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Abstract

The problem of curve-fitting and clustering using Bayesian mixture models,
treating the number of components as unknown, has received wide atten-
tion in the Bayesian statistical community. Among a number of available
Bayesian methodologies specialised for the purpose, the approaches proposed
in Escobar and West (1995) and Richardson and Green (1997) stand out.
But in the case of massive data substantial computational challenges seem
to blur the attractive theoretical advantages of such pioneering Bayesian
methodologies. Based on a methodology introduced by Bhattacharya (2008),
which, as we show, includes the approach of Escobar and West (1995) as a
special case, we propose a very fast and efficient curve-fitting and cluster-
ing methodology. Our clustering approach is based on a new approach to
analysing non-parametric posterior distributions of clusterings first proposed
in Mukhopadhyay, Bhattacharya and Dihidar (2011). Significant advan-
tages of our approach over the aforementioned established mixture modeling
approaches, particularly in the case of massive data, are demonstrated the-
oretically and with extensive simulation studies. We also illustrate our
methodologies on a real, cosmological data set consisting of 96,307 bivari-
ate observations and demonstrate that the approach of Escobar and West
(1995) is infeasible in this example and the approach of Richardson and
Green (1997), although implementable, is likely to be inefficient and compu-
tationally expensive.

AMS (2000) subject classification. Primary 62G08; Secondary 91C20.
Keywords and phrases. Cluster analysis, Cosmology, Dirichlet process, Model
validation, Markov chain Monte Carlo, Non-linear regression, Reversible
jump Markov chain Monte Carlo.
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1 Introduction
The theory of mixture modeling provides a very versatile framework for

statistical analysis of data. In particular, such a framework provides the
basis for density estimation, cluster analysis, and even semi-parametric re-
gression. When the number of mixture components, k, is unknown, which
is often the case in reality, it is either needed to estimate k, which is valid
from a frequentist standpoint, or k may be treated as a unknown quan-
tity, and uncertainty about k may be quantified by a prior distribution.
The latter philosophy is exclusively Bayesian. Indeed, as the Bayesians
might argue, simply providing a point estimate fails to properly account
for the uncertainty about k. However, treating k as a random variable in
the Bayesian paradigm introduces significant computational challenges, par-
ticularly in the case of massive data. Two prominent Bayesian methodologies
that are cut out to handle statistical analyses associated with mixtures with
variable number of components, are (a) The methodology based on Dirichlet
process mixtures, proposed in Escobar and West (1995) (henceforth, EW)
and (b) The methodology based on reversible jump Markov chain Monte
Carlo (RJMCMC) proposed in Richardson and Green (1997) (henceforth,
RG). Unfortunately, despite being pioneering, the above methods are also
vulnerable to the problems associated with massive data.

Bhattacharya (2008) (henceforth, SB) described another methodology
which may be seen as bridging the ideas of EW and RG, using the good
features of both, creating, arguably, a more powerful methodology. For
instance, we show in Section 1.2 that the model of EW is a special case of
the model of SB. Also, the approach set out in SB permits straightforward
and efficient Gibbs sampling for data sets of any size and any dimensionality;
in contrast, RJMCMC is inefficient for high-dimensional data and EW’s
approach in infeasible computationally and inefficient for data sets with large
number of observations even if the data is univariate.

1.1. Mixture model of SB extended to multivariate data. We assume
that for i = 1, . . . , n, the data set Y = {y1, . . . ,yn} is available, where
observation yi is d(≥ 1)-variate. This can be modeled as a mixture of d-
variate normal distributions, having p components. Crucially, p is assumed
to be unknown. Rather than assuming a prior distribution on p like RG and
treating the problem as variable dimensional, we assume the following form
of mixture representation of the d-variate observation yi:

[yi | ΘM ] =
1
M
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In the above, M(≥ p) is the maximum number of components the mixture
can possibly have, and is known; ΘM = {θ1, . . . ,θM}, with θj = (μj ,Λj).
We further assume that ΘM are samples drawn from a Dirichlet process
(see, for example, Ferguson 1974):

θj
iid∼ G

G ∼ DP (αG0)

In this paper, we assume that under G0,

[Λj ] ∼ Wishartd
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Hence, the joint distribution of θj is given by
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Due to the discreteness of the prior distribution G, the parameters θ� are
coincident with positive probability. This property can be exploited to show
that (1.1) reduces to the form

[yi | ΘM ] =
p∑

j=1
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{
θ∗

1, . . . ,θ
∗
p

}
are p distinct components in ΘM with θ∗

j occuring Mj

times, and πj = Mj/M . Hence, although our model is actually variable
dimensional, this is induced through the Dirichlet process prior, and does
not involve complexities as in RJMCMC. Our modeling approach and the
associated advantages remain valid for mixtures of any standard parametric
density of the form f(y | θ) (either discrete or continuous, univariate or
multivariate), not just for Gaussian mixtures. Although in this paper we
confine ourselves to situations where G0 and G0(θ) and f(· | θ) are conju-
gate, even for non-conjugate situations a Gibbs sampling-based methodology
is available; see Mukhopadhyay and Bhattacharya (2012).
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Table 1: Time taken to complete 20,000 MCMC iterations using SB’s model
and the number of iterations completed using EW’s model at the same time.

Sample size Time for 20,000 #iterations in the
iterations with SB same time with MEW

1,000 2 mins 48 secs 2371
5,000 13 mins 41 secs 29
10,000 27 mins 28 secs 6
20,000 54 mins 3

1.2. EW is a special case of SB. To show that the model of SB gen-
eralizes that of EW, we first represent (1.1) using allocation variables Z =
(z1, . . . , zn)′, as follows:

For i = 1, . . . , n and j = 1, . . . , M ,

[yi | zi = j,ΘM ] =
|Λj |
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[zi = j] =
1
M

When M = n, then conditional on zi = i for i = 1, . . . , M(= n), the above
reduces to EW’s model, showing that the latter is a special case of SB’s
model.

1.3. Demonstration of computational speed in large data sets. Table 1
summarizes the computational time of SB’s model to yield 20,000 Gibbs
sampling simulations with relatively large sample sizes where d = 2 and
M = 30 in each case. The table also shows the number of iterations of an
efficient Gibbs sampling algorithm developed by Müller, Erkanli and West
(1996) (henceforth, MEW), corresponding to EW’s model, completed in the
same computational time. All computations have been carried out in a work
station of 3 GB RAM and consisting of two processors, each running at
3 GHz. The table shows that for large data sets, although SB’s approach
remains computationally cheap, that of EW tends to be infeasible.

Using the multivariate mixture model (1.1), we develop a semi-parametric
Bayesian curve-fitting procedure and demonstrate that the approach is par-
ticularly suitable for application in massive data, where the methods based
on EW and RG may be either infeasible or inefficient. Simulation studies
indicate that even in the case of non-massive data our method performs
satisfactorily and can outperform the EW-based curve-fitting idea of MEW.
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We also adopt the ideas presented in Mukhopadhyay et al. (2011) (hence-
forth, MBD) for analysing the posterior distribution of clusterings associ-
ated with the Bayesian mixture model of SB. Using the model of EW, MBD
showed how to obtain a posteriori “central clustering” and posterior credible
regions of clusterings of any desired level. We demonstrate theoretical and
computational advantages associated with the usage of the clustering ideas
of MBD in conjunction with SB’s model. We also demonstrate with simula-
tions that for large data sets, the true clustering of the data is more likely
to fall within the Markov chain Monte Carlo (MCMC)-based 95% credible
regions of the posterior distribution of clusterings associated with the model
of SB, compared to those associated with EW. These are all new findings
and are not discussed in MBD.

The rest of the paper is structured as follows. In Section 2 we pro-
vide a brief overview of Bayesian mixture models with unknown number of
components. Important features of our model are described in Section 3
and computational advantages of our model and methodology over existing
ideas are considered in Section 4. Our Bayesian semi-parametric regression
method is introduced in Section 5. In Section 6 we illustrate with simula-
tion studies the advantages of our semi-parametric regression over MEW.
Our clustering ideas based on MBD are introduced in Section 7; advantages
of the ideas used in conjunction with SB’s model are illustrated with sim-
ulation studies in Section 8. In Section 9 we consider application of our
methods to a massive, real cosmological data. Conclusions and future work
are enlisted in Section 10.

2 Overview of mixture models
Mixture models are noted for their flexibility. Indeed, as noted by Dalal

and Hall (1983) and Diaconis and Ylvisaker (1985), mixture models com-
posed of standard densities can, in principle, approximate any underlying
distribution. For more on mixture models, see McLachlan and Basford
(1988), Titterington, Smith and Makov (1985). However, a technical prob-
lem associated with classical analysis of mixture models is associated with
the number of mixture components included in the model. Various methods
(for a recent review, see Lee et al., 2008) may be used to obtain a point
estimate of the unknown number of components. In the Bayesian para-
digm, a prior distribution of k is specified, either explicitly or implicitly.
The methodology of RG explicitly specifies a prior on k and uses RJMCMC
to obtain samples from the resulting variable-dimensional posterior, while
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that of EW implicitly induces a prior on k by assuming a Dirichlet process
mixture, thus avoiding variable-dimensionality.

The RJMCMC methodology of RG is complicated and is error prone.
But of more concern is its much sensitivity to the “move types”, the trans-
formations and the proposal distributions selected, often resulting in ineffi-
ciency. Diagnosis of convergence of RJMCMC is another serious problem.
These problems are many times aggravated for multivariate observations;
for instance, the proposal distributions suitable for univariate cases will, in
general, yield poor acceptance rates in multivariate situations. An instance
in which RJMCMC may be inefficient in the extreme is the so-called “large
p small n” paradigm.

The model of EW is not variable dimensional and straightforward Gibbs
sampling algorithms have been developed by Bush and MacEachern (1996),
MacEachern (1994), MEW. However, as we argue in Section 4.3 (see also
MBD for more thorough discussion), these algorithms are ineffective when
the data size is massive. More recently, methods based on the Metropolis-
Hastings sampler, devised by Jain and Neal (2004, 2007), although demon-
strated improved mixing in certain examples, are slower than Gibbs sampling
with respect to computation time per iteration (this is discussed in Section
4.3.3 of the former and in Section 7.1.3 of the latter paper). Hence these are
computationally infeasible in massive data.

Moreover, the enormous clustering space of EW’s model also impedes
reliable MCMC-based analysis of massive data. More transparently, in the
model of EW, the number of possible clusterings of the data increases ex-
ponentially with data size in accordance with the Bell number (Bell, 1934);
see Section 4.2 So, in massive data, even computationally very fast MCMC
algorithms with good convergence properties are unlikely to adequately ex-
plore the entire space of clusterings in finite time. Given manifold increase
in computational complexity of the existing MCMC algorithms for EW’s
model, the problem of adequate exploration of EW’s clustering space is only
many times aggravated.

In an effort to reduce the computation time associated with the model
of EW in massive data, Wang and Dunson (2011) have proposed the se-
quential updating and greedy search (SUGS) algorithm which proceeds by
cycling through the data points, sequentially allocating them to the clus-
ter that maximizes the conditional posterior allocation probability. The
conditional distribution of the unknown parameter, which admits a closed
form expression given the maximizing cluster, is then updated. A complete
sweep of the algorithm yields the conditional posterior distribution of all
the parameters, given the seuqentially optimal clusterings. The advantage



Bayesian semi-parametric curve-fitting and clustering 83

of the method of Wang and Dunson (2011) is that it is quite fast, since
it does not rely upon MCMC methods. But it is not clear if the correct
joint or marginal posterior distributions of the parameters or clusterings
could be obtained or if the algorithm yields a global maximum a posteriori
(MAP) estimate. Also, the algorithm of Wang and Dunson (2011) does not
seem to assist in obtaining and studying the probability distribution of the
clusterings.

We attempt to avoid most of the difficulties noted above by adopting
the modeling idea of SB in which the increase in the number of cluster-
ings is much slower compared to the model of EW, and the computation
is much faster than all the MCMC methods associated with RG and EW.
For instance, in our implementation, generation of 20,000 MCMC samples
from SB’s model took about 4 hours for the cosmology data. Recalling
that efficient implementation of EW’s model is infeasible and that the RJM-
CMC approach of RG suffers from the curse of dimensionality and other
convergence-related problems, we recommend SB’s model in massive data
situations.

3 Features of SB’s model
3.1. Two-stage clustering of the observations and the empty compo-

nents. It is useful to provide the intuition behind the allocation variables Z
and the parameters ΘM . Given M distinct values of the parameter vector
ΘM , the allocation vector Z clusters the n-dimensional observation vector
Y into M∗ (≤ M) clusters of the form Uj = {i : zi = j}; j = 1, . . . , M∗.
Empty clusters result when M∗ < M (which may occur when no observa-
tion is allocated to some, perhaps many, components); let these clusters be
denoted by ∅j ; j = M∗ + 1, . . . , M . We denote by {U∗

1 , . . . , U∗
M} the clus-

tering {U1, . . . , UM∗ , ∅M∗+1, . . . , ∅M}. This can be thought of as the initial
clustering, since the Dirichlet process prior acts upon {U∗

1 , . . . , U∗
M} to yield

k (≤ M) distinct parameter values θ∗
1, . . . ,θ

∗
k out of the possible M distinct

values to yield the final clustering, say, {V1, . . . , Vk}, of {U∗
1 , . . . , U∗

M}, with
V� = ∪j:cj=�U

∗
j . Here cj = � if and only if θj = θ∗

� ; j, � = 1, . . . , M . Thus, the
clusters V� are associated with the configuration vector C = (c1, . . . , cM )′.
Clearly, the clustering {V1, . . . , Vk} is coarser than {U∗

1 , . . . , U∗
M} in the sense

that the former consists of lesser number of blocks with more elements in
each block. Note that even the final clustering {V1, . . . , Vk} may consist of
empty clusters, although some or all of the empty clusters in the initial clus-
tering may get merged with the non-empty clusters. Hence, our proposal
yields a two-stage clustering of the data and the empty components.
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3.2. Learning about population number of clusters. The approach of
EW does not allow for empty components. From this point of view, the
model of SB is again more general than that of EW, and is more akin to
the approach of RG in that it allows for empty components. Specifically,
the main difference between the model of EW and that of RG and SB is
that the former can capture only the sample number of clusters, while the
latter captures both sample and population number of clusters. The empty
components indicate population clusters from which data points did not, but
could have arisen. Ignoring the empty clusters results in sample number of
clusters while counting them along with non-empy clusters yield the popu-
lation number of clusters. Although expected, it is important to note that
the data seldom contains information about population number of clusters
(McCullagh and Yang, 2008) and strong prior information is necessary to
attempt to learn about it. This is possible in principle with SB’s model by
choosing M >> n and choosing α large, thus probabilistically increasing
the number of empty components. Such learning is also possible in RG’s
model by assigning large prior probabilities to large values of the number
of components. But since occurrence of empty clusters is not possible in
EW’s model irrespective of any prior on α, it is impossible to learn about
population number of clusters with EW’s model, unless the sample and the
population number of clusters are same. This drawback also manifests itself
in the failure of EW’s model to adequately learn about the true (population)
regression curve associated with the mixture model, when the data size is
small. We discuss these issues with simulation studies in Section 6.2.

3.3. Choice of M . At first glance it seems that rather than fixing the
bound M it is more appropriate to put a prior on M , of the form πM (i) =
P (M = i) for i = 1, . . . , L, where L is either finite or tends to infinity.
Let Mi denote the model corresponding to M = i. Also, let Ci denote
the space of all clusterings supported by Mi. Then, for finite L, C1 ⊂
C2 ⊂ · · · ⊂ CL. Hence, 1 = P

(
∪L

i=1Ci

)
= P (CL). This shows that all

information is contained in ML, and that it is unnecessary to assign positive
probabilities to Mi; i < L. From the computational perspective, this prior
would force burdensome MCMC-based exploration of Ci for each i = 1, . . . , L
even though it is sufficient to explore only CL. If we let L → ∞, then by
the monotonicity theorem of probability, limL→∞ P (CL) = P (limL→∞ CL) =
P (∪∞

i=1Ci) = 1. That is, for any ε > 0, there exists L0(ε) < ∞ such that
P (CL) ≥ 1−ε, for L ≥ L0(ε). The above arguments motivate an appropriate,
finite, and deterministic choice of M . For the L → ∞ case M can be likened
to L0(ε) for some adequate ε. Note that if, instead of an upper bound on the
number of components, had M been the exact number of components, then
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putting a prior on M would make sense. This is actually the principle used
by the RJMCMC appoach of RG. Indeed, in that case, assuming non-empty
components, Ci ∩ Cj = ∅ for any i �= j, and the relations P (CL) = 1 or
limL→∞ P (CL) = 1 do not hold, showing that it is essential to explore each
model separately. But it is important to observe in this connection that in
general the assumption of non-empty components does not hold for RG’s
set-up, implying Ci ⊂ Cj for i < j. This suggests that the methodology of
RG incurs inefficiency from the viewpoint of clustering the data. However,
if Ci denotes clustering space of Mi with respect to the parameters instead
of the data, then in RG’s approach, each Ci is a singleton, and Ci∩Cj = ∅ for
i �= j. Hence, even prior on the exact number of components is completely
sensible only from the viewpoint of clustering the parameters instead of the
data.

The above arguments pertaining to our Dirichlet process-based mixture
model show that fixed and finite values of M are most logical and computa-
tionally efficient, and only such values of M will be considered for the rest of
this paper. Reasonable choice of M may be the prior guess of the scientific
expert about the maximum number of clusters the data may possibly have.
For instance, in astronomical applications the investigating astronomer may
have reasons, theoretical or experimental, to believe that the number of clus-
ters would not exceed a certain limit. Similarly, an ecologist may provide
prior information about the maximum number of clusters of the different
types of vegetation in a forest. However, in absence of any such information,
one might proceed on a trial and error basis: if the posterior gives non-
negligible mass to the fixed value of M it should be increased further until
negligible posterior mass is achieved at M . One may also allow M to be a
function of the data size n, but such that M/n → 0 as n → ∞. However,
when the data size n is small and there are reasons to believe that such small
data set is inadequate for inference about population characteristics, such
as the population number of clusters, true regression function, true density,
etc., then one must choose M >> n, as already discussed in Sections 5 and
3.1.

4 Computational advantages
Given a conjugate prior structure a fast and easily implementable Gibbs

sampling algorithm is described in Sections 1 and 2 of the supplementary
document. In Section 3 of the supplementary document we also provide
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an alternative Gibbs sampling algorithm that takes advantage of the con-
figuration vector C. For reasons of efficiency, throughout we use the Gibbs
sampling algorithm based upon the configuration vector.

4.1. Computational gain in updating empty components. Although the
approach of SB as well as RJMCMC allow for empty components, the com-
putation associated with empty components is more naturally and efficiently
handled with SB’s approach. If the j-th component is an empty component,
then the fact nj = # {i : zi = j} = 0, occurs naturally in SB’s model, with
the corresponding full conditional distribution of θj boiling down to the full
conditional distribution associated with the Dirichlet process prior. That is,
no special care is necessary for validation of this step. But this situation
requires an extra, careful, and complicated step in the method of RG.

4.2. Computational efficiency in large data sets. To compare the num-
ber of clusterings in the models of EW and SB, we first independently de-
rive the number of ways of partitioning n items into k non-empty clusters.
Using the inclusion-exclusion principle, we obtain the number of onto (sur-
jective) mappings from the set {1, 2, . . . , n} to {1, 2, . . . , k} as S∗(n, k) =∑k

i=0

(
k
i

)
(−1)i (k − i)n. Since clustering is label-invariant S∗(n, k) is actu-

ally k! times the desired result. Hence, the required number of partitioning
is S(n, k) = S∗(n, k)/k!, which, incidentally, is Stirling number of the second
kind (see, for example, Abramowitz and Stegun, 1972).

With the above Stirling number it can be easily seen that the number
of clusterings in EW’s model with data size n, is the Bell number, B(n) =∑n

k=0 S(n, k). Since B(n) grows exponentially with n (see Section 4 of the
supplementary document), the number of clusterings in EW’s model grows
exponentially fast with data size. As a result, the clustering space can not
be adequately explored using a finite number of MCMC simulations.

In SB’s approach, a moderate value of M ensures that the number of
possible clusterings of the data, given by C(n, M) =

∑M
k=0 S(n, k), is very

small compared to EW’s case. As an illustration, let us consider the problem
of obtaining the number of all possible clusterings of 10 items. Then the
Bell number is given by B(10) =

∑10
k=0 S(10, k) = 1, 15, 975. In contrast,

with, say, M = 3, the number of clusterings in SB’s approach is C(10, 3) =∑3
k=0 S(10, k) = 9, 842. Hence, an MCMC sample of size much more than

1, 15, 975 is necessary to adequately explore the clustering space in EW’s
case, while, in SB’s approach, a much smaller sample size will be adequate.
Indeed, as we show in Section 4 of the supplementary document, the ratio
B(n)/C(n, M) → ∞ as n → ∞. As a result, the Gibbs sampling algorithm
can more efficiently explore the clustering space of SB’s model compared
to the algorithms designed for exploration of EW’s model. In Section 8 we
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demonstrate with simulation studies that because of the issues discussed
above, Gibbs sampling in EW’s model will generally fail to locate the true
clustering of the data, whereas, in SB’s model it will generally capture the
true clustering successfully.

4.3. Discussion of computational complexity in large data sets. One
might wonder whether the computational complexity of our algorithm given
in Section 3 of the supplementary document is manageable. We assert that
this is indeed the case, thanks to at most moderately large value of M . In
our case, M is the number of possible values of each allocation variable,
the number of configuration indicators and the maximum number of possi-
ble values each configuration indicator can take. In contrast, each of the n
configuration indicators for EW’s model can take n possible values, with n
extremely large.

Since the expected number of distinct parameters is approximately α log
(1 + n/α) (Antoniak, 1974), decreasing α will decrease the expected number
of distinct parameters to be simulated, thus decreasing the computational
complexity of simulation of the distinct components and hence that of each
component of the configuration vector. However, in EW’s approach even
if α is chosen small enough so that the expected number of components is
smaller than M and match that of SB, the overall computational complexity
of SB’s model is still negligible compared to that of EW’s model. This is
because, most importantly, only M -many configuration indicators need to
be simulated in SB’s model, while in EW’s model, this is n-many, which
tends to infinity as the data size n goes to infinity. Also, simulation of the
entire allocation vector Z in SB’s model has only negligible computational
complexity; see MBD for details.

Further details provided in MBD show that marginalizing out the para-
meters as in MacEachern (1994) increases computational burden manifold
due to increased computational complexity in each of the full conditionals,
and that the non-marginalized version of SB’s model utilizing the configura-
tion vector is far more efficient computationally than any of the competing
algorithms associated with EW’s model.

5 Bayesian semi-parametric regression
In simplified notation, we write (1.1) as

[y | ΘM ] =
1
M

M∑

j=1

Nd

(
y : μj ,Λ

−1
j

)
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It follows that the conditional distribution of y1 given y−1 = (y2, . . . , yd)′ is
given by

[y1 | ΘM , y−1] ∝
1
M

M∑

j=1

Nd−1

(
y−1 : μ−1j ,Λ

−1
−1j

)
×N

(
y1 : μ

(j)
1|2,...,d, λ

(j)
1|2,...,d

)

where μ
(j)
1|2,...,d and λ

(j)
1|2,...,d are, respectively, the univariate conditional mean

E(y1 | y−1,ΘM ) and the precision 1/V (y1 | y−1,ΘM ) under the assumption
that y ∼ Nd(μj ,Λ

−1
j ). The (d−1) dimensional parameters μ−1j ,Λ−1j stand

for μj ,Λj but without the first component.
As a result, assuming M∗ distinct components θ∗

1, . . . ,θ
∗
M∗ in ΘM , and

assuming further that each distinct component θ∗
j occurs Mj times, we have,

E[y1 | ΘM , y−1] =
M∗∑

j=1

w(j)(y−1)μ
(j)
1|2,...,d, (5.1)

which is a weighted sum of the component regression functions μ
(j)
1|2,...,d, where

the associated weight w(j)(y−1) is given by

w(j)(y−1) ∝
Mj

M
Nd−1

(
y−1 : μ∗

−1j ,Λ
∗−1
−1j

)
. (5.2)

The proportionality constant in (5.2) is chosen such that
∑M∗

j=1 w(j)(y−1) =
1. Consistency of our mixture model and convergence of the associated
Bayesian curve to the true curve are guaranteed under mild conditions; see
Section 6 of the supplementary document for details.

Note that the regression function estimator developed above is struc-
turally quite different from that given by MEW. One clear advantage of our
curve over that of MEW is that for massive data the curve-fitting idea of
MEW can not even be implemented due to extreme computational burden,
while our curve (5.1) can be easily fitted to any data set, massive or not.
Moreover, it is demonstrated in Section 6.2 that even in non-massive data,
it is possible for our Bayesian curve to outperform that of MEW. The reason
for better performance is connected with the difference between the sample
and the population regression curve. Note that (5.1) is a weighted average
of at most M linear components of the form μ

(j)
1|2,...,d, while the correspond-

ing regression estimator of MEW consists of at most n linear components.
Thus, for small to moderately large data set the estimator of MEW may
be inadequate for approximating the true (population) regression function,
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while M can be chosen large enough (in fact, one may choose M >> n and
a prior of α that supports large number of distinct components) in (5.1) to
ensure adequate approximation with SB’s model. We demonstrate this with
a simulation study in Section 6.2.

Assuming that a sample
{
Θ(1)

M , . . . ,Θ(N)
M

}
is available from the posterior

distribution of ΘM (typically by MCMC), the marginalized curve E(y1 |
y−1) is estimated as

E(y1 | y−1) = E(E(y1 | ΘM , y−1)) ≈
1
N

N∑

t=1

E(y1 | Θ(t)
M , y−1)

Pointwise variability of the curve is measured by

V ar(y1 | y−1) = V ar(E(y1 | ΘM , y−1)) + E(V ar(y1 | ΘM , y−1))

The first component of the above variance is estimated by the sample vari-
ance of {E(y1 | Θ(t)

M , y−1); t = 1, . . . , N }, and the second component is
estimated by the sample mean of {V ar(y1 | Θ(t)

M , y−1); t = 1, . . . , N }. Ap-
proximate 100(1 − τ)% pointwise credible intervals of the curve are given
by E(y1 | y−1) ± zτ/2

√
V ar(y1 | y−1), where zτ is the 100τ -th quantile of a

standard normal distribution.
Hence, once the MCMC realizations

{
Θ(1)

M , . . . ,Θ(N)
M

}
are available, it

is an easy task to obtain a Bayesian regression curve with all summaries
readily available.

6 Simulation studies on semi-parametric regression
6.1. Illustration of the performance of our curve-fitting procedure. We

assume a bivariate normal distribution of two random variables (y, x) (that
is, d = 2), where the true regression function of y on x is μ(x) = x + sinx,
a highly non-linear curve. We assume that x ∼ Uniform(0, 1) and given x,
y ∼ N(μ(x), 0.72). Pretending that the true curve is unknown, and that all
we have is a sample of 1000 observations (xi, yi); i = 1, . . . , 1000, we demon-
strate that our curve-fitting idea can accurately estimate the (unknown)
true curve. We obtain the data by actually simulating from the bivariate
distribution of (x, y) ∼ Uniform(x : 0, 1) × N(y : μ(x), 0.72).

Some of the prior parameters for our model to be fitted in this example
are chosen such that fast convergence to the target posterior is ensured. For
example, selecting μ0 to be the sample mean vector, and S to be the sample
dispersion matrix ensured good mixing properties of our Gibbs sampler.
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Table 2: Two-way table showing the deviations of the fitted curve from the
true curve.

Value of α Deviation
0.5 1.004
1.0 0.896
5.0 0.597
10.0 0.4898
15.0 0.4154
25.0 0.355

We fixed M = 30. Other choices (and justifications thereof) are motivated
by those of EW, RG, and SB. However, it is important to select the prior
parameters of α carefully, since this can significantly affect the probability
distribution of the number of components, and hence the fit of the curve. We
postulate α ∼ Gamma(aα, bα) with a mode to be determined by a procedure
described below. The parameters aα and bα will be chosen to yield the pre-
determined mode and a variance large enough to quantify our vagueness
about the prior.

To determine the mode of the prior of α, we fit the Bayesian curve
with many fixed values of α, and compute the maximum absolute difference
between the true curve and the fitted curve, given by max1≤i≤1000 |Ê(y |
x∗

i ) − μ(x∗
i )|. Here x∗

i , i = 1, . . . , 1000 are equidistant points in the interval
(0, 1). We choose that value of α as the prior mode for which the deviation
is less than 0.4 and the fitted curve contains most of the features of the true
curve. The threshold of the deviation (here 0.4) is chosen somewhat large
to prevent overfitting of the model. Table 2 displays the maximum absolute
deviations corresponding to a fixed value of α. To obtain each row of Table
2 we ran our Gibbs sampler for 20,000 iterations, discarding the first 5,000
iterations as burn-in. From the table we chose the value 25 as the mode
of the prior distribution of α. Equating the mode of Gamma(aα, bα) to 25
gives (aα − 1)/bα = 25, so that aα = 25bα + 1. Now note that the variance
of Gamma(aα, bα) is aα/b2

α = (25/bα) + 1/b2
α. Fixing bα = 0.1 yields a

considerably large variance of 350. Hence, we fixed bα = 0.1, which implies
aα = 25bα + 1 = 3.5.

Figure 1 shows that the true regression function (black-coloured) is esti-
mated quite accurately by the fitted Bayesian semi-parametric curve
(red-coloured). Moreover, the pointwise approximate 95% credible
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Figure 1: Bayesian curve fitting: the fitted curve (continuous line at the
center) and the true curve (broken line at the center) associated with the
simulation study. The thick curves denote pointwise approximately 95%
credible intervals.

intervals (blue-coloured) show that the entire true curve lies within the cred-
ible limits. This is very encouraging, given that the true regression is highly
non-linear.

6.2. Comparison with the curve-fitting approach of MEW. We simu-
lated 500 data sets, each set consisting of 15 observations (xi, yi); i =
1, . . . , 15 drawn from the distribution Uniform(x : 0, 1)×N(y : μ(x), 0.72),
with μ(x) = x + sin(x), as before. We fixed α = 1000 for both the meth-
ods. This relatively high value of α is expected to compensate for the lack of
enough information in the data set. The other hyperparameters are fixed, for
both the approaches. Specifically, μ0=(7.33, 6.29), s = 12, the matrix S has
entries S11 = 5.34, S12 = S21 = 5.14, S22 = 6.16, ψ = 3.0. We fixed M = 50
for our approach. For comparison of the methods, we used the quadra-
ture versions of the L1, L2 metric, given by 1/15

∑15
i=1

∣∣∣Ê(y | x∗
i ) − μ(x∗

i )
∣∣∣,

{
1/15

∑15
i=1

(
Ê(y | x∗

i ) − μ(x∗
i )

)}1/2
, and also the maximum absolute devi-

ation max1≤i≤15

∣∣∣Ê(y | x∗
i ) − μ(x∗

i )
∣∣∣. As before, {x∗

i } are equidistant points
in the interval (0, 1).
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We found that in 80%, 84% and 82% cases the quadrature versions of L1,
L2 and the maximum absolute deviations are smaller for our fitted curve.
In 94% cases the mean length of the 95% credible intervals and in 83% of
the cases the maximum length of the 95% credible intervals corresponding
to our curve turned out to be less than those of the curve of MEW. For both
the approaches, the true values fell within the 95% credible regions 100%
times.

The above results strongly suggest that our curve significantly outper-
forms that of MEW. This is not unexpected, since the curve of MEW can
accommodate at most 15 linear components in this case. This problem is
avoided in our approach by setting M = 50. Larger values of M did not
indicate further significant improvement, indicating that the choice is appro-
priate. Thus, this example demonstrates that in data sets consisting of small
to moderate number of observations, our approach is expected to outperform
the approach of MEW. Fundamentally, the comparatively poor performance
of MEW is due to its inability in learning about the population number of
clusters, as discussed in Section 3. Here the sample number of clusters is
inadequate in providing information about the population regression curve
associated with population number of clusters. The improved performance
of our model can be attributed to learn about the population number of
clusters and the population regression curve, through using available prior
information of α. This example also indicates that our approach is expected
to be a suitable candidate for handling the “large p small n” problem, where
the data size is small and each datum is high-dimensional.

7 Bayesian posterior distribution of clustering
Scientific cluster analyses usually require summaries of clusterings (that

is, how the data are partitioned into different clusters), rather than just
the number of clusters in the data. It is also important to note that two
different clusterings of the same data may consist of the same number of
clusters. Thus, a methodology is needed which provides not only the pos-
terior distribution of the number of clusters, but that of clustering itself,
using which summaries of clusterings may be obained. This problem is
much more difficult as compared to obtaining the posterior summary of a
regular parameter. For instance, it is not proper to take means of cluster-
ings produced; assuming non-empty components, although each iteration of
the Gibbs sampler may yield less than M clusters, the mean clustering may
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still consist of M clusters. Moreover the clusterings are permutation invari-
ant. That is, two clusterings may be same except for a permutation of the
components.

Based on product partition models, Dahl (2009) proposed an algorithm to
obtain the maximum a posteriori (MAP) clustering (see also Jensen and Liu,
2008, Quintana and Iglesias, 2003). But we are not aware of any published
work where attempt has been made to obtain appropriate credible regions of
clusterings. Here we use a methodology introduced by MBD to tackle such
difficulties, who rely on an appropriately defined metric to compute distances
between any two clusterings of a given data set. The metric was used to
compute the posterior probability distribution of clusterings, to provide a
“central” clustering and the associated credible regions. In this paper, we
apply their methodology to the clusterings associated with SB’s Bayesian
mixture model.

7.1. Definition of central clustering. Guided by the definition of mode
in the case of parametric distributions, given a suitable metric d to compute
the distance between any two clusterings, MBD define a clustering C∗ as
“central” if, for a given small ε > 0,

P ({C : d(C∗, C) < ε}) = sup
C′

P
({

C : d(C ′, C) < ε
})

(7.1)

Clearly, ε → 0 in (7.1) yields C∗ as the mode of the distribution of clus-
tering. Thus for a given, sufficiently small ε > 0, the probability of an
ε-neighbourhood of an arbitrary clustering C is highest when C = C∗, the
central clustering. If the distribution of clustering is unimodal, then the
central clustering remains unique for all ε > 0. Otherwise, depending upon
ε there will be different local modes of clustering, from among which the
global mode is to be determined.

7.2. Empirical Definition of Central Clustering. We define that cluster-
ing C(j) as “approximately central” which, for a given small ε > 0, satisfies
the following equation

C(j) = arg max
1≤i≤N

1
N

#
{

C(k); 1 ≤ k ≤ N : d(C(i), C(k)) < ε
}

The central clustering C(j) is easily computable, given ε > 0 and a suitable
metric d. Also, by the ergodic theorem, as N → ∞ the empirical central
clustering C(j) converges almost surely to the exact central clustering C∗.
Given a central clustering C(j) one can then obtain, say, an approximate
95% credible region as the set

{
C(k); 1 ≤ k ≤ N : d(C(k), C(j)) < ε∗

}
, where
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ε∗ is such that

1
N

#
{

C(k); 1 ≤ k ≤ N : d(C(k), C(j)) < ε∗
}
≈ 0.95 (7.2)

In (7.2) ε∗ must be chosen by trial and error. An appropriate (say, 95%)
highest posterior density credible region may be formed by considering the
union of sets of clusterings which have the maximum possible probabilities,
which add up to the desired level (say, 0.95).

7.3. Choice of the metric d. One way to compare two different clus-
terings is to find a measure of divergence between them after permuting
the arbitrary indices to make the two clusterings as close to each other as
possible. Ghosh, Dihidar and Samanta (2009) define the distance d(I, II)
between clusterings I and II as follows.

d(I, II) = min[n00 − (n1j1 + n2j2 + . . . + nkjk
)]/n00, (7.3)

where the minimization is over all permutations (j1, j2, . . . , jk) of (1, 2, . . . , k).
Here k denotes the number of clusters, nij is the number of units belonging
to the i-th cluster of I and j-th cluster of II, and n00 =

∑∑
nij is the total

number of units. For justification of the above idea, and for the proof that
(7.3) satisfies the properties of a metric, see Ghosh et al. (2009).

Since (7.3) requires minimization over all possible clusterings, for large
number of clusters computation of (7.3) is burdensome in the extreme. To
overcome this problem MBD propose an approximation to (7.3) as

d̂(I, II) = max
{

d̃(I, II), d̃(II, I)
}

where

d̃(I, II) =

{
n00 −

k∑

i=1

max
1≤j≤k

nij

}/
n00

= 1 −
∑k

i=1 max1≤j≤k nij

n00

The new quantity d̂(I, II) can be computed very cheaply. Quite importantly,
MBD demonstrate that d̂ provides very accurate approximations to the orig-
inal metric d. It has been conjectured in MBD, for good reasons, that d̂ is a
metric. As a result, for our analysis we will always use d̂ instead of d.
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8 Simulation studies on clustering
It has been argued in Section 4.2 that a finite number of Gibbs sampling

realizations from EW’s model will generally not be able to adequately explore
the clustering space. This problem will often manifest itself in not being able
to locate the true clustering of the data, although it belongs to the clustering
space. On the other hand, thanks to the much smaller clustering space, the
true clustering can be easy to capture in SB’s model. These we demonstrate
with a simulation study, assuming that the data is of moderate size (n = 50
and d = 2).

We generate 100 data sets, each corresponding to n = 50 and d = 2,
from the bi-variate mixture model f(y) =

∑5
j=1 πjN(y : μj ,Σj). The

mixing proportions are given by π1 = 0.12, π2 = 0.32, π3 = 0.05, π4 =
0.25, π5 = 0.26, the mean vectors are μ1 = (0.2, 19.6)′, μ2 = (0.52, 7.6)′,
μ3 = (1.2, 12.6)′, μ4 = (0.7, 22.6)′, μ5 = (0.4, 10.6), and the dispersion

matrices are given by Σ1 =
(

0.43 0.12
0.12 0.25

)
, Σ2 =

(
0.23 0.22
0.22 0.15

)
, Σ3 =

(
0.03 0.42
0.42 0.35

)
, Σ4 =

(
0.13 0.02
0.02 0.05

)
, and Σ5 =

(
0.33 0.72
0.72 0.45

)
. Thus,

for each data set, there is a true clustering of the data, which is known in
this simulation experiment.

We compute Gibbs sampling-based 95% credible regions of clusterings
corresponding to the models of EW and SB, and note the number of times
the true clusterings fall within their respective 95% credible regions. For
specifying the prior distributions, we simulate a data set of size 50 from the
mixture model f(y), independently of the 100 data sets. Then we set μ0

as the sample mean and S as the sample dispersion matrix corresponding
to this independent data set. We set M = 10 for SB’s model. For selecting
an appropriate prior for α we first fit the new, independent data set using
both SB and EW for different fixed values of α, and obtain the central
clusterings. That value of α, which minimizes the distance between the
central and the true clustering, is considered as the prior mode. In order
to use the same prior distribution in both EW and SB, we take average of
the prior modes of EW and SB. In this example, however, both the prior
modes turned out to be 6. Using the method described in Section 6.1 we
then set the prior of α as α ∼ Gamma(1.6, 0.1) in both EW and SB. To
each of the 100 data sets the two models are fitted using 20,000 iterations
of the Gibbs sampler (the first 5,000 were discarded as burn-in). For SB’s
model the true clusterings fell within the respective 95% credible regions in
all 100% cases. On the other hand, for EW’s model, in only 11% cases the
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Table 3: Table showing decrease of radius of 95% interval with increase of
sample size.

Data Size Radius of 95% Credible Region
50 0.780
100 0.740
500 0.730
1000 0.730
5000 0.725
10000 0.720
100000 0.680

true clusterings fell within the respective 95% credible regions, vindicating
the concern expressed in Section 4.2. To explore this further, we conducted
another simulation experiment with n = 15, d = 2. In this case, since the
clustering space is much reduced for EW’s model, in about 82% cases the
true clusterings fell within the respective 95% credible regions. As before,
however, for SB’s model, in all 100% cases the true clusterings fell within the
95% credible regions. In all the above-mentioned experiments on clustering,
we used ε = 0.1 to determine the central clusterings; however, for ε > 0.1 the
results remained almost exactly the same as those with ε = 0.1. For ε < 0.1
too few clusterings fell in the neighborhoods of the clusterings obtained via
Gibbs sampling, making the task of reliably obtaining the central clusterings
very difficult.

8.1. Consistency of posterior distribution of clusterings. An interesting
question that arises is whether or not consistency of the posterior distribution
of clusterings is expected to be achieved at the true clustering. But the fact
that even the true clustering of the data changes with the data size shows
that the above question is perhaps not well-posed. Also, the clustering space
increases with the data size. However, using a simulation experiment we
attempted to gain some insight regarding this question, at least concerning
SB’s model. We remark here that since EW’s model often fails to capture the
true clusterings, even for moderately-sized data sets using MCMC samples, it
is somewhat doubtful if practical investigation of consistency would prove to
be useful. Table 3 shows the radii of the 95% credible regions of the posterior
distributions of clusterings in SB’s model for data sizes 50, 100, 500, 1000,
5000, 10,000 and 100,000. The radii are decreasing with increasing data
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sizes, although the rate of decrease is very slow. The true clusterings fell
within the 95% credible regions for each of the 7 (increasing) data sizes.

9 Application to cosmological data
We now illustrate our methodologies on a massive real data set obtained

from Sloan Digital Sky Survey (SDSS) catalogue. The bivariate data con-
sisting of 96,307 observations on logarithm of redshift (z) and apparent
magnitude (m) for quasars (quasi-stellar objects) has been collected from
SDSS-2007 catalogue. We are interested in studying the nature of the re-
lationship between m and log(z) and to determine the nature of clustering
of the bivariate data set. The data did not reveal any clear-cut paramet-
ric relationship between the two variables of interest. Exploratory analyses
clearly ruled out the (bivariate) normality assumption for the data. Indeed,
our quantile-quantile plots of each of the two variables showed that the mar-
ginal distributions of both the variables are far from univariate normal. The
flexibility inherent in our approach set out in this paper and the associated
computational simplicity and efficiency suggests application of our methods
to this data set.

We proceed to fit our model to the SDSS data set by fixing M = 30. As in
Section 6 we choose μ0 and S as the sample mean and the sample dispersion
matrix respectively; these choices ensured, as before, fast convergence of our
Gibbs sampler. The other hyperparameters are chosen in the same way as
in SB. The massive size of the data set ensures that the choices are quite
robust. However, the choice of the prior distribution of α is important, and
requires discussion.

9.1. Determination of the prior of α. In this real data situation, unfor-
tunately, the true curve is unknown. Hence, we can not use exactly the same
procedure as in the simulation study to determine the prior of α. Here the
concept of mixture models offers an interesting method for determination of
the prior of α, as detailed below. It is well-known that as the number of
components in a finite mixture increases, closer is the approximation to the
true curve. The price paid is the loss of parsimony of the model. We can
forsake parsimony only for determining the prior of α, not for model-fitting.
So, for our purpose, we first fit a finite mixture model to the cosmologi-
cal data with a fixed (large) number of components. Since M = 30 was
fixed as the maximum number of components in our Dirichlet process-based
model, we use a mixture model with 30 fixed number of components. This
is equivalent to letting α → ∞ in our model. The resulting Gibbs sampler
is straightforwardly implemented.
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Figure 2: Real data analysis: the fitted curve is shown as the continuous line
at the center, the broken line denotes the change point curve, and the point-
wise 95% credible intervals are shown in thick lines. For plotting purpose we
did a thinning of the original data set, plotting one in every 10 data points.

The curve thus obtained can be taken as a close approximation to the
“true” curve. We further increased the value of M to 50 but noted no signifi-
cant deviation of the resuting curve from that corresponding to M = 30. We
then applied the prior determining procedure in the case of α, as described
in Section 6, given the “approximately true” curve as obtained by the above
method. In other words, successively fixing α and noting the maximum ab-
solute deviations of the fitted curves from the “approximately true” curve,
we chose that α for which the maximum absolute deviation fell below 0.4.
This yielded 50 as the prior expectation of α in this real cosmological data
case. Using ideas contained in Section 6 we obtain Gamma(26, 0.5) as the
prior of α.

9.2. Implementation time. Our Gibbs sampling algorithm completed
20,000 iterations in 4 hours 22 secs only in a work station with 3 GB RAM,
and having two processors each with speed 3 GHz. Considering the enormity
of the number of observations, this is an achievement in terms of computa-
tional speed. In contrast, the algorithm of MEW completed only 3 itera-
tions in an 8 hours long run in the same machine, indicating that performing
20,000 iterations with MEW’s algorithm is infeasible.
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Figure 3: Marginal density estimation of log(z): the thick lines represent
the 95% limits of the density, the continuous line at the center stands for
the fitted density and the broken lines represent sample densities.

9.3. Fitted Bayesian cosmological curve and change point analysis. We
discarded the first 5,000 MCMC realizations as burn-in and stored the re-
maining 15,000 for inference. Informal convergence diagnostics indicated
excellent mixing properties of our algorithm. A more formal convergence
diagnostic method suited for semi-parametric mixture models has been pre-
scribed in MBD; the method confirms excellent convergence in this example.
Details are provided in Section 5 of the supplementary document. The fit-
ted curve and the associated pointwise 95% credible intervals are shown in
Figure 2; the green line represents the estimated Bayesian cosmological
curve, and the pointwise 95% credible intervals are shown in black colour.
The difference in the nature of the lines in the same curve occurs due to
variaton in the nature of red shift of the quasars of different ages. The
number of different such quasars is reflected in the number of distinct com-
ponents of the mixture model. The distinct components of the mixture
correspond to distributions of absolute magnitude for different ages of the
quasars.
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Figure 4: Marginal density estimation of m: the thick lines represent the
95% limits of the density, the continuous line represents the fitted density
and broken lines stand for sample densities.

The obtained non-linear curve is linear for the first half (z ≤ −2.0) with
intercept 18.7840 and slope 0.5136 (1.182608 with respect to logarithm with
base 10, which is of interest to astro-physicists). After that, however, non-
linearity is exhibited. But we also note that the form of non-linearity can
be approximated by line segments, indicating presence of change points. A
close look will reveal presence of four change points, but to get a solid basis of
belief, we performed a detailed change point analysis, assuming four change
points. Although a Gibbs sampling algorithm is available on the similar
lines of Carlin, Gelfand and Smith (1992), the algorithm is computationally
expensive because of the massive number of observations. Instead, we resort
to the Metropolis-Hastings algorithm for simulating from the posterior. We
omit details to save space, but remark that we achieved excellent convergence
with our Metropolis-Hastings algorithm. Figure 2 also shows that the curve
obtained by the change point analysis, which is shown in red colour, nicely
approximates our fitted semi-parametric Bayesian curve (the green curve)
at all places except at the extreme lower end of the x-space, where there are
hardly any information about the curve. Moreover, the entire change point
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Table 4: Table showing the variation in the number clusters with change in
the prefixed limit.

Value of prefixed limit Number of clusters after merger
0.05 23
0.1 21
0.3 10
0.5 9
0.65 5
0.7 4
0.9 2
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Figure 5: Central clustering with 29 clusters: different degrees of brightness
in the gray scale indicate different clusters. For plotting purpose we did a
thinning of the original data set, plotting one in every 10 data points.

curve falls within the (pointwise) 95% credible intervals associated with the
semi-parametric Bayesian curve. This is not surprising, since the change
point curve may be looked upon as a special case of our approach, with
one of the linear functions having weight unity and all others having zero
weight.



102 S. Mukhopadhyay, S. Roy and S. Bhattacharya

0 1 2 3 4 5

16
18

20
22

z

m

Figure 6: Merged central clustering with 2 clusters: two different degress
of brightness in the gray scale indicate two different clusters. For plotting
purpose we did a thinning of the original data set, plotting one in every 10
data points.

Apart from the semi-parametric Bayesian curve and the change point
curve, we also fitted the least squares regression line, obtained by assuming
a simple linear regression of log(z) on m. The least squares regression line
falls well within the pointwise 95% credible intervals of our curve. This shows
that the linear regression, although not optimal (in the sense that normality
assumption does not hold for this data set, for example), is not ruled out by
our semi-parametric method.

9.4. Estimation of the densities of the observed data and goodness of
fit check. Note that the marginal densities of y = m and x = log(z) can
be estimated from our mixture model, given the MCMC-based posterior
realizations

{
Θ(t)

M ; t = 1, . . . , N
}

, for any X = x and Y = y, as

f̂X(x) =
1
N

N∑

t=1

[
x | Θ(t)

M

]

=
1
M

1
N

N∑

t=1

M∑

j=1

N
(
x : μ

(t)
1j , 1/λ

(t)
1j

)
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and

f̂Y (y) =
1
N

N∑

t=1

[
y | Θ(t)

M

]

=
1
M

1
N

N∑

t=1

M∑

j=1

N
(
y : μ

(t)
2j , 1/λ

(t)
2j

)

Pointwise 95% credible intervals can be obtained for each of the marginal
densities as in the case of Bayesian curve estimation. These Bayesian density
estimates are useful for model validation purpose. In fact, these density
estimates can be compared with the observed histograms of the individual
variables of the observed data. A high degree of discrepancy between the
observed histogram and the corresponding density estimate will indicate lack
of model fit. Figures 3 and 4 show the observed marginal histograms, the
marginal density estimates, and the associated 95% credible intervals of the
true density. A few sample densities are also shown. The marginal density
estimates fit the histogram very satisfactorily, leaving no reason to doubt the
validity of our mixture model. In fact, the histograms (if smoothed by any
means), the density estimates, and also the sample densities, all lie within
their respective 95% credible intervals, which is very encouraging.

9.5. Application of the clustering ideas to the cosmology data set. On
application of the central clustering ideas, we observe that for different range
of values of ε > 0 we have different central clusterings, indicating multi-
modality of the posterior distribution of clusterings. For 0 < ε < 0.05 the
central clustering is the 351-st clustering after burn-in. For 0.05 < ε < 0.1
it is 5836-th; for 0.1 < ε < 0.3 it is 1077-th; for 0.3 < ε < 0.5 the num-
ber is 47-th clustering after the burn-in period. Since the global mode is
approached by letting ε → 0, we identify the clustering corresponding to
iteration number 351 as the global central clustering. The radius of the 95%
credible region of the global mode is 0.35, which is reasonably low.

The central clustering in our case consists of 29 clusters. This is quite
reasonable, given that there are more than 96,000 observations. Moreover,
we note that although there are 29 clusters, many are effectively the same
cluster, thanks to the small Euclidean distances between them. Driven by the
above observations and discussions, we merge those clusters with Euclidean
distances less than a prefixed limit. Table 4 shows how the number of clusters
change if the prefixed limit is changed.
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The original central clustering consisting of 29 clusters and the merged
central clustering consisting of two components only (which corresponds to
the prefixed limit being 0.9) are shown in Figures 5 and 6 respectively.

10 Conclusions and future work
In this article we have developed a semi-parametric curve-fitting method

based on SB. We have demonstrated theoretically as well as with many sim-
ulation studies and application to a real, massive, cosmological data set, that
this methodology is easily and efficiently implementable, even when the data
set is massively large. In such cases the well-known methods based on EW
become infeasible. The RJMCMC method, although implementable in mas-
sive data situations, can be inefficient, particularly when the dimensionality
of the data is high.

Even for small to moderate data sets, we have demonstrated that our
methods based on SB can outperform the other methods. In particular, our
semi-parametric regression curve can more adequately approximate the un-
derlying true curve by better utilizing the available prior information about
the number of distinct components.

The issues related to clusterings are also interesting. Our clustering
method, based on MBD, shows that even if the data size is moderate, the
true clustering may not be learned well using approaches based on EW, while
our model and methodology based on SB is well-suited for the same purpose.

We are currently investigating the usefuless of our methodologies in han-
dling the “large p small n” problem, and have obtained encouraging prelim-
inary results. In such problems, since the data dimensionality is extremely
large, RJMCMC will be inefficient in the extreme. Also, since the data size
is very small, EW’s approach will be inadequate. We anticipate that the
methodologies we proposed in this paper will be far more efficient than the
methods associated with EW, RG, and the other existing methodologies
specialized to deal with this problem. Our findings will be communicated
elsewhere.
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