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0. INTRODUCTION

0.1, A statistical procedure optimum in some classical sense amongst all proce-
dures based on the same number of observations may not be an economio procedure
when the cost of cbservation or of computations are taken into account, For instance,
the optimum procedure (in some sense) for testing the equality of meana of a number
of normal populations with the same variance is tho method of analysis of variance,
but eince the computational labour involved is heavy, quality control engincers prefer
the method of control charts. If the cost function for various computational methods
¢an be properly forniulated, it may bo possible to incorporate this in the gencral decision
theory and optimuni rules can be obtained. The difficultics involved in such proce-
dures can be easily imagined. In such ci methods that appear to be cheap
and easy to apply have their ure. The control chart method, for instance, has not yet
been provéd to be the most economic procedure, but its justification is that it works
quito well.

0.2, Methods bnsed on counting rather than measurements have some-
times been used in industrial problems. Stevens (1046) considered the problem
of setting up of control charts by “gauging”, that ia by counting the number
of items in a sample with quality characteristic above or. falling short of specified
limits. To study the errors of a gun, it may Lo more convenient to count for a round
fired the number of shots hitting the different concentric rings with the bull'scye
s centre rather than to measure the co-ordinates of each shot with respect to ortho-
gonal axes with the bull's-cye as origin. In this ease, two mensurablo characteristics
are involved. Methods based on counting may therefore be very useful in certain
situations, even though they may not Lo the optimum in the classical sense.

0.3. In this paper to examine somo hypothesis about the underlying distri-
bution of some measurable characteristic, we develop methods that are based mostly
on counting rather than on measurement. Counting somectimes is cheaper than
measurement, Another property of the method is that no new distribution problem
bas to bo solved.

1. A TEST OP A SIMPLE HYPOTRESIS AGAINST A SIMPLE ALTERNATIVE
BASED ON TIE BINOMIAL DISTRIBUTION
1.1, Let z be a p-dimensional chance variable with a continuoua probability
density function f. The problem is to teat the simple hypothesis /7, that f = f, against
the simple alternative /7, that f =/, on the basis of a random samplo 1), 73, ..o 2,
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of the sign n.  Tho mont powerful test when tho firet kind of error is fixedstals
given by:

reject I, if ‘l.l Jz) < /\'i'l Silx) RY)
=1 -l

accept Jf, otherwise
where A is & constant to be so chosen that the first kind of error is a. The crux of
tho problem therefore is to derive the sampling distribution of tho likelihood-—ratio
statistio

T = 1l (ff=)lfiz) - {12)
fml

when the hypothesis I, is true, from which A may bo determined to ensure
Prob (T<A|lU)=a. e (L)

1.2. In many situations, however, tho sampling distribution of T' may be
very complicated and tho evaluation of the percentage point atill more complicated,
or the computation of the statistic 7" jtself may be too ;liﬂicult. or measurement of the
p variables may bo inconvenient or costly. Under such circumatances, one may
not like to usc the test based on the atatistic T' even though it is the most powerful
ono,

Tho alternative method that we auggest here, though leas powerful than the
classical method, has certnin advantages. The method is based on counting and
no now distribution problem has to Lo solved.

1.3. Let w bo a sub-sct of tho p-dimensional Euclidean spaco such that

> me> 0 e (14)
whoro n, = Prob. (zcw|il)) e (L3)
i=0,1

Let a pseudo-varinto y; bo defined this way

y=1 ilren

=0 otherwise e (1.6)
Let d=3%y. e (LD
(231
Thon
n .
Drob. (d-zlll,):-( » )n,'u_n,)--- i=01. e (18)

Tho statistic d can thereforo bo used to test the hypothesis I/, against the alternative
.
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Let ¢ be tho smallest integer to satisfy

i (:) =)  a e (L)

swctl

Then the test procedure is:

) reject Hy if: d>e¢
otherwise accept H,. . w (110)
Tho power of this test is given by

Prob (@ > c| i)

.
= (:)n{(l—n,)"" e {(L1D)
Emetl
=4 (say).
It should be noted that # is an increasing function of m, for

dp_ monmfy
dmy,  m(l—m)

where m= z Z( :)n{(l—n,)“-’ > amf
fmetl
and therefors 1/1> 0, v (L12)
dmy

The test is therefore unbiassed, and uniformly so far all simplo alternatives JI: for
which

Prob. (rew|H) > m,. e {113)

2. THE MOST POWERFUL BINOMIAL TEST OF A SIMPLE HYPOTHESIS AGAINST
A SIMPLE ALTERNATIVE

2.1 The power of the binomial test discussed in § 1 dependson « and the
question that naturally arises is: How should « bo chosen 8o that the power is maxi-
mised? Below we give a partial solution to this problem which states that the

w must be & ber of a particular class.
2.2 Theorem: Lel w be a given sub-set of the p-dimensional Euclidean space
satisfying (1.4) and (1.5). Then under cerlain simple condition it is possible to find
a sub-sel g belonging lo the class:

tnside w2 Jiz) < k fifx) w (20)

such that for the same sample size the binomial test based on «, is at lcast as powerful
as that based on .

P
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Proof:  Chooso k to satisfly:

[ faande = n‘( e (29

we

Then from Neyman and Pearson’s (1033) fundamental lemma it follows that -

= [ e > | fpzste = m - 2D
vy -
But the power of the binomiul test is an inereasing function of m,. Therefore the
test based on w, iv atleast as powerful o3 that based on w.

2.3. The problem thereforo reduces to that of finding an optimum values
for k. If vne wishes to maximise tho difference between my and 7y the solution is
k = 1, but this by itself will not cnnure maximum power. It hna not been possible to
get a general solution for a fixed samplo size, However, if  is so large that the normal

Py to the binomial iy satisf 'y, the power of the test is approximately
given by
= mfl—mg) _ /- id F
#=2{. J i) Y™ Tri—m) - B4
where Hz) = f -\/l—‘,}'c'v' dt e (26}
and 7, is defined by
Hrd=a e (2.6)

for0<a<<l.

Sinco A increass ns tho argument of ¢ decreases, for lurge values of # the problem is
solved if & ju chosen to maximise

T
Vali=m)

No genernl eolution could be obtained. To maximise tho numerator wo may take
k= 1. Forany given valuo of n however, the optimum value of £ may e determined
numerically.

2.4, Example 1: To test the hypothesia that the mean of n normal population
with a known standard deviation o is s agninst the alternative hypothesis that it is
M
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Here,
1
1~ e
oy ¢ m k
inside «wg @ 1 ~ %i —r <
oVin )
or z> /'—'ﬁ;;/'_‘-f-la il py > pe
where { is a constant to be suitably determined.
Consequently
o= $il419)
and = ¢{l—18)
whero d=tlo
Iz

and $(z) is as defined in (2.5).

e (27)

e (2.8)
(2.9)

(2.10)

As a numerical illustration we tabulate below the power 8 of the test for the
case n= 100 and 8=0.1 with a=0.05 for different values of . These were computed
by using the approximate formula {2.4). Tho power of the optimum classical test

is also presented.

TABLE 2.1 POWER OF DIFFERENT BINOMIAL TESTS AND OF THE CLASSICAL MOST
POWERFUL TEST OF THE MEAX OF A NOKMAL POPULATION WITH KXOWN

STANDARD DEVIATION

n=)0d o005 §=0I

powor
test (uormal
approximation)
binomial teat
withl =
~0.2 0.10
=0.1 0.20
[ 0.20
+0.1 0.20
+0.2 Q.19
mout powerful
classical test 0.28

2.6. Ezample 2: To lest the hypothesis that tho standard deviation ofn
fiornal population with & known mean g is o agninst tho alternativo that it is o).

81
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Hero 1 - %(x-ﬁ)'
oin® *
insido wy : 1 oy <
o Vin ¢
or (z—pP>Bo} if  oi>of o (201)
where ! bas to be suitably dotermined.
Then
7o = 28() . (212)
m = 28(lp). . (213)
; =%,
where P 7

1

The following table of values of § for n = 100, @ = 0.05 and p = 0.9 was
computed for different values of . The power of the classical most powerful test is
also presented.

TABLE 2.2, TOWER OF DIFFERENT BINOMIAL TESTS AND OF THE CLASSICAL MOST

POWERFUL TEST FOR THE STANDARD DEVIATION OF A NORMAL POPU.
LATION WITH A KNOWN MEAN

» = 100 a=003% rPm0S

wer
tost (normal
approximation)

binomial toet
with § =

0.2 0.10

0.3 0.13

0.4 0.15

0.5 0.18

0.8 0.17
moat powerful
clasaical teat 047

2.8, Ezample 3: To test the hypothesis that the vector of mean values of
a p-variato normal distribution with known dispersion matrix £ is g, against the alter-
nation that it is u,

Here, 1 = f{m—Ho)Z-} 2 — o)’
— D)
. (2n)* |2
inside ay : =0 roay < &

[

or ()52 > A+ (=) N iy prg) . (@14)
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whero A = (i, — pIZ M= 1Y o (2.15)
and ! is & constant to bo suitably determined.
Therefore

me = $(I+}4) o (216)
and m = g{l—1A). . {207)

The power of thia test depends only on I and Mahalanobis's distance A, If we consider
the cnse n = 100, A = 0.1, @ = 0.05, we have alrcady tabulated the power of the
binomial test for different values of I in Table 2.1.

3, MINIMISATION OF SIZE OP SAMPLE WHEN BOTIl KINDS OF
ERROR ARK PRE-ASSIONED

3.1, Another problem in testing a simplo hypothesie against a simplo alter-
native is to détermine tho emallest sample size to cnsure that the power of the test is
a pre-assigned quantity £, For any given o we can find the smallest integer n such
that tho power of the binomial test based on a sample of size n is at Jeast 4. Of course,
n will depend on the pre-assigned values of @ and 4 and the region w. Theproblem is
to 80 ¢hooso w that n is minimised. Hero again we need reatrict ourselves to regions
of the type:

Jo <M

and try to determine A to minimise n for fixed values of x and 8.

3.2, Using the normal approximation to the binomial distribution, we get
the following requirements on n and ¢ to ensuro that the first kind of error ia a and
that the power is 8:

c—nmy
\/mr,,(l—n,

c—nm o,
Vam(I=m)
with 7, and 7, defined by (2.6). From thia we get
Vi = (L VA=m) -1 VA T=m)jlim—r,). - B0
S0 @ has to bo o chosen that this quantity is minimised.

3.3. Ezample 1: Suppose it is required to test that the mean of a normal
population with a known standard doviation o is p, against the alternative that it is
4 8t level of signficance a and power f.  Then if g, > jry and we take

inside wy : z> #.w w (32)
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we have my = gli+14),
m=¢U-14)
whero $= /L':d,'—'.

The problem ia to so choose ! as to minimixe n given in (3.1). This was done numeri-
eally for @ = 0.05 and £ =090 andl 0.95 for & = 0.25, 0.30, 0.35 and 0.40, The
valuea of [ andd n for the optimum binomial test and the sample size n, required for the
optimum non-xequentinl test aro presented in the table below:

TADLE 8.1, BAMPLE 81ZF REQUIRED TO TEST THE MEAN OF A NORMAL POPULATION
WITIL KNOWN STANDARD DEVIATION AT 59, LEVEL OF SIONIFICANCE

2 =093 2 =080
hinominl elansical binomial clamicat
trat test test teat
) ! " LS i " ny

0.1 0.273 m 15 0.313 21 138
0.5 0.300 188 121 0.3%0 148 [
.33 0.378 137 89 0.373 100 0
0.40 0.400 103 [ 0.450 8 &

It will be seen that the binominl test requires a sample aize about 1.5 times that te-
quired for tho classical non-sequential test. Consequently if the ralio of tho eont
per item sampled for the clawienl teat 1o that for the binomial text ia greater than
1.5 the method suggested here shonld prove more economic.

3.4. Erample 2: Consider the problem of texling the veetor of mean values
of o p varinte normal population with & known dispersion matrix. It immediately
fullows from 2.8 that the samplo sizo required for tho test at level of nignificance « to
attain a power 4 for an alternative value of the vector of mean alues which is at a dis-
tance A (in Mahalanobin's sense) ean be read off directly from Table 3.1 (with & replaced
by &) independently of the number of variates p involved so long ns A is kept fixed.

4. TEST OF A SIMPLE HYPOTILFSIS ABOUT A SINOLE PARAMETER AGAINST
A CLASS OF SIMPLE ALTERNATIVES

4.1 Tho teata considered in the previous scctions do not necessarily possesa
optimum power propertics against a sufliciently wide class of simple alternatives.
But it is rather straight forward to build up such tests using general methods due to
Neyman and Pearson whenever applicable.  For instance, if it ia required to build up
a teat which in uniformly unbiassed, we niny procecd as follows:  Suppase that the
problem ix to {est the hypothesia J, that the valuo of the paramcter @ involved in
the probability density function of the chance varinble r{not necessarily unidimensional)
is 0. Then if we can find a region w such that

o= [ Jiz,00z < [ Jz.0Mx = m,

for all 0 0,
R
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it is immediately scen that tho binomial teat based on e must necessarily bo uniformly
unbiassed. If then we want to build up a binomial test that is uniformly unbiassed
and most powerful for a particular alternative J/; that specifics the value 0, for 0,
by ueing a line of argument similar to that used in § 2 and Neyman or.d Pearson's(1933)
fundomental lemma it is casy to show that under the usual regularity condition of
differentiability within the intergral sign, wo need restrict oursclves only to regions
of the type:

inside  : 15, 00) > AS(r, 0424 {7"0_/(1. o)}, e (1)

whero A; and A4 aro undetermined except for tho stipulation that
d
(z,0dx| =0 o (1.2
[D—o ! l ]'o 2

This in general ensurcs 7y <<y only for values of 0 in the neighbourhood of ;, but
if it Aappens to ensure this uniformly for all 0, then only we get uniformly unbiassed
tests.

This restriction (4.2) givea ono of tho two constants, the other one has
to be determined numerically as in the previous scction to maximise the power of the
binomial test when the value of the parameter is 0, for a fixed sample size n, or for
very Jargo values of n.

4.2. Example 1: Suppose tho problem is to examine the hypothcsis that
the mean of a normal population with known standard deviation o is s against the
alternative hypothesis that it is #, with tho stipulation that the acarch for the most
powerful binomial test must be restricted amongst thoso that are uniformly unbiassed.
From (4.1) we get after some eimplification:

inside « : M=) 5 A Ay o (4.3)

zr—,
whero r=T"fe
o

311"l

o

and 2, and A, are undetermined for the present. From the convexity property of
the exponential function it follows that (4.3) may be written in the form

Outside w: h<r<k o (4.4)

Tho restriction (4.2) implies that —k, = k; and consequently (4.4) may be written
in the final form:

insido w: 17l >k
whero k is & conatant to be suitably determined.
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It is now easy to sco that
7o = Prob. (rew| ) = 2¢(k)

and my = Prob (xew|pm) = $k—8)+ gk +8).
This incidentally brings out tho symmetry of the power function of the binomial test.

For the special caxo n = 100, @ = .05, 8 = 0.4, the following tablo gives the
power of the binomial test for different vatues of & as also that of the most powerful
uniformly unbiassed classical teat,
TABLE 4.1, POWER OF DIFFERENT UNIFORMLY UNDIASSED BINOMIAL TESTS AND

OF TIE CLASSICAL TEST FOR THE MEAN OF A NORMAL POPULATION WITI
KNOWN STANDARD DEVIATION

(nm100, am005, 3m0.4)

power
teat {norma)
approximation)

binomial test with &

0.8 0.4
1.0 0.21
1.5 0.23
2.0 0.25
uniformly unbisssed
classical test 0.98

5. ASYMPTOTICALLY LOCALLY MOST POWERFUL ONE SIDED TEST

5.1, Anal ivo appronch in T of testing a simple hypothesis about
a single parameter is to try to maximise the rate of increaso of the power function
of a test in a ncighbourhood (one sided) of the value of tho parsmeter specified by
the null hypotheais. A test for which this property holds may be called an one sided
locally most powerful test. (Rao & Pati).

5.2. Inthis section we eonsider the problem of finding the locally most power-
ful binomial test when the samplo aize is largo. In the illustrative example considera-
tion is limited only to a very apecinl class of the binomial tests, as a general solution
to the problem could not be derived.

5.3. Suppose that f involves a single parameter and the hypothesis I, to be
tested ia that the value of the parameter is . Then the power § of the binomial test

based on the region w when tho value of tho parameter is 0, is given approximately,
for large values of n by

B=6z) o (8.1)
wh = no{l—-mg) _ Vvn
ore TN T (\/n,(l—n,) o 02)
whero m, = Prob. (ze10,)

m, = Prob. (xew|0,).
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Therefore, the rate of increase of the power at the point 0, is

B _ 8 9 om
30, 0z "m0,

_(_L,-lx'){, )

Yz * ml=mWr0=my

—r (m =me}(m —1) 1-n, ‘h
vn ( m(l—m)Vn(1—m) +Vn,(l—n,) )} N )'

Consequently
I AN oA — a3
(00, ),,-,. ‘n {‘/l \, n." T n,:;—:,) '(O—Z:),._,.

The doruinant term in this expression is
v l -I" l—r. dul

. X e (B

Wk (), @0

Tho problem therefore is to so choose o that

./ ] "”' Y )

d”n n=oo

is maximised.

But a general solution to this problem could not be derived. Iowever, if Gisa
location parameter, that ia if /(z, 0) = f(x—0) and tho range does not involve # and
consideration is limited only to regions of the type

w: x> 0,+k - (5.8)
it is essy to sce thal

dmy

r 3

Consoquently & has to bo chosen to maximise

. (5.3)

and, hero o= [ fioe e (58)
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Tho condition _dlL{_= 0 gives
2mg1—m) k) +{f (k) = 0. e {5.0)

It follows that for tho problem of testing the mean of a normal population
with unit standard devintion the value of & is a root of

4= s’(l;—'ﬁ) . {5.10)
—jt
whero z2= —‘715_;’ e b

and
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