
Essays on Incentive Compatibility on Restricted
Domains

Anup Pramanik

Thesis submitted to the Indian statistical Institute in partial

fulfilment of the requirements for the award of the degree of

Doctor of Philosophy



Essays on Incentive Compatibility on Restricted
Domains

Anup Pramanik

June, 2014

Thesis Supervisor : Professor Arunava Sen

Thesis submitted to the Indian statistical Institute in partial

fulfilment of the requirements for the award of the degree of

Doctor of Philosophy



Acknowledgement

I am very grateful to my supervisor, Arunava Sen for his constant guidance and support.

I believe that if there is anything interesting in this thesis, then that is solely attributable to

him. Through his encouragement, he helped me propel my inquisitiveness and led me to a

deeper understanding of economic theory. He has never failed to lend me a patient, listening

ear whenever I had approached him. In times of great stress, something that marks the life

of almost all doctoral students, his presence has been particularly a source of great comfort.

For all of these, I am ever so thankful to him.

I would like to express my deep appreciation for Debasis Mishra, who is also one of my

co-authors for the research work that constitutes the second chapter of this thesis, for his

patience and enthusiasm. I am very thankful to him for his encouragement when it was most

needed.

I would also like to express my gratitude to all the faculty members of the Economics

and Planning Unit for giving me the opportunity to pursue my master’s and doctoral studies

at this institute. They have encouraged me persistently during the course of my studies. I

would, especially, like to thank Tridip Ray for the constant support that he, so generously,

gave me.

I cannot forget the immense contribution that Didimoni and Satya-da made to my life

during my school and college days respectively; without which I would not have been able

to come this far. I am grateful to them for their support and help.

A number of my friends have provided me with great encouragement and intellectual

stimulus during the course of my doctoral studies. For this, I would especially like to thank

Soumendu Sarkar, Souvik Roy, Mridu Prabal Goswami, Ashokankur Datta and Dipjyoti

Mazumdar. I would also like to thank Rahul, Devjit, Sonal, Abdul, Dushyant, Anirban, So-

hom, Sutirtha, Kumarjit, Madhav, Mihir, Debarpan, Pranabesh, Dhritiman, Shraman, So-

mak, Abhishek, Dilip and Gouriprasad for being a support network. Kaustav and Swaprava

provided me with technical help in the preparation of this thesis, for which I am very grateful.

My mother and sisters, even in their most distressful moments, have always let me pursue

my goals and in the process they have accounted for much of the sacrifices and hardships;

without which I would not have been able to undertake my doctoral studies. For this, I am

deeply indebted to them.

Finally, I must thank Bipasha for being there with me, always.

Research fellowships from the Indian Statistical Institute are gratefully acknowledged.



To Maa



Contents

Contents i

1 Introduction 1

1.1 Multidimensional Mechanism Design with Ordinal Restrictions . . . . . . . . . . . . . . . . . 1

1.2 Strategy-proof Social Choice in the Exogenous Indifference Class Model . . . . . . . . . . . . 3

1.3 Further Results on Dictatorial Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Multidimensional Mechanism Designwith Ordinal Restrictions 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Implementation and Cycle Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The Type Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Type Spaces with Ordinal Restrictions: The Difference Indifference Makes . . . . . . . . . . . 20

2.4.1 Strict Types, Ordinal Connectedness, and Lifting . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Payments and Revenue Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Domains with Free Triple at the Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Relation to the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Strategy-proof Social Choice in the Exogenous Indifference Class Model 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Necessary Conditions for Dictatorship . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Sufficient Conditions for Dictatorship . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Further Results on Dictatorial Domains 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Basic notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 β Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 γ Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

i



Bibliography 83



Chapter 1

Introduction

This thesis comprises three chapters that investigate the structure of dominant strategy

incentive compatible (strategy-proof) social choice functions on restricted domains. The first

chapter deals with standard mechanism design problem in quasi-linear environments with

multidimensional non-convex type spaces. It identifies a class of type spaces called ordinal

type spaces and shows that the simple and familiar 2-cycle monotonicity condition is necessary

and sufficient for implementation. This result covers the single-peaked domain. The second

chapter deals with the standard social choice problem (no monetary transfers) but one where

agents have indifference in their preference orderings generated via an exogenous partition

of the set of alternatives. A domain is dictatorial if a strategy-proof and unanimous social

choice function defined on this domain is dictatorial. The chapter explores the relationship

between agent partitions and dictatorial domains. The final chapter considers the standard

social choice model with linear preferences. It provides new results on dictatorial domains

in this model.

We provide a brief description of each chapter below.

1.1 Multidimensional Mechanism Design with Ordinal

Restrictions

In this chapter, we study multidimensional mechanism design in private values and quasi-

linear utility environments when the set of alternatives is finite and the allocation rule is

deterministic. A standard goal in mechanism design is to investigate conditions that are

necessary and sufficient for implementing an allocation rule. An allocation rule in such an

environment is implementable if there exists a payment rule such that truth-telling is a dom-

inant strategy for the agents in the resulting mechanism. Our main result is that in a large

class of multidimensional type spaces that satisfy some ordinal restrictions, implementabil-
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ity is equivalent to a simple condition called 2-cycle monotonicity. By virtue of revenue

equivalence, which holds in these type spaces, we are able to characterize the entire class

of dominant strategy incentive compatible mechanisms. The 2-cycle monotonicity condition

requires the following: given the types of other agents, if the alternative chosen by the al-

location rule is a when agent i reports its type to be t and the alternative chosen by the

allocation rule is b when agent i reports its type to be s, then it must be that

t(a)− t(b) ≥ s(a)− s(b),

where for any alternative x, t(x) and s(x) denote the values of alternative x in types t and

s respectively.

Rochet (1987) showed that a significantly stronger condition called cycle monotonicity is

necessary and sufficient for implementability in any type space - see also Rockafellar (1970).

Myerson (1981) formally establishes that in the single object auction set up, where the type

is single dimensional, 2-cycle monotonicity is necessary and sufficient for implementation.

When the type space is multidimensional, if the set of alternatives is finite and the type

space is convex, 2-cycle monotonicity implies cycle monotonicity (Bikhchandani et al., 2006;

Saks and Yu, 2005; Ashlagi et al., 2010). Though convexity is a natural geometric prop-

erty satisfied in many economic environments, it excludes many interesting type spaces. A

primary objective of this chapter is to formulate restrictions on type spaces without the

convexity assumption made in the literature and answer the question of implementability in

such multidimensional type spaces. Indeed, our restrictions allow many interesting multidi-

mensional non-convex type spaces. Prominent type spaces covered by our formulation are

the single peaked type spaces and its generalizations. We show that 2-cycle monotonicity is

necessary and sufficient for implementability in all these type spaces.

Our method to impose ordinal restriction on type spaces is quite simple. Such a method

of imposing ordinal restriction is usually followed in the mechanism design literature without

transfers (a la strategic voting or social choice theory literature). To see how such restrictions

can be imposed in a cardinal environment like ours, note that a type in our environment is a

vector in R
|A|, where A is the set of alternatives. Now, let us restrict attention to strict types,

where value of no two alternatives is the same. Such a type must induce a complete and strict

ordering on A. We put restrictions by allowing only a subset of orderings that can be induced

by any type. The set of all strict types in R
|A|
++ that induce an ordering belonging to a set of

permissible orderings define a strict type space. To allow for indifferences, we take the closures

of such type spaces. We call such type spaces ordinal type spaces. A prominent ordinal type

space where our 2-cycle monotonicity characterization holds is the type space induced by all

single peaked preference ordering on a tree graph, where the graph consists of alternatives

as nodes and a preference ordering must be single peaked along paths of the tree. Single
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peakedness on a tree is a generalization of classical single peaked preference orderings due

to Demange (1982). We also show that for a large class of permissible preference orderings,

the 2-cycle monotonicity characterization holds if the type space consists of only strict types

induced by these orderings. We give an example to show that our result does not hold if we

allow for indifference in such type spaces. If we assume a mild continuity condition on the

allocation rules, then our result holds with indifference.

1.2 Strategy-proof Social Choice in the Exogenous

Indifference Class Model

This chapter deals with the standard social choice problem (no monetary transfers) but one

where agents have indifference in their preference orderings in a specific way. In particular,

we investigate the exogenous indifference class model (first introduced in Barbera and Ehlers

(2011)). In this model, the indifference classes of agents’ preferences is exogenously given.

Specifically, every individual has an exogenous partition of the set of alternatives. An indi-

vidual is always indifferent between alternatives a and b iff both a and b belong to the same

element of her partition set. But an individual’s ranking of the different elements of her

partition set, is complete.

This framework includes several well-studied models as special cases. For instance, the

case of private goods and selfish preferences is one where an individual is indifferent between

all alternatives that give her the same commodity bundle. It includes the one-sided matching

model studied in Svensson (1999), Papai (2000). It also includes the Gibbard-Satterthwaite

framework where the elements of the partition are all singletons. Further examples are

provided in Sato (2009).

In this model, we examine the relationship between dictatorship results in this model and

the structure of indifference classes across agents. Our results are formulated in terms of the

pairwise partition graph induced by the indifference classes. Fix a pair of agents i and j and

their indifference classes. The partition graph for this pair is a bipartite graph whose vertices

are i and j’s indifference classes. There are no edges between the vertices representing the

indifference classes of a given agent; vertices for i and j’ have an edge if the indifference

classes representing these vertices have no common alternative. We show that a necessary

condition for strategy-proofness and unanimity to imply dictatorship in the domain induced

by a partition is that each associated pairwise partition graph is connected with the degree

of every vertex being at least two. If we replace unanimity by efficiency, this requirement

can be weakened to the graphs being connected (with possibly isolated vertices).

We are unfortunately, unable to show that these necessary conditions are sufficient for

dictatorship. However we are able to identify a number of stronger conditions that are
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sufficient. The first of these is the existence of at least two common indifference classes with

no restrictions on their size - a result which clearly generalizes that of Sato. In addition we

have three sufficient conditions for the case of two voters. One applies to the case where

there is exactly one common indifference class while another shows that strategy-proofness

and unanimity imply dictatorship when the partition graph is a cycle. Finally, we show

that with the stronger assumption of efficiency, strategy-proofness implies dictatorship when

the partition graph is connected with possibly isolated vertices. The last condition implies

that a full characterization is obtained in the case of two agents for domains where strategy-

proofness and efficiency imply dictatorship.

1.3 Further Results on Dictatorial Domains

The seminal result of Gibbard (1973) and Satterthwaite (1975) states that a surjective and

strategy-proof social choice function (scf) defined over the complete domain, is dictatorial

(provided that there are at least three alternatives). Aswal et al. (2003) show that the

assumption of a complete domain is far from being necessary for this result. They say that

two alternatives a and b are connected if there exists a preference in the domain where a is

ranked first and b, second and another preference where the reverse is true. They consider

the following graph: each alternative is a vertex and there is an edge between a pair of

vertices if the two alternatives represented by the vertices, are connected. A domain is linked

if there exist an arrangement of the vertices such that the first three are mutually connected

and each vertex is connected to at least two in the set of vertices that precedes it. Their

main result is that every linked domain is dictatorial.

In this chapter we generalize the linked domain result of Aswal et al. (2003) in two ways.

The first way is to weaken the notion of connectedness between a pair of alternatives to

weak connectedness while retaining the “connection structure” of the induced graph as in

linkedness. The second way is to strengthen the notion of connectedness but weakening the

“connection structure” on the induced graph.

The notion of weak connectedness is the following: two alternatives a and b are weakly

connected if there exists a (possibly empty) set of alternatives B and four orderings in the

domain such that there is a reversal between B and b when a is top-ranked and there is a

reversal between B and a when b is top-ranked. Reversality requires alternatives between a

and b to belong to B in the case where B is better than b. Similarly, alternatives between b

and a to belong to B in the case where B is better than a. A domain is called a β domain

if we can arrange all the alternatives (vertices in the induced graph) in a way that the first

three are mutually weakly connected and each alternative is weakly connected to at least

two in the set of alternatives (vertices) that precedes it. Our first result is that β domains
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are dictatorial. These domains are obviously supersets of linked domains. It is also possible

to find β domains that are smaller than any linked domain.

Property T between a and b requires the following“intermediateness”property in addition

to weak connectedness: for any alternative c other than a and b, there exists two orderings in

the domain, one where c is above b while a at the top and another where c is above a while b at

the top. A domain is called a γ domain if its induced graph is connected in the usual graph-

theoretic sense, i.e. there exists a path between any two alternatives (vertices). Our second

result is that all γ domains whose induced graph is not a star-graph, are dictatorial domains.

The same result holds in the star-graph case with mild additional conditions. These results

generalize results on circular domains in Sato (2010) and Chatterji et al. (2013). Finally, we

apply our result to a facility location problem in a restricted environment.
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Chapter 2

Multidimensional Mechanism Design

with Ordinal Restrictions

2.1 Introduction

An enduring theme in mechanism design is to investigate conditions that are necessary and

sufficient for implementing an allocation rule. We investigate this question in private values

and quasi-linear utility environments when the set of alternatives is finite and the allocation

rule is deterministic (i.e., does not randomize). An allocation rule in such an environment is

implementable if there exists a payment rule such that truth-telling is a dominant strategy

for the agents in the resulting mechanism. Our main result is that in a large class of multidi-

mensional type spaces that satisfy some ordinal restrictions, implementability is equivalent

to a simple condition called 2-cycle monotonicity. By virtue of revenue equivalence, which

holds in these type spaces, we are able to characterize the entire class of dominant strategy

incentive compatible mechanisms. The 2-cycle monotonicity condition requires the following:

given the types of other agents, if the alternative chosen by the allocation rule is a when

agent i reports its type to be t and the alternative chosen by the allocation rule is b when

agent i reports its type to be s, then it must be that

t(a)− t(b) ≥ s(a)− s(b),

where for any alternative x, t(x) and s(x) denote the values of alternative x in types t and

s respectively.

One of the earliest papers to pursue this question was Rochet (1987), who proved a very

general result. He showed that a significantly stronger condition called cycle monotonicity is

necessary and sufficient for implementability in any type space - see also Rockafellar (1970).

Myerson (1981) formally establishes that in the single object auction set up, where the type
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is single dimensional, 2-cycle monotonicity is necessary and sufficient for implementation (in

Myerson’s set up, this is true even if we consider randomized allocation rules) - see also Spence

(1974). When the type space is multidimensional, if the set of alternatives is finite and the

type space is convex, 2-cycle monotonicity implies cycle monotonicity (Bikhchandani et al.,

2006; Saks and Yu, 2005; Ashlagi et al., 2010). Though convexity is a natural geometric

property satisfied in many economic environments, it excludes many interesting type spaces.

Moreover, how far this result extends to type spaces that do not satisfy convexity remain

an intriguing question - we discuss this issue in detail in Section 2.2. A primary objective

of this chapter is to formulate restrictions on type spaces without the convexity assumption

made in the literature and answer the question of implementability in such multidimensional

type spaces. Indeed, our restrictions allow many interesting multidimensional non-convex

type spaces. Prominent type spaces covered by our formulation are the single peaked type

spaces 1 and its generalizations. In all these type spaces, we show that 2-cycle monotonicity

is necessary and sufficient for implementability. To our knowledge, this chapter is the first to

identify such a large class of interesting non-convex type spaces where 2-cycle monotonicity

characterizes implementability.

We use a novel method to impose ordinal restriction on type spaces. Such a method of

imposing ordinal restriction is usually followed in the mechanism design literature without

transfers (a la strategic voting or social choice theory literature). To see how such restrictions

can be imposed in a cardinal environment like ours, note that a type in our environment is

a vector in R
|A|, where A is the set of alternatives. Now, let us restrict attention to strict

types, where value of no two alternatives is the same. Such a type must induce a complete

and strict ordering on A. We put restrictions by allowing only a subset of orderings that

can be induced by any type. We discuss such restrictions in detail in Section 2.3. The set

of all strict types in R
|A|
++ that induce an ordering belonging to a set of permissible orderings

define a strict type space. To allow for indifferences, we take the closures of such type spaces.

We call such type spaces ordinal type spaces. A prominent ordinal type space where our

2-cycle monotonicity characterization holds is the type space induced by all single peaked

preference ordering on a tree graph, where the graph consists of alternatives as nodes and

a preference ordering must be single peaked along paths of the tree. Single peakedness on

a tree is a generalization of classical single peaked preference orderings due to Demange

(1982). A detailed definition is given in Section 2.3. We also show that for a large class of

permissible preference orderings, the 2-cycle monotonicity characterization holds if the type

space consists of only strict types induced by these orderings. We give an example to show

1Roughly, a single peaked type is defined using a strict and complete order on the set of alternatives. A

type is single peaked if the values of alternatives decrease as we go to the left or right (where left and right

are defined with respect to the given order) of the peak (the highest valued alternative).
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that our result does not hold if we allow for indifference in such type spaces. If we assume a

mild continuity condition on the allocation rules, then our result extends to such type spaces

when we allow for indifferences. Thus, we highlight an important consequence of restricting

attention to only strict type spaces.

Though we identify many different ordinal type spaces, the proof methodology we employ

for them is quite similar. This shows that our general methodology is quite robust and can

be potentially applied to other type spaces that we do not discuss in the chapter.

We are aware of only one instance where such an idea of ordinal restriction was pursued

in this literature. The order-based type space considered in Bikhchandani et al. (2006) is

defined by considering a weak partial order on the set of alternatives and every type must

induce this order. Firstly, an order-based type space is convex. Second, we consider a set of

strict and complete orders and a type in our type space must induce one of the orders in this

set. In that sense, our type space restrictions are different from the order-based type space,

and neither is stronger than the other.

A characterization of implementability using 2-cycle monotonicity is useful because the

cycle monotonicity condition, which can be used to characterize implementability in any type

space, is a difficult condition to use and interpret. On the other hand, 2-cycle monotonicity

is a simpler condition and the appropriate extension of the monotonicity condition used by

Myerson (1981) to characterize implementability in the single object auction model. For this

reason, 2-cycle monotonicity is often referred to as weak monotonicity (Bikhchandani et al.,

2006; Saks and Yu, 2005) or monotonicity (Ashlagi et al., 2010). In his paper, Rochet (1987)

likens the implementability question to the rationalizability question in revealed preference

theory. Quoting Rochet:

Condition (3) 2 is thus the analogue of the Strong Axiom of Revealed Preferences

(SARP), and our theorem is the analogue of Afriat’s result [Afriat, (1965)], which

shows how to compute, for any set of data satisfying SARP, a utility function

which rationalizes the data. In the one dimensional context, one can restrict

oneself to cycles of order 2: condition (3) for 2-cycles is the analogue of the Weak

Axiom of Revealed Preferences (WARP).

We also characterize the set of payment rules that can implement an implementable

allocation rule. We do this by establishing revenue equivalence in a large class of ordinal

type spaces. Revenue equivalence is a property which stipulates that two payment rules

that implement the same allocation rule must differ by a constant. We show that the rev-

enue equivalence result holds in a much larger class of ordinal type spaces than the 2-cycle

2Condition (3) in Rochet (1987) is the cycle monotonicity condition.
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monotonicity result. 3 By characterizing the implementable allocation rules using 2-cycle

monotonicity and payments by revenue equivalence, we characterize the set of dominant

strategy incentive compatible mechanisms in our multidimensional type spaces with ordinal

restrictions.

The rest of the chapter is organized as follows. In Section 2.2, we define the model. In

Section 2.3, we define the single peaked type space on a tree and state our main result.

Section 2.4 defines a broad class of ordinal type spaces consisting of strict types where

the 2-cycle monotonicity characterization holds. We describe the set of payment rules that

implement an implementable allocation rule in Section 2.5 using revenue equivalence. Section

2.6 introduces another ordinal type space where the methodology used in our earlier proofs

can be used to derive the 2-cycle monotonicity characterization. We relate our results to the

literature and conclude in Section 2.7. The Appendix contains all omitted proofs.

2.2 Implementation and Cycle Monotonicity

We consider a model with a single agent. As is well known in this literature, this is without

loss of generality. All our results generalize easily to a model with multiple agents. The single

agent is denoted by i. The set of alternatives for agent i is denoted by A. In an n-agent

model, A denotes the possible allocations of agent i. 4 The type (private information) of

agent i is a vector t ∈ R
|A|. If agent i has type t, then t(a) will denote the value of agent

i for alternative a. We assume private values and quasi-linear utility. This means that if

alternative a is chosen and agent i with type t makes a payment of p, then his net utility is

given by t(a)− p.

Not all possible vectors in R
|A| can be a type of agent i. Let D ⊆ R

|A| be the type space

of agent i - these are the permissible types of agent i. An allocation rule is a mapping

f : D → A. We will assume that f is onto. This is standard in the literature - if f is not

onto, then all the results can be restated in terms of range of A.

A payment rule of agent i is a mapping p : D → R. A mechanism consists of an

allocation rule and a payment rule.

Definition 2.1 An allocation rule f is implementable if there exists a payment rule p

such that for every s, t ∈ D, we have

s(f(s))− p(s) ≥ s(f(t))− p(t).

3The exact connection of our revenue equivalence result with the literature is established later.
4For instance, in a model with n agents and n objects, where each agent can be assigned exactly one

object and there is no externality in allocations across agents, A will be the set of objects and not the set of

matchings.
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In this case, we will say that p implements f and (f, p) is an incentive compatible mech-

anism.

The primary objective of this chapter is to give a simple necessary condition on the

allocation rule that is also sufficient for implementability in a large class of interesting type

spaces. For this, we revisit a classic condition that is already known to be necessary and

sufficient for implementability in any type space.

Definition 2.2 An allocation rule f is K-cycle monotone, where K ≥ 2 is a positive

integer, if for every finite sequence of types (t1, t2, . . . , tk), with k ≤ K, we have

k
∑

j=1

[

tj(f(tj))− tj(f(tj−1))
]

≥ 0, (2.1)

where t0 ≡ tk. An allocation rule f is cyclically monotone if it is K-cycle monotone for

every positive integer K ≥ 2.

It is well known that implementability is equivalent to cycle monotonicity (Rochet, 1987;

Rockafellar, 1970). This result is very general - it works on any type space D and does not

even require A to be finite. 5 However, cycle monotonicity is a difficult condition to use

and interpret since it requires verifying non-negativity of Inequality 2.1 for arbitrary length

sequences of types. In a series of papers, it has been established that a significantly weaker

condition than cycle monotonicity is sufficient for implementation in various interesting type

spaces. Bikhchandani et al. (2006) showed that 2-cycle monotonicity is sufficient for imple-

mentability if D is an order-based type space - this includes many interesting type spaces in

the context of multi-object auctions. Saks and Yu (2005) show that 2-cycle monotonicity is

sufficient for implementation if D is convex - this extends the result in Bikhchandani et al.

(2006) because an order-based type space is convex. Ashlagi et al. (2010) extend this result

to show that if the closure of D convex, then 2-cycle monotonicity is sufficient for implemen-

tation.

However, Mishra and Roy (2013) show that there are interesting non convex type spaces

where 2-cycle monotonicity is not sufficient for implementation. Further, they identify an

interesting class of non-convex type spaces where 3-cycle monotonicity is sufficient for im-

plementation but 2-cycle monotonicity is not sufficient.

Interestingly, Ashlagi et al. (2010) establish a surprising result by allowing for random-

ization, i.e., an allocation rule picks a probability distribution over alternatives. They show

5 When the set of alternatives is finite, this result can be slightly strengthened to say that implementability

is equivalent to |A|-cycle monotonicity (Mishra and Roy, 2013).
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that if every 2-cycle monotone randomized allocation rule is also cyclically monotone in a

type space D of dimension at least 2, then the closure of D must be convex.

It is not clear how far this result is true if f is allowed to be deterministic. Vohra

(2011) contains a simple example of a non-convex type space with four alternatives where

every deterministic allocation rule satisfying 2-cycle monotonicity is implementable. In his

example, Vohra (2011) considers the sale of two objects α and β to agents. The set of

alternatives is the set of all subsets of {α, β}. The restriction on values of agents is the

following: t({α, β}) = max(t({α}), t({β})) for each i. Hence, each agent desires at most one

object, though he may be assigned both the objects. The type space here is non-convex. To

see this, consider two types of agent i

t(∅) = 0, t({α}) = 3, t({β}) = 4, t({α, β}) = 4

s(∅) = 0, s({α}) = 5, s({β}) = 4, s({α, β}) = 5.

A convex combination of (0.5, 0.5) of these two types generates values 4 for objects α and β

but a value of 4.5 for the bundle of objects {α, β}. This violates the restriction on the type

space.

Note that if we allow at most one object to be assigned to an agent, then the type space

becomes convex, and we can apply earlier result to conclude that 2-cycle monotonicity is

sufficient for implementation. However, by allowing the alternative {α, β}, but still having

a restriction that agents desire at most one object, we get to a non-convex type space. The

result in Vohra (2011) shows that 2-cycle monotonicity is sufficient for implementation in

such an example. It is not clear on how to extend the proof of this example if there are more

than two objects.

2.2.1 A Motivating Example

Since the type space in the example in Vohra (2011) seems to be a slight modification of

a convex type space, it is still unclear whether there are interesting non-convex type space

where 2-cycle monotonicity is sufficient for implementation. The result in Ashlagi et al.

(2010) shows that if every 2-cycle monotone randomized allocation rule is implementable

in a multidimensional type space, then it must be convex. This shows that there is a

significant gap in understanding implementability of deterministic allocation rules in non-

convex multidimensional type spaces. We give below a motivating example to show that

there are interesting non-convex type spaces where the current results are silent. Our results

will apply to such type spaces.

Consider a general scheduling problem as follows. A number of firms procure prod-

ucts/parts from a supplier over a time horizon. In each time period, the supplier can only
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supply to one firm. Every firm i has a time period τ ∗ where it gets the maximum value from

getting its products supplied. The firms have single peaked preference over time, i.e., for any

time periods τ, τ ′, if τ < τ ′ < τ ∗ or τ > τ ′ > τ ∗, then a firm values supply of its products

at time period τ ′ to time period τ (this may be due to inventory carrying cost and delivery

delay costs).

The type space in this example is non-convex. To see this, suppose there are just three

time periods {1, 2, 3} and consider two single peaked types of agent (firm) i: s := (6, 4, 3)

(peak value is period 1) and t := (3, 4, 6) (peak value is period 3). A convex combination
s+t
2

produces the type (4.5, 4, 4.5), which is no longer single peaked.

In such non-convex type spaces, we characterize implementability using 2-cycle mono-

tonicity and apply revenue equivalence to obtain a complete characterization of dominant

strategy incentive compatible mechanisms. Thus, there are interesting type spaces where

earlier results are silent and our results provide sharp characterizations of implementability

and incentive compatibility.

2.3 The Type Space

We consider the problem of choosing an alternative (a location) over a tree network. Our

network G is given by a finite set of nodes A and a set of undirected edges E between these

nodes. The set A is the set of alternatives or outcomes from which one of the alternatives

must be chosen. We will assume that G is a tree, i.e., a graph whose edges do not form

any cycles and there is a unique path between every pair of alternatives/nodes. The private

information or type of each agent is a vector t ∈ R
|A|
+ . The set of possible types (type space)

of each agent will be determined by G.

We define the type space by imposing ordinal restriction on type spaces. Notice that each

type induces a weak ordering on the set of alternatives. We call a type t strict if t(a) 6= t(b)

for all a 6= b. A strict type induces a linear order on the set of alternatives. Let P be the

set of all linear orders over A. Given a linear order P ∈ P , we denote the k-th ranked

alternative in P as P (k). Given any pair of alternatives a, b ∈ A, there exists a unique path

in G between a and b, and we denote this unique path as Π(a, b). A linear order P ∈ P is

single peaked with respect to G if for every a ∈ A and every b ∈ Π(a, P (1)), we have bPa.

Let D ⊆ P be the set of all single peaked linear orders in P .

Definition 2.3 The strict single peaked type space TG (with respect to G) is the set

of all non-negative type vectors that induce a linear order in D, i.e.,

TG := {t ∈ R
|A|
+ : t induces P for some P ∈ D}.

The single peaked type space is cl(TG), where cl(TG) denotes the closure of the set TG.
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The main result of the chapter is the following.

Theorem 2.1 An allocation rule f : cl(TG) → A is implementable if and only if it is 2-cycle

monotone.

Remark. In many contexts, it is natural to assume that there is an alternative whose value

is always zero (for instance, in auction problems, the alternative of not getting any object

gives zero value to the agent). Though we do not explicitly allow this in our model, all our

proofs can be modified straightforwardly to accommodate the fact that there is an alternative

which is worst ranked and has value zero at every type.

2.3.1 Proof of Theorem 2.1

The proof of Theorem 2.1 will be done using a series of Lemmas. These lemmas will reveal

the underlying structure of the type space. Further, we will show how these steps can be

used in other type spaces to extend Theorem 2.1.

Denote by D ≡ cl(TG). First, by Rochet (1987), if f : D → A is implementable, then

it is 2-cycle monotone. Next, again by Rochet (1987), if f is cyclically monotone, then it is

implementable. So, we will show that if f is 2-cycle monotone, then it is cyclically monotone.

In the remainder of the section, we assume that f is 2-cycle monotone.

For every a ∈ A, define D(a) as follows.

D(a) := {t ∈ D : f(t) = a}.

Since f is onto, D(a) is non-empty. Next, for every s, t ∈ D, define ℓ(s, t) as follows.

ℓ(s, t) := t(f(t))− t(f(s)).

Notice that 2-cycle monotonicity is equivalent to requiring that for every s, t ∈ D, we have

ℓ(s, t) + ℓ(t, s) ≥ 0. Now, for every a, b ∈ A, define d(a, b) as follows.

d(a, b) := inf
t∈D(b)

[

t(b)− t(a)
]

.

We state below a well known fact - see, for instance, Lemma 6 in Bikhchandani et al. (2006).

Lemma 2.1 For every a, b ∈ A, d(a, b) + d(b, a) ≥ 0.

Proof : Suppose d(a, b) + d(b, a) = −ǫ < 0 for some a, b ∈ A. This means, there is a

s ∈ D(b) and t ∈ D(a) such that [s(b) − s(a)] + [t(a) − t(b)] < 0. But this means that

ℓ(s, t) + ℓ(t, s) < 0, a contradiction to 2-cycle monotonicity. �
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For any a, b ∈ A, we say a and b are G-neighbors if the unique path between a and b in

G is a direct edge between a and b in G. The following facts will be useful throughout the

proofs. These facts are true due to the single peakedness of the type space.

Fact 2.1 For any a, b ∈ A, if a and b are G-neighbors, then there exists a linear order

P ∈ D such that P (1) = a, P (2) = b.

Fact 2.1 says that if a and b are G-neighbors then there is some ordering where they are

ranked first and second.

Fact 2.2 For any a, c ∈ A and b ∈ Π(a, c) 6 such that b is a G-neighbor of a, there exists a

linear order P ∈ D such that {P (1), P (2)} = {a, b}, xPc for all x ∈ Π(a, c) \ {c}, and cPx

for all x /∈ Π(a, c).

Fact 2.2 says that if a and c are any pair of alternatives with b being a G-neighbor of a in

Π(a, c), then there is some ordering where a and b are first and second ranked, followed by all

the other alternatives in Π(a, c), and followed by the remaining alternatives outside Π(a, c).

The first step of the proof of Theorem 2.1 is the following lemma.

Lemma 2.2 If a, b are G-neighbors, then d(a, b) + d(b, a) = 0.

Proof : Consider a, b ∈ A such that a and b are G-neighbors. By Lemma 2.1, d(a, b) +

d(b, a) ≥ 0. Assume for contradiction d(a, b) + d(b, a) = ǫ > 0. Then, either d(a, b) > ǫ
2
or

d(b, a) > ǫ
2
. Suppose d(a, b) > ǫ

2
- a similar proof works if d(b, a) > ǫ

2
. Then, there is a type

s ∈ D(b) such that d(a, b) ≤ s(b) − s(a) < d(a, b) + ǫ1, for any ǫ1 > 0 arbitrarily close to

zero, in particular ǫ1 <
ǫ
2
. Hence, s(b)−s(a) > ǫ

2
. We now choose a δ ∈ (2ǫ1, s(b)−s(a)) but

arbitrarily close to 2ǫ1. Since a and b are G-neighbors, by Fact 2.1, there exists a P ∈ D such

that b is top ranked and a is second ranked. We can construct a type u ∈ D that induces P

and

u(x) =











s(x) + δ if x = a

s(x) + δ
2

if x = b

≤ min(s(x), s(a)) if x /∈ {a, b},

Notice that since s(b) > s(a), we have u(b) > u(a) for sufficiently small δ > 2ǫ1. Also,

alternatives other than a and b are ordered according to P but their values are not increased.

We will now argue that f(u) = a. First, if f(u) = x /∈ {a, b}, we have u(x) − u(b) ≤

s(x) − s(b) − δ
2
< s(x) − s(b), which violates 2-cycle monotonicity. Second, if f(u) = b, we

have u(b)−u(a) = s(b)− s(a)− δ
2
< d(a, b)− ( δ

2
− ǫ1) < d(a, b), which violates the definition

of d(a, b). Hence, f(u) = a.

6With a slight abuse of notation, we let Π(a, c) to denote the set of alternatives (including a and c) in

the unique path from a to c in G.
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But this implies that d(b, a) ≤ u(a) − u(b) = s(a) − s(b) + δ
2
≤ −d(a, b) + δ

2
. Hence,

d(b, a) + d(a, b) ≤ δ
2
. Since δ, ǫ1 can be chosen arbitrarily close to zero, this contradicts the

fact that d(a, b) + d(b, a) = ǫ > 0. �

The next step is to show that for any pair of alternatives a and c, there is some alternative

b ∈ Π(a, c) such that a version of the reverse triangle inequality holds between a, b, and c

using d(·, ·).

Lemma 2.3 For any pair of alternatives a, c ∈ A such that a and c are not G-neighbors,

there exists an alternative b ∈ Π(a, c) such that

d(a, b) + d(b, c) ≤ d(a, c).

Proof : Fix a, c ∈ A such that a and c are not G-neighbors. Choose an ǫ > 0 and arbitrarily

close to zero and a t ∈ Dc such that d(a, c) ≤ t(c) − t(a) ≤ d(a, c) + ǫ. We consider two

cases.

Case 1. t(c) ≥ t(a). Choose b ∈ Π(a, c) such that b is a G-neighbor of c. By single

peakedness, for every x ∈ Π(a, c), we have t(x) ≥ t(a). Then, we can construct a new type

in which b and c occupy the top two ranks. We construct such a new type s as follows.

Choose ǫ′ > 0 but arbitrarily close to zero and let δ := t(c)− t(b)− d(b, c) + 2ǫ′. Note that

since t ∈ Dc, we have t(c)− t(b) ≥ d(b, c), and this implies that δ > 0.

s(x) =



















t(x) + ǫ′ if x = c

t(a) if x ∈ Π(a, c) \ {b, c}

t(x) + δ if x = b

≤ min(t(x), t(a)) if x /∈ Π(a, c).

By Fact 2.2, we can define s such that it is in cl(TG). We argue that f(s) = b. First,

suppose f(s) = x /∈ {b, c}. Then, s(x) − s(c) < t(x) − t(c), and this contradicts 2-cycle

monotonicity. Next, suppose f(s) = c. Then, d(b, c) ≤ s(c) − s(b) = t(c) − t(b) − δ + ǫ′ =

d(b, c)− ǫ′ < d(b, c), a contradiction. Hence, f(s) = b.

Now, d(a, b) ≤ s(b) − s(a) = [t(b) − t(a) + δ] = t(c) − t(a) − d(b, c) + 2ǫ′ ≤

d(a, c)− d(b, c) + 2ǫ′ + ǫ. Since ǫ and ǫ′ can be chosen arbitrarily close to zero, we conclude

that d(a, b) + d(b, c) ≤ d(a, c).

Case 2. t(c) < ti(a). Let b ∈ Π(a, c) be the G-neighbor of a. Define the subset of

alternatives C as follows: C := {c′ ∈ Π(b, c) : t(c′) = t(c) and ∀ c′′ ∈ Π(c′, c), t(c′′) = t(c)}.

In other words, C is the set of “contiguous” alternatives in Π(b, c) starting from c which have
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the same value as t(c) in type t. Now, construct a new type s as follows. Choose an ǫ′ > 0

but arbitrarily close to zero. Note that ǫ′ can be chosen sufficiently close to zero such that

for all x ∈ Π(a, c) \ C, we have t(x) > t(c) + ǫ′. Also, choose δ = t(c) − t(b) − d(b, c) + 2ǫ′.

As before, δ > 0.

s(x) =



















t(c) + ǫ′ if x ∈ Π(a, c) \ {a, b}

t(x) if x = a

t(x) + δ if x = b

≤ min(t(x), s(c)) if x /∈ Π(a, c).

Again, by Fact 2.2, such a type s can be found in cl(TG). If f(s) = x /∈ C ∪ {b}, then

s(x) − s(c) < t(x) − t(c), which violates 2-cycle monotonicity. Hence, f(s) ∈ C ∪ {b}. We

consider two subcases.

Case 2a. Suppose f(s) = c′ ∈ C. Then, d(c, c′) ≤ s(c′) − s(c) = 0. But f(t) = c implies

that d(c′, c) ≤ t(c) − t(c′) = 0. This implies that d(c, c′) + d(c′, c) ≤ 0. By Lemma 2.1,

d(c, c′)+d(c′, c) = 0. Since, d(c, c′) ≤ 0 and d(c′, c) ≤ 0, we conclude that d(c, c′) = d(c′, c) =

0. Further, since f(s) = c′, d(a, c′) ≤ s(c′)− s(a) = t(c)− t(a) + ǫ′ ≤ d(a, c) + ǫ+ ǫ′. Since ǫ

and ǫ′ can be chosen arbitrarily small, d(a, c′) ≤ d(a, c). Hence, d(a, c′) + d(c′, c) ≤ d(a, c),

where we used the fact that d(c′, c) = 0. This completes the proof of this case.

Case 2b. Suppose f(s) = b. Then, d(a, b) ≤ s(b) − s(a) = t(b) − t(a) + δ = t(c) − t(a) −

d(b, c) + 2ǫ′ ≤ d(a, c) − d(b, c) + 2ǫ′ + ǫ. Since ǫ and ǫ′ can be chosen arbitrarily small,

d(a, b) + d(b, c) ≤ d(a, c). This completes the proof of this case. �

Lemmas 2.2 and 2.3 are the foundations of our proof. The next lemma (and many

subsequent lemmas) is a consequence of these two lemmas. Lemmas 2.2 and 2.3 are the only

place where we use the fact that the type space is cl(TG). This implies that as long as we

can prove analogues of Lemmas 2.2 and 2.3 in a type space, Theorem 2.1 continues to hold.

Now, consider the following lemma.

Lemma 2.4 For any pair of alternatives a1, ak ∈ A, let Π(a1, ak) = (a1, a2, . . . , ak) with

k > 2. Then, the following are true.

d(a1, a2) + d(a2, a3) + . . .+ d(ak−1, ak) ≤ d(a1, ak)

d(ak, ak−1) + d(ak−1, ak−2) + . . .+ d(a2, a1) ≤ d(ak, a1).

Proof : Consider any pair of alternatives a1, ak ∈ A and let (a1, a2, . . . , ak) be the sequence

of alternatives on Π(a1, ak). We do the proof using induction on k. If k = 3, then the claim
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is true due to Lemma 2.3. Suppose the claim is true for all k < K. If k = K, then by Lemma

2.3, there is an alternative ar ∈ {a2, . . . , aK−1} such that d(a1, ar) + d(ar, aK) ≤ d(a1, aK).

The paths (a1, . . . , ar) and (ar, . . . , aK) each contain less than K nodes. By our induction

hypothesis, d(a1, a2) + . . . + d(ar−1, ar) ≤ d(a1, ar) and d(ar, ar+1) + . . . + d(aK−1, aK) ≤

d(ar, aK). Hence, d(a1, a2) + . . .+ d(aK−1, aK) ≤ d(a1, aK).

A similar argument shows that d(ak, ak−1)+ d(ak−1, ak−2)+ . . .+ d(a2, a1) ≤ d(ak, a1). �

The following lemma is well known - see, for instance, Heydenreich et al. (2009).

Lemma 2.5 Suppose for every sequence of alternatives (a1, . . . , ak), we have

k
∑

j=1

d(aj, aj+1) ≥ 0,

where ak+1 ≡ a1. Then, f is cyclically monotone.

Proof : Consider any sequence of types (t1, . . . , tk) such that f(tj) = aj for all j ∈ {1, . . . , k}.

Then, [t2(a2)−t2(a1)]+. . .+[tk(ak)−tk(ak−1)]+[t1(a1)−t1(ak)] ≥ d(a1, a2)+. . .+d(ak−1, ak)+

d(ak, a1) ≥ 0, where we use d(a, a) = 0 for any a ∈ A. So, f is cyclically monotone. �

Lemma 2.6 Suppose Π(a1, ak) ≡ (a1, . . . , ak). Then,

k
∑

j=1

d(aj, aj+1) ≥ 0,

where ak+1 ≡ a1.

Proof : If k = 2, then the claim is true by 2-cycle monotonicity. Else, k > 2 and aj and

aj+1 are G-neighbors for all j ∈ {1, . . . , k−1}. By Lemma 2.4, d(ak, a1) ≥ d(ak, ak−1)+ . . .+

d(a2, a1). Hence,

d(a1, a2) + d(a2, a3) + . . .+ d(ak−1, ak) + d(ak, a1) ≥
k−1
∑

j=1

[

d(aj, aj+1) + d(aj+1, aj)
]

= 0,

where the last equality follows from the fact that aj and aj+1 are G-neighbors for all j ∈

{1, . . . , k − 1} and Lemma 2.2. �

At this point, it will be useful to consider another graph Gf . 7 The set of nodes in Gf is

the set of alternatives A. It is a complete directed graph. Hence, for every pair of alternatives

7In Heydenreich et al. (2009), this graph is called the allocation graph.
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a, b ∈ A, there is an edge from a to b and an edge from b to a. The path from an alternative

a to another alternative b in Gf is a directed path. Note that for every path (a1, a2, . . . , ak)

in Gf from a1 to ak, the corresponding undirected path may or may not exist in G. For any

pair of alternatives a1, ak ∈ A, denote by distf (a1, ak) the shortest path length from a1 to ak

in Gf .

The next lemmas shows that the shortest path in Gf between a pair of alternatives a and

b is the unique path Π(a, b) in G.

Lemma 2.7 For any pair of alternatives a, b ∈ A, let Π(a, b) ≡ (a ≡ a1, a2, . . . , b ≡ ak).

Then,

k−1
∑

j=1

d(aj, aj+1) = distf (a, b).

Proof : Fix a, b ∈ A and choose a shortest path from a to b in Gf . Let this path be

(a′1, . . . , a
′
h), where a′1 ≡ a and a′h ≡ b. Now, take any edge (x, y) in this path. If x and y

are not G-neighbors, then we can pick the path Π(x, y) ≡ (x, c1, . . . , cr, y) in G from x to

y, and d(x, y) ≥ d(x, c1) + d(c1, c2) + . . . + d(cr−1, cr) + d(cr, y) by Lemma 2.4. Combining

the paths Π(a′j, a
′
j+1) for all j ∈ {1, . . . , k − 1}, we get the path Π(a, b) from a to b in

G, which we denote by (a1, . . . , ak) with a ≡ a1 and b ≡ ak, and some cycles in G. By

Lemma 2.6, these cycles have non-negative length (according to weights defined in Gf ).

Hence, distf (a, b) ≥
∑k−1

j=1 d(aj, aj+1). By definition, distf (a, b) ≤
∑k−1

j=1 d(aj, aj+1). Hence,

distf (a, b) =
∑k−1

j=1 d(aj, aj+1). �

This leads to the final lemma in the proof of Theorem 2.1.

Lemma 2.8 Every cycle of Gf has non-negative length.

Proof : Consider a cycle (a1, . . . , ak, a1) in Gf . By Lemma 2.7, the unique path

Π(a1, ak) ≡ (a1, b1, . . . , br, ak) in G satisfies d(a1, b1)+d(b1, b2)+ . . .+d(br−1, br)+d(br, ak) =

distf (a1, ak) ≤ d(a1, a2) + . . .+ d(ak−1, ak). This shows that

d(a1, a2) + . . .+ d(ak−1, ak) ≥ d(a1, b1) + d(b1, b2) + . . .+ d(br−1, br) + d(br, ak).

Now, consider the path (ak, br, . . . , b1, a1) from ak to a1. By Lemma 2.4,

d(ak, a1) ≥ d(ak, br) + d(br, br−1) + . . .+ d(b2, b1) + d(b1, a1).

19



Adding the previous two inequalities, we get

k
∑

j=1

d(aj, aj+1) ≥ [d(a1, b1) + d(b1, a1)] + [d(b1, b2) + d(b2, b1)] + . . .

+ [d(br−1, br) + d(br, br−1)] + [d(ak, br) + d(br, ak)]

= 0,

where ak ≡ a1 and the last equality follows from Lemma 2.2 and the fact that consecutive

alternatives on the path (a1, b1, . . . , br, ak) are G-neighbors. �

Lemmas 2.8 and 2.5 establish that f is cyclically monotone, and hence, implementable.

This completes the proof of Theorem 2.1.

2.4 Type Spaces with Ordinal Restrictions: The Difference

Indifference Makes

We now investigate how far we extend Theorem 2.1. For this, we formally define the notion of

an ordinal type space. Let D ⊆ P be some subset of strict orderings of the set of alternatives

A. We will refer to D as a domain. We denote by T (D) the set of all strict types in R
|A|
++

that are consistent with the strict orderings in D, i.e.,

T (D) := {t ∈ R
|A|
++ : t is consistent with some P ∈ D}.

Definition 2.4 A type space D ⊆ R
|A|
+ is ordinal if there exists D ⊆ P such that D =

T (D).

In our previous section, we assumed that D is the set of all single peaked preferences

with respect to a tree graph and showed that if the type space is cl(T (D), then every 2-cycle

monotone allocation rule is implementable.

We first give an example to illustrate how tight this result is. Below, we consider an

example with three alternatives and D that contains one more preference ordering than the

set of all single peaked orderings. We show that Theorem 2.1 fails in this domain.

Example 2.1

Let A = {a, b, c} and D consists of the following orderings shown in Table 2.1.

20



P 1 P 2 P 3 P 4 P 5

a b b c c

b a c b a

c c a a b

Table 2.1: A K-connected domain satisfying top lifting

Notice that D \ {P 5} is the set of all single peaked linear orderings with respect to the

graph with edges {a, b}, {b, c} (i.e., the line graph with a and c as endpoints). Let D = T (D).

We now define an allocation rule f : cl(D) → A as follows.

f(t) =







































































a if t(a)− t(b) ≥ 1, t(a) > t(b) ≥ t(c)

b if t(a)− t(b) < 1, t(a) ≥ t(b) ≥ t(c), t(a) 6= t(b) 6= t(c)

b if t(b) ≥ t(a) ≥ t(c), t(a) 6= t(b) 6= t(c)

b if t(b) ≥ t(c) ≥ t(a), t(a) 6= t(b) 6= t(c)

c if t(c) ≥ t(b) ≥ t(a), t(a) 6= t(b) 6= t(c)

c if t(c) > t(a) ≥ t(b)

a if t(c) = t(a) > t(b), t(a)− t(b) ≥ 1

c if t(c) = t(a) > t(b), t(a)− t(b) < 1

c if t(a) = t(b) = t(c).

Note that d(a, b) = −1, d(b, a) = 1, d(b, c) = d(c, b) = d(c, a) = d(a, c) = 0. Hence, f is

2-cycle monotone. But d(a, b)+d(b, c)+d(c, a) = −1 implies that f is not 3-cycle monotone,

and hence, not implementable.

2.4.1 Strict Types, Ordinal Connectedness, and Lifting

Surprisingly, if we restrict attention to strict types, Theorem 2.1 can be shown to be true in

a larger class of type spaces (including the interior of the type space discussed in Example

2.2). In this section, our objective is to define a class of ordinal type spaces consisting of

strict types where Theorem 2.1 continues to hold 8.

We will focus on ordinal type spaces that are ordinally connected in some way. We define

two notions of connectedness and a lifting property here. We use the notation P (k) to denote

the k-th ranked alternative in ordering P . Let D ⊆ P .

Definition 2.5 An alternative a ∈ A can be top lifted at an ordering P ∈ D, if for every

8If the set of preference orderings in D equal the set of all preference orderings P, then cl(T (D)) is a

convex type space, and using Saks and Yu (2005), we can immediately conclude that Theorem 2.1 holds.

The type spaces that we will cover are not necessarily convex and this makes the results novel.
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b ∈ A with aPb, there exists an ordering P ′ ∈ D such that (a) P ′(1) = a and (b) if bPc for

any alternative c then bP ′c.

Notice that P ′ may be different for different b in the definition above. Also, if P (1) = a,

then a can be top lifted using P itself, and hence, the condition is vacuously satisfied.

Table 2.2 illustrates the idea of top lifting. Suppose A = {x, y, z, x′, y′, a, b} and P , as

shown in Table 2.2, is in D. Consider a, b ∈ A. Note that in P ′ and P ′′, a is the top ranked

alternative. For any alternative a′ ∈ {z, b} the alternatives that were worse than a′ in P

continue to be worse than a′ in P ′. For any alternative a′ ∈ {x′, y′} the alternatives that

were worse than a′ in P continue to be worse than a′ in P ′. Hence, if P ′, P ′′ ∈ D, a can be

top lifted at P .

P P ′ P ′′

x [a] [a]

y x x

[a] z z

z b b

b y y

x′ y′ x′

y′ x′ y′

Table 2.2: Top Lifting Property

Definition 2.6 A domain of preference orderings D satisfies top lifting if for every a ∈ A

and every P ∈ D, a can be top lifted at P .

We now define two notions of connectedness. We generalize the notion of G-neighbors

we had defined earlier. Two alternatives a and b are neighbors in a domain of preference

ordering D if there is an ordering P ∈ D such that P (1) = a and P (2) = b, and another

ordering P ′ ∈ D such that P ′(1) = b and P ′(2) = a. Now, construct an undirected graph

G(D) as follows. The set of nodes in G(D) is the set of alternatives A. For any a, b ∈ A,

there is an edge {a, b} in G(D) if and only if a and b are neighbors.

Definition 2.7 A domain of preference orderings D is ordinally connected if G(D) is a

connected graph, i.e., for every pair of alternatives a, b ∈ A there is a path in G(D) between

a and b.

Note that we do not require that every pair of alternatives are neighbors. We only require

that the neighborhood graph is connected. Example 2.1 gives a domain that is ordinally
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connected, but in the closure of the ordinal type space induced from it, the 2-cycle mono-

tonicity characterization result does not hold. Below, we strengthen the notion of ordinal

connectedness. Our strengthening will still include the domain in Example 2.1. However,

we will not allow for indifferences, i.e., only consider strict types. In that case, we will show

that our 2-cycle monotonicity characterization holds.

We need some preliminary definitions. For any ordering P ∈ D and for any alternative

b ≡ P (k) 6= P (1), an ordering P ′ is a local b-lift of P if P ′(k − 1) = P (k) = b, P ′(k) =

P (k− 1), and P ′(j) = P (j) for all j /∈ {k, k− 1}. For any ordering P and any alternative b,

we say an ordering P ′ is in the Kemeny b-path from P if there exists a sequence of orderings

(P ≡ P 1, P 2, . . . , P k ≡ P ′) such that for all j ∈ {1, . . . , k − 1}, P j+1 is a local b-lift of P j.

Definition 2.8 A pair of alternatives a, b ∈ A are K-neighbors9 if

1. for every ordering P ∈ D with P (1) = a and every P ′ that is in the Kemeny b-path

from P , we have P ′ ∈ D and

2. for every ordering P ∈ D with P (1) = b and every P ′ that is in the Kemeny a-path

from P , we have P ′ ∈ D.

In words, a and b are K-neighbors if whenever a is the top ranked, the preference ordering

obtained by lifting b one position up belongs to the domain and whenever b is top ranked,

the preference ordering obtained by lifting a one position up belongs to the domain. Note

that if a domain satisfies top lifting, then for any alternative a ∈ A, there is at least one

preference ordering P such that P (1) = a. Next, in such domains if a and b are K-neighbors,

then they are neighbors. Now construct an undirected graph K(D), where the set of nodes

is A and there is an edge between a pair of alternatives a, b ∈ A if and only if a and b are

K-neighbors.

Definition 2.9 A domain of preference orderings D is K-connected if the graph K(D)

is connected.

Clearly, a K-connected domain is ordinally connected. However, ordinally connected domains

need not be K-connected if |A| ≥ 4. The following example illustrates that.

Example 2.2

Suppose A = {a, b, c, d}. Consider a domain D consisting of the six preference orderings

shown in Table 2.3. Clearly, this domain is ordinally connected - the graph G(D) is a line

graph with edges {a, b}, {b, c}, {c, d}. But this domain is not K-connected. To see this,
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P 1 P 2 P 3 P 4 P 5 P 6

a b b c c d

b a c b d c

c c a a a a

d d d d b b

Table 2.3: Connected but not K-connected

consider the preference ordering P 5. The ordering P ′, where P ′(1) = c, P ′(2) = d, P ′(3) =

b, P ′(4) = a is a local b-lift of P 5 but is not in D. Hence, b and c are not K-neighbors.

Definition 2.10 A type space D is ordinally admissible if there is a domain of preference

orderings D that is K-connected and satisfies top lifting such that D = T (D).

Our main result is that in ordinally admissible type spaces, 2-cycle monotonicity is nec-

essary and sufficient for implementation. However, notice that an ordinally admissible type

space consists of strict types only.

Theorem 2.2 Suppose D is an ordinally admissible type space. Then, f : D → A is

implementable if and only if it is 2-cycle monotone.

The proof of Theorem 2.2 is given in the Appendix. The proof follows the exact steps

that we followed to prove Theorem 2.1. But now with strict types, we show that our steps

work in more general type spaces.

Although indifferences in ordinally admissible type spaces may break Theorem 2.2 (as

Example 2.1 shows), if we assume a certain amount of continuity of the allocation rule,

Theorem 2.2 is true.

Definition 2.11 Let D ≡ T (D) be an ordinally admissible type space. An allocation rule

f : cl(D) → A satisfies condition C∗ if for every t ∈ cl(D) \D, there exists a sequence of

types {tk}k in D such that limk→∞ tk = t and f(t) = f(tk) for all tk in the sequence.

With this additional condition, Theorem 2.2 now extends to domains with indifferences.

Theorem 2.3 Suppose T ≡ T (D) is an ordinally admissible type space and f : cl(D) → A

be an allocation rule satisfying condition C∗. Then, f is implementable if and only if it is

2-cycle monotone.

9The ‘K’ in ‘K-neighbors’ stands for Kemeny.
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Proof : The proof is a direct consequence of Theorem 2.2 and condition C∗. Suppose f is

2-cycle monotone but not implementable. Then, it is not cycle monotone and there exists a

sequence of types t1, . . . , tk such that

k
∑

j=1

[tj(f(tj))− tj(f(tj+1)] < 0, (2.2)

where tk+1 ≡ t1. By condition C∗, there exists a sequence of types s1, . . . , sk such that for

all j ∈ {1, . . . , k}, f(sj) = f(tj), sj ∈ T (D) and sj is arbitrarily close to tj. By Theorem 2.2,

we know that f restricted to T (D) satisfies cycle monotonicity. Hence,

k
∑

j=1

[sj(f(tj))− sj(f(tj+1)] ≥ 0.

Since sj is arbitrarily close to tj, this contradicts Inequality 2.2. �

The section highlights that there are ordinal type spaces where violation of 2-cycle mono-

tonicity can only occur at boundary. The usual revenue maximization problems (a la Myerson

(1981)) seek to maximize expected payment of an agent. Now, note that for any imple-

mentable allocation rule f : cl(T (D)) → A, we can take its restriction in T (D) and extend

it to an implementable allocation rule f̄ : cl(T (D)) → A satisfying condition C∗. We know

by revenue equivalence that the payment of an implementable allocation rule is uniquely

determined upto a constant. Usually, this constant is determined by the individual rational-

ity constraints and unique for all the implementable allocation rule if we are interested in

expected revenue maximization. Hence, f and f̄ must differ in payments only at boundary

points. Since the boundary points have Lebesgue measure zero, the expected payment of f

and f̄ must be the same. Hence, as far as revenue maximization is concerned, condition C∗

is without loss of generality.

2.4.2 Examples

We give various examples of D that satisfy the K-connectedness and the lifting property. The

first example is a convex type space, and hence, the earlier results already imply Theorem

2.2 in this type space. The remaining examples are of non-convex multidimensional type

spaces, and hence, the earlier results are silent on such examples. The single peaked type

space on a tree also satisfies K-connectedness and the lifting property, but since Theorem

2.1 covers it, we do not discuss it here.

1. Complete type space. In the complete type space, D is the set of all possible

orderings over A. So, K-connectedness holds. Further, top lifting is satisfied since all
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possible orderings are in D. Note that the complete type space covers the multi-object

auction model with unit demand. To see this, let A be the set of heterogeneous objects

and agent i can be assigned exactly one object from A. Then, the complete type space

assumption requires that any vector of non-negative valuations can be assigned to the

objects.

2. Semi single peaked type space. In semi single peaked type space, there is an

exogenously given ordering ≻ on the set of alternatives A. We say an ordering P is

single-peaked to left if for any pair of alternatives a, b ∈ A, b ≻ a and a ≻ P (1) implies

aPb. Similarly, an ordering P is single-peaked to right if for any pair of alternatives

a, b ∈ A, P (1) ≻ a and a ≻ b implies aPb. Hence, semi single peakedness requires

single peakedness to one of the sides of the peak.

The set of admissible orderings D is a semi single peaked domain if it consists of

either all left single peaked orderings or all right single peaked orderings. Consider

a semi single peaked domain D and assume that it consists of all right single peaked

orderings. Then, alternatives a and b are neighbors if B(a, b) = ∅, where B(a, b) is the

set of alternatives between a and b according to ≻. Note that a can be top ranked

in an ordering and any alternative b ∈ L(a) can be second ranked. However, if b is

top ranked, a can be second ranked only if B(a, b) = ∅. For this reason, G(D) is a

line graph, which is connected. It is also easy to see that every neighbor of a is also a

K-neighbor. This is because if b is a neighbor of a, then it can be lifted to any rank

from a given preference ordering. Hence, K(D) is also connected.

We can verify that the semi single peaked domain satisfies top lifting. To see this,

consider an ordering P ∈ D, where aPb. If b ∈ L(a), we can construct an ordering

where a is top ranked and b is second ranked by lowering all the alternatives (except a)

below b but maintaining single peaked to the right of a. If b ∈ R(a), then alternatives

to the left of a can be lowered sufficiently to make a the peak and it will automatically

maintain single peakedness to the right of a.

The interior of the type space of Example 2.1 is semi single peaked. To see this, consider

the exogenous ordering a ≻ b ≻ c. The set of all right single peaked preference orderings

with respect to ≻ is exactly the preference orderings shown in Example 2.1. As we had

shown, Theorem 2.1 does not apply to this type space but Theorem 2.2 applies.

3. Single peaked type space with characteristics. This is a generalization of

the single peaked type space. We are now exogenously given a set of orderings S

over the set of alternatives. The domain D consists of all orderings that are single

peaked with respect to some ≻∈ S. If S is a singleton, this is precisely the single
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peaked domain. Suppose the set of alternatives are objects. An element of S can be

interpreted as a “characteristic” of the objects. Depending on the characteristic used

by an agent to rank the objects, his preference must be single peaked with respect to

that characteristic.

Consider an example with A = {a, b, c, x, y} and let S = {≻1,≻2}, where a ≻1 b ≻1

c ≻1 x ≻1 y and y ≻2 a ≻2 b ≻2 x ≻2 c. Figure 2.1 shows the graph G(D) for this do-

main. The edges are derived from the single peaked restrictions on each characteristics.

xa

b c

y

Figure 2.1: Graph K(D) for the single peaked domain with two characteristics.

In general, the graph K(D) is connected since D contains the single peaked domain,

which is connected. Also, D satisfies the top lifting property. To see this, consider any

a, b ∈ A and suppose there is a preference ordering P where aPb. Since P is single

peaked with respect to some ≻∈ S, we can apply the arguments for the single peaked

domain to show that there is some ordering P ′ that is single peaked with respect to ≻

such that top lifting holds for a and b at P .

2.5 Payments and Revenue Equivalence

It is well know that if f is implementable, then the following payment rule implements f . Fix

a type s ∈ D and set p(t) = 0 for all t with f(t) = f(s). For all t ∈ D such that f(t) 6= f(s),

set p(t) equal to distf(f(s), f(t)). If f is cyclically monotone, then, p implements f - see for

instance, Vohra (2011) and Kos and Messner (2013).

The characterization of the set of all payment rules that implement an allocation rule is

done using the revenue equivalence principle.

Definition 2.12 An allocation rule f satisfies revenue equivalence if for all payment
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rules p, q that implement f , there exists a constant α ∈ R such that for all t ∈ D

p(t) = q(t) + α.

The revenue equivalence holds in ordinal type spaces under weaker conditions than the

conditions we have discussed for the 2-cycle monotonicity characterization. We are going to

show revenue equivalence in ordinally connected type spaces. To remind, a set of preference

orderings D is ordinally connected, if the graph G(D) is connected.

Theorem 2.4 Suppose D is ordinally connected and D = T (D) or D = cl(T (D)). Then

every implementable allocation rule f : D → A satisfies revenue equivalence.

The proof of Theorem 2.4 is in the Appendix. The proof essentially follows by showing a

counterpart of Lemma 2.2 for ordinally connected type spaces and then using standard results

from the literature. We remark that Chung and Olszewski (2007) and Heydenreich et al.

(2009) have shown that if D is a topologically connected subset of R|A|, then every imple-

mentable allocation rule satisfies revenue equivalence in such a type space. However, since D

consists of strict orderings, T (D) is not topologically connected and hence, our result is not

a direct corollary of their results. However, both these papers provide sufficient conditions

using which revenue equivalence can be checked in our ordinal type spaces. The proof uses

such conditions.

In the classical literature on multidimensional mechanism design a type space is usually

a subset of R|A| possessing some geometrical properties. The state-of-art in that literature is

that if the type space is a topologically connected subset of R|A|, then every implementable

allocation rule satisfies revenue equivalence (Chung and Olszewski, 2007; Heydenreich et al.,

2009). On the other hand, if the type space is convex, then every 2-cycle monotone allocation

rule is implementable. Some parallel between our results and these results can be drawn as

follows. Theorem 2.4 shows that in ordinally connected type spaces, every implementable

allocation rule satisfies revenue equivalence. On the other hand, Theorem 2.2 shows that

in ordinally admissible type spaces (which requires K-connectedness and top lifting), every

2-cycle monotone allocation rule is implementable.

An ordinally connected type space allows us to be precise on the nature of the shortest

paths between any pair of nodes in Gf . Suppose f is implementable. Now, for any pair

of alternatives a, b ∈ A, consider any path (a1, . . . , ak) in G(D), where a1 ≡ a and b ≡ ak.
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Then, distf(a, b) =
∑k−1

j=1 d(aj, aj+1). This follows from the fact that

0 = distf (a, b) + distf (b, a)

≤
k−1
∑

j=1

d(aj, aj+1) +
1

∑

j=k−1

d(aj+1, aj)

=
k−1
∑

j=1

[

d(aj, aj+1) + d(aj+1, aj)
]

= 0,

where the first equality follows from Theorem 2.4 and the last equality from Lemma 2.2.

Since in many examples, we know the structure of G(D), this allows us to know the payments

in these type spaces explicitly. Moreover, it can be shown that these particular payments

occupy a central role among the set of all payments - Kos and Messner (2013) contain a

detailed discussion on this topic in very general type spaces.

2.6 Domains with Free Triple at the Top

So far, we have discussed domains that are K-connected (the single peaked domain on a tree

in Theorem 2.1 is also a K-connected domain). In this section, we identify an ordinal domain

that is not K-connected and still every 2-cycle monotone allocation rule is implementable in

the type space induced by this domain. 10 Our domain uses the following definition. We say

alternatives a, b, c ∈ A are a free triple at the top in domain D if for every x, y, z ∈ {a, b, c}

with x 6= y 6= z, there exists P ∈ D such that P (1) = x, P (2) = y, P (3) = z. In other words,

there exists six distinct orderings where a, b, c occupy top three ranks.

Definition 2.13 A domain D satisfies free triple at the top (FTT) if every three dis-

tinct alternatives in A are a free triple at the top in D.

We make some observations about FTT domains. First, an FTT domain is ordinally

connected since any pair of alternatives can be ranked first and second. However, it need not

be K-connected. To see this consider the following example with A = {a, b, c, d, e}. Suppose

whenever a, b, c occupy the top 3 positions, d is better than e. It is easy to construct an

FTT domain that satisfies this restriction. But such a domain will not be K-connected since

10If we did not focus on ordinal type spaces, then a a type space not satisfying K-connectedness but where

2-cycle monotonicity implies implementability is easy to find - this follows from the fact in any convex type

space, 2-cycle monotonicity implies implementability.
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K-connectedness will require the existence of an ordering where e is fourth ranked and d is

fifth ranked. 11

We are now ready to state the main result of this section.

Theorem 2.5 Suppose D = T (D) or D = cl(T (D)), where D is an FTT domain. Then,

f : D → A is implementable if and only if it is 2-cycle monotone.

The proof is given in the appendix. After an initial step, the proof uses the general method-

ology developed in the proof of Theorem 2.1.

2.7 Relation to the Literature

We discuss specific literature and its relation to our results. As discussed earlier, in the one

dimensional model of single object auctions, Myerson (1981) characterizes implementable

allocation rules using a monotonicity condition, which is equivalent to 2-cycle monotonic-

ity - see also Spence (1974). The cycle monotonicity characterization in Rochet (1987)

can be thought of as an extension of Myerson’s characterization to multidimensional mod-

els. The recent literature on multidimensional mechanism design started with the paper of

Jehiel et al. (1999) who observed that besides 2-cycle monotonicity, an integral condition is

required to ensure Bayesian implementability in multidimensional environments with ran-

domization. However, if the set of alternatives is finite, the allocation rule is deterministic

and the type space is convex, only 2-cycle monotonicity is sufficient (Bikhchandani et al.,

2006; Saks and Yu, 2005; Ashlagi et al., 2010; Gui et al., 2004; Cuff et al., 2012). 12 Our re-

sults are extensions of these results to non-convex type spaces. Mishra and Roy (2013) also

consider a non-convex type space, which they call rich dichotomous type space, and show

that 3-cycle monotonicity is sufficient for implementability in their type space but 2-cycle

monotonicity is not sufficient.

A parallel literature in multidimensional mechanism design pursues type spaces

where revenue equivalence result in Myerson (1981) holds. Contributions to this are

11This also motivates the following FTT domain. Suppose the alternatives are some public projects. There

is a “social ranking” ≻ of these projects. The type of an agent consists of some component of his private

preference and the remaining of the social ranking. In particular, the agent ranks any three projects as his

top three and then follows the social ranking for the remaining projects. Such a domain will satisfy the FTT

assumption.
12There are many papers which characterize different extensions of implementability in convex type

spaces using 2-cycle monotonicity and additional technical conditions - for Bayes-Nash implementation,

see Jehiel et al. (1999) and Muller et al. (2007); for randomized implementation, see Archer and Kleinberg

(2008); for implementation with general value functions, see Berger et al. (2010) and Carbajal and Ely

(2013); for extension of cycle monotonicity to general environments, see Rahman (2011).
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Krishna and Maenner (2001); Milgrom and Segal (2002); Chung and Olszewski (2007);

Heydenreich et al. (2009); Carbajal (2010); Kos and Messner (2013). We use a characteriza-

tion in Heydenreich et al. (2009) to prove revenue equivalence in our type spaces.

Most of the type space restrictions in multidimensional mechanism design is geometric

(using assumptions like convexity or connectedness in topological spaces). Our ordinally ad-

missible domain formulation is influenced by a vast literature in strategic social choice theory

where transfers are not allowed. For instance, the connectedness and lifting properties we

discuss have close resemblance to similar properties being used to identify dictatorial domains

(Aswal et al., 2003), median domains (Chatterji et al. (2013), Nehring and Puppe (2007a),

Nehring and Puppe (2007b)), tops-only domains (Chatterji and Sen, 2011; Weymark, 2008)

in social choice theory. We find it interesting to observe that such conditions could be used

in multidimensional mechanism design models with transfers to derive sufficient conditions

for implementability. Since most of our non-convex type spaces are single peaked type spaces

or their generalizations, we will like to point out that strategic social choice theory, start-

ing with Moulin (1980) and Sprumont (1991), have a long tradition of studying these type

spaces without monetary transfers. Other notable papers in this literature are Otten et al.

(1996), Klaus et al. (1998) and Bossert and Peters (2009). However, allowing for transfers

in many of these type spaces is practical in many of these models. Hence, our results extend

this literature to the case of transfers. At the same time, our characterizations using 2-cycle

monotonicity are only implicit characterizations, unlike the characterizations in the strategic

social choice theory, which are more explicit in describing the form of the implementable

allocation rules. The counterpart to such explicit characterizations in the multidimensional

mechanism design with transfers literature is Roberts’ theorem (Roberts, 1979), who showed

that affine maximizers are the only implementable allocation rules in the complete type

space. We leave such characterizations in single peaked domains for future research.

An important objective in mechanism design is to design revenue maximizing mecha-

nisms. While Myerson (1981) solved this problem for the sale of a single object, the prob-

lem remains unsolved for multidimensional problems - see a recent take on this topic in

Manelli and Vincent (2007); Hart and Nisan (2012); Hart and Reny (2012). However, as

Myerson illustrates, there are two important steps in solving the optimal auction problem:

(a) characterizing the implementable allocation rules using a monotonicity property and (b)

establishing revenue equivalence to pin down the payments. Though the eventual optimiza-

tion problem remains illusive in the multidimensional type spaces, the literature has made

significant progress in advancing these two steps for multidimensional type spaces. Our re-

sults add to this literature and we hope that these advances will eventually help us solve the

revenue maximization problem in the multidimensional type spaces.
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Appendix: Omitted Proofs

Proof of Theorem 2.2

We follow the steps in Theorem 2.1. Obviously, some of the steps of Theorem 2.1 continues

to apply in this type space. So, we only do the steps that do not apply. Lemma 2.1 continues

to hold. The first step of the proof of Theorem 2.2 is the analogue of Lemma 2.2.

Lemma 2.9 If a, b are neighbors, then d(a, b) + d(b, a) = 0. 13

Proof : Consider a, b ∈ A such that a and b are neighbors. By Lemma 2.1, d(a, b)+d(b, a) ≥

0. Assume for contradiction d(a, b) + d(b, a) = ǫ > 0. Then, either d(a, b) > ǫ
2
or d(b, a) > ǫ

2
.

Suppose d(a, b) > ǫ
2
- a similar proof works if d(b, a) > ǫ

2
. Then, there is a type s ∈ D(b) such

that d(a, b) ≤ s(b)− s(a) < d(a, b) + ǫ1, for any ǫ1 > 0 arbitrarily close to zero, in particular

ǫ1 <
ǫ
2
. Hence, s(b)− s(a) > ǫ

2
. We now choose a δ ∈ (2ǫ1, s(b)− s(a)) but arbitrarily close

to 2ǫ1. Since a and b are neighbors, there exists a P ∈ D such that b is top ranked and a is

second ranked. We can construct a type u ∈ D that induces P and

u(x) =











s(x) + δ if x = a

s(x) + δ
2

if x = b

≤ min(s(x), s(a)) if x /∈ {a, b},

Notice that since s(b) > s(a), we have u(b) > u(a) for sufficiently small δ > 2ǫ1. Also,

alternatives other than a and b are ordered according to P but their values are not increased.

We will now argue that f(u) = a. First, if f(u) = x /∈ {a, b}, we have u(x) − u(b) ≤

s(x) − s(b) − δ
2
< s(x) − s(b), which violates 2-cycle monotonicity. Second, if f(u) = b, we

have u(b)−u(a) = s(b)− s(a)− δ
2
< d(a, b)− ( δ

2
− ǫ1) < d(a, b), which violates the definition

of d(a, b). Hence, f(u) = a.

But this implies that d(b, a) ≤ u(a) − u(b) = s(a) − s(b) + δ
2
≤ −d(a, b) + δ

2
. Hence,

d(b, a) + d(a, b) ≤ δ
2
. Since δ, ǫ1 can be chosen arbitrarily close to zero, this contradicts the

fact that d(a, b) + d(b, a) = ǫ > 0. �

The next lemma establishes the counterpart of Lemma 2.3. For any pair of alternatives,

a, c we will consider paths in K(D) between a and c. Since we assume D to be K-connected,

there is at least one path between a and c. A path between a and c is direct if it involves

only a and c. A path between a and c is indirect if it is not direct. By definition, there is a

direct path between a and c if and only if a and c are K-neighbors.

Lemma 2.10 For every pair of alternatives a, c ∈ A and any indirect path Π(a, c) between a

and c in K(D), there exists an alternative b in this path such that d(a, b) + d(b, c) ≤ d(a, c).

13Note that we do not require a and b to be K-neighbors.
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Proof : Fix a, c ∈ A and an indirect path Π(a, c) between a and c in K(D). Choose an

ǫ > 0 arbitrarily close to zero and a t ∈ D(c) such that d(a, c) ≤ t(c) − t(a) < d(a, c) + ǫ.

We consider two cases.

Case 1. t(c) > t(a). Choose an alternative b in Π(a, c) such that b is a K-neighbor of c. Let

the ordering induced by t be P . By top lifting, there exists an ordering P ′ ∈ D such that (a)

P ′(1) = c and (b) if aPc′ for any alternative c′ then aP ′c′. Hence, we can construct a type

t′ ∈ D that induce P ′ and t′(c) = t(c) + ǫ′, t′(a) = t(a), and t′(x) ≤ t(x) for all x /∈ {a, c},

where ǫ′ > 0 but arbitrarily close to zero such that ǫ′ < ǫ. Since t′(c) > t(c) and t′(x) ≤ t(x)

for all x 6= c, we have [t′(x) − t′(c)] + [t(c) − t(x)] < 0 for all x 6= c, and hence, by 2-cycle

monotonicity, f(t′) = c. Further, d(a, c) ≤ t′(c)− t′(a) < d(a, c) + ǫ.

Let δ = t′(c)−t′(b)−d(b, c)+ǫ′′, for some ǫ′′ > 0 but arbitrarily close to zero. Since f(t′) =

c, we have t′(c) − t′(b) ≥ d(b, c). Hence, δ > 0 but arbitrarily close to t′(c) − t′(b) − d(b, c).

Now, we construct a new type s as follows. Choose an ǭ > 0 but arbitrarily close to zero.

s(x) =











t′(x) + ǭ if x = c

t′(x) + δ + ǭ if x = b

t′(x) if x ∈ A \ {b, c}

Since c is top at t′ and b is the neighbor of c in Π(c, a), by K-connectedness, the ordering

induced by s belongs to D. Hence, s ∈ D.

We argue that f(s) = b. First, suppose f(s) = x /∈ {b, c}. Then, s(x)−s(c) < t′(x)−t′(c),

and this contradicts 2-cycle monotonicity. Next, suppose f(s) = c. Then, d(b, c) ≤ s(c) −

s(b) = t′(c)− t′(b)− δ < d(b, c), a contradiction. Hence, f(s) = b.

Now, d(a, b) ≤ s(b)− s(a) = [t′(b)− t′(a) + δ] + ǭ. Since δ = [t′(c)− t′(b)]− d(b, c) + ǫ′′,

we have d(a, b) ≤ [t′(c)− t′(a)]− d(b, c) + ǭ+ ǫ′′ < d(a, c) + ǫ− d(b, c) + ǭ+ ǫ′′. This implies

that d(a, b) + d(b, c) < d(a, c) + ǫ + ǭ + ǫ′′. Since ǫ, ǭ and ǫ′′ can be chosen arbitrarily close

to zero, we conclude that d(a, b) + d(b, c) ≤ d(a, c).

Case 2. t(c) < t(a). Choose an alternative b in Π(a, c) such that b is a K-neighbor of a.

Let the ordering induced by t be P . By top lifting, there exists an ordering P ′ ∈ D such

that (a) P ′(1) = a and (b) if cPc′ for any alternative c′ then cP ′c′. Hence, we can construct

a type t′ ∈ D that induce P ′ and t′(c) = t(c) + ǫ′, t′(a) = t(a), and t′(x) ≤ t(x) for all

x /∈ {a, c}, where ǫ′ > 0 but arbitrarily close to zero, in particular, ǫ′ < ǫ. Since t′(c) > t(c)

and t′(x) ≤ t(x) for all x 6= c, we have [t′(x) − t′(c)] + [t(c) − t(x)] < 0 for all x 6= c, and

hence, by 2-cycle monotonicity, f(t′) = c. Further, d(a, c) ≤ t′(c)− t′(a) < d(a, c) + ǫ.

Let δ = t′(c)−t′(b)−d(b, c)+ǫ′′, for some ǫ′′ > 0 but arbitrarily close to zero. Since f(t′) =

c, we have t′(c) − t′(b) ≥ d(b, c). Hence, δ > 0 but arbitrarily close to t′(c) − t′(b) − d(b, c).
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Now, we construct a new type s as follows. Choose an ǭ > 0 but arbitrarily close to zero.

s(x) =











t′(x) + ǭ if x = c

t′(x) + δ + ǭ if x = b

t′(x) if x ∈ A \ {b, c}

Since a is top at t′ and b is the neighbor of a in Π(c, a), by K-connectedness, the ordering

induced by s belongs to D for small enough ǭ. Hence, s ∈ D.

We argue that f(s) = b. First, suppose f(s) = x /∈ {b, c}. Then, s(x)−s(c) < t′(x)−t′(c),

and this contradicts 2-cycle monotonicity. Next, suppose f(s) = c. Then, d(b, c) ≤ s(c) −

s(b) = t′(c)− t′(b)− δ < d(b, c), a contradiction. Hence, f(s) = b.

Now, d(a, b) ≤ s(b)− s(a) = [t′(b)− t′(a) + δ] + ǭ. Since δ = [t′(c)− t′(b)]− d(b, c) + ǫ′′,

we have d(a, b) ≤ [t′(c)− t′(a)]− d(b, c) + ǭ+ ǫ′′ < d(a, c) + ǫ− d(b, c) + ǭ+ ǫ′′. This implies

that d(a, b) + d(b, c) < d(a, c) + ǫ + ǭ + ǫ′′. Since ǫ, ǭ and ǫ′′ can be chosen arbitrarily close

to zero, we conclude that d(a, b) + d(b, c) ≤ d(a, c). �

Once we have established these major lemmas. The remaining Lemmas in the proof of

Theorem 2.1 goes through. We state their generalizations and skip the proof since it mirrors

the proof given in their counterparts for the proof of Theorem 2.1.

Lemma 2.11 For any pair of alternatives a1, ak ∈ A, let (a1, a2, . . . , ak) be an indirect path

Π(a1, ak) between a1 and ak in K(D). Then, the following are true.

d(a1, a2) + d(a2, a3) + . . .+ d(ak−1, ak) ≤ d(a1, ak)

d(ak, ak−1) + d(ak−1, ak−2) + . . .+ d(a2, a1) ≤ d(ak, a1).

Lemma 2.12 Suppose for every sequence of alternatives (a1, . . . , ak), we have

k
∑

j=1

d(aj, aj+1) ≥ 0,

where ak+1 ≡ a1. Then, f is cyclically monotone.

Lemma 2.13 Suppose (a1, . . . , ak) is a path in K(D). Then,

k
∑

j=1

d(aj, aj+1) ≥ 0,

where ak+1 ≡ a1.
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At this point, it will be useful to consider another graph Gf . 14 The set of nodes in

Gf is the set of alternatives A. It is a complete directed graph. Hence, for every pair of

alternatives a, b ∈ A, there is an edge from a to b and an edge from b to a. The path from

an alternative a to another alternative b in Gf is a directed path. Note that for every path

(a1, a2, . . . , ak) in Gf from a1 to ak, the corresponding undirected path may or may not exist

in K(D). For any pair of alternatives a1, ak ∈ A, denote by distf (a1, ak) the shortest path

length from a1 to ak in Gf .

Lemma 2.14 For any pair of alternatives a, b ∈ A, there exists a path (a1, a2, . . . , ak) in

K(D), where a ≡ a1 and b ≡ ak, such that

k−1
∑

j=1

d(aj, aj+1) = distf (a, b).

Again, the proof of Lemma 2.14 mirrors the proof of Lemma 2.7 and is skipped. This leads

to the final lemma in the proof of Theorem 2.2.

Lemma 2.15 Every cycle of Gf has non-negative length.

The proof of Lemma 2.15 is similar to the proof of Lemma 2.8 and is skipped. Lemmas 2.15

and 2.12 establish that f is cyclically monotone, and hence, implementable. This completes

the proof of Theorem 2.2.

Proof of Theorem 2.4

We start by observing that though we proved Lemma 2.2 by assuming the type space to be

T (D), where D is ordinally connected, the same proof goes through even if we assume the

type space to be cl(T (D)).

Now, the remainder of the proof can be easily done using existing results.

Heydenreich et al. (2009) showed that an implementable allocation rule f satisfies revenue

equivalence if and only if distf (a, b) + distf (b, a) = 0 for all a, b ∈ A. We show that this

property is satisfied in our ordinally connected domains. To see this, fix a pair of alternatives,

a, b ∈ A. Since f is cyclically monotone, distf (a, b)+distf (b, a) ≥ 0 - the union of a shortest

path from a to b and a shortest path from b to a gives rise to cycles, which have non-negative

length due to cycle monotonicity.

But take any path in G(D) from a to b (since the type space is ordinally connected, such

a path will always exist). Let this path be (a ≡ a0, a1, . . . , ak ≡ b). Now, consider the path

(b, ak, . . . , a1, a0 ≡ a). The sum of lengths of these paths is
∑k−1

j=0 d(aj, aj+1) = 0, where the

14In Heydenreich et al. (2009), this graph is called the allocation graph.
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equality followed from Lemma 2.2. Since distf(a, b) + distf (b, a) is less than or equal to the

sum of lengths of these paths, and we already know that distf (a, b) + distf (b, a) ≥ 0, we

conclude that distf (a, b) + distf (b, a) = 0.

Proof of Theorem 2.5

We already know that if f is implementable, then it is 2-cycle monotone. So, we only show

that if f is 2-cycle monotone, then it is implementable. We do the proof in two steps. As in

the proof of Theorem 2.4, we note here that Lemma 2.2 holds in a type space of the form

T (D) or cl(T (D)) as long as D is ordinally connected.

Step 1. We say a domain D satisfies free pair at the top (FPT) if every pair of

alternatives is a neighbor in D (i.e., they can be ranked first and second at some ordering

in D). Clearly, a domain that satisfies FTT also satisfies FPT. Further, an FPT domain is

ordinally connected. Hence, if D satisfies FPT, then for every a, b ∈ A, d(a, b) + d(b, a) = 0.

Now, consider a sequence of alternatives (a1, . . . , ak). By Lemma 2.5, if we show

k
∑

j=1

d(aj, aj+1) ≥ 0,

where ak+1 ≡ a1, then f is implementable. We show this using induction on k. If k = 2 or

k = 3, then we are done using 3-cycle monotonicity. If k > 3, we pick any j′ ∈ {1, . . . , k− 2}

and choose alternatives aj′ , aj′+2. Note that d(aj′ , aj′+2) + d(aj′+2, aj′) = 0. Now, the big

cycle can be broken into sum of two smaller cycles using the pair of edges (aj′ , aj′+2) and

(aj′+2, aj′) as follows:

k
∑

j=1

d(aj, aj+1) =
[

j′
∑

j=1

d(aj, aj+1) + d(aj′ , aj′+2) +
k

∑

j=j′+2

d(aj, aj+1)
]

+
[

d(aj′ , aj′+1) + d(aj′+1, aj′+2) + d(aj′+2, aj′)
]

≥ 0,

where the last inequality followed from the fact that the cycles (a1, . . . , aj′ , aj′+2, . . . , ak, a1)

and (aj′ , aj′+1, aj′+2, aj′) has less than k nodes and our induction hypothesis applies.

Step 2. In this step, we show that in an FTT domain, every 2-cycle monotone allocation

rule is 3-cycle monotone. Consider any triple of alternatives a, b, c ∈ A. We need to show that

d(a, b) + d(b, c) + d(c, a) ≥ 0. If max(d(a, b), d(b, c), d(c, a)) ≥ 0, then we are done. Suppose,

without loss of generality, d(c, a) < 0. Using the fact that d(x, y)+d(y, x) = 0 for all x, y ∈ A

(due to FTT and Lemma 2.2), it is sufficient to show that d(c, b) + d(b, a) ≤ d(c, a).
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To show this, we consider a type t such that f(t) = a and d(c, a) ≤ t(a)−t(c) < d(c, a)+ǫ

for some ǫ > 0 but arbitrarily close to zero. Hence, t(a) < t(c). Since FTT is satisfied, there

exists a preference ordering P such that P (1) = c, P (2) = a, and P (3) = b. Further, we can

construct a type s that induces P as follows: s(a) = t(a) + ǫ1, s(c) = t(c), and s(x) < t(x)

for all x /∈ {a, c}, where ǫ1 > 0 and arbitrarily close to zero but in particular much smaller

than ǫ. By 2-cycle monotonicity, f(s) = a - if f(s) = y 6= a, then s(y)− s(a) < t(y)− t(a),

violating 2-cycle monotonicity. Also, ǫ1 can be chosen sufficiently small such that d(c, a) ≤

s(a)− s(c) < d(c, a) + ǫ.

Now, let δ = s(a) − s(b) − d(b, a). Note that since s(a) − s(b) ≥ d(b, a), we have δ ≥ 0.

We construct a type ŝ such that ŝ(b) = s(b) + δ + 2ǫ′, ŝ(a) = s(a) + ǫ′, and ŝ(x) = s(x)

for all x /∈ {a, b}, where ǫ′ > 0 but arbitrarily close to zero. We argue that f(ŝ) /∈ {a, b}.

This is because if f(ŝ) = x /∈ {a, b}, then ŝ(x) − ŝ(a) < s(x) − s(a), contradicting 2-cycle

monotonicity. Next, if f(ŝ) = a, then d(b, a) ≤ ŝ(a)− ŝ(b) = s(a)− s(b)− δ − ǫ′ < d(b, a), a

contradiction.

Hence, f(ŝ) = b. This implies that d(c, b) ≤ ŝ(b) − ŝ(c) = s(b) − s(c) + δ + 2ǫ′ =

s(a)− s(c)− d(b, a)+ 2ǫ′ < d(c, a)− d(b, a)+ ǫ+2ǫ′. Since ǫ and ǫ′ can be chosen arbitrarily

close to zero, we get d(c, b) + d(b, a) ≤ d(c, a). This completes the proof.
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Chapter 3

Pairwise Partition Graphs and

Strategy-proof Social Choice in

the Exogenous Indifference Class

Model

3.1 Introduction

The seminal work of Gibbard (1973) and Satterthwaite (1975) showed that all deterministic

strategy-proof social choice functions with a range of at least three alternatives and defined

over the complete domain, is dictatorial. A large body of literature has since focused on

relaxing the underlying assumptions of this result. A natural way to do this is to impose

domain restrictions. Indeed, many real life problems have inherent domain restrictions. This

chapter is a contribution to this stand of literature.

It is well known that the structure of strategy-proof social choice functions becomes

more complex when indifference is permitted in individual preferences. 1 In this chapter, we

investigate a model of domain restrictions involving indifference, the exogenous indifference

class model first introduced in Barbera and Ehlers (2011). In this model, the indifference

classes of agents’ preferences is exogenously given. In particular, every individual has an

exogenous partition of the set of alternatives. An individual is always indifferent between

alternatives a and b iff both a and b belong to the same element of her partition set. But an

individual’s ranking of the different elements of her partition set, is complete.

This framework includes several well-studied models as special cases. For instance, the

1See for instance, the literature of strategy-proofness in classical exchange economies originating from

Hurwicz (1972) and Satterthwaite and Sonnenschein (1981).
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case of private goods and selfish preferences is one where an individual is indifferent between

all alternatives that give her the same commodity bundle. It includes the one-sided matching

model studied in Svensson (1999),Papai (2000). It also includes the Gibbard-Satterthwaite

framework where the elements of the partition are all singletons. Further examples are

provided in Sato (2009).

The goal of Barbera and Ehlers (2011) was to study the Arrovain aggregation issue in

the exogenous indifference class model. Sato (2009) examined the same model from the

perspective of strategic voting. This is an interesting model in this respect as well because

it covers both the complete domain over which strategy-proofness implies dictatorship (the

Gibbard-Sattherwaite Theorem) as well as the private good allocation model for which it is

well-known that a rich class of strategy-proof social choice functions exist (Papai (2000)).

Sato showed that the number of common indifference classes is critical to the existence

of strategy-proof and non-dictatorial social choice functions. He assumed that common

indifference classes are singletons and obtained two results. First, an onto and strategy-proof

social choice function is dictatorial whenever there are at least three common indifference

classes. Second, the same result holds when the number of common indifference classes is

two, provided that unanimity is strengthened to efficiency.

In this chapter, we further examine the relationship between dictatorship results in this

model and the structure of indifference classes across agents. Our results are formulated in

terms of the pairwise partition graph induced by the indifference classes. Fix a pair of agents

i and j and their indifference classes. The partition graph for this pair is a bipartite graph

whose vertices are i and j’s indifference classes. There are no edges between the vertices

representing the indifference classes of a given agent; vertices for i and j’ have an edge if

the indifference classes representing these vertices have no common alternative. We show

that a necessary condition for strategy-proofness and unanimity to imply dictatorship in the

domain induced by a partition is that each associated pairwise partition graph is connected

with the degree of every vertex being at least two. This requirement can be weakened to

the graphs being connected (with possibly isolated vertices), if unanimity is replaced by

efficiency.

We are unfortunately, unable to show that these necessary conditions are sufficient for

dictatorship. However we are able to identify a number of stronger conditions that are

sufficient. The first of these is the existence of at least two common indifference classes with

no restrictions on their size - a result which clearly generalizes that of Sato. In addition we

have three sufficient conditions for the case of two voters. One applies to the case where

there is exactly one common indifference class while another shows that strategy-proofness

and unanimity imply dictatorship when the partition graph is a cycle. Finally, we show that

with the stronger assumption of efficiency, strategy-proofness implies dictatorship when the
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partition graph is connected with possibly isolated vertices. The last condition implies that

we have a necessary and sufficient condition for dictatorship for the case of efficiency when

there are exactly two voters.

We now proceed to details.

3.2 The Model

Let A = {a, b, c, . . .} denote a finite set of alternatives with |A| = m. Let I = {1, ..., n},

n ≥ 2 be a finite set of agents. We impose restrictions on the domain of preferences following

Barbera and Ehlers (2011). Each agent i has a partition Si of A that is exogenously specified

and independent of preferences. A typical element of Si is s
j
i where j = 1, . . . J . An ordering

R(Si) over A respects Si if (i) a pair of alternatives belonging to the same element of Si are

indifferent to each other and (ii) otherwise one is strictly preferred to the other. Let I(Si)

and P (Si) denote the symmetric and assymetric components of R(Si) respectively. LetR(Si)

be the set of all orderings respecting Si. Let S = (S1, . . . , Sn) be an n-tuple of partitions,

one for each agent. The admissible preference domain is R(S) =
∏

i∈N R(Si).

Observation 3.1 For a given partition Si,R(Si) consists of all possible strict orderings over

the elements of Si. If all agents have the same partition, the model reduces to the standard

voting model where the elements of the partition can be thought of as an alternative. The

essence of the problem is that partitions across agents can differ. Suitable choices of Si’s

yield the usual private goods allocation model with selfish preferences, the universal domain

with strict orderings as well as several interesting intermediate cases as shown in Sato (2009).

Example 3.1 Let A = {a, b, c, d, e} and I = {1, 2}. Let S1 = {ab, c, de} and S2 =

{ab, cd, e}. Note that Table 3.1 and Table 3.2 below represent R(S1) and R(S2) respec-

tively.

R1
1 R2

1 R3
1 R4

1 R5
1 R6

1

ab ab c c de de

c de ab de ab c

de c de ab c ab

Table 3.1: R(S1)

R1
2 R2

2 R3
2 R4

2 R5
2 R6

2

ab ab cd cd e e

cd e ab e ab cd

e cd e ab cd ab

Table 3.2: R(S2)

Whenever S or Si is fixed, R(S), R(S), R(Si), and R(Si) will be simply written as R,

R, Ri, and Ri respectively. Fix a partition Si. An indifference class of agent i is an element

of Si. For any Ri ∈ Ri and k ∈ {1, . . . , J}, the kth ranked indifference class in Ri is denoted
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by rk(Ri) (in other words, there are k− 1 elements of Si ranked strictly higher than rk(Ri)).

For any B ⊆ A and Ri ∈ Ri, M(Ri, B) is the set of maximal elements in B according to Ri

i.e. M(Ri, B) = {a ∈ B : aRib for all b ∈ B}.

Let V (S) =
⋂n

i=1 Si denote the set of common indifference classes for the partition n-

tuple S. Also let v(S) = |V (S)| denote the number of common indifference classes. Note

that in Example 3.1, V (S) = {ab} and v(S) = 1. Moreover, in the private goods allocation

model with selfish preferences v(S) = 0 while in the standard voting model v(S) = m.

Definition 3.1 A social choice function (scf) is a mapping f : R → A.

Each agent’s preference ordering is private information, i.e. known only to herself. These

preferences must therefore be elicited by the mechanism designer. If a is strategy-proof, then

no agent can benefit by misrepresenting her preferences irrespective of her beliefs about the

preference announcement of other agent.

Definition 3.2 A scf f : R → A is manipulable by agent i at a profile R ∈ R via R′
i if

f(R′
i, R−i)Pif(R).

A scf f is strategy-proof if it is not manipulable by any agent at any profile.

The following additional properties of scfs are standard.

Definition 3.3 A scf f is unanimous if for all R ∈ R

f(R) ∈
⋂n

i=1 r1(Ri) whenever
⋂n

i=1 r1(Ri) 6= ∅.

A unanimous scf always respects consensus whenever it exists, i.e. if all agents agree on

some set of alternatives as their best, then the scf must pick an element from this set. A

stronger condition than unanimity is efficiency.

Definition 3.4 A scf f is efficient if for all R ∈ R, for all a, b ∈ A
[

aRib for all i ∈ I

aPib for some j ∈ I

]

⇒ [f(R) 6= b]

If agents preferences are strict but sufficiently “rich”, strategy-proofness and unanimity

implies efficiency. In our setting where indifference is permitted, this proposition typically

does not hold. We therefore consider the consequences of unanimity and efficiency separately.

Definition 3.5 A scf f is dictatorial if there exists an agent i such that f(R) ∈ r1(Ri) for

all R ∈ R.
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An important feature of our model is that a scf is not fully specified even when an agent

is a dictator since this agent will typically have more than one best alternative at any profile.

An important subclass of dictatorial scfs are serial dictatorships which we define below.

Definition 3.6 A priority σ is a one-to-one map σ : I → I. Let R be a profile and define

the sets Tσ(1)(R), Tσ(2)(R), . . . , Tσ(n)(R) inductively as follows:

Tσ(1)(R) = M(Rσ(1), A)

Tσ(2)(R) = M(Rσ(2), Tσ(1)(R))

...

Tσ(n)(R) = M(Rσ(n), Tσ(n−1)(R))

A serial dictatorship with respect to σ satisfies fσ(R) ∈ Tσ(n)(R) for all R.

A priority is a linear arrangement of agents where σ(1) is the first agent, σ(2) the second

and so on with σ(n) being the last. A serial dictatorship (with respect to σ) works as follows:

at any profileR, agent σ(1) picks her maximal elements in A, σ(2) picks her maximal elements

in σ(1)’s maximal elements and so on. Note that a serial dictatorship is not fully specified

because Tσ(n)(R) may contain more than one alternative.

3.3 Results

Our goal is to investigate the structure of indifference classes across agents for which una-

nimity (or efficiency) and strategy-proofness imply dictatorship. Our first step is to provide

necessary conditions for dictatorship. Subsequently, we provide various sufficient conditions.

3.3.1 Necessary Conditions for Dictatorship

These condition will be formulated in terms of graphs arising from the set S. We briefly

review some basic graph-theoretic concepts.

A Graph G is a pair of finite sets V and E where V is the set of vertices or nodes and

E is the set of edges. An edge is a non-ordered pair of vertices. If e = {u, v} is an edge,

i.e. e ∈ E, then u and v are adjacent vertices and u and e are incident as are v and e. The

degree of a vertex v, degG(v) is the number of edges incident with v. An isolated vertex is

a vertex with degree zero. A path uv is a finite sequence of distinct vertices (v1, v2, . . . , vk)

where v1 = u, vk = v and {vi, vi+1} ∈ E for all i ∈ {1, . . . , k − 1}. If the path uv exist, then

u and v are connected. A graph is connected if all pairs of distinct vertices are connected. A
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graph is discrete if E = {∅}. A graph is a connected graph with isolated vertices if (i) it is

not discrete and (ii) the sub-graph consisting of non-isolated vertices is connected. A graph

is bipartite if the vertices of G can be partitioned in to two subsets V1 and V2 in such a way

that no two vertices in the same subset have an edge.

Let i, j be agents and Si and Sj be partitions for i and j respectively. The graph G(Si, Sj)

is constructed as follows:

(i) The set V = V1 ∪ V2 where V1 = Si and V2 = Sj.

(ii) There are no edges between vertices in V1 or between vertices in V2.

(iii) There is an edge between sli and skj iff sli ∩ skj = ∅ for all sli ∈ Si and skj ∈ Sj.

The graph G(Si, Sj) is bipartite. We refer to it as the Partition Graph for i and j. We

provide several examples of such graphs below.

Example 3.2 Let I = {j, i}, A = {a, b, c, d, e, f, g, h}, S̄j = {ab, cd, ef, gh} and S̄i =

{ac, bd, eg, fh}. The induced partition Graph is shown in Figure 3.1 and it is not connected.

There is no path between gh to fh. Also every vertex of it has degree 2.

ab

cd

ef

gh

ac

bd

eg

fh

Figure 3.1: Disconnected graph

ab

c

d

e

a

be

cd

Figure 3.2: A graph with a degree one

vertex

Example 3.3 Let I = {j, i}, A = {a, b, c, d, e}, Ŝj = {ab, c, d, e} and Ŝi = {a, be, cd}.

Figure 3.2 shows the induced partition graph which is connected. Note that degree of the

vertex ab is 1.

Example 3.4 Let I = {j, i}, A = {a, b, c, d, e}, S̃j = {ab, c, d, e} and S̃i = {a, be, cd}. The

induced partition graph is shown in Figure 3.3 which is not connected. Note that degree of

the vertex abc is 0.
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abc

d

e

a

bd

ce

Figure 3.3: A graph with an isolated ver-

tex

abcd

ef

gh

ag

bh

ce

df

Figure 3.4: A non-connected graph with

isolated vertices

Example 3.5 Let I = {j, i}, A = {a, b, c, d, e, f, g, h}, So
j = {abcd, ef, gh} and So

i =

{ag, bh, ce, df}. The induced partition graph is shown in Figure 3.4 and it is not connected.

Moreover it is not a connected graph with isolated vertices.

Example 3.6 (The Allocation Problem with Selfish Preferences) There are three objects,

say houses a, b and c which have to be allocated among three agents. An allocation is

an ordered triple such as abc where the first, second and third components refer to the

houses allocated to agents 1, 2 and 3 respectively. The set of allocations is the set A =

{abc, acb, bac, bca, cab, cba}. Consider the standard model of selfish preferences. The induced

partition S∗ = (S∗
1 , S

∗
2 , S

∗
3) is as follows:

• S∗
1 = {{abc, acb}, {bac, bca}, {cab, cba}}.

• S∗
2 = {{abc, cba}, {bac, cab}, {bca, acb}}.

• S∗
3 = {{abc, bac}, {cba, bca}, {cab, acb}}.

The Partition Graph G(S∗
1 , S

∗
2) is shown in Figure 3.5. Note that there are no common

indifference classes. Clearly G(S∗
1 , S

∗
2) is not connected, for instance there is no path between

{cab, cba} and {bca, acb}.

{abc, acb}

{bac, bca}

{cab, cba}

{abc, cba}

{bac, cab}

{bca, acb}

Figure 3.5: G(S∗
1 , S

∗
2)

abc

def

ghi

adg

beh

cfi

Figure 3.6: Discrete graph

Example 3.7 Let I = {j, i}, A = {a, b, c, d, e, f, g, h, i}, S ′
j = {abc, def, ghi} and S ′

i =

{adg, beh, cfi}. The induced partition graph in Figure 3.6, is a discrete graph.
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Observation 3.2 Suppose I = {i, j} and S is such that G(Si, Sj) is discrete (Example

3.7). Then every unanimous scf is dictatorial. Therefore the discrete partition graph case is

trivial when there are two agents and can be excluded from consideration. In our necessary

conditions (Theorem 3.1 below), we assume that the partition graph is not discrete for all

pairs of agents. Note that if there are three or more agents, the pairwise discreteness of all

partition graphs does not imply that every unanimous scf is dictatorial. We are unable to

provide an answer for the case where partition graphs are pairwise discrete (or even some of

them are pairwise discrete) but unanimity does not imply dictatorship.

Theorem 3.1 Let S = (S1, . . . , Sn) be such that G(Si, Sj) is not discrete for all i, j ∈ I.

A. Suppose [f : R → A is strategy-proof and unanimous ⇒ f is dictatorial ]. Then

G(Si, Sj) is connected and the degree of every vertex is at least 2 for all i, j ∈ I.

B. Suppose [f : R → A is strategy-proof and efficient ⇒ f is dictatorial ]. Then G(Si, Sj)

is a connected graph with isolated vertices for all i, j ∈ I.

Proof : We first prove Part A. Pick an arbitrary pair i, j ∈ I. We consider three cases

regarding G(Si, Sj): (I) it is not connected but has no isolated vertices (such as Example

3.2) (II) it is connected and has a vertex with degree 1 (Example 3.3) and (III) it has an

isolated vertex (Example 3.4). These cases cover all possible cases in the statement of A

and we show that in each case it is possible to construct a unanimous, strategy-proof and

non-dictatorial scf f : R → A.

Case I: The vertices of G(Si, Sj) can be partitioned into subsets V ′ and V ′′ with |V ′|,

|V ′′| ≥ 2 and {u, v} /∈ E for all u ∈ V ′ and v ∈ V ′′ (In Figure 3.1, V ′ is the set {ab, cd, eg, fh}

and V ′′ is the set {ac, bd, ef, gh}). We fix two priority functions σ1 and σ2 as follows:

σ1(1) = i, σ1(2) = j, σ2(1) = j, σ2(2) = i and σ1(k) = σ2(k) for all k 6= 1, 2. Let D be the

set of preference profiles such that r1(Ri), r1(Rj) ∈ V ′. The scf will be a serial dictatorship

with priority σ1 in the domain D and σ2 elsewhere, i.e.

f(R) =

{

a serial dictatorship with respect to the priority function σ1 if R ∈ D

a serial dictatorship with respect to the priority function σ2 if R /∈ D

We first check the strategy-proofness of f . Observe that an agent k 6= i, j cannot ma-

nipulate because of the nature of serial dictatorships and the fact that they cannot affect

their priority. Consider a profile R ∈ D. The outcome is a Rj-maximal element outcome

in the first-ranked indifference class of i in Ri, say s1i . Since i is a dictator, she does not

manipulate. Clearly j cannot manipulate via an ordering R′
j such that (Ri, R

′
j, . . .) ∈ D

because i will remain the dictator. Suppose j attempts to manipulate via an ordering R′
j
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such that (Ri, R
′
j , . . .) /∈ D. He is now dictator and the outcome belongs to r1(R

′
j). However,

r1(R
′
j) ∩ s1i 6= ∅ by properties of the sets V ′ and V ′′; the outcome is therefore belongs to s1i .

Hence j cannot manipulate. The only remaining case to consider is a possible manipulation

by i from a profile not belonging to D to a profile in D. The argument to show that i cannot

gain is identical to the case where j attempts to manipulate from D to a profile outside it.

Unanimity is satisfied because f is a serial dictatorship at every profile. There are profiles

in D and outside it where i and j’s best ranked alternatives have an empty intersection.

Therefore, neither i nor j are dictators. If l 6= i, j is a dictator, then G(Si, Sl) and G(Sj, Gl)

are discrete, contradicting our assumption- i.e. f is non-dictatorial.

Case II: Let u be a vertex with degree 1. Assume w.l.o.g that u ∈ Sj and u = skj . By

assumption, there exists a (unique) vertex smi ∈ Si such that {smi , s
k
j} ∈ E (For instance in

Example 3.3, skj and smi are ab and cd respectively). Let D be the set of preference profiles

such that r1(Ri) = smi . We fix a priority function σ such that σ(1) = j and σ(2) = i. Let

R ∈ D and define the sets T ∗
σ(1)(R), T ∗

σ(2)(R), . . . , T ∗
σ(n)(R) inductively as follows:

T ∗
σ(1)(R) = M(Rσ(1), s

k
j ∪ smi )

T ∗
σ(2)(R) = M(Rσ(2), T

∗
σ(1))

...

T ∗
σ(n)(R) = M(Rσ(n), T

∗
σ(n−1)(R))

We define a scf fσ
1 : D → A as follows: fσ

1 (R) ∈ T ∗
σ(n)(R) for all R ∈ D.

Let σ̄ be a priority function such that σ̄(1) = i, σ̄(2) = j and σ̄(k) = σ(k) for all k 6= 1, 2.

We define the following scf f : R → A:

f(R) =

{

fσ
1 (R) if R ∈ D

a serial dictatorship with respect to the priority function σ̄ if R /∈ D

In order to check the strategy-proofness of f , it suffices to check that i and j cannot

manipulate. Consider R ∈ D - the outcome is a Rj-maximal element in skj ∪ smi . Agent j

cannot manipulate since (Ri, R
′
j . . .) ∈ D for all R′

j. If the outcome belongs to smi then clearly

i cannot manipulate. Otherwise, the outcome belongs to skj . Since s
k
j is a vertex with degree

one, it has a non-empty intersection with every indifference class other than smi . Hence the

outcome belongs to r2(Ri). By construction, i cannot obtain an alternative in r1(Ri) = smi .

If R /∈ D, agent i is dictator and cannot manipulate. Note that j cannot manipulate at

R /∈ D because (R′
j, Ri, . . .) /∈ D for all R′

j.

Unanimity and non-dictatorship of f is easily verified.
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Case III: Let u be a vertex with degree 0. Assume w.l.o.g that u ∈ Sj and u = skj . Since

G(Si, Sj) is not discrete, there exists an edge {smi , s
l
j} where skj 6= slj (In Figure 3.3, the node

skj and the edge {smi , s
l
j} are abc and {d, a} respectively). Let D be the set of preference

profiles where r1(Ri) = smi , r1(Rj) = slj and r2(Rj) = skj . We fix a priority function σ such

that σ(1) = j and σ(2) = i. Let R ∈ D and define the sets T ∗
σ(1)(R), T ∗

σ(2)(R), . . . , T ∗
σ(n)(R)

inductively as follows:

T ∗
σ(1)(R) = skj

T ∗
σ(2)(R) = r2(Rσ(2)) ∩ skj

T ∗
σ(3)(R) = M(Rσ(3), T

∗
σ(2)(R))

...

T ∗
σ(n)(R) = M(Rσ(n), T

∗
σ(n−1)(R))

We define a scf fσ
1 : D → A as follows: fσ

1 (R) ∈ T ∗
σ(n)(R) for all R ∈ D.

Let σ̄ be a priority function such that σ̄(1) = i, σ̄(2) = j and σ̄(k) = σ(k) for all k 6= 1, 2.

We define the following scf f : R → A:

f(R) =

{

fσ
1 (R) if R ∈ D

a serial dictatorship with respect to the priority function σ̄ if R /∈ D

We check the strategy-proofness of f . Again, it suffices to check that i and j cannot ma-

nipulate. If R ∈ D, the outcome belongs to r2(Rj) i.e. skj . Agent j cannot manipulate for

the following reason: for any R′
j if (i) (Ri, R

′
j . . .) ∈ D, then the outcome belongs to skj (ii)

(Ri, R
′
j . . .) /∈ D then the outcome does not belong to r1(Rj) because j is the dictator“after” i.

Consider a possible manipulation by i from R. Since skj is an isolated vertex, skj ∩r2(Ri) 6= ∅.

Hence i obtains a second-ranked alternative in Ri. For any R′
i (i) if (Rj, R

′
i . . .) ∈ D the

outcome belongs to r2(R
′
i) and r1(Ri) ∩ r2(R

′
i) = ∅ and (ii) if (Rj, R

′
i . . .) /∈ D the outcome

belongs to r1(R
′
i) and r1(Ri) ∩ r1(R

′
i) = ∅. If R /∈ D, then i is a dictator and cannot ma-

nipulate. For j, the only case to consider is the one where the manipulation R′
j is such that

(R′
j, Ri, . . .) ∈ D. In this case, the outcome is in skj . At R the outcome is a Rj- maximal

element in smi . Since skj is an isolated vertex, it has elements in common with smi . Hence

the outcome at R is weakly preferred to alternatives in skj according to Rj. Thus, j cannot

manipulate.

It is again straightforward to show that f is unanimous and non-dictatorial.

We now prove Part B. Pick an arbitrary pair i, j ∈ I. Suppose G(Si, Sj) is not a connected

graph with isolated vertices i.e. the sub-graph of G(Si, Sj) consisting of non-isolated vertices

is not connected. The vertices of G(Si, Sj) can be partitioned into subsets V ′ and V ′′ with

48



• |V ′|, |V ′′| ≥ 2.

• {u, v} /∈ E for all u ∈ V ′ and v ∈ V ′′.

• The sub-graphs with vertices V ′ and V ′′ are not discrete.

For instance in Figure 3.4, V ′ is the set {abcd, ef, ag, bh} and V ′′ is the set {gh, ce, df}.

We now construct the same scf as in Case I of Part A. This scf is efficient, strategy-proof

and non-dictatorial as required. �

Observation 3.3 The scfs constructed in Cases II and III of Part A are not efficient. For

instance in Example 3.3 of Case II, the outcome at (R1, R2) (shown in Table 3.3) is b and in

Example 3.4 of Case III, the outcome at (R̄1, R̄2) (shown in Table 3.4) is c.

R1 R2

e cd

ab be

d a

c

Table 3.3: (R1, R2)

R̄1 R̄2

d a

abc ce

e bd

Table 3.4: (R̄1, R̄2)

Unfortunately the necessary condition in Part A of Theorem 3.1 is not sufficient. This is

shown by the Example 3.8. In the next section, we will show that the condition in Part B is

sufficient when there are two agents (Part D of Theorem 3.2).

ab

c

e

df

a

be

cd

f

Figure 3.7: G(S1, S2)

Example 3.8 Let I = {1, 2} and A = {a, b, c, d, e, f}. Figure 3.7 shows the induced par-

tition graph where S1 = {ab, c, e, df} and S2 = {a, be, cd, f}. Observe that this graph is

connected and each vertex has degree atleast 2.

The scf is described as follows:
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f(R) =



















































M(R1, r1(R2)) if r1(R2) 6= a

M(R1, {a, d}) if r1(R2) = a and r2(R2) = cd

M(R1, {a, f}) if r1(R2) = a and r2(R2) = f

a if r1(R2) = a, r2(R2) = be,

and ab is preferred to df according to R1

b if r1(R2) = a, r2(R2) = be,

and df is preferred to ab according to R1

The scf is a serial dictatorship where 2 picks first and 1 second, for all profiles except

those where the first-ranked alternative of 2 is a. In the latter case, the outcome specified

depends on 2’s second-ranked alternatives and 1’s preferences. In all cases, 2 gets at least a

second-ranked alternative. The only profiles that are candidates for manipulation by 2 are

those where her first-ranked alternative is a but the outcome is not. However, in these cases,

df is preferred to ab for 1 and 2 cannot obtain a by misrepresentation. The outcome at all

profiles is determined by maximizing 1’s preferences over a set determined by 2’s ordering;

hence 1 cannot manipulate.

It is straightforward to verify that the scf is non-dictatorial and satisfies unanimity.

3.3.2 Sufficient Conditions for Dictatorship

In this section we provide various sufficient conditions for dictatorship. We introduce some

definitions.

Definition 3.7 The partition S satisfies Condition α, if (i) v(S) ≥ 2 and (ii) there exists

an agent i for whom Si has at least three elements.

Definition 3.8 Let I = {i, j}. The partition S satisfies Condition β if (i) v(S) = 1 and

(ii) there exist ski , s
r
i ∈ Si, s

k′

i , s
r′

i ∈ Sj such that ski ⊂ sk
′

j , s
r′

j ⊂ sri and sk
′

j ∩ sri = ∅ (the

subset relations are strict).

Observation 3.4 Figure 3.8 shows an example of a partition graph for two players i and

j where S satisfies Condition α (for instance, Si = {a, bc, de, f}, Sj = {a, bc, d, ef} and

V (S) = {a, bc}). Observe that the vertices representing the elements of V (S) have an edge

with all vertices of the other agent (other than itself). This fact together with the assumption

that v(S) ≥ 2 ensures that the partition graph for any pair of agents is connected and the

degree of every vertex is at least two.

Figure 3.9 illustrates Condition β (for instance, Si = {a, bc, d, ef}, Sj = {a, b, de, cf},

V (S) = a and ski , s
r
i , s

k′

i , s
r′

i are d, bc, de, b respectively). Note that the vertex representing
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a

bc

de

f

a

bc

d

ef

Figure 3.8: Partition graph for Condition

α

a

bc

d

ef

a

b

de

cf

Figure 3.9: Partition graph for Condition

β

the common element of the partition has an edge with all vertices of the other agent (other

than itself). In addition, ski has an edge with all vertices of other agent except sk
′

j . Similarly,

sr
′

j has an edge with all vertices of other agent except sri . This ensures that the graph is

connected and the degree of every vertex other than sk
′

j and sri is at least two. The assumption

that sk
′

j ∩ sri = ∅ guarantees that the degree of these vertices is also at least two.

Theorem 3.2 Let S = (S1, . . . , Sn) be a partition, n ≥ 2.

A. If S satisfies Condition α, then a strategy-proof and unanimous scf is dictatorial.

B. If S satisfies Condition β, then a strategy-proof and unanimous scf is dictatorial.

C. If I = {i, j} and G(Si, Sj) is a cycle graph 2, then a strategy-proof and unanimous scf

is dictatorial.

D. If I = {i, j} and G(Si, Sj) is a connected graph with isolated vertices, then a strategy-

proof and efficient scf is dictatorial.

Proof (of Part A): Let V (S) = {s1, s2, ..., sJ} where J ≥ 2 and let f : R → A be unanimous

and strategy-proof scf. We prove the Theorem via the following claims.

Claim 3.1 Let R,R′ ∈ R be such that

(i) f(R) ∈ sj where sj ∈ V (S) and

(ii) {a ∈ A|f(R)Ria} ⊆ {a ∈ A|f(R)R′
ia} for all i.

Then f(R′) ∈ sj.

2 A cycle graph is a connected graph with the degree of every vertex being 2.
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Proof : Pick an arbitrary agent i. We will show that f(R′
i, R−i) ∈ sj. Suppose not, i.e.

f(R′
1, R−1) /∈ sj. Clearly either f(R)Pif(R

′
i, R−i) or f(R′

i, R−i)Pif(R) holds. The latter

case immediately contradicts the strategy-proofness of f . If the former case holds, then

condition (ii) above implies f(R)P ′
if(R

′
i, R−i). However, i will manipulate at (R′

i, R−i) via

Ri contradicting strategy-proofness again.

The Claim is established by repeated application of the same argument for different

agents. �

Sato (2009) proves counterparts of Claim 3.1 when the common indifference classes are

singletons.

Claim 3.2 There exists an agent k ∈ I for whom the following holds: for all R ∈ R,

f(R) ∈ r1(Rk) whenever r1(Rk) ∈ V (S).

Proof : By assumption there exists sj, sk ∈ V (S). Let R1 denote the profile where sj and

sk are the top and bottom indifference classes respectively for all agents. By unanimity,

f(R1) ∈ sj.

Construct new profiles by progressively making sk and sj the best and second-best indif-

ference classes respectively in each agent’s preferences. After changing the preferences of all

agents, the outcome must belong to sk, by unanimity. Therefore, there must exist an agent i

such that (i) before agent i changes his preference, the outcome belongs to sj and (ii) when

i lifts sk to the top of his preference, the outcome is no longer in sj. If the outcome does

not belong to either sj or sk, agent i will manipulate by reverting to the ordering where sj

is first and sk is last and thereby obtaining an outcome in sj. Therefore the outcome when

i changes her ordering, must belong to sk. Let R2 denote the profile where which agents 1

through i have sk first and sj second. By the earlier argument f(R2) ∈ sk.

Next interchange sj and sk at R2
i . Let R3 denote the resulting preference profile. By

stragegy-proofness, f(R3) ∈ sj.

At R2 and R3, lower sj to the bottom for 1, 2, ..., i − 1 and to the second last position

for i + 1, ..., n. Let R2′ and R3′ denote the resulting profiles respectively. By Claim 3.1,

f(R2′) ∈ sk. In order for i not to manipulate at R3′ , we must have f(R3′) ∈ {sk
⋃

sj}.

But if f(R3′) ∈ sk, then Claim 3.1, implies f(R3) ∈ sk, which is a contradiction. Therefore

f(R3′) ∈ sj.

Let d ∈ A\{sj
⋃

sk} and let sdi denote the indifference class of agent i to which d belongs.

Let R4 be the profile shown in Table 3.5.
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Agent 1 . . . i-1 i i+1 . . . n

Best . . . . . sj . . . . .

. . . . . sdi . . . . .

. . . . . sk . . . . .

sd1 . . . sdi−1 . sdi+1 . . . sdn
sk . . . sk . sj . . . sj

Worst sj . . . sj . sk . . . sk

Table 3.5: R4

Since f(R3′) ∈ sj, Claim 3.1 implies that f(R4) ∈ sj. Let R5 be the profile obtained by

switching sj and sk at R4 for agents i+1 through n. By strategy-proofness f(R5) ∈ {sj
⋃

sk}.

Suppose f(R5) ∈ sk. Let R6 be the profile in Table 3.6. Since f(R5) ∈ sk, Claim 3.1 implies

f(R6) ∈ sk. But this contradicts unanimity at R6. Hence f(R5) ∈ sj. Since sj is bottom

ranked for all agents other than i and top ranked for i, it follows that the outcome belongs

to sj whenever agent i ranks sj first.

Agent 1 . . . i-1 i i+1 . . . n

Best sd1 . . . sdi−1 sdi sdi+1 . . . sdn
. . . . . sj . . . . .

. . . . . sk . . . . .

. . . . . . . . . . .

sk . . . sk . sk . . . sk

Worst sj . . . sj . sj . . . sj

Table 3.6: R6

Consider sk ∈ V (S) with sk distinct from sj. The earlier arguments can be replicated to

show that there exists an agent i′ such that the outcome belongs to sk whenever i′ ranks sk

first. If i and i′ are distinct, the single-valuedness of f is contradicted at any profile where

sj and sk are ranked first by i and i′ respectively. This establishes the Claim. �

We now complete the proof by showing that agent i identified in Claim 3.2 is a dictator.

Suppose this is false, i.e. there exists profile R̄ and f(R) /∈ r1(R̄i). In order not to

contradict Claim 3.2 immediately, r1(R̄i) /∈ V (S). Let sj be the top-ranked indifference
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class in V (S) in R̄i. By assumption there exists sk ∈ V (S) distinct from sj. Construct

profile R7 as follows: (i) preferences of all agents other than i are the same as in R̄ and

(ii) r1(R
7
i ) = r1(R̄i) and r2(R

7
i ) = sk. By strategy-proofness f(R7) /∈ r1(R

7
i ). However, i

can obtain an alternative in sk by raising sk to the top of her ordering (Claim 3.2). Hence

f(R7) ∈ sk. Consider profiles R8 and R9 described in Tables 3.7 and 3.8 below.

Agent 1 . . . i-1 i i+1 . . . n

Best sk . . . sk r1(R̄i) sk . . . sk

. . . . . sk . . . . .

. . . . . . . . . . .

Worst sj . . . sj . sj . . . sj

Table 3.7: R8

Agent 1 . . . i-1 i i+1 . . . n

Best sk . . . sk r1(R̄i) sk . . . sk

. . . . . sj . . . . .

. . . . . . . . . . .

Worst sj . . . sj . sj . . . sj

Table 3.8: R9

By Claim 3.1 f(R8) ∈ sk. In addition strategy-proofness and Claim 3.2 imply f(R9) ∈ sj.

Pick an arbitrary alternative d in r1(R̄i) and let sdl denote the indifference class to which

d belongs for all agents l 6= i. Observe that sdl is strictly preferred to sj for all l in R9.

Construct profile R10 by raising sdl to the top of R9
l for all l 6= i while keeping i’s preferences

fixed at R9
i . By Claim 3.1, f(R10) ∈ sj. However unanimity requires f(R10) ∈ ∩

l
r1(R

10
l )

where d ∈ ∩
l
r1(R

10
l ) 6= ∅. We have a contradiction. �

Proof (of Part B): Let S satisfy Condition β and suppose f is a strategy-proof and unani-

mous scf defined for I = {i, j}. In order to simplify the notation, we will denote the common
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indifference class by s, the sets ski and sri by y and X respectively and sk
′

i , s
r′

i by Y and x

respectively. Condition β requires y ⊂ Y , x ⊂ X and X ∩ Y = ∅.

The proof uses the following claim.

Claim 3.3 For all profiles R such that r1(Ri) = s and r1(Rj) = Y , f(R) ∈ s ∪ Y .

Proof : Suppose not, i.e. there exists R′ with r1(R
′
i) = s, r1(R

′
j) = Y and f(R′) /∈ {s ∪

Y }. Let R′′
i and R′′

j be such that r1(R
′′
i ) = s, r2(R

′′
i ) = y, r1(R

′′
j ) = Y and r2(R

′′
j ) = s.

Strategy-proofness and unanimity imply f(R′
i, R

′′
j ) ∈ s and f(R′′

i , R
′′
j ) ∈ s. However the

same arguments also imply f(R′′
i , R

′
j) ∈ y and f(R′′

i , R
′′
j ) ∈ Y . This leads to a contradiction

since f is a function. 3
�

Let R̄ be such that r1(R̄i) = s, r1(R̄j) = Y . By Claim 3.3, f(R̄i, R̄j) ∈ s ∪ Y . We

complete the proof by considering the following two cases.

Case 1: f(R̄) ∈ s. Using the following sequence of claims we show that i is the dictator.

Claim 3.4 For all profiles R such that r1(Ri) = s, f(R) ∈ s.

Proof : Let R∗ be such that R∗
i = R̄i, r1(R

∗
j ) = Y and s is bottom-ranked according to

R∗
j . If we can show f(R∗) ∈ s, then we are done. By Claim 3.3, f(R∗) ∈ s ∪ Y . Note that

f(R∗) /∈ Y , otherwise j will manipulate at R̄ via R∗
j . Therefore, f(R

∗) ∈ s. �

Claim 3.5 For all profiles R such that r1(Ri) = y, f(R) ∈ y.

Proof : Consider the profiles R1, R2, R3 and R4 shown in Tables 3.9, 3.10, 3.11 and 3.12

respectively. The ranking of indifference classes other than the top three is the same across

the four profiles, for both agents.

Agent i j

Best y x

s Y

X s

. .

. .

Worst . .

Table 3.9: R1

Agent i j

Best y x

X Y

s s

. .

. .

Worst . .

Table 3.10: R2

Agent i j

Best y x

X s

s Y

. .

. .

Worst . .

Table 3.11: R3

Agent i j

Best y x

s s

X Y

. .

. .

Worst . .

Table 3.12: R4

3These arguments closely follow counterparts in Sen (2001).
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We begin by showing f(R1) ∈ y. If f(R1) ∈ A \ {s ∪ y}, i will manipulate via an ordering

where s is top-ranked, thereby obtaining an alternative in s (Claim 3.4). If f(R1) ∈ s, j will

manipulate via an ordering where Y is at the top obtaining an alternative in Y by unanimity.

Therefore f(R1) ∈ y.

Strategy-proofness implies f(R2) ∈ y. Our next step is to show f(R3) ∈ y. If f(R3) ∈

A\{y∪X}, i will manipulate via an ordering where X is top-ranked, obtaining an alternative

in X by unanimity. If f(R3) ∈ X \x, the outcome is ranked below Y by j (since X ∩Y = ∅)

and she will manipulate via an ordering where Y is top-ranked, obtaining an alternative in

Y by unanimity. If f(R3) ∈ x, j will manipulate at R2 via R3
j . Therefore f(R3) ∈ y. Again

strategy-proofness implies f(R4) ∈ y.

Finally, let R5 be a profile such that R5
i = R4

i and Y is bottom-ranked according to R5
j .

We complete the proof by showing that f(R5) ∈ y. If f(R5) ∈ A \ {s ∪ y}, then i will

manipulate via an ordering where s is top-ranked, obtaining an alternative in s by Claim

3.4. If f(R5) ∈ s, j will manipulate at R4 via R5
j . Therefore f(R5) ∈ y. �

Claim 3.6 For all profiles R such that r1(Ri) = X, f(R) ∈ X.

Proof : Suppose the Claim is false, i.e. there exists a profile R̃ with r1(R̃i) = X but

f(R̃) /∈ X. Let R′′
i be such that r1(R

′′
i ) = X and r2(

′′
i ) = y. By strategy-proofness and

Claim 3.5, f(R′′
i , R̃j) ∈ y. Let R′′

j be such that top and bottom ranked indifference classes

are Y and s respectively. Since y ⊂ Y , strategy-proofness implies that f(R′′
i , R

′′
j ) ∈ Y .

Since X ∩ Y = ∅, f(R′′
i , R

′′
j ) /∈ X. Let R′′′

i be such that r1(R
′′′
i ) = X and r2(R

′′
i ) = s. By

strategy-proofness and Claim 3.4, f(R′′′
i , R

′′
j ) ∈ s. If f(R′′′

i , R
′′
j ) ∈ s, then j will manipulate

via an ordering whose top-ranked indifference class has a non-empty intersection with X.

This proves the Claim.

�

Claim 3.7 For all profiles R, f(R) ∈ r1(Ri).

Proof : Suppose the Claim is false, i.e. there exists a profile R but f(R) /∈ r1(Ri) and

r1(Ri) 6= X, y, s. Let r1(Ri) = Z. The following cases arise.

Case 1: Z ∩ Y = ∅. The arguments in Claim 3.6 with Z substituted for X can be replicated

to establish f(R) ∈ Z.

Case 2: Z ∩Y 6= ∅. At Rj, lift Y to the top keeping the relative ranking of other indifference

classes same and let R′
j be the resulting ordering. By unanimity, f(Ri, R

′
j) ∈ Z ∩ Y . Let

R′
i be such that r1(R

′
i) = Z and r2(R

′
i) = s. By unanimity once again, f(R′

i, R
′
j) ∈ Z ∩ Y .
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We will now move Y downwards by progressive local switches in order to return to Rj while

arguing that the outcome remains in Z, thereby contradicting our initial assumption.

Suppose such a local switch does not involve s and Y is above s in j’s ranking. The

outcome at such a profile cannot an alternative not in Z∪s; in that case, i would manipulate

by raising s to the top and getting s (Claim 3.4). Nor can the outcome belong to s because j

would manipulate via R′
j obtaining an alternative in Y . Consequently, the outcome at such

a profile must belong to Z.

Now suppose that we reach a profile where Y and s are contiguous in j’s ordering and

Y is above s. Let this ordering for j be denoted by R̂j. By the arguments of the previous

paragraph, f(R′
i, R̂j) ∈ Z. If f(R′

i, R̂j) /∈ Y , then the outcome must in fact, be above Y in

R̂j. By switching Y and s in R̂j, the outcome must remain in Z (by the earlier) arguments.

Continuing with the switches as required, we can conclude that f(R′
i, Rj) and f(R) both

belong to Z contradicting our assumption.

Suppose therefore that f(R′
i, R̂j) ∈ Y , i.e. f(R′

i, R̂j) ∈ Y ∩ Z. Let R̂i be an ordering

where Z and X are ranked first and second respectively. By strategy-proofness, f(R̂) ∈ Z.

Now switch Y and s in R̂j. The outcome at this profile must belong to Y ∪ s. Since

X ∩ (Y ∪ s) = ∅, the outcome does not belong to X. If the outcome is ranked below X in

R̂i, i will manipulate by raising X to the top (Claim 3.6). Therefore the outcome belongs to

Z. Now reverting back to R′
i, we observe that the outcome remains in Z. Continuing with

the switches in j’s ordering, we conclude that f(R′
i, Rj) and f(R) both belong to Z, once

again contradicting our assumption. �

We have established that i is a dictator completing Case 1.

Case 2: Suppose f(R̄) ∈ Y . We will show that j is the dictator.

Claim 3.8 For all profiles R, such that r1(Rj) = s, f(R) ∈ s .

Proof : Consider the profiles R6, R7, R8 and R9 shown in Tables 3.13, 3.14, 3.15 and 3.16

respectively. The ranking of indifference classes other than the top three is the same across

the four profiles, for both agents.

By Claim 3.3, f(R6
i , R̄j) ∈ s ∪ Y . If f(R6

i , R̄j) ∈ s, then i will manipulate at R̄ via R6
i .

Therefore f(R6
i , R̄j) ∈ Y . Strategy-proofness implies f(R6) ∈ Y . Strategy-proofness and

X ∩ Y = ∅ implies f(R7) /∈ {s ∪X}; otherwise i will manipulate at R6 via R7
i . Unanimity

implies that f(R7) ∈ y. Since y ⊂ Y , f(R7) ∈ Y . Note that strategy-proofness implies

f(R8) ∈ s ∪ Y , because R8 is obtained by switch s and Y for j at R7. However, f(R8) ∈ Y

would lead to manipulation by i via an ordering where s is top-ranked. Hence f(R8) ∈ s.

By strategy-proofness, f(R9) ∈ s. Let R10 be such that R10
j = R9

j , r1(R
10
i ) = X and s is at
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Agent i j

Best s Y

X s

y x

. .

. .

Worst . .

Table 3.13: R6

Agent i j

Best X Y

s s

y x

. .

. .

Worst . .

Table 3.14: R7

Agent i j

Best X s

s Y

y x

. .

. .

Worst . .

Table 3.15: R8

Agent i j

Best X s

s x

y Y

. .

. .

Worst . .

Table 3.16: R9

the bottom according to R10
i . Note that f(R10) ∈ x ∪ s, otherwise j will manipulate via an

ordering where x is top-ranked, obtaining an alternative in x by unanimity. But f(R10) /∈ x,

otherwise i would manipulate at R9 via R10
i . Therefore, f(R10) ∈ s. This establishes the

fact that f(R) ∈ s for all R such that r1(Rj) = s. �

Claims 3.5, 3.6 and 3.7 can now be replicated with agent i replaced by j to show that j

is the dictator. �

Proof (of Part C): Let G(Si, Sj) be a cycle graph and suppose f satisfies strategy-proofness

and unanimity on this domain. In order to simplify the notation, we will denote the elements

of Si and Sj (i.e the vertices of G(Si, Sj)) by X, Y, Z, P,Q, T, . . . etc.

We identify two properties of G(Si, Sj) that will be required for the argument.

Claim 3.9 1. |Si| = |Sj| ≥ 3. 2. If (X,P ) is an edge where X ∈ Si and P ∈ Sj, there exist

Y ∈ Si, Q ∈ Sj such that (i) Y ∩Q = ∅ (ii) Y ∩ P 6= ∅ and (iii) X ∩Q 6= ∅.

Proof : 1. |Si| = |Sj| is a standard property of bipartite cycle graphs (see page 24 of

West (2001)). The only case to rule out is |Si| = |Sj| = 2. Suppose this is true. Let

Si = {X, Y } and Sj = {P,Q}. Since the degree of each vertex is 2, it must be the case that

(X,P ), (X,Q), (Y, P ) and (Y,Q) are all edges, i.e. X ∩ P,X ∩ Q, Y ∩ P and Y ∩ Q are all

empty. This implies (X ∪Y )∩ (P ∪Q) = ∅ which is impossible because X ∪Y = P ∪Q = A.

2. Let (X,P ) be an edge with X ∈ Si and P ∈ Sj. There must exist Q ∈ Sj such that

X ∩ Q 6= ∅, i.e. (X,Q) is not an edge. Since Q has degree 2, there exist vertices Y, Z ∈ Si

such that (Y,Q) and (Z,Q) are edges. Suppose Y ∩ P and Z ∩ P are both empty. Then P

is degree at least three which is impossible. Hence either Y or Z (or both) has a non-empty

intersection with P . �

Claim 3.10 For all profiles R such that r1(Ri) ∩ r1(Rj) = ∅, f(R) ∈ r1(Ri) ∪ r1(Rj).
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Proof : Pick R such that r1(Ri) = X and r1(Rj) = P and X ∩ P = ∅. Assume for

contradiction that f(R) /∈ X ∪ P . From Claim 3.9 (Part 2), there exists Y ∈ Si, Q ∈ Sj

such that X ∩Q 6= ∅, Y ∩ P 6= ∅ and Y ∩Q = ∅.

Raise Y to the second-ranked position in R1 keeping the ranking of other indifference

classes the same and let R′
i be the resulting ordering. Similarly, raise Q to the second-ranked

position keeping the relative ranking of other indifference classes the same and let R′
j be the

resulting ordering. Standard strategy-proofness and unanimity arguments can be applied to

show that either f(R′
i, R

′
j) ∈ X∩Q or f(R′

i, R
′
j) ∈ Y ∩P . We complete the proof of the claim

by showing that f(Ri, Rj) ∈ X if f(R′
i, R

′
j) ∈ X ∩ Q (an analogous argument establishes

f(Ri, Rj) ∈ P if f(R′
i, R

′
j) ∈ Y ∩ P ).

Strategy-proofness and unanimity imply f(R̄i, R̄j) ∈ X where r1(R̄i) = X, r1(R̄j) = P

and r2(R̄j) = Q. If r2(Rj) = r2(R̄j) = Q, we are done. So, let r2(Rj) = T 6= Q. We consider

two cases.

Case 1: T ∩X = ∅. Let R′′ be a profile such that r1(R
′′
i ) = X, r1(R

′′
j ) = P , r2(R

′′
j ) = Q

and r3(R
′′
j ) = T . Note that f(R′′) ∈ X. Since degree of T is 2, there exists Z ∈ Si such that

Z ∩ T = ∅. Applying Claim 3.9 (Part 1), Z ∩ P 6= ∅.

Suppose Z ∩ Q = ∅. Raise Z to the second position in R′′
i keeping the ranking of other

indifference classes the same and let R′′′
i be the resulting ordering. By strategy-proofness,

f(R′′′
i , R

′′
j ) ∈ X. At R′′

j switch Q and T and let R′′′
j be the resulting ordering. By strategy-

proofness and unanimity, f(R′′′
i , R

′′′
j ) ∈ X. If r3(Rj) = Q, strategy-proofness and unanimity

imply f(R′′′
i , Rj) ∈ X; moreover f(R) ∈ X. Let r3(Rj) = P ′ 6= Q. By the fact that the

degree of P ′ is 2, there exists X ′ ∈ Si such that X ′ ∩ P ′ = ∅ and X ′ ∩ P 6= ∅. Let R̃i be

an ordering such that r1(R̃i) = X and r2(R̃i) = X ′. By strategy-proofness, f(R̃i, R
′′′
j ) ∈ X.

Let R̃j be such that r1(R̃j) = P , r2(R̃j) = T and r3(R̃j) = P ′. By strategy-proofness,

f(R̃i, R̃j) ∈ X. Again by strategy-proofness, f(R̃i, Rj) ∈ X and f(Ri, Rj) ∈ X.

Suppose Z ∩ Q 6= ∅. Since the degree of Z is two, there exists Q′ ∈ Sj such that

Z ∩ Q′ = ∅. Let R̂j be such that r1(R̂j) = P , r2(R̂j) = Q, r3(R̂j) = T and r4(R̂j) = Q′.

Note that f(R′′′
i , R̂j) ∈ X. Let R∗

j be such that r1(R
∗
j ) = P , r2(R

∗
j ) = T , r3(R

∗
j ) = Q′

and r4(R
∗
j ) = Q. By strategy-proofness and unanimity, f(R′′′

i , R
∗
j ) ∈ X. Applying these

arguments repeatedly, we conclude that f(R) ∈ X.

Case 2: T ∩X 6= ∅. Since the degree of P is 2, there exists Y ′ ∈ Si such that Y ′ ∩ T = ∅

and Y ′ ∩ P 6= ∅. At R′′
i lift Y ′ to the second ranked position keeping the relative ranking of

other indifference classes same and let R∗
i be the resulting ordering. By strategy-proofness

and unanimity, we can infer that f(R∗
i , R

′′
j ) ∈ X and f(R∗

i , R
′′′
j ) ∈ X. Applying these

arguments repeatedly, f(R) ∈ X follows. �
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The proof is completed by showing that the agent from whose first-ranked indifference

class the outcome is picked in Claim 3.10 is in fact, a dictator. This can be done by replicating

the arguments in Claim B in Sen (2001). The only requirement for the argument is for the

graph G(Si, Sj) to be connected. �

Proof (of Part D): Let G(Si, Sj) be a connected graph with isolated vertices and suppose

f satisfies strategy-proofness and efficiency on this domain.

Claim 3.11 For all R such that r(Ri) ∩ r(Rj) = ∅, either f(R) ∈ r1(Ri) or f(R) ∈ r1(Rj).

Proof : Pick R such that r(R1) ∩ r(R2) = ∅ and denote r1(Ri) and r1(Rj) by X and P

respectively. Suppose f(R) /∈ X ∪ P . There exists Q ∈ Sj such that X ∩Q 6= ∅ and Y ∈ Si

such that Y ∩ P 6= ∅.

Let R′
i and R′

j be such that r1(R
′
i) = X, r2(R

′
i) = Y , r1(R

′
j) = P and r2(R

′
j) = Q. By

strategy-proofness and efficiency, f(R′
i, Rj) /∈ Y ∩ P . By strategy-proofness, f(R′

i, R
′
j) ∈ P .

Similarly, strategy-proofness and efficiency imply that f(Ri, R
′
j) ∈ X ∩ Q. Once again

applying strategy-proofness we get f(R′
i, R

′
j) ∈ X - a contradiction. �

Suppose X ∈ Si is an isolated vertex in G(Si, Sj). If r1(Ri) = X at R, we have r1(Ri) ∩

r1(Rj) 6= ∅. The same conclusion holds if X is isolated and belongs to Sj.

Finally, since non-isolated vertices are connected in G(Si, Sj), the arguments in Claim B

in Sen (2001) can be used in conjunction with Claim 3.11 to demonstrate the existence of a

dictator. �

We make several observations about our result.

Observation 3.5 Part A of Theorem 3.2 generalizes Sato (2009) in two ways. It requires

only two rather three common indifference classes. Moreover, these common indifference

classes need not be singletons. Our argument follows the general structure of Sato’s argu-

ments (with appropriate refinements) which in turn follows that of Reny (2001) and several

other papers.

Observation 3.6 Parts B, C and D are two-person results. The generalization to an ar-

bitrary number of agents is not straightforward. The main difficulty is that the standard

“cloning” arguments for the situation where all agents have a common domain, cannot be

used. It is not clear whether the pairwise conditions used in Parts B, C and D are sufficient

for dictatorship generally.

Observation 3.7 Part B of Theorem 3.1 together with Part D of Theorem 3.2 provide a

necessary and sufficient condition for strategy-proofness and efficiency to imply dictatorship,

in the case of two agents.
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3.4 Conclusion

The chapter investigates the effect of the partition structure on dictatorship results in the

exogenous indifference classes model. The focus of the analysis is the pairwise partition

function graph. We provide necessary conditions and stronger sufficient conditions on these

graphs for strategy-proofness and unanimity (or efficiency) to imply dictatorship.

Several natural questions remain open. Some of our results apply only to the two-voter

case and a gap exists between our necessary and sufficient conditions. These questions appear

to be difficult but we hope to make progress in answering them in the future.
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Chapter 4

Further Results on Dictatorial

Domains

4.1 Introduction

The incompatibility between strategy-proofness and non-dictatorship is a major issue in

social choice. The seminal result of Gibbard (1973) and Satterthwaite (1975) states that

a surjective and strategy-proof social choice function (scf) with a range of at least three

alternatives, defined over the complete domain, is dictatorial. Aswal et al. (2003) show that

the assumption of a complete domain is far from being necessary for this result. They

show that a large class of domains (including several that are “small”) are dictatorial - i.e.

domains with the property that all strategy-proof and unanimous scfs (with a range of at least

three) defined over such domains, are dictatorial. A complete characterization of dictatorial

domains is a natural objective but appears to difficult to provide. Our goal in this chapter

is to generalize the sufficiency result of Aswal et al. (2003) and unify existing results in the

area.

It will be helpful to briefly recount the result of Aswal et al. (2003). Fix an arbitrary

domain. They say that two alternatives a and b are connected if there exists a preference in

the domain where a is ranked first and b, second and another preference where the reverse

is true. They consider the following graph: each alternative is a vertex and there is an edge

between a pair of vertices if the two alternatives represented by the vertices, are connected.

A domain is linked if this graph is “sufficiently dense”. Specifically, there should exist an

arrangement of the vertices such that the first three are mutually connected and each vertex

is connected to at least two in the set of vertices that precedes it. Their main result is that

every linked domain is dictatorial. They show the existence of a variety of linked domains

including those that are linear in the number of alternatives. However, this result is far from
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a characterization - for instance, the circular domains defined in Sato (2010) and are not

linked.

We generalize the linked domain result in two ways. The first way is to weaken the notion

of connectedness between a pair of alternatives to weak connectedness while retaining the

“connection structure”of the induced graph as in linkedness. The second way is to strengthen

the notion of connectedness but weakening the “connection structure” on the induced graph.

Two alternatives a and b are weakly connected if there exists a (possibly empty) set of

alternatives B and four orderings in the domain such that there is a reversal between B

and b when a is top-ranked and there is a reversal between B and a when b is top-ranked.

Reversality requires alternatives between a and b to belong to B in the case where B is

better than b. Similarly, alternatives between b and a to belong to B in the case where

B is better than a. A domain is called a β domain if we can arrange all the alternatives

(vertices in the induced graph) in a way that the first three are mutually weakly connected

and each alternative is weakly connected to at least two in the set of alternatives (vertices)

that precedes it. Our first result is that β domains are dictatorial. These domains are

obviously supersets of linked domains - it is also possible to find β domains that are smaller

than any linked domain.

Property T between a and b requires the following“intermediateness”property in addition

to weak connectedness: for any alternative c other than a and b, there exists two orderings in

the domain, one where c is above b while a at the top and another where c is above a while b at

the top. A domain is called a γ domain if its induced graph is connected in the usual graph-

theoretic sense, i.e. there exists a path between any two alternatives(vertices). Our second

result is that all γ domains whose induced graph is not a star-graph, are dictatorial domains.

The same result holds in the star-graph case with mild additional conditions. These results

generalize results on circular domains in Sato (2010) and Chatterji et al. (2013). Finally, we

apply our result to a facility location problem in a restricted environment.

The chapter is organized as followed. Section 4.2 contains a description of the model.

Sections 4.3 and 4.4 contain the results on β and γ domains respectively. Section 4.5 provides

an application while Section 4.6 concludes.

4.2 Basic notation and definitions

Let A = {a1, . . . , am} denote a finite set of alternatives with m ≥ 3. Let I = {1, 2, . . . , n},

n ≥ 2 be a finite set of agents. Let P denote the set of strict orderings 1 of the elements of

A. An admissible domain is a set D ⊂ P. A typical preference orderings will be denoted by

Pi where aPib will signify that a is preferred (strictly) to b under Pi. A preference profile is

1A strict ordering is a complete, transitive and antisymmetric binary relation.
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an element of the set D
n. Preference profiles will be denoted by P, P̄ , P ′ etc and their ith

components as Pi, P̄i, P
′
i respectively with i = 1, 2, . . . , n. Let (P̄i, P−i) denote the preference

profile where the ith component of the profile P is replaced by P̄i.

Given Pi ∈ D, let rk(Pi) denote the kth ranked alternative in Pi, k = 1, . . . ,m, i.e.,

[rk(Pi) = aj] ⇒ [|{ak ∈ A : akPiaj}| = k − 1]. For an ordering Pi ∈ D and aj ∈ A, we let

B(aj, Pi) denote the set of alternatives that are strictly better than aj according to Pi, while

W (aj, Pi) denotes the set of alternatives that are strictly worse than aj according to Pi. Let

M(aj, ak, Pi) be the set alternatives that are strictly worse than aj and strictly better than

ak according to Pi.

Definition 4.1 A social choice function (scf) f is a mapping f : Dn 7−→ A.

Some familiar properties of scfs are stated below.

Definition 4.2 A scf f satisfies unanimity, if for all P ∈ D
n, f(P ) = a whenever a =

r1(Pi) for all i ∈ I.

If an alternative is top-ranked by all voters, the scf must pick that alternative.

A scf is strategy-proof if no voter can obtain a strictly better alternative by misrepre-

senting her preferences for any announcements of preferences of the other voters.

Definition 4.3 A scf f : P → A is manipulable by agent i at a profile P ∈ P via P ′
i if

f(P ′
i , P−i)Pif(P ).

A scf f is strategy-proof if it is not manipulable by any agent at any profile.

A scf is a dictatorship if a particular voter always gets her best alternative.

Definition 4.4 A scf f is dictatorial if there is an individual i ∈ I such that f(P ) = r1(Pi)

for all P ∈ D
n

The following well-known result provides a full characterization of strategy-proof scfs for

the domain P.

Theorem 4.1 (Gibbard (1973),Satterthwaite (1975)) A scf f : Pn → A is strategy-proof

and satisfies unanimity if and only if it is dictatorial.

Unfortunately, there is a large class of preference domains where strategy-proofness im-

plies dictatorship, so that there is no escape from this unpleasant dilemma. These domains

which we define formally below, are the objects of our study.
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Definition 4.5 The domain D ⊂ P is dictatorial if, for all scfs f : Dn 7−→ A is strategy-

proof and satisfies unanimity implies f is dictatorial.

Throughout the chapter, we shall restrict attention to domains that are minimally rich.

Definition 4.6 A domain D is minimally rich if, for all a ∈ A, there exists Pi ∈ D such

that r1(Pi) = a.

The minimal richness assumption guarantees that every alternative is top-ranked for

some ordering in the domain. This is a standard assumption in the literature, for instance

Aswal et al. (2003).

4.3 β Domains

We first introduce the notion of weak connectedness. In what follows, we fix a domain D ⊂ P.

Definition 4.7 A pair of alternatives aj, ak is weakly connected, denoted by aj
w
∼ ak if there

exists B ⊂ A (possibly empty) and Pi, P̄i, P
′
i , P

′′
i ∈ D such that

1. r1(Pi) = r1(P̄i) = aj and r1(P
′
i ) = r1(P

′′
i ) = ak.

2. B = M(aj, ak, Pi) and B ⊂ W (ak, P̄i).

3. B = M(ak, aj, P
′
i ) and B ⊂ W (aj, P

′′
i ).

The weak connectedness concept is illustrated below.

Pi P̄i P ′
i P ′′

i

aj aj ak ak

B . B .

ak ak aj aj

. B . .

. . . B

. . . .

Table 4.1: Weak connectedness

The idea is quite simple. There exists a set B such that there is a reversal between B and

ak when aj is top-ranked and there is a reversal between B and aj when ak is top-ranked.

Reversality requires all alternatives between aj and ak to belong to B in the case where B

is better than ak. Similarly, all alternatives between ak and aj to belong to B in the case

where B is better than aj.
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Observation 4.1 In case B is the empty set, weak connectedness reduces to connectedness

in the sense of Aswal et al. (2003).

A β domain can be defined in the same way that a linked domain was defined in

Aswal et al. (2003).

Definition 4.8 Let B ⊂ A and let aj /∈ B. Then aj is linked to B if there exists ak, ar ∈ B

such that aj
w
∼ ak and aj

w
∼ ar.

Definition 4.9 The domain D is called a β domain if there exists a one to one function

σ : {1, . . . ,m} → {1, . . . ,m} such that

(i) aσ(1)
w
∼ aσ(2)

(ii) aj is linked to {aσ(1), aσ(2), . . . , aσ(j−1)}, j = 3, . . . ,m.

By virtue of Observation 4.1, linked domains are β domain. However, the converse is not

true as the example below shows.

Example 4.1 Let A = {a1, a2, a3, a4} and let D̄ be the domain in Table 4.2. It is clear that

a1 is connected to a2 and a3, a2 is connected to a3, but a4 is not connected to any other

alternatives. Therefore D̄ is not linked. But it is a β domain because a4
w
∼ a1 and a4

w
∼ a2.

P 1
i P 2

i P 3
i P 4

i P 5
i P 6

i P 7
i P 8

i

a1 a1 a2 a2 a3 a3 a4 a4

a2 a3 a1 a3 a1 a2 a1 a2

a4 a4 a4 a4 a2 a1 a2 a1

a3 a2 a3 a1 a4 a4 a3 a3

Table 4.2: The domain D̄

It is helpful to interpret a β domain in terms of the graphs induced by weak connectedness.

Let D be a domain. The graph G(D) is defined as follows: the vertices of the graph are the

alternatives and two vertices have an edge iff the alternatives represented by the vertices are

weakly connected. The graph induced by the domain in Example 4.1 is shown in Figure 4.1.

Our first Theorem shows that the linked domain result in Aswal et al. (2003) can be

generalized to β domains.

Theorem 4.2 A β domain is a dictatorial domain.
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a1

a3 a2

a4

Figure 4.1: The graph G(D̄)

Proof : Let D be a β domain and assume without loss of generality that the function σ

in definition 4.9 is the identity function. For every non-empty X ⊂ A, we let DX = {Pi ∈

D|r1(Pi) ∈ X}. Similarly, for any alternative ai ∈ A, we let Dai = {Pi ∈ D|r1(Pi) = ai}.

In view of Proposition 3.1 of Aswal et al. (2003) and our assumption of minimal richness,

it suffices to show that if f : D2 → A is strategy-proof and unanimous, then f is dictatorial.

The following Lemma is very general.

Lemma 4.1 Let D be an arbitrary domain and let a, b be arbitrary alternatives with a
w
∼ b.

If f : D2 → A satisfies strategy-proofness and unanimity, then f(P ) ∈ {a, b} for all P ∈ D
2

such that r1(P1), r1(P2) ∈ {a, b} .

Proof : Suppose not. Let a and b be the first ranked outcomes according to P1 and P2

respectively with f(P ) = c where c 6= a, b. Note that a and b must also be distinct from

each other, otherwise we immediately contradict unanimity. Since a
w
∼ b, there exists B ⊂ A

and P ′
1, P

′′
1 , P

′
2, P

′′
2 ∈ D such that (i) r1(P

′
1) = r1(P

′′
1 ) = a and r1(P

′
2) = r1(P

′′
2 ) = b, (ii)

B = M(a, b, P ′
1) and B ⊂ W (b, P ′′

1 ), (iii) B = M(b, a, P ′
2) and B ⊂ W (a, P ′′

2 ). We consider

two cases.

Case 1: B = ∅. By replicating the arguments in Claim A in Sen (2001), we can show that

f(P ) ∈ {a, b}. This leads to a contradiction.

Case 2: B 6= ∅ . Observe that f(P1, P
′
2) cannot be b because 2 would manipulate at P via P ′

2.

Also note that f(P1, P
′
2) /∈ W (a, P ′

2). Otherwise 2 would manipulate via an ordering where

a is ranked first, thereby obtaining the outcome a (unanimity). We consider the following

two cases.

Case 2.1: f(P1, P
′
2) = a. Strategy-proofness implies that f(P ′

1, P
′
2) = a.

Observe that f(P ′
1, P2) 6= a because then 1 would manipulate at P via P ′

1. Also

f(P ′
1, P2) /∈ W (b, P ′

1), otherwise 1 would manipulate via an ordering where b is ranked

first, thereby obtaining the outcome b (unanimity). Therefore, f(P ′
1, P2) ∈ B ∪ b. If

f(P ′
1, P2) ∈ B ∪ b, then 2 will manipulate at (P ′

1, P
′
2) via P2 - a contradiction.
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Case 2.2: f(P1, P
′
2) ∈ B. Let f(P1, P

′
2) = d. Then it must be the case that aP1dP1b. First we

show that f(P ′
1, P

′
2) ∈ B. If f(P ′

1, P
′
2) ∈ W (b, P ′

1)
⋃

{b}, then 1 would manipulate at (P ′
1, P

′
2)

via P1. If f(P
′
1, P

′
2) = a, then 1 would manipulate at (P1, P

′
2) via P

′
1. Therefore f(P

′
1, P

′
2) ∈ B.

Next we show that f(P ′
1, P

′′
2 ) = a. If f(P ′

1, P
′′
2 ) = b, then 2 would manipulate at (P ′

1, P
′
2)

via P ′′
2 . If f(P ′

1, P
′′
2 ) ∈ B, then 2 would manipulate at (P ′

1, P
′′
2 ) via an ordering where a is

ranked first, thereby obtaining the outcome a (unanimity). If f(P ′
1, P

′′
2 ) ∈ W (b, P ′

1), then 1

would manipulate at (P ′
1, P

′′
2 ) via an ordering where b is ranked first, thereby obtaining the

outcome b (unanimity). Therefore f(P ′
1, P

′′
2 ) = a. At (P ′′

1 , P
′′
2 ), f(P

′′
1 , P

′′
2 ) = a, otherwise

1 would manipulate at (P ′′
1 , P

′′
2 ) via P ′

1. Finally we show that f(P ′′
1 , P

′
2) = a. Note that

f(P ′′
1 , P

′
2) 6= b, otherwise 2 would manipulate at (P ′′

1 , P
′′
2 ) via P ′

2. Also f(P ′′
1 , P

′
2) /∈ B,

otherwise 1 would manipulate at (P ′′
1 , P

′
2) via an ordering where b is ranked first, thereby

obtaining the outcome b (unanimity). If f(P ′′
1 , P

′
2) ∈ W (a, P ′

1), Then 2 would manipulate at

(P ′′
1 , P

′
2) via an ordering where a is ranked first, thereby obtaining the outcome a (unanimity).

Therefore f(P ′′
1 , P

′
2) = a. Note that 1 would manipulate at (P ′

1, P
′
2) via P ′′

1 because earlier

we have shown f(P ′
1, P

′
2) ∈ B. This leads to a contradiction. �

Our proof consists in establishing two steps.

Step 1: Let X = {a1, a2, a3}. There exists j ∈ {1, 2} such that f(P ) = r1(Pj) for all

P ∈ D
X × D

X .

Step 2: Let X̄ = {a1, a2, . . . , al−1} and X∗ = {a1, a2, . . . , al}, l = 4, . . . ,m. If f(P ) = r1(Pj)

for all P ∈ D
X̄ × D

X̄ , then f(P ) = r1(Pj) for all P ∈ D
X∗

× D
X∗

.

We proceed to establish Step 1 through a sequence of claims. First note that since D

is a β domain and σ is the identity function, we have a1
w
∼ a2, a2

w
∼ a3 and a3

w
∼ a1. By

Lemma 4.1, either f(P1, P2) = a1 or f(P1, P2) = a2 for all P ∈ D
2 such that r1(P1) = a1 and

r1(P2) = a2. Let P̄1 and P̄2 be such that r1(P̄1) = a1, r1(P̄2) = a2 and w.l.o.g. we assume

that f(P̄1, P̄2) = a1. We complete Step 1 by showing that agent 1 is the dictator. By Lemma

4.1 and strategy-proofness, f(P1, P2) = a1 for all P ∈ D
2 where r1(P1) = a1 and r1(P2) = a2.

The following pair of claims are required to establish Step 1.

Claim 4.1 For all P ∈ D
2 where r1(P1) = a3 and r1(P2) = a2, f(P1, P2) = a3.

Proof : Suppose not. Then, there exists (P ′
1, P

′
2) with r1(P

′
1) = a3 and r1(P

′
2) = a2 such

that f(P ′
1, P

′
2) 6= a3. Lemma 4.1 implies that f(P ′

1, P
′
2) = a2. By lemma 4.1 and strategy-

proofness, f(P1, P2) = a2 for all (P1, P2) ∈ D
2 with r1(P1) = a3 and r1(P2) = a2. Since

a3
w
∼ a1, there exists B ⊂ A, P ′′

1 , and P ∗
1 such that r1(P

′′
1 ) = r1(P

∗
1 ) = a3, B = M(a3, a1, P

′′
1 )

and B ⊂ W (a1, P
∗
1 ). Note that either a2 ∈ B or a2 /∈ B. If a2 ∈ B, then f(P ∗

1 , P
′
2) 6= a2.
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Otherwise, agent 1 would manipulate via an ordering where a1 is ranked first - a contradiction.

If a2 /∈ B, then f(P ′′
1 , P

′
2) 6= a2. Otherwise, agent 1 would manipulate via an ordering where

a1 is ranked first - a contradiction. �

Claim 4.2 For all P ∈ D
2 where r1(P1) = a1 and r1(P2) = a3, f(P1, P2) = a1.

Proof : Suppose not. Then, there exists (P ′
1, P

′
2) with r1(P

′
1) = a1 and r1(P

′
2) = a3 such

that f(P ′
1, P

′
2) 6= a1. Lemma 4.1 implies that f(P ′

1, P
′
2) = a3. By Lemma 4.1 and strategy-

proofness, f(P1, P2) = a3 for all (P1, P2) ∈ D
2 with r1(P1) = a1 and r1(P2) = a3. Since

a3
w
∼ a2, there exists B ⊂ A, P ′′

2 , and P ∗
2 such that r1(P

′′
2 ) = r1(P

∗
2 ) = a2, B = M(a2, a3, P

′′
2 )

and B ⊂ W (a3, P
∗
2 ). Note that either a1 ∈ B or a1 /∈ B. If a1 ∈ B, then f(P ′

1, P
∗
2 ) = a2.

Otherwise if f(P ′
1, P

∗
2 ) = a1, agent 2 would manipulate via an ordering where a3 is ranked

first - a contradiction. If a1 /∈ B, then f(P ′
1, P

′′
2 ) = a2. Otherwise, agent 2 would manipulate

via an ordering where a3 is ranked first - a contradiction. �

Using the arguments used in the proof of Claim 4.1 and 4.2, it is straightforward to show

that f(P ) = r1(P1) for all P ∈ D
X × D

X . This establishes Step 1.

We now turn to Step 2. Pick an integer l in the set {4, . . . ,m}. We state our induction

hypothesis below.

Induction Hypothesis (IH): f(P ) = r1(P1) for all P ∈ D
X̄ × D

X̄ .

Our objective is to show that f(P ) = r1(P1) for all P ∈ D
X∗

× D
X∗

.

Statement*: Since al is linked to {a1, . . . , al−1}, there exists ai, aj ∈ {a1, . . . , al−1} such that

al
w
∼ ai and al

w
∼ aj.

Claim 4.3 For all (P1, P2) ∈ D
2 such that P1 ∈ D

al and P2 ∈ D
{ai,aj}, f(P ) = r1(P1) (ai

and aj are as specified in (*)).

Proof : Suppose not. There exists an (P̄1, P̄2) ∈ D
2 such that P̄1 ∈ D

al , P̄2 ∈ D
{ai,aj} and

f(P̄1, P̄2) 6= al. Therefore by Lemma 4.1, f(P̄1, P̄2) = r1(P̄2). Let r1(P̄2) = ai - a similar

argument holds if r1(P̄2) = aj. Since al
w
∼ aj, there exists an ordering P ∗

1 such that (i)

r1(P
∗
1 ) = al and (ii) ajP

∗
1 ai. By Lemma 4.1 and strategy-proofness f(P ∗

1 , P̄2) = ai. Note

that agent 1 would manipulate at (P ∗
1 , P̄2) via an ordering P ′

1 where r1(P
′
1) = aj because by

induction hypothesis f(P ′
1, P̄2) = aj - a contradiction. �

Claim 4.4 For all (P1, P2) ∈ D
2 such that P1 ∈ D

al and P2 ∈ D
X̄ , f(P ) = r1(P1).
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Proof : In the view of Claim 4.3, we need to consider only the case where P2 ∈ D
ar where

ar ∈ {a1, . . . , al−1} and ar 6= ai, aj. Suppose there exists (P̄1, P̄2) such that r1(P̄1) = al,

r1(P̄2) = ar and f(P̄1, P̄2) 6= al. Since al
w
∼ ai, there exists B ⊂ A, P ′

1 and P ′′
2 such that

(i) r1(P
′
1) = al and r1(P

′′
2 ) = ai, (ii) B = M(al, ai, P

′
1) and B = M(ai, al, P

′′
2 ). By strategy-

proofness and IH, f(P ′
1, P̄2) = B∪ai. Claim 4.3 implies that f(P ′

1, P
′′
2 ) = al. Therefore, agent

2 would manipulate at (P ′
1, P

′′
2 ) via P̄2, contradicting the assumption of strategy-proofness.

�

Claim 4.5 For all (P1, P2) ∈ D
2 such that P1 ∈ D

{ai,aj} and P2 ∈ D
al, f(P ) = r1(P1) (here

too, ai and aj are as specified in (*)).

Proof : Suppose not. There exists an (P̄1, P̄2) ∈ D
2 such that P̄1 ∈ D

{ai,aj}, P̄2 ∈ D
al

and f(P̄1, P̄2) 6= r1(P̄1). Therefore by Lemma 4.1, f(P̄1, P̄2) = al. Let r1(P̄1) = ai - a

similar argument holds if r1(P̄1) = aj. Since al
w
∼ aj, there exists P ′

2 such that r1(P
′
2) = aj

and alP
′
2ai. Since, f(P̄1, P

′
2) = ai by IH, agent 2 would manipulate at (P̄1, P

′
2) via P̄2 - a

contradiction.

�

Claim 4.6 Let ar
w
∼ as and ar, as ∈ {a1, a2, . . . , al−1}. If f(P ) = ar for all (P1, P2) ∈ D

2

such that P1 ∈ D
ar and P2 ∈ D

al, then f(P ) = as for all (P1, P2) ∈ D
2 such that P1 ∈ D

as

and P2 ∈ D
al.

Proof : Suppose not. There exists an (P̄1, P̄2) ∈ D
2 such that P̄1 ∈ D

as , P̄2 ∈ D
al and

f(P̄1, P̄2) 6= as. Since ar
w
∼ as, there exists B ⊂ A, P ′

1 and P ′
2 such that (i) r1(P

′
1) = as and

r1(P
′
2) = ar, (ii) B = M(as, ar, P

′
1) and B = M(ar, as, P

′
2). By strategy-proofness and our

assumption, f(P ′
1, P̄2) ∈ B ∪ ar. Since f(P ′

1, P
′
2) = as by IH, 2 would manipulate at (P ′

1, P
′
2)

via P̄2 - a contradiction. �

Claim 4.7 For all ar ∈ {a1, a2, . . . , al−1}, P1 ∈ D
ar and P2 ∈ D

al, f(P1, P2) = ar.

Proof : Pick ar ∈ {a1, a2, . . . , al−1}. Since D is a β domain, there must exist a sequence

b0, b1, . . . , bt ∈ {a1, a2, . . . , al−1} such that b0 = aj, bt = ar and b0
w
∼ b1, b1

w
∼ b2, . . . , bt−1

w
∼ bt.

By Claim 4.5, f(P ) = aj for all P ∈ D
2 where P1 ∈ D

aj and P2 ∈ D
al . Applying Claim 4.6

repeatedly, it follows that f(P ) = ar for all P ∈ D
2 where P1 ∈ D

ar and P2 ∈ D
al . �

Claims 4.3-4.7 establish Step 2. This completes the proof of the Theorem. �
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Observation 4.2 Aswal et al. (2003) proved that linked domains are dictatorial. Since

linked domains are β domain, Theorem 4.2 clearly generalizes that of Aswal et al. (2003).

We note that β domain can be much smaller than linked domains. For instance, the domain

in Example 4.1 has eight orderings while the minimal linked domain with four alternatives

has ten orderings. In fact, the size of a minimal dictatorial domain is 2m, the bound that is

obtained by β domains in the case where m = 4.

4.4 γ Domains

In this section, we consider a strengthening of the notion of weak connectedness. This

generates new conditions for dictatorial domains where the induced graph on alternatives

has fewer edges.

We introduce the stronger notion of weak connectedness formally below.

Definition 4.10 A pair of alternatives aj, ak satisfy Property T , denoted by aj ≈ ak if

aj
w
∼ ak and for all ar 6= aj, ak there exists Pi, P

′
i ∈ D such that

1. r1(Pi) = aj and arPiak.

2. r1(P
′
i ) = ak and arP

′
iaj.

In addition to weak connectedness, Property T requires the following “intermediateness”

property : for any alternative ar other than aj and ak, there exist two orderings in the

domain, one where ar is above ak while aj at the top and another where ar is above aj while

ak at the top.

Fix a domain D. The graph induced by Property T Ḡ(D) is constructed in the same way

as G(D) with weak connectedness replaced by Property T . In other words, the set of vertices

in Ḡ(D) is A and there is an edge {aj, ak} in Ḡ(D) if and only if aj ≈ ak.

The objective of this chapter is to show that Ḡ(D) requires “fewer” edges than G(D) in

order to be dictatorial. In particular, we will only require Ḡ(D) to be connected. 2

Definition 4.11 A domain D is a γ domain if Ḡ(D) is connected.

A γ domain may not be a β domain as the example below shows.

Example 4.2 Let A = {a1, a2, a3, a4, a5} and let D̂ be the domain in Table 4.3.

The domain D̂ is a γ domain. The induced graph Ḡ(D̂) (shown in Figure 4.2) is connected.

2This is the standard notion of a connected graph, i.e. a graph where there is a path between any two

vertices. A complete definition can be found in West (2001).
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P 1
i P 2

i P 3
i P 4

i P 5
i P 6

i P 7
i P 8

i P 9
i P 10

i

a1 a1 a2 a2 a3 a3 a4 a4 a5 a5

a2 a4 a1 a4 a1 a5 a5 a2 a4 a1

a3 a3 a3 a5 a2 a4 a3 a1 a3 a2

a4 a5 a4 a3 a4 a2 a2 a3 a1 a3

a5 a2 a5 a1 a5 a1 a1 a5 a2 a4

Table 4.3: The domain D̂

a1 a2 a3 a4 a5

Figure 4.2: The graph Ḡ(D̂)

If a domain is a β domain, then for every aj ∈ A, there exists ak and ar such that aj
w
∼ ak

and aj
w
∼ ar. However a5 is not weakly connected to a1 or a2 or a3. Therefore D̂ is not a β

domain.

Example 4.3 Let A = {a1, a2, a3, a4, a5} and let D∗ be the domain in Table 4.4. The graph

induced by D
∗ is a star graph3 (shown in Figure 4.3). Since the star graph is connected, D∗

is a γ domain.

P 1
i P 2

i P 3
i P 4

i P 5
i P 6

i P 7
i P 8

i P 9
i P 10

i P 11
i P 12

i

a1 a1 a2 a2 a3 a3 a3 a4 a4 a4 a5 a5

a4 a3 a4 a5 a1 a2 a2 a1 a3 a3 a4 a3

a2 a5 a1 a3 a2 a4 a5 a5 a2 a5 a2 a1

a5 a2 a3 a1 a5 a1 a1 a2 a1 a1 a1 a4

a3 a4 a5 a4 a4 a5 a4 a3 a5 a2 a3 a2

Table 4.4: The domain D
∗

The the following we show that the circular domain introduced in Sato (2010), is a γ

domain.

Definition 4.12 A domain is called a circular domain (Dc) if the elements of A can be

indexed a1, a2, . . . , am so that for each k ∈ {1, 2, . . . ,m}, there exist two preferences Pi and

P ′
i in D

c such that

3A graph G = (N,E) is a star graph if there exists a vertex a ∈ N (the center of the star) such that (i)

for all b ∈ N \ {a}, {a, b} is an edge in G and (ii) for all b, c ∈ N \ {a}, {b, c} is not an edge in G.
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a2

a1

a4

a3

a5

Figure 4.3: The star graph Ḡ(D∗)

(i) r1(Pi) = ak, r2(Pi) = ak+1 and rm(Pi) = ak−1.

(ii) r1(P
′
i ) = ak, r2(P

′
i ) = ak−1 and rm(P

′
i ) = ak+1.

(Let am+1 = a1 and a0 = am.)

Proposition 4.1 D
c is a γ domain.

Proof : First we show that for each k ∈ {1, 2, . . . ,m}, {ak, ak+1} is an edge in Ḡ(Dc). Since

there exists P ′, P ′′ ∈ D
c where r1(P

′
i ) = ak, r2(P

′
i ) = ak+1, r1(P

′′
i ) = ak+1 and r2(P

′
i ) = ak,

ak and ak+1 are weakly connected. Pick an alternative b 6= ak, ak+1. Since there exists

P 1
i , P

2
i ∈ D

c where r1(P
1
i ) = ak, rm(P

1
i ) = ak+1, r1(P

2
i ) = ak+1 and rm(P

2
i ) = ak, b is ranked

above ak+1 in P 1
i and also above ak in P 2

i . Therefore, ak ≈ ak+1 and {ak, ak+1} is an edge in

Ḡ(Dc). Since for each k ∈ {1, 2, . . . ,m}, {ak, ak+1} is an edge in Ḡ(Dc), it is connected. �

Observation 4.3 Ḡ(Dc) is not a star graph.

Observation 4.4 A circular domain may or may not be a β domain. Chatterji et al. (2013)

introduced a more restricted class of circular domains (which they also called circular do-

mains). These domains are β domain.

Observation 4.5 A β domain may not be a γ domain. For instance the domain in Example

4.1, is not a γ domain. The induced graph (shown in Figure 4.4) is not connected.

a1 a2 a3 a4

Figure 4.4: The graph Ḡ(D̄)

Our main result in this section shows that any D for which Ḡ(D) is connected, is dictato-

rial. Unfortunately, some extra conditions are needed in the very special case when Ḡ(D) is a
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star graph. We are unable to show the dictatorial result for the star graph without additional

conditions but we conjecture that the additional conditions are not required. In Parts B and

C of the Theorem below, we provide two independent conditions for the star-graph case that

ensure dictatoriality.

Theorem 4.3 Let D be a γ domain.

A. If Ḡ(D) is not a star graph, then D is dictatorial.

B. Let Ḡ(D) be a star graph and let a be the center of the star. If there exists b, c ∈ A\{a}

such that b
w
∼ c, then D is dictatorial.

C. Let Ḡ(D) be a star graph and let a be the center of the star. If there exists

P 1
i , P

2
i , P

3
i , P

4
i ∈ D such that (i) r1(P

1
i ) = r1(P

2
i ) = b 6= a and r1(P

3
i ) = r1(P

4
i ) = c 6= a

and (ii) M(b, a, P 1
i ) = W (a, P 2

i ) = M(c, a, P 3
i ) = W (a, P 4

i ), then D is dictatorial.

Proof : Let D be a γ domain and let f : D2 → A be a strategy-proof and unanimous scf 4.

Let Ḡ(D) be the induced connected graph. We will say a pair of alternatives a, b ∈ A

are neighbors if {a, b} is an edge in the graph Ḡ(D). Agent i ∈ {1, 2} is said to be decisive

over a ∈ A if for any P ∈ D
2 with r1(Pi) = a, f(P ) = a. Agent i ∈ {1, 2} is dictator if i is

decisive over all alternatives in A.

Lemma 4.2 Let a and b be neighbors. For all i, j ∈ {1, 2}, if i is not decisive over a, then

j is decisive over b.

Proof : We assume that agent i is not decisive over a. If agent i is not decisive over a,

then we argue that f(P̄i, P̄j) 6= a, where r1(P̄i) = a and r1(P̄j) = b. If f(P̄i, P̄j) = a, then

applying Lemma 4.1, f(Pi, Pj) = a for all (Pi, Pj) ∈ D
2 such that r1(Pi) = a and r1(Pj) = b.

In that case, we argue that agent i is decisive over a. Suppose not. Then there exists a

profile P ′ ∈ D
2, such that r1(P

′
i ) = a and f(P ′) = c 6= a. Since a ≈ b, there exist P ′′

j with

r1(P
′′
j ) = b and cP ′′

j a. Therefore, agent j can manipulate at (P ′
i , P

′′
j ) via P ′

j .

By Lemma 4.1 and our assumption, f(P̄i, P̄j) = b. If f(P̄i, P̄j) = b, then applying Lemma

4.1, f(Pi, Pj) = b for all (Pi, Pj) ∈ D
2 such that r1(Pi) = a and r1(Pj) = b. Finally, we

argue that agent j is decisive over b. Suppose not. Then there exists a profile P ′ ∈ D
2, such

that r1(P
′
j) = b and f(P ′) = c 6= b. Since a ≈ b, there exist P ′′

i with r1(P
′′
i ) = a and cP ′′

j b.

Therefore, agent i can manipulate at (P ′′
i , P

′
j) via P ′

i . �

4In view of Proposition 3.1 of Aswal et al. (2003) and the fact that a γ domain is minimally rich, it suffices

to show that if f : D2 → A is strategy-proof and unanimous, then f is dictatorial.
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Lemma 4.3 For any distinct a and b in A, it is impossible that agent 1 is decisive over a

and agent 2 is decisive over b.

Proof : Pick a profile P ∈ D
2 such that r1(P1) = a and r1(P2) = b. Since agent 1 is decisive

over a, f(P ) = a. But f(P ) = b, because agent 2 is decisive over c. Therefore, the single-

valuedness of f is contradicted. �

Proof (of Part A): Suppose Ḡ(D) is not a star graph. We show that f is dictatorial. First

we show the following claim.

Claim 4.8 For any a ∈ A, either agent 1 is decisive over a or agent 2 is decisive over a.

Proof : Suppose not. There exists an alternative a ∈ A such that either both the agents

are decisive over a or none of them are decisive over a. We consider the following two cases.

Case 1: Suppose both the agents are decisive over a. Since Ḡ(D) is connected and not a star,

there exists two edges {a, b} and {b, c} where a 6= c. By Lemma 4.3, both the agents are

not decisive over b. By Lemma 4.2, both the agents are decisive over c, because b and c are

neighbors. Since agent 1 is decisive over a and 2 is decisive over b, Lemma 4.3 is contradicted.

Case 2: Suppose none of the agents are decisive over a. Since Ḡ(D) is connected, there exists

an edge {a, b} in Ḡ(D). By Lemma 4.2, both the agents are decisive over b. Arguments in

case 1 can now be replicated with alternative a replaced by b to show a contradiction. �

Claim 4.9 There exists an agent who is decisive over all alternatives in A.

Proof : Let a be any element of A. By Claim 4.8, either agent 1 is decisive over a or

agent 2 is decisive over a. W.l.o.g we assume that agent 1 is decisive over a. We complete

the proof by showing that 1 is decisive over all alternatives in A. Let b be any element of

A \ {a}. We show that agent 1 is decisive over b. Since Ḡ(D) is connected, there exists a

path (a = a1, a2, . . . , ak−1, ak = b) in Ḡ(D) from a to b. First, we show that if agent 1 is

decisive over ai then agent 1 is decisive over ai+1 for all i ∈ {1, 2, . . . , k−1} and applying this

fact again and again we conclude that agent 1 is decisive over b. Note that ai and ai+1 are

neighbors in Ḡ(D). By Lemma 4.3, if agent 1 is decisive over ai, then agent 2 is not decisive

over ai+1. By Claim 4.8, agent 1 is decisive over ai+1. Therefore we conclude that agent 1 is

decisive over b. Because b was arbitrary, agent 1 is decisive over all alternatives in A. �

Claim 4.8 and Claim 4.9 establish Part A of the Theorem 4.3. �
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Proof (of Part B): Suppose Ḡ(D) is a star graph and let a be the center of the star. Let

b, c ∈ A \ {a} be such that b
w
∼ c. We show that f is dictatorial. First we show the following

claim.

Claim 4.10 It is impossible for both agents 1 and 2 to be decisive over a.

Proof : Since b
w
∼ c, there exists B ⊂ A and P1, P2 ∈ D such that (i) r1(P1) = b and

r1(P2) = c, (ii) B = M(b, c, P1) and (iii) B = M(c, b, P2). By Lemma 4.1, f(P1, P2) is either

b or c. Let f(P1, P2) = b - a similar arguments works if f(P1, P2) = c. If a ∈ B, 2 would

manipulate at (P1, P2) via an ordering where a is ranked first because 2 is decisive over a -

a contradiction.

Suppose a /∈ B. Since a and c are neighbors, a
w
∼ c. Therefore, there exists B′ ⊂ A and

P ′
2, P

′′
2 ∈ D such that (i) r1(P

′
2) = r1(P

′′
2 ) = c, (ii) B′ = M(c, a, P ′

2) and (iii) B′ ⊂ W (a, P ′′
2 ).

Lemma 4.1 and strategy-proofness imply that f(P1, P
′
2) = f(P1, P

′′
2 ) = b. If b ∈ B′, 2 would

manipulate at (P1, P
′′
2 ) via an ordering where a is ranked first because 2 is decisive over a.

Similarly, if b /∈ B′, 2 would manipulate at (P1, P
′
2) via an ordering where a is ranked first.

This completes the proof of the Claim. �

Claim 4.11 For any d ∈ A, either agent 1 is decisive over d or agent 2 is decisive over d.

Proof : Suppose not. Therefore, there exists an alternative d ∈ A such that either both the

agents are decisive over d or none of them are decisive over d. We consider following two

cases.

Case 1: Suppose both the agents are decisive over d. Claim 4.10 implies that d is not the

center of Ḡ(D). Since d and a are neighbors, Lemma 4.3 implies that agent 1 and 2 are not

decisive over a. By Lemma 4.2, both agents are decisive over c ( 6= a, d), because a and c are

neighbors. Since agent 1 is decisive over d and 2 is decisive over c, Lemma 4.3 is contradicted.

Case 2: In this case we consider that agent 1 and 2 are not decisive over d. First we argue

that d is the center of Ḡ(D). If d is not the center, Lemma 4.2 implies that agent 1 and 2 are

decisive over a - Claim 4.10 is contradicted. Therefore, d is the center of Ḡ(D). By Lemma

4.2, both agents are decisive over two distinct non-central alternatives b and c. Since agent

1 is decisive over b and 2 is decisive over c, Lemma 4.3 is contradicted. �

Claim 4.12 There exists an agent who is decisive over all alternatives in A.
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Proof : Replacing Claim 4.8 by Claim 4.11 in the proof of Claim 4.9 we can establish this

Claim.

�

Claim 4.10-4.12 establish Part A of the Theorem 4.3. �

Proof (of Part C): Suppose Ḡ(D) is a star graph and let a be the center of the star. Let

P 1
1 , P

2
1 , P

3
2 , P

4
2 ∈ D be such that (i) r1(P

1
1 ) = r1(P

2
1 ) = b 6= a and r1(P

3
2 ) = r1(P

4
2 ) = c 6= a

and (ii) M(b, a, P 1
1 ) = W (a, P 2

1 ) = M(c, a, P 3
2 ) = W (a, P 4

2 ). We show that f is dictatorial.

First we show the following claim.

Claim 4.13 It is impossible for both agents 1 and 2 to be decisive over a.

Proof : Suppose not, i.e. agent 1 and 2 are decisive over a. Let M(b, a, P 1
1 ) = W (a, P 2

1 ) =

M(c, a, P 3
2 ) = W (a, P 4

2 ) = B. By our assumption, b, c /∈ B. Now consider the preference

profile (P 1
1 , P

4
2 ). We show that f(P 1

1 , P
4
2 ) = b. Note that f(P 1

1 , P
4
2 ) /∈ B, otherwise 2 will

manipulate via an ordering where a is first-ranked. Since bP 4
2 a, f(P

1
1 , P

4
2 ) 6= a, otherwise 2

will manipulate via an ordering where b is first-ranked. Since 1 is decisive over a, f(P 1
1 , P

4
2 ) /∈

W (a, P 1
1 ). Therefore f(P 1

1 , P
4
2 ) = b.

Strategy-proofness implies that f(P 2
1 , P

4
2 ) = b. We complete the proof of the claim by

showing that f(P 2
1 , P

3
2 ) /∈ A, because it contradicts with the fact that f is a function. Note

that f(P 2
1 , P

3
2 ) 6= c, otherwise 2 will manipulate at (P 2

1 , P
4
2 ) via P 3

2 . Also f(P 2
1 , P

3
2 ) /∈ B,

otherwise 1 will manipulate via an ordering where a is first-ranked. Since cP 2
1 a, f(P

2
1 , P

3
2 ) =

a, otherwise 1 will manipulate via an ordering where c is first-ranked. Since 2 is decisive over

a, f(P 2
1 , P

3
2 ) /∈ W (a, P 3

2 ). This completes the proof of the Claim. �

Claim 4.14 For any d ∈ A, either agent 1 is decisive over d or agent 2 is decisive over d.

Proof : Replacing Claim 4.10 by Claim 4.12 in the proof of Claim 4.11, we can establish

this Claim. �

Claim 4.15 There exists an agent who is decisive over all alternatives in A.

Proof : Replacing Claim 4.8 by Claim 4.14 in the proof of Claim 4.9, we can establish this

Claim.

�

Claim 4.13-4.15 establish Part C of Theorem 4.3. �
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This completes the proof of the Theorem. �

Observation 4.6 Since the graph induced by a circular domain is connected and not a

star graph (Observation 4.3), Part A of Theorem 4.3 generalizes the results in Sato (2010).

Moreover, the minimal size of a γ domain is 2m (Example 4.2).

Observation 4.7 For the star-graph case, there are domains for which the conditions spec-

ified in Part B and Part C do not hold - the domain in Example 4.3 is such an example.

Observation 4.8 The relationship between linked domains (Aswal et al. (2003)), circular

domains (Sato (2010)), circular domains (Chatterji et al. (2013)), β domains and γ domains

is summarized as follows.

1. linked domains (Aswal et al. (2003)) ⊂ β domains.

2. circular domains (Chatterji et al. (2013)) ⊂ circular domains (Sato (2010)) ⊂ γ do-

mains.

3. circular domains (Chatterji et al. (2013)) ⊂ β domains.

Ditatorial Domains

Linked Domains

β Domains

γ Domains

Cirular Domains (Sato (2010))

Cirular Domains (Chatterji and Sen (2011))

Figure 4.5: Diagrammatic representation of Observation 4.8
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4.5 An Application

Consider a city with a hub. A finite number of citizens are located in the city but not at the

hub. However, their locations are directly connected to the hub by a road. A public facility

such as a hospital or a school has to be located in the city. The location decision is based

on the preferences of citizens which are private information. What are the scfs that induce

agents to report their preferences truthfully?

Let H be the hub of the city. Agents are located at a finite set of locations denoted

by a1, . . . , am, m ≥ 2. Agents’ preferences are restricted in the following manner: an agent

located at ai has one of the four orderings shown in Table 5.

Pi P̄i P ′
i P ′′

i

ai ai H H

H . ai .

. . . .

. . . .

. H . ai

Table 4.5: Possible Preferences of an agent located at ai

The rationale behind the preference restrictions is as follows. Some citizens want it either

at their location or at the hub - these citizens prefer proximity to the facility. Thus ai and H

take first two places in their ordering and are represented either by Pi or P
′
i . Some citizens

want it at any residential location rather than at the hub and most prefer it when it is located

near them - these preferences are represented by P̄i. Finally some citizens are affected by the

congestion created by the facility and are strongly averse to it being located near them. They

most prefer it being located at the hub for easy access. Such preferences are represented by

P ′′
i .

A domain with the four preference orderings in Table 4.5 for each ai, will be called a hub

domain and denoted by D
H .

Proposition 4.2 A hub domain is a γ domain.

Proof : Let DH be a hub domain. First we show that for each k ∈ {1, 2, . . . ,m}, {ak, H} is an

edge in Ḡ(DH). Since there exists P ′, P ′′ ∈ D
H where r1(P

′
i ) = ak, r2(P

′
i ) = H, r1(P

′′
i ) = H

and r2(P
′
i ) = ak, ak and ak+1 are weakly connected. Pick an alternative b 6= ak, H. Since

there exists P 1
i , P

2
i ∈ D

H where r1(P
1
i ) = ak, rm+1(P

1
i ) = H, r1(P

2
i ) = H and rm+1(P

2
i ) = ak,

b is ranked above H in P 1
i and also above ak in P 2

i . Therefore, ak ≈ ak+1 and {ak, ak+1}

is an edge in Ḡ(Dc). Since for each k ∈ {1, 2, . . . ,m}, {ak, H} is an edge in Ḡ(DH), it is

connected. �
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The induced graph by a hub domain may or may not be a star-graph. In either case, it

is a dictatorial domain.

Theorem 4.4 A hub domain is dictatorial.

Proof : Let DH be a hub domain. By Proposition 4.2, Ḡ(DH) is connected. If Ḡ(DH) is not

a star-graph, we are done by Part A of Theorem 4.3.

Suppose that Ḡ(DH) is a star-graph. Note that there exists P 1
i , P

2
i , P

3
i , P

4
i ∈ D

H such

that (i) r1(P
1
i ) = r1(P

2
i ) = ai 6= H and r1(P

3
i ) = r1(P

4
i ) = aj 6= H and (ii) M(ai, H, P 1

i ) =

W (H,P 2
i ) = M(aj, H, P 3

i ) = W (H,P 4
i ) = ∅. Therefore, by Part C of Theorem 4.3, DH is

dictatorial. �

4.6 Conclusion

We have generalized the results of Aswal et al. (2003) in two different ways. Our results

generate new examples of dictatorial domains and also unify existing results by covering

some hitherto isolated cases.

81



82



Bibliography

Archer, A. and R. Kleinberg (2008): “Truthful Germs are Contagious: A Local to

Global Characterization of Truthfulness,” in In Proceedings of the 9th ACM conference on

Electronic commerce (EC-08), Springer (Lecture Notes in Computer Science).

Ashlagi, I., M. Braverman, A. Hassidim, and D. Monderer (2010): “Monotonicity

and Implementability,”Econometrica, 78, 1749–1772.

Aswal, N., S. Chatterji, and A. Sen (2003): “Dictatorial domains,”Economic Theory,

22, 45–62.

Barbera, S. and L. Ehlers (2011): “Free Triples, Large Indifference Classes and the

Majority Rule,” Social Choice and Welfare, 37, 559–574.

Berger, A., R. Muller, and S. H. Naeemi (2010): “Path-Monotonicity and Incentive

Compatibility,”Working Paper, Maastricht University.

Bikhchandani, S., S. Chatterji, R. Lavi, A. Mualem, N. Nisan, and A. Sen

(2006): “Weak Monotonicity Characterizes Deterministic Dominant Strategy Implemen-

tation,”Econometrica, 74, 1109–1132.

Bossert, W. and H. Peters (2009): “Single-Peaked Choice,”Economic Theory, 41, 213–

230.

Carbajal, J. C. (2010): “On the Uniqueness of Groves Mechanisms and the Payoff Equiv-

alence Principle,”Games and Economic Behavior, 68, 763–772.

Carbajal, J. C. and J. Ely (2013): “Mechanism Design without Revenue Equivalence,”

Journal of Economic Theory, 148, 104–133.

Chatterji, S., R. Sanver, and A. Sen (2013): “On domains that admit well-behaved

strategy-proof social choice functions,” Journal of Economic Theory, 148, 1050–1073.

Chatterji, S. and A. Sen (2011): “Tops-only domains,”Economic Theory, 46, 255–282.

83



Chung, K.-S. and W. Olszewski (2007): “A Non-Differentiable Approach to Revenue

Equivalence,”Theoretical Economics, 2, 1–19.

Cuff, K., S. Hong, J. A. Schwartz, Q. Wen, and J. Weymark (2012): “Dominant

Strategy Implementation with a Convex Product Space of Valuations,” Social Choice and

Welfare, 39, 567–597.

Demange, G. (1982): “Single-peaked Orders on a Tree,”Mathematical Social Sciences, 3,

389–396.

Gibbard, A. (1973): “Manipulation of Voting Schemes: A General Result,”Econometrica,

41, 587–602.

Gui, H., R. Muller, and R. Vohra (2004): “Characterizing Dominant Strategy Mech-

anisms with Multidimensional Types,”Working Paper, Northwestern University.

Hart, S. and N. Nisan (2012): “Approximate Revenue Maximization for Multiple Items,”

The Hebrew University of Jerusalem, Center for Rationality DP-606.

Hart, S. and P. J. Reny (2012): “Maximizing Revenue with Multiple Goods: Non-

monotonicity and Other Observations,” The Hebrew University of Jerusalem, Center for

Rationality DP-630.

Heydenreich, B., R. Muller, M. Uetz, and R. V. Vohra (2009): “Characterization

of Revenue Equivalence,”Econometrica, 77, 307–316.

Hurwicz, L. (1972): Decision and Organization, North-Holland Press, chap. On Informa-

tionally Decentralized Systems, 297–336.

Jehiel, P., B. Moldovanu, and E. Stacchetti (1999): “Multidimensional Mechanism

Design for Auctions with Externalities,” Journal Economic Theory, 85, 258–293.

Klaus, B., H. Peters, and T. Storcken (1998): “Strategy-Proof Division with Single-

Peaked Preferences and Initial Endowments,” Social Choice and Welfare, 15, 287–311.

Kos, N. and M. Messner (2013): “Extremal Incentive Compatible Transfers,” Journal of

Economic Theory, 148, 134–164.

Krishna, V. and E. Maenner (2001): “Convex Potentials with an Application to Mech-

anism Design,”Econometrica, 69, 1113–1119.

84



Manelli, A. M. and D. Vincent (2007): “Multidimensional Mechanism Design: Revenue

Maximization and the Multiple Good Monopoly,” Journal of Economic Theory, 137, 153–

185.

Milgrom, P. and I. Segal (2002): “Envelope Theorems for Arbitrary Choice Sets,”

Econometrica, 70, 583–601.

Mishra, D. and S. Roy (2013): “Implementation in Multidimensional Dichotomous Do-

mains,”Theoretical Economics, 8, 431–466.

Moulin, H. (1980): “On Strategyproofness and Single-peakedness,”Public Choice, 35, 437–

455.

Muller, R., A. Perea, and S. Wolf (2007): “Weak Monotonicity and Bayes-Nash

Incentive Compatibility,”Games and Economics Behavior, 61, 344–358.

Myerson, R. B. (1981): “Optimal Auction Design,”Mathematics of Operations Research,

6, 58–73.

Nehring, K. and C. Puppe (2007a): “Efficient and Strategy-Proof Rules: A Characteri-

zation,”Games and Economic Behavior, 59, 132–153.

——— (2007b): “The structure of strategy-proof social choice Part I: General characteriza-

tion and possibility results on median spaces,” Journal of Economic Theory, 135, 269–305.

Otten, G.-J., H. Peters, and O. Volij (1996): “Two Characterizations of the Uniform

Rule for Division Problems with Single-Peaked Preferences,”Economic Theory, 7, 291–306.

Papai, S. (2000): “Strategyproof Assignment by Hierarchical Exchange,”Econometrica, 68,

1403–1433.

Rahman, D. (2011): “Detecting Profitable Deviations,”Working Paper, University of Min-

nesota.

Reny, P. (2001): “Arrow’s Theorem and the Gibbard-Satterthwaite Theorem: A Unified

Approach,” Economics Letters, 70, 99–105.

Roberts, K. (1979): The Characterization of Implementable Choice Rules, North Holland

Publishing, chap. Aggregation and Revelation of Preferences, 321–348, editor: J-J. Laffont.

Rochet, J. C. (1987): “A Necessary and Sufficient Condition for Rationalizability in a

Quasi-linear Context,” Journal of Mathematical Economics, 16, 191–200.

85



Rockafellar, R. T. (1970): Convex Analysis, Princeton University Press.

Saks, M. E. and L. Yu (2005): “Weak Monotonicity Suffices for Truthfulness on Convex

Domains,” in Proceedings of 7th ACM Conference on Electronic Commerce, ACM Press,

286–293.

Sato, S. (2009): “Strategy-proof Social Choice with Exogenous Indifference Classes,”Math-

ematical Social Sciences, 57, 48–57.

——— (2010): “Circular domains,”Review of Economic Design, 14, 331–342.

Satterthwaite, M. (1975): “Strategy-proofness and Arrow’s Conditions: Existence and

Correspondence Theorems for Voting Procedures and Social Welfare Functions,” Journal

of Economic Theory, 10, 187–217.

Satterthwaite, M. and H. Sonnenschein (1981): “Strategy-Proof Allocation Mecha-

nisms at Differentiable Points,”Review of Economic Studies, 48, 587–597.

Sen, A. (2001): “Another Direct proof of the Gibbard-Satterthwaite Theorem,”Economics

Letters, 70, 381–385.

Spence, M. (1974): “Competitive and optimal responses to signals: An analysis of efficiency

and distribution,” Journal of Economic Theory, 7, 296–332.

Sprumont, Y. (1991): “The Division Problem with Single-Peaked Preferences: A Charac-

terization of the Uniform Allocation Rule,” Econometrica, 59, 509–519.

Svensson, L.-G. (1999): “Strategy-proof Allocation of Indivisible Goods,” Social Choice

and Welfare, 16, 557–567.

Vohra, R. V. (2011): Mechanism Design: A Linear Programming Approach, Cambridge

University Press.

West, D. (2001): Introduction to Graph Theory, Prentice Hall.

Weymark, J. A. (2008): “Strategy-Proofness and the Tops-Only Property,” Journal of

Public Economic Theory, 10, 7–26.

86


	Contents
	Introduction
	Multidimensional Mechanism Design with Ordinal Restrictions
	Strategy-proof Social Choice in the Exogenous Indifference Class Model
	Further Results on Dictatorial Domains

	Multidimensional Mechanism Design  with Ordinal Restrictions
	Introduction
	Implementation and Cycle Monotonicity
	A Motivating Example

	The Type Space
	Proof of Theorem 2.1

	Type Spaces with Ordinal Restrictions: The Difference Indifference Makes
	Strict Types, Ordinal Connectedness, and Lifting
	Examples

	Payments and Revenue Equivalence
	Domains with Free Triple at the Top
	Relation to the Literature

	Strategy-proof Social Choice in the Exogenous Indifference Class Model
	Introduction
	The Model
	Results
	Necessary Conditions for Dictatorship
	Sufficient Conditions for Dictatorship

	Conclusion

	Further Results on Dictatorial Domains
	Introduction
	Basic notation and definitions
	 Domains
	 Domains
	An Application
	Conclusion

	Bibliography

