COMPARISON OF SOME RATIO-CUM-PRODUCT ESTIMATORS ## By M. P. SINGH ## Indian Statistical Institute SUMMARY. Two estimators using information on two supplementary characters are suggested for estimating the ratio of population means (or totals). Approximate expressions for their bias and mean square error are obtained and compared with those for the usual ratio estimator and the estimators suggested by the author (1965). An empirical study is included for illustration. ### 1. INTRODUCTION Let Y_{ij} be the value of the i-th unit, in the population $U=(U_1,U_2,...,U_i,...,U_N)$ for the j-th character y_i (j=0,1,2,3), of which y_0 and y_1 are the characters under investigation and y_2 and y_3 are the supplementary characters defined over U. Let \bar{y}_j be the usual unbiased estimator of the corresponding population mean \bar{Y}_j , based on a sample of size n. More efficient estimators of \bar{Y}_j , using the usual estimetors of the ratio and product are well known in the literature. In an earlier paper the author (1965) considered estimation of the ratio $R=\bar{Y}_0/\bar{Y}_1$ and the product $P=\bar{Y}_0/\bar{Y}_1$ themselves, the usual estimators of which are respectively $r=\bar{y}_0/\bar{y}_1$ and $p=\bar{y}_0,\bar{y}_1$, and proposed estimators which utilise information on y_2 (or y_3). These estimators for R and P are of the form $$R^{\bullet} = r(\bar{y}_0/\bar{Y}_0)^{\alpha_2}$$ and $P^{\bullet} = p(\bar{y}_0/\bar{Y}_0)^{\beta_2}$... (1) respectively, where α_2 and β_2 are constants to be determined by minimising the mean square error of the corresponding estimators. Thus the optimum values of α_2 and β_2 are respectively given by $$\alpha_0^{\bullet} = (c_1/c_2)\partial_{12} - (c_0/c_2)\partial_{02} \qquad \dots \qquad (1.2)$$ and $$\beta_2^* = -(c_1/c_2)\partial_{12} - (c_0/c_2)\partial_{02} \qquad \dots (1.3)$$ where c_j denotes coefficient of variation of y_j and $\partial_{H'}$ the correlation coefficient between y_j and $y_{i'}$ $(j \neq j' = 0, 1, 2, 3)$. It is easily seen that the estimators R^\bullet and P^\bullet are more efficient than r and p respectively if the conditions $\alpha_2^* > 1/2$ and $\beta_2^* > 1/2$ are satisfied. The estimators $R_1^\bullet (=r, g_2|\overline{Y}_2)$ and $R_2^\bullet (=r, \overline{Y}_3|g_3)$ for R and $P_1^\bullet (=p, g_2|\overline{Y}_2)$ and $P_2^\bullet (=p, \overline{Y}_3|g_3)$ for P, proposed earlier by the author (1965), assume $\alpha_2 = \beta_2 = 1$ for R_1^\bullet and P_2^\bullet where α_3 and P_3 have definitions similar to α_2 and P_3 given above. In the present paper we consider estimators $$R_{q}^{\bullet} = r \left(\frac{\tilde{y}_{2}}{\tilde{Y}_{2}} \right)^{\alpha_{3}} \left(\frac{\tilde{y}_{3}}{Y_{3}} \right)^{\alpha_{3}} \qquad \dots \quad (1.4)$$ and $$R_c^{*\prime} = w_1 r \left(\frac{\bar{g}_3}{\bar{T}_3}\right)^{a_2} + w_2 r \left(\frac{\bar{g}_3}{\bar{T}_3}\right)^{a_3} \qquad \dots \quad (1.5)$$ ## SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES B which utilise information on both y_2 and y_3 . The weights w_1 and w_2 above are such that $w_1+w_2=1$ and α_1 and α_2 are constants to be suitably chosen. It is pertinent to note that the usual double ratio estimator (say, R_d^*) and an estimator (say, R_d^*), suggested earlier by the author (see, Murthy, 1967, p. 404), are special cases of R_c^* respectively for $\alpha_1=1$ and $\alpha_2=-1$. The bias and mean square error (m.s.e.) of R_*^* and R_*^{**} are obtained and m.s.e. of R_*^* is compared with that of R^* using information either on y_* (or y_*). An empirical study is also included. The estimation of product $P = \overline{Y}_0 \cdot \overline{Y}_1$ and also of the population mean \overline{Y}_* , itself, if \overline{Y}_* is known, can be dealt with in a similar manner. ## 2. BIAS AND MEAN SQUARE ERBOR We shall assume that n units in the sample have been selected with equal probability and with replacement. Writing $$\bar{y}_j = \overline{Y}_j(1+e_j), \quad j = 0, 1, 2, 3 \quad \dots \quad (2.1)$$ where $E(e_j) = 0$ and assuming that for large values of n, $|e_j|$ is less than unity for j = 1 and 3, the bias and m.s.e. of R_e^* and R_e^{**} , respectively, to order n^{-1} , are given by $$B(R_c^*) = B(r) + Rn^{-1} \left(d_2 + d_3 + \alpha_2 \alpha_3 c_{23} + \frac{\alpha_2(\alpha_2 - 1)}{2} c_2^2 + \frac{\alpha_3(\alpha_3 - 1)}{2} c_3^2 \right) \qquad \dots (2.2)$$ $$B(R_c^{\star \prime}) = B(r) + Rn^{-1} \left(w_1 (d_2 + \frac{\alpha_2 (\alpha_2 - 1)}{2} c_2^2) + w_2 \left(d_3 + \frac{\alpha_3 (\alpha_3 - 1)}{2} c_3^2 \right) \right) \qquad ... \quad (2.3)$$ $$M(R_c^*) = M(r) + R^2 n^{-1} (\alpha_2^2 c_2^2 + \alpha_3^2 c_3^2 + 2(d_2 + d_3 + \alpha_2 \alpha_3 c_{23}))$$... (2.4) $$M(R_c^{\bullet \prime}) = M(r) + R^2 n^{-1} (w_1^2 \alpha_2^2 c_2^2 + w_2^2 \alpha_3^2 c_3^2 + 2(w_1 d_2 + w_2 d_3 + w_1 w_2 d_3 d_3 c_{23})) \qquad \dots (2.5)$$ where $$\begin{split} d_{3} &= \alpha_{2}(c_{03} - c_{13}), \quad d_{3} &= \alpha_{3}(c_{03} - c_{13}), \\ c_{ij'} &= c_{jc_{i'}} \, \partial_{jj'}, \quad \text{and} \quad B(r) &= Rn^{-1}(c_{1}^{2} - c_{01}) \end{split}$$ and $M(r) = Rn^{-1}(c_0^2 + c_1^2 - 2c_{01})$ are bias and m.s.e. of r to order n^{-1} . The optimum weights w_1 and w_2 may be determined by minimising (2.5), under the condition $w_1+w_2=1$, and we get $$w_1 = \frac{\alpha_3^2 c_3^2 - d_3 + d_3 - \alpha_2 \alpha_2 c_{23}}{\alpha_2^2 c_3^2 + \alpha_3^2 \alpha_2^2 - 2\alpha_2 \alpha_2 c_{23}} = 1 - w_2. \qquad \dots (2.6)$$ The optimum values of α_1 and α_2 in (1.4) and (1.5) may be obtained by minimising the m.s.e. in (2.4) and (2.5) using optimum weights in (2.6). But in practice it would be difficult to get the exact optimum values of α_2 and α_3 as they involve many unknown parameters. However, in situations where good guessed values of c_4 and # COMPARISON OF SOME RATIO-CUM-PRODUCT ESTIMATORS ∂_{ij} (i=0,1,2) are available, α_2^* (and corresponding α_2^*) given by (1.2) may be used as approximations to these optimum values. In that case, it is observed that R_c^* is more efficient than $R_{(\alpha_2^*)}^*$ if $$\frac{\alpha_{\mathbf{g}}^{\bullet} c_{\mathbf{g}}}{\alpha_{\mathbf{g}}^{\bullet} c_{\mathbf{g}}} \, \partial_{\mathbf{g}\mathbf{g}} < \frac{1}{2} \qquad \qquad \dots \quad (2.7)$$ and that it is more efficient than $R^*_{(\alpha^*)}$ if $$\frac{\alpha_3^4 c_3}{\alpha_3^2 c_3} \partial_{23} < \frac{1}{2} \qquad \dots (2.8)$$ where $R^*_{(\alpha_2^*)}$ and $R^*_{(\alpha_3^*)}$ are values of R^* using α_2^* (with y_2) and α_3^* (with y_2) respectively. Thus it is expected that R^*_c will improve over both $R^*_{(\alpha_2^*)}$ and $R^*_{(\alpha_3^*)}$ it the magnitude of θ_{13} is quite small. Comparison of R^*_c with $R^*_{(\alpha_2^*)}$, $R^*_{(\alpha_3^*)}$ and R^*_c is not attempted here since that does not lead to practically usuable conclusions. However, a comparison of these estimators have been made in the next section on the basis of an empirical study. ## 3. AN EMPIRICAL STUDY In this study we compare different ratio-cum-product estimators among themselves and with the usual ratio estimator. The population under consideration is same which was used by the author (1965). That is, the data for all 61 blocks of Ahmedabad City, ward No. I (khadia I) taken from 1951 Population Census will be considered. The characters y_0 , y_1 , y_2 and y_3 are females employed, female population, educated females and females in services respectively. The purpose is to estimate the ratio (R) of females employed to total female population. For this population, we have Using the relation (1.2), we get $$\alpha_{2}^{\bullet} = 1.1718$$ and $\alpha_{2}^{\bullet} = 0.7379$ which on substitution in (2.6) gives the optimum weights $w_1 = 0.2124$ and $w_2 = 0.7876$. Further, on using $\alpha_2 = 1$ and $\alpha_3 = -1$, these weights are $w_1 = 0.3493$ and $w_2 = 0.6507$. # SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS: SERIES B Now the m.s.e. of the estimators suggested here can easily be calculated by using the above weights. Table 1 gives the efficiency of the ratio-cum-product estimators for estimating the ratio R. TABLE 1. RELATIVE EFFICIENCY OF THE ESTIMATORS | estimators | % efficiency | estimators | % efficiency | |-----------------------------------|--------------|---------------------|--------------| | • | 100 | Re. | 265 | | R_1^{\bullet} | 118 | $R_{w}^{\bullet '}$ | 309 | | $R^{\bullet}(\alpha_2^{\bullet})$ | 119 | R_d^{\bullet} | 301 | | R_2^{\bullet} | 206 | R_c^{\bullet} | 391 | | $R^{ullet}_{(lpha_3^*)}$ | 243 | | | From Table 1 it is observed that the gains in efficiency of $R_{(\alpha_n^*)}^*$ and R_e^* over R_2^* and R_d^* (double ratio estimator, Rao (1957) and Keyfitz, see Yates, 1960) are about 18% and 30% respectively, but $R_{(\alpha_n^*)}^*$ has virtually same efficiency as R_1^* as α_n^* is very close to unity. R_e^{**} using w_1 and w_2 is the least efficient among the estimators using both y_2 and y_3 . Efficiencies of R_w^* and R_d^* are about same. Thus R_1^* or R_2^* (using y_2 or y_3) and R_d^* (using both y_2 and y_3), which do not depend on α_2 or α_3 , may be preferred in practice to the corresponding estimators which use optimum weights unless very good guessed values of α_2^* and α_3^* , are available. The author is grateful to the referee for very useful suggestions. #### REFERENCES MURKEY, M. N. (1967): Sompling Theory and Methods, Statistical Publishing Society, Calcuttta Rao, J. N. K. (1967): Double ratio estimate in forcet surveys. Jour. Ind. Soc. Agr. Stat., 9, 191-204. SINGH, M. P. (1965): On the estimation of ratio and product of the population parameters. Sankhyā, Sories B, 27, 321-328. - (1967): Ratio cum product method of estimation. Metrika, 12(1), 34-43. YATES, F. (1960): Sampling Methods for Censuses and Surveys, 3rd Edn. Griffin, London. Paper received: October, 1967. Revised : April, 1968.