)
∂θ

)
∣

∣

∣

∣

∣

θ=θ̂h
n

,

where θ̂h
n solves f(dn, θ̂h

n, h) = 0. 2
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