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1. The object of this note is to prove that a bountded proper diatribntion can not
be infinitely divisible (I.D.).

2. The following result of Pulys (1849), will be wsed: A necexsary aud sufficient
condition that a probability distribution should be bounded is that the definition of the
characteristio function f{{) can be extended to complex valucs of the variable and this exten-
sion shows that f{?) is an entire function of exponential type. Morcover, if the distribution
function is denoted by F(x) then the right and left extremitica are given respectively by

Tm w3 lop] f(-ir)] and —Tfim 7= g f(in)
b+ o

Theorem : A proper bounded diatribution can nol be I.D.

Proof : If possible, let F(x} be a proper distribution bounded and 1D, In view of
the fact that a random variable (r.v.) X is L.D. if and only if X—a is 1.D., where ‘a’ is any
real number, we may take the bounds as 0 end A(h > 0) To show that such a distri-
bution is not posiblo we will prove that k is necessarily infinite.  As it ia 1.D., its character-
istic function {o.f.) f(?) is rep d by Gnedenko, B. and Kol , AL N (1934),

T
log f1) = iyt | %= dkq)

where y is & constant and K(u){K(—o0) = 0] is & nots decrenning function of hounded varia.
tion.

Further K(u)= Lt K, (u) foreachu
L]
%
whero Ks)=n I 24dF(z)
S

F,(2) being the distribution function (d.f.) corresponding to the e.f. [fi)/* That thixisa
o.f. follows from the fact that F(z)is .D. By Polya’s Theorem F,(x) is s bounded d.f. with

lower bound zero.
S Km0 ifug0
"
=n [:‘dl‘.(z) fu>0
H
o Ru)=0 foru O

-
Here log f) = iyt [‘L:':ll'" dK(s)

349



YoL.17) SANKHYAX : THE INDIAN JOURNAL OF STATISTICS [Pasr 4

The same represcutation goes over for ¢ = ir, r “real” as can Lo casily proved by
lenko, B. and Kolmogorov, A, N. (1954), and using simple

means_of the proof in O
propertics of entire functions,

Hence by Polya’s Theorem
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Therefore, A = oo unless K(u) Is constant over (0, o) in which case the law is improper.
We are thankful to Dr, G. Kallisnpur for anggeations and eriticisms,
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