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Chapter 1

Introduction

This dissertation consists of three chapters. The first chapter studies the impact

of climate change on electricity demand in Delhi using daily data on electricity demand and

apparent temperature for the period 2000-09. It estimates a semi-parametric variable coeffi -

cient model that allows for a non-linear relationship between temperature and electricity to

shift over time, a feature that is necessary to incorporate given the rapid economic growth

in India. As evident from previous studies, electricity demand is a U-shaped function of

temperature. Three results from our analysis have important implications for electricity-

climate policy: Firstly, the rising part of the temperature-electricity curve is becoming more

pronounced over time implying an increase in cooling demand per unit increase in summer

temperatures. A 10C increase in temperature at 30 0C increased the electricity demand by

over 3 MkWh in 2009 as compared to only over 1 MkWh in 2000. On the other hand, a 10C

increase in temperature at 15 0C decreased the electricity demand by only 0.8 MkWh in

2009 as compared to 0.7 MkWh in 2000. Secondly, the increasing temperature dependence
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of the cooling demand shifts the temperature-electricity curve of Delhi leftwards. In par-

ticular, the minimum temperature threshold (TT) shifts from about 20-22 0C in the first

half (2000-05) to about 18.5-20.5 0C in the second half (2006-09) of the period. Thirdly,

while higher temperatures would increase electricity demand in all seasons except winters,

the maximum impact is likely to be felt in the hot month of April, with average apparent

temperatures of 30 0C, followed by October and May. Thus, the results suggest that the

adverse effects of climate change on electricity demand to be asymmetrically distributed in

different seasons in the future, resulting in a serious disequilibrium in the hot months.

The second chapter extends the analysis to all-India level, enabling the use of

the large climatic and income variation across states to assess the dependence of the

temperature-electricity demand relation on the level of income and climate. This chap-

ter aims to understand how India’s electricity demand will be affected by changes in its

climate, weather and income. To what extent does the weather sensitivity of electricity

demand depend on climate and the level of income? Due to growth, the impact of climate

change in India will be time-varying. The climate sensitivity of electricity demand in India

is likely to be highly sensitive to growth in income. Thus, both intensive and extensive ad-

justments in cooling and heating will play an important role in determining future climate

change impacts on electricity demand. This chapter utilizes a national level panel dataset

of 28 Indian states for the period 2005-2009 to show that (1) electricity demand is positively

related to temperatures in summers and negatively related to temperatures in winters; (2)

the effect of temperature increase on demand in summers is higher in a hotter climate as

people adapt with the use of higher cooling equipment whereas there is a higher negative
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response to temperature increase in winters in colder climates as people adapt using higher

heating equipment; (3) the effects of both the hotter and the colder climates on electricity

demand are expected to be more pronounced at the higher income levels. The preferred

estimates indicate that climate change will increase electricity demand by 6.9 percent with

4 percent p.a. GDP growth and 8.6 percent with 6 percent p.a. GDP growth in 2030

over the reference scenario of no climate change. This reflects the fact that the estimated

marginal effect of a hotter climate is greater when income is higher. The results suggest

that over 50 percent of the climate change impacts will be due to extensive adjustments

and that electricity demand models that do not account for extensive adjustments are likely

to underestimate the climate change impacts on electricity demand especially in developing

countries like India where the current penetration of air- conditioning equipment is very

low.

The third chapter studies climate change impacts on food prices and poverty in

India. In this chapter, we develop a stylized two-sector (food and non-food) general equilib-

rium framework inspired by [Eswaran & Kotwal, 1993] for studying the impact of climate

change on food prices and household welfare in India. The demand side is modelled by a

preference structure rooted in Engel’s law, according to which there is an inverse relation-

ship between a household’s income and its share devoted to food. The analysis is conducted

separately under closed and open economy assumptions in order to judge the impact of

trade. The simplicity of the model allows us to transparently assess the factors driving

the results. The framework indicates how the initial conditions in terms of the level and

distribution of wealth and land results in heterogeneity in a household’s vulnerability to
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climate change in an economy.

The model is first calibrated to data from 2009. We estimate the impact of historic

climate change and pollution trends over a 30-year period (1980-2009) on food prices and the

welfare of the poor in 2009. We find that food prices were 4 to 8 percent higher and the real

income of the landless poor was 2.4 to 4.8 percent lower in 2009 relative to a counterfactual

without climate change and pollution (over the past three decades). In 2030, agricultural

productivity is 7% lower compared to a scenario without further climate impacts, then

food prices will be 3.6 to 10.8 percent higher and real income of the landless 1.6 to 5.6%

lower. The lower numbers are obtained in open economy scenarios and the higher in closed

economy scenarios, showing that trade helps to protect the poor. If the economy is closed,

then improving the productivity of the agricultural sector has the greatest impact on the

welfare of the poor. In contrast, if the economy is open and there are no barriers to labor

movement out of agriculture, then the non-agricultural sector plays a bigger role in driving

the welfare of the poor than mitigation of climate change.
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Chapter 2

Global Warming and Electricity

Demand in the Rapidly Growing

City of Delhi: A Semi-Parametric

Variable Coeffi cient Approach1

2.1 Introduction

There is growing consensus among scholars on the plausibility of increases in the

Earth’s mean temperature. It has stimulated attempts to assess the impact of such changes

on different sectors. In light of this interest, the present paper attempts to quantify how

climate change will affect electricity demand in the continental climate of Delhi (28030
′
N),

1This chapter has been published in the journal of Energy Economics.



6

which is one of the most populous cities in India. For this purpose, we use a semi-parametric

variable coeffi cient approach to estimate the effects of apparent temperature2 on daily elec-

tricity demand over a 10-year period (2000-09). We use the estimated model to simulate the

impact of 10C, 20C and 30C increases in apparent temperature on the electricity demand

of Delhi up to 2030.

Existing literature highlights a U-shaped non-linear temperature-electricity curve

(TEC) where, starting from low levels, rising temperatures first decrease electricity demand

due to lower heating requirements in cold weather but where the demand begins to increase

due to the higher cooling demand in hot weather once, the level of temperature exceeds

the minimum electricity demand threshold. The expected net effect of global warming on

electricity demand is therefore ambiguous prima facie. Previous studies have shown that

the heating effect dominates the cooling effect in cold countries such as Sweden, which

means that global warming would result in a decline in electricity demand in these coun-

tries. However, scholars have predicted the reverse for Germany with the cooling effect

dominating the heating effect (See [Bessec & Fouquau, 2008]). This suggests that much

warmer countries such as India are also likely to experience a net increase in their electric-

ity demand due to climate warming. No studies exist yet of the nature and extent of the

climate warming effects on electricity demand in case of India. The present paper attempts

such a quantification.

This is the first study to estimate a temperature-electricity curve for India, the

key contribution of this paper being that it recognizes and addresses two special problems

2‘Apparent temperature’refers to what various combinations of temperature, humidity and windspeed
feel like based on human physiology and clothing science and the need for the body to maintain a thermal
equilibrium.
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in the estimation of temperature-electricity curves for developing countries. Firstly, with

rapid changes in the economic structure of such countries in future, the relation is likely

to shift over time. In this paper, we address this issue by estimating a semi-parametric

variable coeffi cient model that allows the temperature-electricity relation to vary over time.

As in [Engle et al., 1986], we model the temperature-electricity relation non-parametrically

using cubic regression splines, so that weather extremes can have relatively larger impacts

on electricity demand, while the other predictor variables enter the regression linearly. The

innovation of this paper is to allow the non-parametric temperature-electricity relation to

vary across years by interacting the non-parametric component with year. Secondly, black-

outs or power-outages are common in many developing countries. This means that observed

electricity use is typically less than the notional electricity demand (which is the object of

interest in this study). We adjust daily electricity consumption using daily shortage data

in order to obtain the unrestricted electricity demand in Delhi.

One important limitation of this study is that it takes a broad perspective, es-

timating the average temperature-electricity curve for the aggregate electricity demand of

Delhi whereas the temperature-electricity sensitivities may differ across sectors significantly.

For instance, while a large chunk of this demand is due to space conditioning and water

heating in the residential and commercial sectors, which is highly sensitive to tempera-

ture, in agriculture and industrial sectors, electricity demand is determined by the level of

economic activity, which is thus largely temperature insensitive. Since, given the data lim-

itations, it is not possible to obtain the daily electricity demand data for different sectors,

we have adopted an aggregated approach in this study. In the case of Delhi where 97.5%
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of the population is urban, the residential and commercial sectors taken together account

for approximately 80% of the total electricity demand.

A second limitation is that while electricity demand can be modeled structurally,

where electricity consumption is chosen to maximize the expected utility of the households

and profits of the firms, we have not adopted this model because a) the data on prices,

utilization and effi ciency of electricity using equipment at the household and firm level over

time is not available and b) a structural model is hard to implement. Thus, as is the case

with much of the literature, our study too works with a reduced form model.

Three results from our analysis have important implications for electricity-climate

policy: Firstly, we observe that the rising part of the temperature-electricity curve is be-

coming more pronounced over time, implying an increase in the cooling demand per unit

increase in summer temperatures. For instance, a 10C increase in temperature at 30 0C

increased the electricity demand by over 3 MkWh in 2009 as compared to only over 1 MkWh

in 2000. On the other hand, a 10C increase in temperature at 15 0C decreased the electricity

demand by only 0.8 MkWh in 2009 as compared to 0.7 MkWh in 2000. Secondly, the in-

creasing temperature dependence of the cooling demand shifts the temperature-electricity

curve of Delhi leftwards. In particular, the minimum temperature threshold (TT) shifts

from about 20-22 0C in the first half (2000-05) to about 18.5-20.5 0C in the second half

(2006-09) of the period. Thirdly, the results suggest that the adverse effects of global warm-

ing will be asymmetrically distributed in the different seasons. While higher temperatures

would increase electricity demand in all seasons except winters, the maximum impact is

likely to be felt in the hot month of April, with average apparent temperatures of 30 0C,
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followed by October and May. Given the dominance of summer electricity demand in the

Indian electricity consumption pattern, increasing temperature dependence in the summer

months with extreme temperature events may lead to capacity problems.

The rest of the paper is organized as follows. Section 2 explains time-varying

temperature-electricity curves. Section 3 reviews existing studies and models that assess

the impact of temperature on electricity demand. Section 4 discusses the estimation strategy

while section 5 describes the data sources. In section 6, we discuss summary statistics and

results of the empirical model and in section 7 we simulate future electricity demand impacts

under three different climate scenarios. Section 8 concludes the paper.

2.2 Understanding the time-varying temperature-electricity

curve

Let us consider a hypothetical temperature-electricity curve as represented in Fig-

ure (2.1). In this U-shaped curve, the minimum point is the threshold. A large number

of socio-economic and physical factors such as the growth in incomes, extent of electrifi-

cation, energy effi ciency improvements, cultural habits, and prevailing climatic conditions

influence the temperature-electricity curve. [Hekkenberg et al., 2009] argue that over time

temporal dynamics could influence the slopes as well as the threshold temperature of the

temperature-electricity curve. For instance, increased internal heat gains in commercial

buildings from an increase in use of computers, or even a decrease in tolerance for heat with

higher income levels, lead to a general shift towards a lower heating demand and a higher

cooling demand. Thus, neglecting a downward shifting threshold temperature results in the
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Figure 2.1:

underestimation of the electricity demand that arises from a temperature increase. On the

other hand, ignoring an upward shifting threshold temperature results in the overestimation

of the electricity demand.

The number of households owning temperature control devices (such as air condi-

tioners and air coolers) is increasing very rapidly in India with increasing electricity access

and income. According to the National Sample Survey Organization (NSSO) surveys (50th,

61st and 66th), the number of households owning an air cooler3 or an air conditioner dou-

bled from 32.9% in 1993 to 60% in 2009 in urban Delhi (which represents 97.5% of the total

Delhi population as per the Census 2011) while it increased from 20.6% to 26% in rural

Delhi. In the case of refrigerators, the upward trend was even more impressive, with pene-

3Air coolers based on a fan for cooling consumes much less power than air conditioners that operate on
the principle of gas compression.
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tration increasing from 29% in 1993 to 61.3% in 2009 in urban Delhi and from 17.7% to 38%

in rural areas. In the 2004-05 NSSO survey (which provides data on the ownership of air

coolers and air conditioners separately unlike in the previous rounds) only 9% have access

to air conditioners and only 58% to air coolers in Urban Delhi. However, with increasing

incomes, there is a very high probability that the total air conditioning electricity demand

could increase substantially. Further, with increased purchasing power, the sensitivity of

households to higher temperatures is likely to increase, which may further shift the location

of the minimum point of the temperature-electricity curve. For instance, higher income

households may want to switch on their air conditioners when the average temperature is

just 190C in 2015 as compared to 220C in 2000.

According to [Kothawale et al., 2010] temperatures (mean, maximum and mini-

mum) increased by about 0.2 0C per decade for the period 1971—2007, with a much steeper

increase in minimum temperature than maximum temperature. On a seasonal scale, they

observed significant warming trends in mean temperature in two seasons characterized by

high humidity: i.e., monsoon and post-monsoon periods. Moreover, increasing night tem-

peratures in these humid seasons could have significant implications for the use of air con-

ditioners and thus for electricity demand. Since the market saturation of air conditioners is

currently quite low, the response of its diffusion (along with the rising standard of living) to

a long-term increase in the number of hot days and extreme temperature events may play

an important role in determining how electricity consumption on the whole would respond

to global warming.
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2.3 The temperature-electricity curve: ‘The studies so far’

The simplest way to estimate a U-shaped temperature-electricity curve is to use a

regression model that is quadratic in temperature. However, such a model assumes a sym-

metric relationship because, at any point in the curve, upward and downward changes in

temperature of equal magnitude would lead to identical changes in electricity demand. This

is an extremely strong assumption and many past studies have shown that the sensitivity of

electricity demand to temperature changes depends on initial temperature levels (Valor et

al., 2001; Mirasgedis et al., 2004). Nonetheless, a linear parametric model can still be used to

estimate a non-linear relation by using the degree day approach ([Al-Zayer & Al-Ibrahim, 1996];

[Valor et al., 2001]; [Sailor, 2001]; [Pardo et al., 2002]; [Mirasgedis et al., 2007]). This ap-

proach defines heating degree days (HDD) and cooling degree days (CDD). CDD and HDD

quantify the difference between the daily mean temperatures above or below a threshold

temperature ( where 180C is used as a common threshold temperature), respectively. The

HDD index is calculated on the basis of the relation: HDD=max (0,18 -Td), where Td is

the average daily air temperature on day d. The CDD index is calculated on the basis of

the relation: CDD=max (0,Td-18 ). These studies estimated the temperature-electricity

curve with the ordinary least squares regression model using annual, monthly or daily data

in the following manner:

ed = β0 + β1TRENDd + β2CDDd + β3HDDd + β4CDDd + β5HDDd+

11∑
k=1

φkMONTHkd +

6∑
b=1

ϕbWDb
d + β6HOLIDAYd + β7Xd + εd
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where e is the demand for electricity on day d,WD is a set of week data dummies,MONTH

is a set of month dummies, HOLIDAY is dummy for holidays, X includes socio-economic

factors such as income and population, and ε is the residual term. Although this approach

estimates separate linear relationships of electricity demand due to the heating and cooling

demand, it relies on an arbitrary choice of threshold value (180C in most cases).

However, more recent studies such as those of [Moral-Carcedo & Vicens-Otero, 2005]

and [Bessec & Fouquau, 2008] have estimated the above non-linear relationship by obtain-

ing these thresholds endogenously rather than choosing it a priori using different types of

non-linear threshold regression models. These studies estimated the above relationship in

the following manner:

ed = β0 + β1TRENDd + β2(TRENDd)
2 + β3(TRENDd)

3 +
6∑
b=1

ϕbWDbd

+ β4HOLIDAYd + β5Xd + β6g(Td; γ, c) + εd

where g(Td; γ, c) is a function of the temperature Td that allows a transition from a cold

to a warm regime. In the literature, the transition function has been specified in different

ways as piece-wise linear or as a smooth function (exponential or logistic). The assumption

of particular functional forms for the transition function is a limitation of such models.

Other researchers have attempted to address this limitation by using non-parametric

methods, also known as smoothing models, to achieve greater flexibility in the functional

form. To estimate the functional form from data, such models replace global estimates of

the electricity-temperature function with local estimates. Local methods estimate a regres-

sion between electricity demand (E) and temperature (T ) for some restricted range of E
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and T . This local estimate of the dependency is repeated across the range of E and T

and the series of local estimates is then aggregated to summarize the relationship between

the two variables. The resulting non-parametric estimate does not impose a particular

functional form on the relationship between E and T , and thus minimizes specification

errors ([Powell, 1993]; [Keele, 2008]; [Ruppert et al., 2003]). The estimates are also con-

sistent under more general conditions than are parametric estimates ([Wadud et al., 2010];

[Yatchew, 2003]). Both loess and splines are common non-parametric regression models

that rely on local estimates to estimate functional forms from data. [Engle et al., 1986]

estimated the impact of weather on the electricity sales of four US utilities with smooth-

ing splines using monthly data for 7-8 years. The semi-parametric partial linear regression

model estimated by them is given by

E = Zγ + f(T )+ε

In the above regression, temperature (T ) is assumed to affect electricity sales non-linearly

by an unknown cubic smoothing spline function f . However, other important variables

(Z) such as income and prices enter linearly in the model. The semi-parametric model

consists of a conventional parametric and a non-parametric part at the same time. A

fully non-parametric model is computationally complex in the presence of numerous predic-

tors. [Hyndman & Fan, 2009], [Harvey & Koopman, 1993], and [Henley & Peirson, 1997]

are some studies that use semi-parametric regressions in order to model the temperature-

electricity relationship.

[Ramesh et al., 1988] is the only study that estimates the temperature-electricity
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relation for Delhi, assessing the impact of weather variables on the peak electricity load

separately for summers and winters, separately during the period 1980-85, using the ordi-

nary least squares parametric regression. However, as mentioned earlier, electricity demand

has increased greatly since then. Moreover, while this study investigates the relationship

between electricity demand and climatic conditions in Delhi in the past for the purpose

of peak demand forecasting, ours is the first study that derives the non-linear dynamic

temperature-electricity curve of Delhi and focuses on the time-varying impact of global

warming on electricity demand using a semi-parametric variable coeffi cient model. Not

only did the previous study not control for important climatic factors such as rainfall and

windspeed, it also did not make any adjustment for the unmet electricity demand.

2.4 Estimation strategy: ‘The reduced-form model’

We estimate four models in the study. While the first model is based on simple

linear regression, the second specifies a semi-parametric additive model using unpenalized

splines. The third estimates a semi-parametric additive model with penalized splines while

the fourth model is a variable coeffi cient model where a smooth function of the tempera-

ture index is interacted with year to capture the time-varying impact of temperature on

electricity demand.

Model 1 estimates the non-linear relationship between electricity demand (E) and

apparent temperature (AT ) by including a global cubic polynomial in AT in the regression
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equation. This model takes the following form:

etd = β0 + β1MAJHtd + β2MINHtd + β3RAINtd +
9∑
t=1

φtyt

+
6∑
b=1

ϕbWDb
td + β4ATtd + β5AT

2
td + β6AT

3
td + εtd (2.1)

where e is electricity demand on day d of year t, MAJH is a dummy variable that takes

the value one for the major holiday, and zero otherwise, MINH is a dummy variable that

takes value one for the minor holiday, and zero otherwise,4 RAIN represents daily rainfall

in millimeters (mm). WD is the set of six day dummies to describe the weekly periodicity

of electricity demand where Wednesday is taken as the reference day. y is a set of nine-year

dummies with 2000 as the base year to identify the deterministic long-term trend connected

with the impact of demographic, technological, and socio-economic factors such as prices,

urbanization, and the increasing number of air conditioners and air coolers on electricity

demand. The inclusion of year-fixed effects accounts for any fixed differences across years

that may be correlated with all unobservable factors. In matrix notation eq (1) can be

rewritten in the following form

E = Zγ +Tη + ε = Xβ + ε (2.2)

where, E is an n × 1 vector of electricity demands, ε is an n × 1 vector of errors, and Z

is an n × p1 matrix of p1 non-temperature predictors, γ is an p1 × 1 vector of coeffi cients

of predictors in Z, T is an n × p2 matrix of AT temperature predictors, η is an p2 × 1

vector of coeffi cients of predictors in T, X is an n × p (= p1 + p2) matrix of all predictors

4A major holiday is one that is declared to be a holiday for all government employees (on account of
national events or religious events). Minor holidays are the 2 additional days of holidays that government
employees are entitled to select for minor religious festivals from a list of scheduled holidays.
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and β is an p × 1 vector of coeffi cients of X predictors. The least squares and maximum

likelihood estimator of β is β̂= (XTX)−1XTE and Hat matrix H is a n × n matrix,

such that Ê = HE. We can obtain H = X(XTX)−1XT and show that trace(H) =

trace(X(XTX)−1XT ) = tr(Ip) = p = estimated degrees of freedom (EDF) as measured by

the number of parameters in the model. This model assumes that the relationship between

E and AT is strictly cubic regardless of whether this is true or not. When it is not , the

power transformations often cannot adequately capture the nonlinear relationship in the

data.

Model 2 estimates a semi-parametric model given by

E = Zγ + f(AT ) + ε (2.3)

Here, f(AT ) = (f(AT1), ....f(ATn))′ is a n× 1 vector, where f(AT ) is an unknown smooth

function, i.e., continuous and suffi ciently differentiable function of AT . In this paper, we

estimate f(AT ) by cubic regression splines5 using cardinal basis functions6. Wood (2006)

and Lancaster and Salkauskas (1986) gives full details of cardinal basis functions. Such

basis functions parameterize the spline in terms of its values at the knots and thus have

advantages in terms of the interpretability of the parameters along with good mathematical

properties and numerical stability. f(AT ) can be represented as a linear combination of the

5Suppose there is a knot sequence K,ATmin = k1 < .. kN = ATmax, where k2...kN−1 are interior knots,
and k1, kN are two knots at the boundaries of the data [ATmin, ATmax], dividing the data into N − 1
subintervals [k1, k2] ...[kN−1, kN ]. A spline is a piecewise-polynomial real function:f : [ATmin, ATmax] −→ R
on an interval [ATmin, ATmax] composed of N − 1 ordered disjoint subintervals [k1, k2] ...[kN−1, kN ]. The
restriction of f to an interval i is a polynomial Pi

Pi : [ki−1,ki] −→ R

6For full details of cardinal basis functions, see Wood (2006) and Lancaster and Salkauskas (1986).
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basis functions of regression splines. For instance,

f(ATi) =
N∑
j=1

bj(ATi)ηj = B(ATi)η (2.4)

where bj(AT ) is the basis at the jth point (commonly known as a knot), B(AT ) is the model

matrix containing N cubic spline basis for f(AT ) and η is the corresponding regression

parameter vector. Thus (3) becomes

E = Zγ +B(AT )η + ε = Xβ + ε. (2.5)

where X is a n × (p1 + (N − 1)) model matrix. One degree of freedom is lost due to

the identification constraint on f(AT ) i.e
n∑
i=1

f(ATi) = 0. Using the Akaike Information

Criterion7, we select twelve knots (N = 12 ) or eleven basis functions. Given knots, this

model becomes a fully parametric model with an expanded model matrix. We estimate

predictor variable coeffi cients by minimizing ‖ E−Xβ ‖2. The key limitation of this model,

however, is that it requires the analyst to select the number and location of the knots. The

number of knots directly controls the degrees of freedom of a smooth term. In order to

deal with the knot selection problem, we adopt the penalized cubic spline approach. These

models construct a penalty on f() which will be large if f is very wiggly and small if it is

nearly flat.

Model 3 adds a quadratic penalty as λβTPβ and solves the following minimiza-

tion problem:

‖ E−Xβ ‖2 +λβTPβ (2.6)
7The Akaike Information Criterion is a measure of the relative goodness of fit of a statistical model: AIC

= 2k − 2 ln(L), where k is the number of parameters in the model, and L is the maximized value of the
likelihood function.
In practice, it is customary to use the Akaike Information Criterion in order to select the optimal number

of knots. Researchers prefer a model with a lower value of the Akaike Information Criterion.
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where P is the penalty matrix whose coeffi cients depend on the second derivatives of f , a

measure used commonly to represent the roughness of the smooth terms.8 λ is the smoothing

parameter that controls the trade-off between model fit and model smoothness. For λ→ 0

the minimization gives a wiggly function whereas letting λ → ∞ gives a linear fit. The

optimal λ is selected by cross validation where It works as follows: for a given value of λ ,

we omit the ith observation from data and fit the penalized spline to this slightly truncated

data set. We denote this prediction of ei as êi−1. The model prediction errors are calculated,

and this is repeated as each observation is dropped in turn. The cross-validation score is

calculated as the average of the individual model prediction errors. One should choose the

value of λ with the smallest cross-validation score. In practical applications one replaces

the cross validation (CV) criteria by the generalized cross validation (GCV) as the CV is

computationally very intensive and has other problems (Woods, 2006). Like the adjusted

R-square, the GCV adjusts the average model prediction errors with the degrees of freedom

(the number of parameters estimated in the model). For penalized spline models, the GCV

score is

GCV (λ) =

n∑
i=1

[ei − êi]2 n

[n− tr(Hλ)]
2 . (2.7)

Minimizing GCV (λ) with respect to λ gives an estimate λ̂. Given λ (2.6) is minimized with

respect to β. We get β̂ =
[
XTX+ λP

]−1
XTE and the hat matrixHλ = X

[
XTX+ λP

]−1
XT .The

8Wood and Augustine (2002) derive the following wiggliness measure

j(f) =

∫ [
f ′′(AT )

]2
dAT

f ′′(AT ) =

N∑
j=1

b′′j (AT )ηj = B
′′(AT ) η
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trace of Hλ , as in the linear regression, represents the degrees of freedom in the spline model

and is nearly equivalent to the number of parameters in the spline fit. Due to shrinkage

from the penalty term, the degrees of freedom for a penalized spline model will not be an

integer. With penalized splines the exact choice of the basis dimension is not generally

critical as actual effective degrees of freedom are controlled by λ. It is necessary to select

the number of knots to be large enough to have enough degrees of freedom to represent

the underlying true structure of the data reasonably well but small enough to maintain

reasonable computational effi ciency (Woods, 2006).

Model 4 extends Model 3 to a variable coeffi cient model to capture the time-

varying impact of climate on electricity demand. Model 4a estimates the least constrained

factor variable coeffi cient model by interacting f(AT ) by ten year dummies. It estimates

a different smooth function of temperature for each year. Model 4b estimates a simple

numeric variable coeffi cient model by adding an additional term in Model 3 that interacts

f(AT ) with the year number. It assumes that the coeffi cients of the smooth function of

temperature change linearly with the year. One can capture the time-varying effect by

estimating a separate model (like Model 3) for each year. However, by pooling data for all

10 years we get more robust estimates that are preferable for the purpose of analyzing the

long-term impact of climate on electricity demand.

Model 4a: We first select the number of knots for each year ( Nt) and corre-

sponding basis functions Bt(AT ) -

ft(AT ) =

Nt∑
jt=1

bjt(AT )ηjt =Bt(AT )ηt. (2.8)

In general, knots are placed at evenly spaced quantiles of the unique data. We select the
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same 10 knots every year. The selected knots are [k0 = 6.17, 14.39, 18.47, 22.67, 26.84, 30.98, 33.87, 35.78, 37.59, 43.83 =

k10] ∀ t. Bt(AT ) is a row vector of basis functions for year t. ηt is the coeffi cient vector of

the basis functions of year t. The model becomes:

E = Zγ + f(AT)Y + ε = Zγ +

10∑
t=1

f(AT)yt + ε = Zγ +

10∑
t=1

ft(AT) + ε (2.9)

where, ft(AT) is a vector of the smooth function of the temperature index of year t with

dimension n× 1. Here, t indexes the year with t = 1 for year 2000 and t = 10 for year 2009.

Y is an n × 10 matrix of year dummies. yt is the tth column of Y. The yt represents the

year dummy for year t. The degrees of freedom for ft(AT) will be determined by the choice

of λt. Note that the same λt is chosen for all years resulting in the same degrees of freedom

for each year. Thus, the fitting problem becomes similar to any other generalized additive

models:

min ‖ E−Xβ ‖2 +
∑
t

λtβ
TPtβ (2.10)

whereX is a n×(p1+((N−1)×10))model matrix. Given λt, eq(2.10) can be minimized with

respect to β.We get β̂ =

[
XTX+

∑
t

λtPt

]−1
XTE =

[
XTX+K

]−1
XTE,with

∑
t

λtPt =

K. A smoother matrix for penalized splines with interaction can be derived as Hλ =

X

[
XTX+

∑
t

λtPt

]−1
XT = X

[
XTX+K

]−1
XT . As discussed previously, one degree of

freedom is lost due to the identification constraint on ft(AT ), which requires
Nt∑
i=1

ft(ATi) = 0

∀ t. From the above, we obtain the electricity demand on a particular day

etd = z
′
tdγ + ft(ATtd) + εtd (2.11)
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where etd is electricity demand on day d of year t. z′td is a row vector of parametric predictors

for day d of year t. We can write the full form of eq(2.11) therefore as

etd = β0+β1MAJHtd+β2MINHtd+

9∑
t=1

φtyt+

6∑
b=1

ϕbWDb
td+β3RAINtd+ ft(ATtd)+ εtd

(2.12)

As the errors from eq(2.12) are likely to be serially correlated, we carry out the following

adjustment given in Li and Racine (2007)9. By dropping year dummies and estimating

eq(2.12) separately for each year, we obtain ε̂d for each t. For each year t, a first order

stationary auto-regressive model is defined as

εd = ρtε(d−1) + νd (2.13)

where νd is white noise, is estimated . By regressing ε̂d on ε̂d−1 of year t, we obtain an

estimate of ρt (ρ̂t). The model is then transformed in order to have serially uncorrelated

disturbances by subtracting estimated previous day errors ε̂
d−1 from the electricity demand

on a given day ed in the following manner:

e∗d = ed − ρ̂tε̂d−1 (2.14)

By pooling estimated transformed electricity demand e∗d for each t, the final model becomes

e∗td = β0+β1MAJHtd+β2MINHtd+β3RAINtd+
9∑
t=1

φtyt+
6∑
b=1

ϕbWDb
td+ ft(ATtd)+utd

(2.15)

9For more details, refer Li and Racine (2007) in chapter 18, section 18.2.2.
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where utd are serially uncorrelated disturbances and we get consistent estimates of the

coeffi cients.10

Model 4b on the other hand interacts f(AT ) with year as a numeric rather than

as a factor variable (as was the case in Model 4a) and thus assumes that the coeffi cients of

the smooth of temperature change linearly with year. The model becomes:

E = Zγ + f(AT ) +Y0f(AT ) + ε (2.16)

Here, Y0 is a n × n diagonal matrix with year numbers y0 = (1, 2, 3...10) on its

leading diagonal. In this model each row of the model matrix of f(AT ) is multiplied by the

corresponding value of the year number. The fitting problem as in any other generalized

additive model is

min ‖ E−Xβ ‖2 +λ1βTP1β+λ2βTP2β (2.17)

where λ1 and P1 correspond to f(AT ) and λ2 and P2 correspond to Yof(AT ). Thus this

model is also estimated as a generalized additive model as discussed in detail above. The se-

lected knots for this model are the same as in Model 4a [k0 = 6.17, 14.39, 18.47, 22.67, 26.84, 30.98, 33.87, 35.78, 37.59, 43.83 =

k10]. Electricity demand on a particular day is obtained as

e∗d = β0 + β1TRENDy + β2MAJHd + β3MINHd (2.18)

+ β4RAINd +
6∑
b=1

ϕbWDb
d + f(ATd) + f(ATd)× yo + ud

In this model, we replace the year dummies with linear year trend TRENDy,

which ranges from 1 for the year 2000 to 10 for 2009. Further, instead of correcting for
10In this process we lose one observation per year and thus the total number of observations falls to 3643

from 3653.
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within year first order autocorrelation as was the case in Model 4a, we correct for the first

order autocorrelation after pooling all the years for Model 4b.

2.5 Data

2.5.1 Electricity Consumption and Shortage

We obtained the data on daily electricity consumption in Delhi for 2000-09 from

the operator of the national electricity grid, the National Load Dispatch Centre (NLDC). In

order to estimate the impact of global warming on electricity demand, we need to recognize

that the electricity systems in India are continually inhibited with power shortages, which

result in rationing and disrupted electricity usage patterns. When there are regular power

failures, consumers are not able to consume the quantity they need forcing them thereby

to either substitute electricity with alternative energy sources such as diesel and kerosene,

or resort to independent generation. As a result, the electricity consumption reported by

the NLDC is constrained electricity demand, which is equal to the electricity supplied by

the utilities. In order to obtain the unrestricted electricity demand for Delhi, we adjust the

daily total electricity consumption of Delhi with the observed daily shortage11 using daily

electricity supply shortage data obtained directly from the Delhi Transco Ltd. This gives

us

ed = cd + sd

11The daily shortage data comprises five components: shedding due to transmission and distribution
constraints; shedding by discoms in theft-prone areas; shedding in order to restrict over drawal; shedding
due to grid constraints; and shedding in order to restrict under-frequency operations.
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Figure 2.2:

where ed denotes electricity demand on day d, cd denotes electricity consumption on a

given day d and sd is the shortage (or the unmet demand) on day d. Figure (2.2) plots the

reliability index of electricity (i.e., the total electricity demand met as a percentage of the

total demand including the shortage). The graph shows that there has been a significant

reduction in shortages in the post-2005 period.

2.5.2 Apparent temperature and rainfall

We obtained data on all the climatic factors from the website www.tutiempo.net/en/climate/India,

which gives station-wise data for all the major weather stations in India. We first con-

structed the apparent temperature index (AT) for Delhi (Safdarjung station) using Stead-

man’s (1994) formula by adjusting dry bulb temperature with humidity and wind speed,
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which is given below:

ATtd
(
0C
)
= Ttd + 0.33vtd − 0.07wtd − 4

vtd =
htd
100
× 6.105 + e(

17.27T
237.7+T

)

where T denotes average temperature in degree Celsius (0C), v denotes evaporation, w

denotes wind speed (m/s), and h denotes relative humidity (%).

2.6 Results: ‘The effect of apparent temperature on electric-

ity demand’

2.6.1 Summary Statistics

Table (2.1) displays the basic summary statistics that will be used to analyze the

salient characteristics of the distribution of electricity demand and apparent temperature

in the city of Delhi. Over the period, the average daily electricity demand (ED) increased

from 50 MkWh in 2000 to 65 MkWh in 2009, with the highest daily demand increasing from

65 MkWh in 2000 to 94 MkWh in 2009. At the same time, the standard deviation of the

daily electricity demand increased from 6 MkWh in 2000 to 15 MkWh in 2009. During this

period, the average daily apparent temperature ranged from 26.5 and 27.7, with the peak

occurring in 2009 and 2002 and the trough occurring in 2005. Figure (2.3) presents the box

plot of daily electricity demand and daily apparent temperature by months. It shows that

the greatest consumption occurs during the summer (led by May) and monsoon months (led

by July) and the lowest consumption occurs in the post-monsoon (led by November) and
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Table 2.1:

winter months. Figure (2.4) presents a box plot of daily electricity demand by week days

in order to examine the variation in electricity demand according to week days.. According

to the chart, non-working days—Sundays and Saturdays– record lower consumption than

working days.

2.6.2 Main Results

Tables (2.2,2.3,2.4) summarizes the results of the estimated models. We estimate

all models by the likelihood maximization approach or the penalized likelihood maximization

(for Models 3 and 4) using the mgcv package in R. For Models I and 2, we use the usual

frequentist approach in order to calculate standard errors and p-values for model coeffi cients.
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Figure 2.3:

Figure 2.4:
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Table 2.2:

In case of Models 3 and 4, we report the Bayesian p-values and standard errors. We perform

the Wald tests of significance for each parametric and smooth term.

Model 2 estimates the non-linear relationship by unpenalized splines using 12 knots

selected by the Akaike’s Information Criterion. The goodness of fit diagnostics and Table

(2.5) show that Model 2 is a significant improvement on Model I at 99% confidence levels.

An F-test based on the residual values of the semi-parametric model 2 and the parametric
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Table 2.3:

Table 2.4:
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Table 2.5:

Table 3a Comparing Model I and Model 2 ( F-test)

Residuals(1) Res.DF(2) Diff.df(3) Diff.res(4) F= (4)/(3)
ModelII(1)/(2) P-value

Model I 51472 3621
Model 2 46904 3613 8 4568 43.984 000

model I yields an F-statistic of 43.984, which has a p-value of .0. This implies that a

local fit captures the non-linearity between electricity demand and temperature much more

accurately than the global fit of the parametric model.

Model 3 estimates penalized splines with 20 knots as compared to the 12 knots

used for the unpenalized spline Model 2. The goodness of fit diagnostics and Table (2.6)

show that the results from Model 3 are not statistically different from Model 2. The F-test

based on residual values of Models 2 and 3 yields an F statistic of 2.04 and a p-value of

0.12.12 The advantage of using penalized splines is that the results are not influenced by

the number of knots when a fairly large number of knots is selected.

Model 4a, in comparison with Model 3 in Table (2.7), shows a significant im-

provement at the 99% confidence level (with F-statistic=59.31 and P-value=0). Both the

generalized cross-validation (GCV) and Akaike Information Criterion (AIC) are much lower

for Model 4. It has a high adjusted R square of .94 implying that it has the ability to explain

94% variation in the electricity demand. The Durbin-Watson statistic (2.01) shows that the

estimated model has no autocorrelation.

Model 4a performs only marginally better than Model 4b in respect of adjusted

12The test statistic is defined as:

F =
(RSSsmaller −RSSlarger)/[dfres,larger − dfres,sm aller ]

(RSSlarger)/[dfres,larger
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Table 2.6:

Table 3b Comparing Model 2 and Model 3 (F- test)

Residuals(1) Res.DF(2) Diff.DF(3) Diff.Res(4) F= (4)/(3)
ModelIII(1)/(2) P-value

Model 2 46904 3613
Model 3 46964 3615 -2.26 -60.177 2.0436 0.1229

Table 2.7:

Table 3c Comparing Model 3 and Model 4a (F-test)

Residuals(1) Res.Df(2) Diff.Df(3) Diff.res(4) F= (4)/(3)
ModelIV (1)/(2) P-value

Model 3 46964 3615.3
Model 4 24684 3561.1 54.2 22277 59.31 000

R and other goodness of fit diagnostics. The Durbin-Watson statistic (2.1) shows that the

estimated model has no autocorrelation. Moreover, Model 4a has the limitation that we

cannot forecast for the future from this model. Figure (2.5) plots year-fixed effects from

Model 4a which shows that the yearly trend is nearly linear. Similarly, the basis coeffi cients

of Model 4a seem to change linearly over 2000-09 in Figure (2.6). We therefore estimate the

much simpler Model 4b imposing linearity assumptions on these coeffi cients. The advantage

of using Model 4b is that we can forecast the time-varying temperature-electricity curves

for the future.

Figure 2.5:
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Figure 2.6:

We find Models 4a and 4b to give similar results with regard to linear predictors.

We observe rainfall to have a significant negative impact on electricity demand, with a 1

millimeter increase in rainfall reducing electricity demand by 0.05 MkWh in both models.

As expected, both holiday dummies turned out to be highly significant and negative. On a

major holiday, electricity demand is estimated to be about 3 MkWh lower than the average

demand. On a minor holiday, on the other hand, the reduction in demand was only 0.4

MkWh. The estimates of parameters which model the weekly cycle of electricity demand

indicate that on Mondays, Saturdays and Sundays electricity demand tends to be lower than

the average level (with Wednesday as the reference day) while it is higher on Fridays. These

results are as expected since holiday and weekend loads show quite a different response to

temperature than those on weekdays. Mondays show a lower demand possibly due to the

holiday effect of the previous day (also called holiday inertia) while Fridays show a relatively

higher demand, due possibly to the build-up of work at the end of the week. Thus, most of

the parametric results are in line with previous studies done in this context.



35

The effect of apparent temperature on electricity demand is clearly non-linear.

The estimated degrees of freedom (edf) for the temperature smooth term estimates and

their p-values support the hypothesis that the coeffi cients are statistically significant. The

same smoothing parameter λt is chosen for all years resulting in equal degrees of freedom

(approximately 6) for each year ft(AT ) in Model 4a. In the case of Model 4b, the estimated

degrees of freedom are also about 6 for f(AT ) and about 9 for f(AT )×y0. Figures ( 2.7, 2.8)

plots all the estimated temperature-electricity curves along with the Bayesian confidence

intervals13 (the shaded region) for both models. For Model 4a it plots f̂t(AT ) for each t

along with f̂t(AT ) ± 2 × SE(f̂t(AT )). For Model 4b it plots f̂(AT )+ f̂(AT ) × y0 with

(f̂(AT )+ f̂(AT )× y0)± 2× SE(f̂(AT ) + f̂(AT )× y0).

Figures (2.9, 2.10) plots the marginal effect (first derivative ) curve from both

models of each temperature-electricity curve in Figures ( 2.7, 2.8) with 95% Bayesian con-

fidence intervals (see shaded region). For Model 4a it plotsf̂t
′
(AT ) for each t along with

f̂t
′
(AT ) ± 2 × SE(f̂t

′
(AT )). For Model 4b it plots f̂ ′(AT )+ f̂ ′(AT ) × y0 with (f̂ ′(AT )+

f̂ ′(AT )× y0)± 2× SE(f̂ ′(AT ) + f̂ ′(AT )× y0).

We obtain the minimum temperature threshold for the corresponding year when

a marginal effect curve cuts the zero line from the y-axis. Over time, it is evident that the

minimum temperature threshold is falling and the temperature dependence curves of Delhi

13As the penalized splines fit is a trade-off between bias and variance one should account for possible
bias in the estimate of f in the determination of variability bands. Wabha(1983) and Nychka(1988) have
demonstrated how the Bayesian approach take in to account possible bias in the estimate of f̂ . Models 3
and 4, effectively impose prior beliefs about the likely characteristics of the correct model by imposing a
particular penalty (Woods,2006). In this approach, we specify a prior distribution on the parameters β such
that it reflects our belief that smooth models are more likey than wiggly models. The prior distribution on β
is chosen to give a convenient form for the posterior distribution of β given the assumed normal distribution

of electricity demand (E) i.e., (β|E). For Model 4a, it is β|E v N(β̂,
[
XTX+

∑
t

λtPt

]−1
σ2) and for Model

4b it is β|E v N(β̂,
[
XTX+ λ1P1 + λ2P2

]−1
σ2),with σ̂2 = ‖E−Xβ‖2

[n−tr(Hλ)]
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Figure 2.7:

Figure 2.8:
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Figure 2.9:

Figure 2.10:
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are moving leftwards. Figure (2.11) plots these estimated threshold intervals represented

by the shaded region (at zero line) in Figures (2.9, 2.10). It is clear that threshold intervals

have shifted from approximately 20-220C in 2000-05 to about 18.5-200C in 2006-09 during

the period of analysis .

2000 2001 2002 2003 2004
Model 4a 19.6-20.9-22.1 20.6-21.7-22.6 20.4-21.7-22.6 20.1-20.9-21.6 20.1-21.1-21.9
Model 4b 20.7-21.6-22.2 20.4-21.2-21.9 20.1-20.8-21.5 19.8-20.4-21.1 19.5-20.1-20.7

2005 2006 2007 2008 2009
Model 4a 20-20.9-21.8 19.1-20.5-21.7 18.4-19.3-20.5 18.6-19.5-20.7 18.5-19.2-20.3
Model 4b 19.3-19.7-20.4 19-19.5-20.1 18.8-19.2-19.9 18.7-19-19.7 18.5-18.9-19.5

It is possible to explain this shift through reference to the increase in the use of air

conditioners and air coolers with rising incomes. In other words, people’s sensitivity to hot

temperatures is likely to increase with their ability to afford expensive cooling devices, which

would in turn result in their switching of such devices at relatively lower temperatures.

In addition to the leftward shift of the temperature-electricity curve, we observe

that the rising part of the curve is becoming steeper over time, implying an ever increasing

cooling demand per unit increase in summer temperatures. As discussed previously, this

may partly be attributable to the increasing penetration of energy intensive cooling devices

such as air conditioners that give greater control over rising temperatures to the residents,

especially in the humid summer climate of Delhi. The effect of the decline in heating

demand per unit increase in winter temperatures, however, is much lower than the increase

in cooling demand in summers. For instance, in both models, a 1 0C increase in temperature

at 30 0C in the summer increased electricity demand by over 3 MkWh in 2009 as compared

to only over 1 MkWh in 2000. On the other hand, a 1 0C increase in temperature at 15 0C

in the winter decreased electricity demand by only 0.8 MkWh in 2009 as compared to 0.7
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Figure 2.11:
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MkWh in 2000.

In an earlier study which estimated a threshold transition model, Carcedo and

Otero (2005) found 15.5 0C as the upper heating demand threshold and 18.4 0C as the

lower cooling demand threshold for Spain. The smooth transition model obtained 15.4

0C as an optimal threshold temperature. In another study, Bessec and Fouquau (2008)

found the threshold temperature to be about 16 0C for the whole sample of European

countries while it was 14 0C for the sample of cold European countries and 22.4 0C for the

sample of hot European countries. Although the thresholds obtained in this paper are not

directly comparable with the previous studies, due to the average temperatures that those

studies are based on in contrast with the apparent temperatures used in the present study,

the thresholds give a fairly good idea about how threshold temperatures may vary both

spatially and temporally with economic growth and that therefore they cannot be assumed

to be static.

2.7 Global warming and electricity demand

The leftward shifting temperature-electricity curve and the rightward shifting tem-

perature distribution may have significant implications for electricity demand in India in

future.

2.7.1 Key assumptions

Based on the existing global warming projections for India by the Intergovernmen-

tal Panel on Climate Change (IPCC) and the Hadley Centre,we assume three hypothetical
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Figure 2.12:

scenarios for global warming: a uniform 1 0C, 2 0C and 3 0C increase in daily apparent

temperatures between 2009 and 2030 over the daily apparent temperature for 2009. As-

suming that other predictor variables are the same as in the year 2009, we therefore use the

estimated model to predict the impact of 1 0C, 2 0C and 3 0C increase in daily apparent

temperatures on the electricity demand in Delhi till the year 2030.

2.7.2 Results: The impact of global warming

As shown in the previous section, the impact of temperature change or global

warming on electricity demand is likely to be time-varying. Figures (2.12, 2.13, 2.14)

therefore plots the forecasted temperature-electricity curve, the marginal effect curve and

the threshold temperature up to 2030 under the baseline scenario (i.e., assuming that the

temperature remains the same as in 2009) using Model 4b.
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Figure 2.13:

Figure 2.14:
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The results show that the rising part of the curve is likely to become much steeper

in future. A 1 0C increase in apparent temperature at 30 0C is expected to increase electricity

demand by over 5 MkWh in 2015, 6MkWh in 2020, 7 MkWh in 2025 and about 8 MkWh

in 2030. We observe that the threshold apparent temperature is likely to fall from about

190C in 2009 to 17.70C by 2030.

Figures (2.15, 2.16, 2.17) displays the results for the three global warming scenar-

ios. A 1 0C increase in apparent temperature increases the electricity demand by about 402

MKWH (or 1.7%) in 2009 over its base electricity demand of 23827 MKWH, 564 MKWH

(or 2.1%) in 2015 over its base electricity demand of 27522 MKWH, and 968 MKWH (or

2.6%) in 2030 over its base electricity demand of 36761 MKWH. A 2 0C increase in apparent

temperature, on the other hand, increases net electricity demand by about 842 MKWH (or

3.5%) in 2009, 1182 MKWH (or 4.3%) in 2015 and 2032 MKWH (or 5.5%) in 2030. Sim-

ilarly, A 3 0C increase in apparent temperature increases net electricity demand by about

1321 MKWH (or 5.5%) in 2009, 1856 MKWH (or 6.7%) in 2015 and 3191 MKWH (or 8.7%)

in 2030.

In addition, Figures (2.15, 2.16, 2.17) also disaggregates the impacts of global

warming by months. Higher temperatures increase electricity demand in the summers (led

by April and May) and in the monsoon period (led by September) and post-monsoon period

(led by October) while lower temperatures decrease the electricity demand in winters (led

by January). It is evident that the maximum impact is likely to be felt in the hot month of

April with an average apparent temperature of 300C, followed by the months of October and

May. The marginal effect curve peaks at about 300C, indicating the maximum sensitivity
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Figure 2.15:

Figure 2.16:
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Figure 2.17:
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of electricity demand to temperature at this level. As demand peaks during the months of

June and July, the additional increments in electricity demand due to higher temperatures

(over 300C) slow down and the marginal effect curve stabilizes.

Although a 10C increase in temperature increases the total electricity demand by

1.7% in 2009, the demand increases by about 3.6% in April, by 3.1% in October, and by

2.4% in September, May, and March. On the other hand, a 10C increase in temperature

decreases electricity demand by 1.2% in January, 0.4% in February and 0.9% in December.

Moreover, athough at present higher temperatures reduce electricity demand in the month of

February, this trend may be reversed in future years with a leftward shift of the temperature

threshold shifting the balance between the decreasing electricity demand for heating and

the increasing electricity demand for cooling resulting from global warming. With a 20C

and 30C increase in apparent temperature we may witness this trend much faster. Since

electrical energy saved in winters cannot be easily stored for use in summers, global warming

could result in a serious disequilibrium in electricity supply and demand during some months

of the year in future.

In order to evaluate the prediction performance, we have compared the actual

demand of two years (2008-09) with the predicted demand. In this evaluation, we have

calculated the predicted demand for the two years using coeffi cients of the estimated model

(based on 2000-07 data), known temperatures, and information on other drivers in these

years. We have not used data from the forecast period for the model estimation. Figures

(2.18, 2.19) illustrates the difference between observed and predicted electricity demand in

2008 and 2009. These graphs demonstrate that the model predicts demand in both years
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Figure 2.18:

remarkably well. For instance, in 2008 the mean observed electricity consumption is about

62 MkWh while its standard deviation is about 11 MkWh. The root mean square error of

predicted electricity consumption is 4.3 MkWh and the mean absolute error is 3.4 MkWh.

Both these measures are much lower than the standard deviation of the electricity demand.

There are limitations to our research design when it comes to measuring the im-

pacts of global warming on electricity demand in Delhi. Firstly, although the twenty-year

prediction that our model offers has important implications for analyzing the impact of

global warming on electricity demand, being based on available data for the past ten-years,

these long-term forecasts may not carry a very high degree of precision. For instance, since

in the factor variable coeffi cient model, the basis coeffi cients seem to change linearly with

year over the past ten years, we impose the assumption that these coeffi cients change lin-

early with year in the numeric variable coeffi cient model. However, in an uncertain world,

the underlying assumption may not hold true till 2030. A two year ahead prediction evalu-



48

Figure 2.19:

ation give some reassurance regarding the accuracy of the prediction, predicting electricity

demand for two years from eight years of data is a safer proposition than predicting demand

for twenty years with ten years of data. Hence, the results obtained in this study should not

be interpreted as exact forecasts but as simply indicative of the direction and magnitude of

the effects that might be expected from climate change. Secondly, as against the uniform

global warming scenarios considered in the paper, there is a large body of evidence which

suggests that temperature change has been non-homogeneous across months and seasons

in the past. As discussed in Section 2, summers and post-monsoon seasons have shown

the maximum shift. For instance, the average apparent temperature in April has shown a

maximum increase of 2.21 0C over two decades (1990-99 and 2000-10). Rising temperatures

during this season coupled with the peaked marginal effect curve during this period will

intensify the disequilibrium problem. A monthly disaggregation of climate impacts will

therefore enhance the policy relevance of the scenarios considered in this paper. Thirdly,

this study only investigates the total electricity demand pattern for possible changes related
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to apparent temperature. Apart from the effect of global warming on total electricity de-

mand, global warming will have significant impacts on future peak electricity demands and

its variability. Colombo et al. (1999), using Canadian data, have shown that with climate

change, the average peak demand may not increase drastically; instead, the number of high-

electricity-consumption days may increase appreciably due to higher variability, placing a

stress on power utility to meet this higher demand. However, due to data limitations, we

have not considered peak demand, which is left for future research.

2.8 Conclusions

Both changing lifestyles and economic conditions in India have made electricity

demand increasingly sensitive to temperature. This paper provides valuable insights into

potential interactions between increasing cooling degree days and increasing incomes, and

the impact of the resulting long-term adjustments (such as the higher penetration of air

cooling devices) in the electricity sector. The results from a semi-parametric variable coeffi -

cient model indicate that the variation in the slope of the temperature-electricity curve and

the threshold temperature is important for future electricity demand projections. An impor-

tant contribution of the paper is the estimation of climate impacts by months. The model

projects that the warming can result in significant increases in future demand, particularly

during the hot months of April and May. These results can be extremely useful in man-

aging the seasonal electricity disequilibrium situation in Delhi. For instance, demand-side

management by shifting electricity loads from periods of deficit supply to surplus supply

via dynamic pricing and other control mechanisms may help those in charge of energy
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policy-making and policy-implementation to cope with the problem. Policy makers may

also consider providing various kinds of incentives on the purchase of energy effi cient appli-

ances. [Datta & Gulati, 2011] has shown the effectiveness of various incentives provided by

US States and utility companies on the sales of Energy Star appliances. For instance, they

found that with the average rebate for a clothes washer of $50 there is 10% increase in the

share of energy-effi cient clothes washers.

Policy makers will moreover need to come up with new measures to meet in-

creased electricity demand due to global warming. They would, for instance, have to

make a choice between fossil fuels and renewable energy sources for electricity generation.

[Chakravorty et al., 1997] show that if the historical rates of cost reduction in the production

of solar energy are maintained, more than 90 percent of world’s coal would never be used.

The world will move from oil and natural gas to solar energy. [Chakravorty et al., 2012b]

find that nuclear power can reduce the cost of generating clean energy significantly and

relatively quickly.

The results obtained in our study will be of use to electricity production and

sales companies too in order to a) understand existing temperature-electricity sensitivity

so as to manage risks related to unpredictable changes in energy demand under extreme

weather events, for e.g., a heat wave; b) quantify the impact of projected global warming on

electricity use; and c) forecast required future capacity investments in the electricity sector.

The estimated threshold temperature of our study would be of use to HVAC14 (heating,

ventilation and air-conditioning) designers for the purpose of improving the effi ciency of
14HVAC (heating, ventilation, and air conditioning) refers to technology for indoor or automotive envi-

ronmental comfort. HVAC is important in the design of medium to large industrial and offi ce buildings such
as skyscrapers or marine environments such as aquariums, where safe and healthy building conditions take
into consideration temperature and humidity, including "fresh air" from outdoors.
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electricity use in their products. At present, the comfort standard practiced by HVAC

designers is the same as that adopted in the U.S.A. for cooling buildings (i.e., air-conditioned

buildings). Since a large amount of electricity is consumed by HVAC systems in buildings,

designing HVAC (for comfort) as per the changing climatic conditions in India could bring

down the electricity demand drastically.

Comprehensive assessment of impacts however requires not just sound empirical

research but more geographical coverage, especially in areas where severe global warming

is likely to occur. Hence, any future work on the topic should seek to extend the approach

to other states in India in order to get an overall estimate of global warming on total

electricity demand in India since the different socio-economic profiles of the states would

lead to different temperature-electricity curves. It is our hope nevertheless that the present

study would contribute to a better understanding of the dynamic non-linear temperature-

electricity curve in a rapidly growing city.
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Chapter 3

The Impact of Development on the

Climate Sensitivity of Electricity

Demand in India

3.1 Abstract

The climate sensitivity of electricity demand in India is likely to be highly sensitive

to growth in income. Thus, both intensive and extensive adjustments in cooling and heating

will play an important role in determining future climate change impacts on electricity

demand. This chapter utilizes a national level panel dataset of 28 Indian states for the

period 2005-2009 to show that (1) electricity demand is positively related to temperatures

in summers and negatively related to temperatures in winters; (2) the effect of temperature

increase on demand in summers is higher in a hotter climate as people adapt with the use
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of higher cooling equipment whereas there is a higher negative response to temperature

increase in winters in colder climates as people adapt using higher heating equipment; (3)

the effects of both the hotter and the colder climates on electricity demand are expected

to be more pronounced at the higher income levels. The preferred estimates indicate that

climate change will increase electricity demand by 6.9 percent with 4 percent p.a. GDP

growth and 8.6 percent with 6 percent p.a. GDP growth in 2030 over the reference scenario

of no climate change. This reflects the fact that the estimated marginal effect of a hotter

climate is greater when income is higher. The results suggest that over 50 percent of the

climate change impacts will be due to extensive adjustments and that electricity demand

models that do not account for extensive adjustments are likely to underestimate the climate

change impacts on electricity demand especially in developing countries like India where the

current penetration of air- conditioning equipment is very low.

3.2 Introduction

This chapter aims to understand how India’s electricity demand will be affected

by changes in its climate, weather and income. To what extent does the weather sensitivity

of electricity demand depend on climate and the level of income? Due to growth, the

impact of climate change in India will be time-varying. We saw in chapter 2 that the rising

part of the U-shaped temperature-electricity curve of Delhi is becoming steeper over time

implying an increase in cooling demand per unit increase in summer temperatures. In this

Chapter, I extend the analysis to the all-India level, enabling the use of the large climatic

and income variations across states to assess the dependence of the temperature-electricity
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demand relation on the level of income and climate.

I estimate the relationship between daily electricity demand, daily temperature

(a key indicator of weather), climate and income across 28 spatially differentiated Indian

states1 using state-level panel data for the period 2005-2009. This is the first econometric

study that estimates the impact of climate change on the electricity demand in the case

of India. This research is novel in that it uses high frequency daily data to analyze the

dynamics of adjustment across differentiated Indian states by modeling India’s electricity

demand within a panel framework using state and region fixed-effect models.

The study finds that the climate sensitivity of electricity demand in India is likely

to be highly sensitive to its income growth. Between 2009 and 2030, India’s GDP will

double if it grows at 4 percent p.a. and treble if it grows at 6 percent p.a. According to

my preferred estimates, in a reference scenario with no climate change, electricity demand

in India is expected to surge by 105 percent with 4 percent p.a. GDP growth and by

224 percent with 6 percent p.a. GDP growth by 2030. If India’s climate warms by 10C

during this period, then the demand for electricity is likely to increase by 119 percent with 4

percent p.a. income growth, and by 252 percent with 6 per cent p.a. income growth by 2030.

Thus, as a result of climate change, electricity demand is estimated to be 6.9 percent higher

than in the reference scenario with 4 percent p.a. GDP growth and 8.6 percent higher

than in the reference scenario with 6 percent p.a. GDP growth by 2030. This reflects

the fact that the estimated marginal effect of a hotter climate is greater when income is

higher. Over 50 percent of the climate change impacts on demand are due to extensive

adjustments in cooling and heating requirements. Thus, electricity demand models that

1The India is made up of 27 states and one union territory, namely, Chandigarh.



55

do not account for extensive adjustments are likely to underestimate the climate change

impacts on electricity demand, particularly in developing countries such as India where,

unlike in the case of developed countries, the penetration of cooling technologies is very

low at present. In 2007, for instance, approximately only 2 percent of households had

access to air-conditioners as against 87 percent in the U.S. ([Sivak, 2009]). However, in

a warmer and a richer future economy, there is bound to be rapid adoption of energy-

using equipment ([Wolfram et al., 2012]). [Akpinar-Ferrand & Singh, 2010] for example,

have shown air-conditioning to be a significant preventive mechanism in avoiding extremely

hot days and that it should be considered a key climate adaptation strategy for India.

As I have shown in Chapter 2 there is a non-linear relationship between tempera-

ture and electricity demand as the electricity demand is positively related to temperatures

in summer and negatively related to temperatures in winters. Therefore, climate change is

expected to reduce electricity consumption in winters and increase electricity consumption

in summers. Also, climate change will affect electricity demand by changing how peo-

ple will respond along both extensive and intensive margins of adjustment (see review by

[Auffhammer & Mansur, 2012]). For instance, in the short run, during summer, people may

adapt by using existing cooling equipment more intensively on a hot day while, in the long

run, they may choose to buy an air-conditioner to mitigate expected reduction in comfort

due to changed climate [Sailor & Pavlova, 2003]. Thus, while the long-term climate will

determine the space-conditioning equipment stock in different states, the daily external

weather or temperature determines the utilization of the equipment for heating or cooling.

To capture both intensive and extensive adjustments due to climate change, I estimate the
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impact of daily weather as well as long-term climate on electricity demand in India.

This study estimates the non-linear relationship by a piecewise linear function

using two segments: one for the summer where temperature is above the predetermined

reference temperature, and another one for winters where temperature is below the same

reference temperature. The approach assumes a V-shaped temperature-electricity curve

with the minimum electricity demand point occurring at the reference temperature. I use

cooling degree days (CDD) and heating degree days (HDD) that describe the deviation

of daily mean temperature from a reference temperature2 as a measure of severity of hot

and cold weather respectively. For this study, I estimate the transition point of electricity

demand from heating to cooling as 20.3 from the observed data. This reference temperature

fits the data best as it minimizes the residual sum of squares in the estimated piecewise

regression. I determine the slope of the rising segment by relating daily electricity demand

and daily CDD in summers. I determine the slope of the falling segment by relating daily

electricity demand and daily HDD in winters.

Thus, I use the daily CDD and HDD to analyze weather-related electricity demand.

The sums of daily CDD and HDD over a year constitute the indicators for heat and cold

stress, respectively, as well as the description of a state’s climate. I determine the cooling

degree day index (CDDI) and heating degree day index (HDDI) of each state as the average

of the annual cooling degree days and heating degree days, respectively, during 2005-2009

in order to analyze the impact of long-term climate on electricity demand. I allow the

slope of the rising part of the curve to depend on the climate by interacting CDD with the
2The reference temperature is defined as the outdoor temperature at which the cooling (or heating)

systems do not need to run in order to maintain comfort conditions. When the outdoor temperature is
below/above the reference temperature, the cooling/heating systems need to operate, resulting therefore in
increased energy requirements.
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CDDI in summers and the slope of the falling part of the curve to depend on the climate

by interacting HDD with the HDDI in winters. I have utilized this method since a higher

positive response to temperature increase is expected in summers in a hotter climate as

people adapt by installing more cooling equipment, while a higher negative response to

temperature increase is expected in winters in a colder climate as people adapt by installing

more heating equipment. I also expect the effects of both the hotter and the colder climate

to be more pronounced at higher income levels. [DePaula & Mendelsohn, 2010] analyzed

the interaction between income distribution and climate change impacts in Brazil using

cross-sectional household level data and found that the temperature elasticity of electricity

consumption varies significantly across income classes. Thus, I have included a three way

interaction of CDD, CDDI and income in summers and HDD, HDDI and income in winters

in the study to investigate the impact of income on the climate sensitivity of electricity

demand in India.

I have conducted the climate change analysis using near-term (2030/2016-2035)

and mid-term (2050/2045-2065) scenarios for South Asia developed by the Intergovernmen-

tal Panel on Climate Change and that are presentated in Working Group-1 of the Fifth

Assessment Report. With the whole temperature distribution shifting rightwards with

global warming, there has been an increase in the cooling degree days and reduction in the

heating degree days. Consequently, the CDDI will increase while the HDDI will fall. In

this Chapter, I combine the estimated electricity demand model with predicted changes in

both daily degree days and long-term climate to develop estimates of the changes related to

electricity demand in India. With that aim in mind, Section 2 of the Chapter describes the
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data sources and reports summary statistics. Section 3 presents the econometric approach

while Section 4 describes the results. Section 5 assesses the magnitude of my estimates of

the effect of climate change. In Section 6, I present the conclusions and policy implications

of my findings.

3.3 Data and Summary Statistics

3.3.1 Data Sources

I base the empirical results of the study on daily data for the period 2005 through

2009 for the 28 states. The dependent variable is the daily electricity demand of the state,

measured in million kilowatt hour (MKWh), as obtained by the operator of the national

electricity grid, the National Load Dispatch Centre (NLDC). The electricity consumption

reported by the NLDC is restricted electricity demand, which is equal to the electricity

supplied by the utilities. To obtain the unrestricted electricity demand, I add the state

electricity supply shortage to the electricity consumption data of NLDC. For Delhi and

the eastern states, I have obtained the observed daily shortage respectively from the Delhi

Transco Ltd. and the NLDC. For the other states, the observed daily shortage3 data is only

available from 2008 onwards; therefore, I use the monthly shortage data published by the

Central Electricity Authority (CEA) of India to derive an approximate electricity supply

shortage for each day for the period before 2008.

The explanatory variables fall into three categories: (1) climate and weather vari-

3The daily shortage data comprises five components: shedding due to transmission and distribution
constraints; shedding by discoms in theft-prone areas; shedding in order to restrict overdrawal; shedding due
to grid constraints; and shedding in order to restrict under-frequency operations.
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ables; (2) socio-economic characteristics; and (3) seasonal factors. The first category of

explanatory variables is climate and weather variables. I convert the mean daily temper-

ature into cooling degree days (CDD) during summer (with the mean temperature above

20.30C) and heating degree days (HDD) during winter (when the mean temperature is below

20.30C). The CDD and HDD quantify the difference between the daily mean temperatures

above or below a reference temperature. I calculate the HDD on day d on the basis of the

relation: HDDd=min (0,Td-20.3), where Td is the mean temperature on day d. I calculate

the CDD on day d on the basis of the relation: CDD=max (0,Td-20.3 ). As a measure of

climate during summer, I use the average of the annual cooling degree days during 2005-

2009 or the state cooling degree day index (CDDI). As a measure of climate during winter,

I use the absolute value of the average of the annual heating degree days during 2005-2009

or the state heating degree day index (HDDI). I define the CDDI and HDDI as

CDDIit = 1/5

(
d=1825∑
d=1

max(0, Tid − 20.3)
)

HDDIit = 1/5

(
−
d=1825∑
d=1

min(0, Tid − 20.3)
)

The daily rainfall is the other weather variable. I construct both state-level daily

temperature and daily rainfall using the 10× 10 gridded daily dataset published by the

Indian Meteorological Department4 (IMD).

The second set of variables that the study uses are socio-economic variables: in-

come, population and electricity prices. I use the gross domestic product per capita of a

state as an indicator of income and its stage of development. I take the annual real GDP
4For Delhi and Chandigarh that are not identified in this gridded dataset due to their small size, I have

obtained station-level data from the website www.tutiempo.net/en/climate/India.
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(1999-2000 prices) of the state and population from the Ministry of Statistics and Pro-

gramme Implementation. I construct the annual electricity price of the state using data

from the Central Electricity Authority (CEA) of India. First, I calculate the state electric-

ity prices for each sector - Agriculture, Commerce, Industry and Residential Use- by taking

the simple average over different categories5 (voltage and phases). I construct the average

electricity price for a state by taking the weighted average of the prices in these four sectors

with the share of electricity sales of each sector in total sales taken as weights.

The final category of regressors consists of variables accounting for industrial sea-

sonality and agricultural seasonality. In the agricultural sector (that accounts for 18 percent

of total electricity demand), energy requirements for water-pumping depend on a state’s

agricultural season and rainfall pattern. To capture agricultural seasonality, I control for

agricultural pumpsets and include an interaction of pumpsets with accumulated rainfall

in the past 7 days. The latter determines soil moisture and, therefore, the demand for

pumping. I obtain data on annual electricity using state agricultural pumpsets from the

CEA. Industrial electricity consumption (that accounts for about 45 percent of total de-

mand) is largely temperature-insensitive. However, there can be industrial seasonality due

to business cycles, dependence on agriculture for its supply of raw materials and product

demand. To capture industrial seasonality, I derive a state-specific monthly index of in-

5Since power requirement varies among consumers in terms of voltage and phases, the CEA computes the
average rates of electricity supply for various categories of consumers. For instance, in the case of industries,
it computes electricity prices for three different types: three-phase small-scale 400V; three-phase large-scale
11 KV, and three-phase very large-scale 33 KV. For domestic consumers, it gives prices for 230 V single-
phase or 400 V three-phase used for lighting, air-conditioning, water heating, cooking, etc. For agricultural
consumers, it reports prices for 230 V single-phase and 400 V three-phase used for running tube wells and
pump sets. For commercial consumers, it gives prices of 230 V single-phase and 400 V three-phase used for
equipment and appliances.
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dustrial production6 (MIIP). First, I calculate the percentage deviation from the average

in the MIIP at all-India level for each month and year7. I take the average of the five

percentage deviations from the average in MIIP obtained for each month during 2005-2009

as an indicator of the industrial seasonality for that month at all-India level. I multiply this

all-India indicator of industrial seasonality by the share of industrial electricity consump-

tion in the total electricity consumption of a state and the share of the state’s industrial

output in the industrial output of India in order to get a measure of state-specific MIIP . I

take the data on the all-India monthly index of industrial production and the share of the

state’s industrial output in the industrial output of India from the Ministry of Statistics

and Programme Implementation. I obtain the share of industrial electricity consumption

in the total electricity consumption of a state from the CEA.

3.3.2 Summary Statistics.

Table (3.1) reports state-level summary statistics of all variables. The sample

comprises a balanced panel of 28 states and a total of 51,128 observations. For each state,

there are 1819 daily observations during the years 2005-2009 after allowing for the necessary

lags (i.e., the sum of rainfall in the past seven days). Over the period, mean state daily

electricity demand increased from 60 MKWh in 2005 to 79 MKWh in 2009 while the mean

state daily temperature increased from 24.3 to 25 degree Celsius8. About 78 percent of

the sample observations represent the cooling demand with the observed mean temperature

6Data on state-level MIIP is not available for most states.
7For instance, if in January 2005, the MIIP is 120 while the average MIIP in 2005 is 100, then the

percentage deviation for January in 2005 is +20%
8The annual mean temperature of India in 2009 was about +.91 degrees Celsius above the average

temperature (recorded during the 1961-1990 period) and was the warmest year since 1902. This superseded
the earlier five warmest years: 2002(0.71), 2006(0.60), 2003(0.56), 2007(0.55), and 2004(0.51) (GOI 2009).
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above 20.30C while 22 percent represent the heating demand with the observed mean tem-

perature below 20.30C. This shows an almost equal variation in temperature in summers

and winters. The average CDD is 6.8, which is higher than the average absolute value of

HDD at 3.8, reflecting relatively mild winters and hot summers.

Since India, given its vast size, displays a large variation in terms of its climate

among states, the CDDI too varies significantly from a low of 417 to a high of 2712 degree

days. Similarly, the HDDI varies between 0 and 1927 degree days. Equally important, the

real gross state domestic product per capita over the period too varies significantly, from

a low of INR 7500 to a high of INR 89300. At the same time, the mean state real gross

state domestic product per capita increased by 30 percent from approximately INR 25,300

in 2005 to INR 33,000 in 2009.

I plot all the states in the two-dimension space of gross domestic product per

capita and climate for the year 2009. Figure (3.1) presents a scatter plot of state gross

domestic product per capita versus CDDI. The plot shows that most states are hot with a

high value of the CDDI. While the states in the top right of the scatter plot are both hot

and rich, the states in the bottom right are hot but poor. Figure (3.2) presents a scatter

plot of state gross domestic product per capita versus HDDI. The plot shows that most

states (except the northern states) experience mild winters with a low value of the HDDI.

The northern states, on the other hand, with both high CDDI and HDDI, are characterized

by strong temperature variation during the different seasons. The southern states, with the

highest CDDI and zero HDDI experience only slight seasonal variations in temperature.

The western and the eastern states experience mild winters and hot summers while the
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Table 3.1: State-level Summary Statistics

Variables Mean Standard deviation Max Min Obs

2005-2009 2009 change overall Within

from 2005 state

Daily Electricity Demand (MKWH) 69.53 79 19 78.22 16.31 431.5 0.1 51128

Climate and Weather

Daily mean Temperature (oC) 24.5 25 0.66 5.5 4.9 39 0.6 51128

Daily CDD ([Temp-20.3]*D(T>20.3)) 6.5 6.8 0.4 3.3 3 18.7 .001 40034

Daily HDD ([Temp-20.3]*D(T<20.3)) -4.3 -3.8 -0.6 3.4 2.7 0.00 -19.7 11094

Cooling Degree Day Index (CDDI) 1864 1864 - 542 0 2712 417 51128

Heating Degree Day Index (HDDI) 328 328 - 408 0 1927 0 51128

Rainfall (sum of last 7 days (mm)) 31.78 27.8 7 51.4 49 703 0 50932

Socio-Economic

GDPPC (Rs) 29000 33000 7600 15315 3231 89300 7500 51128

Population (million) 40.3 41.5 2.3 42.3 1.3 195 0.94 51128

Price(Paise/KWH) 269 243 -60 67 37 458 133 51128

% Villages Electrified 83.6 84.6 2.6 19 2.3 100 30.4 51128

Agriculture Pumps (thousand) 555.8 577.5 49.6 800.6 41.6 3116.6 0 51128

State MIIP 7554 -4082 51128

Note: All entries are simple averages over all 28 states.

north-eastern states experience mild winters and mild summers.

Over the five years of the study period, relatively little variation within states is

evident, for population, agricultural pumpsets, percentage of villages electrified and real

electricity price that are used as control variables though they vary significantly between

states.
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Figure 3.1:
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Figure 3.2:
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3.4 Empirical Strategy

This section describes the econometric framework that I use to assess the temper-

ature and climate sensitivity of electricity demand. In Chapter 2, I estimated the U-shaped

temperature electricity curve that varies over time for Delhi using the semi-parametric

variable coeffi cient approach. In this chapter, I estimate the observed non-linear relation-

ship between electricity consumption and temperature using a piecewise linear regression

method. As external temperatures deviate above or below the reference temperature, the

electricity demand increases proportionally. The V-shaped temperature-electricity curve is

estimated with the minimum electricity demand point occurring at the reference tempera-

ture. I have selected the reference temperature of 20.3 Celsius as it minimizes the residual

sum of squares and fits the observed data best9. I determine the upward sloping segment of

the curve by regressing the daily electricity demand on the daily CDD in summers. I allow

the slope of this rising segment to depend on climate and income by including interactions

of CDDI and GDPPC with CDD. Similarly I determine the downward sloping segment of

the curve by regressing daily electricity demand on daily HDD in winters. I allow the slope

of this falling segment to depend on climate and income by including interactions of HDDI

and GDPPC with HDD.

The first prediction of my empirical model is that electricity demand is positively

related to temperatures in summers and negatively related to temperatures in winters. I first

estimate a natural log electricity demand regression, which includes weather variables (CDD

9The commonly used reference temperature in the literature is 18 degrees Celsius. This threshold varies
from region to region. In the case of India, though I searched between 17-220C, I found the residual sum
of squares to be minimum in the interval 20.3—210C. In chapter 2, I found that the minimum temperature
threshold interval for Delhi has shifted from approximately 20-220C in the 2000-05 period to about 18.5-200C
in the 2006-09 period.
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and HDD) plus controls for socio-economic characteristics and seasonal factors without

interactions, as follows:

ln(Eid) = θi + κQ + υw + δ ln(GDPPCit) + η ln(Popit) + γ ln(priceit)

+ϑ ln(Pumpit) + ρ ln(Pumpit) ∗ (Rain in Week)id + ω(Rain in Week)id

+π(Major Hol)id + αHDDid + βCDDid + εid (3.1)

where ln(Eid) is the log of total electricity demand of a state i on day d. θi is a

state-specific fixed effect allowing an idiosyncratic daily electricity demand for each state. It

accounts for factors such as climate, geography, state-specific policies and natural resource

endowments, which are fixed for a state over time. The term θi sweeps out the variation

between states with estimates based on only the variation within each state. κQ is a quarter

fixed effect allowing for general shocks in daily electricity demand affecting all states each

quarter. This captures industrial and agricultural seasonality that might influence daily

electricity demand during a year. υw is a day of week fixed effect that captures the weekly

periodicity of electricity demand. For example, there may be lower demand on weekends.

ln(GDPPCit) is the log of gross domestic product per capita of a state in year t, ln(Popit)

is the log of the population of a state in year t, ln(priceit) is the log of the electricity

price of a state in year t, Major Hol is a dummy variable that takes the value one for

a major holiday, and zero otherwise 10 , ln(Pumpit) is the log of the number of electricity

using agricultural pumpsets of a state in the year t , Rain in Week measures the sum of

10A major holiday is one that is declared to be a holiday for all government employees (on account of
national or religious events). Minor holidays are the 2 additional days of holidays that government employees
are entitled to select for minor religious festivals from a list of scheduled holidays.
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daily rainfall in millimeters (mm) in the past 7 days and is interacted with the number of

agricultural pumpsets. CDDid =max (0,Tid-20.3 ) is the cooling degree days on day d for

state i . It takes a positive value in summers when temperature is above 20.30C and zero

in winters when temperature is below or equal to 20.30C. HDDid=min (0,Tid-20.3) is the

heating degree days on day d for state i . It takes a negative value in winters and zero in

summers. The last term, εid, in equation (3.1) is the stochastic error term.

I expect β > 0 and α < 0 . This prediction is quite straightforward and is con-

firmed by the existing literature ([Al-Zayer & Al-Ibrahim, 1996]; [?]; [Valor et al., 2001];

[Sailor, 2001]; [Pardo et al., 2002]; [Mirasgedis et al., 2007]).

Prediction 2 of my model states that the effect of the temperature increase in sum-

mers is generally higher in a hotter climate as people adapt with higher cooling equipment.

Similarly, a higher negative response to temperature increases in winters is to be expected in

colder climates as people adapt with higher heating equipment. To evaluate this prediction,

I estimate Model B that includes an interaction of CDDid with CDDIi and an interaction

of HDDid with HDDIi .I estimate the model as

ln(Edid) = θi + κQ + υw + υ′Xid

+α1HDDid ∗HDDIi + β1CDDid ∗ CDDIi + εid (3.2)

where X includes all controls for socio-economic characteristics and seasonal fac-

tors as in eq (3.1). It is worthy of note that, in Model B, I drop the independent terms

of HDD and CDD, the reason being that the slope of the rising segment of the V-shaped

curve will be zero if the CDDI is zero and the slope of the falling segment will be zero if the

HDDI is zero. The marginal effect of daily temperature on the log of electricity demand is
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α1 ∗HDDIi if Tid ≤ 20.30C and β1 ∗CDDIi if Tid > 20.30C. I expect β1 > 0 and α1 < 0. I

base the estimates of β1 and α1 in this model on within-state variations in CDD and HDD

and between-state variation in the CDDI and HDDI.

According to Prediction 3 of my model, the effects of both the hotter and the colder

climates are expected to be more pronounced at the higher income levels. Thus, I include

a three-way interaction of CDD, CDDI and ln GDPPC in summers and HDD, HDDI

and ln GDPPC in winters to study the impact of income on the climate sensitivity of

electricity demand in India. In other words, income and climate will interact to determine

the temperature sensitivity of the electricity demand in a given state. To evaluate this

hypothesis, I estimate Model C as:

ln(Edid) = θi + κQ + υw + υ′Xid

+α1HDDid ∗HDDIi + β1CDDid ∗ CDDIi

+α2HDDid ∗HDDIi ∗ ln(GDPPCit)

+β2CDDid ∗ CDDIi ∗ ln(GDPPCit) + εid (3.3)

The marginal effect of daily temperature on the log of electricity demand is α1 ∗

HDDIi +α2HDDIi ∗ ln(GDPPCit) if Tid ≤ 20.30C and η1 ∗ CDDIi + η2 ∗ CDDIi ∗

ln(GDPPCit) if Tid > 20.30C. We expect α2 < 0 and η2 > 0 .

For robustness checks, I estimate a less restrictive model using region fixed-effects

instead of state fixed-effects. I estimate Model D as:
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ln(Edid) = Ri + κQ + υw + υ′Zid

+α1HDDid ∗HDDIi + η1CDDid ∗ CDDIi

+α2HDDid ∗HDDIi ∗ ln(GDPPCit)

+η2CDDid ∗ CDDIi ∗ ln(GDPPCit) + εid (3.4)

where Z includes all controls in X and two additional regressors, the proportion

of villages electrified, and the share of industry in the gross domestic product of a state. Ri

captures unobserved region-level heterogeneity by region fixed-effects. It accounts for factors

which are fixed for a region over time. This model is likely to suffer from omitted variable

bias as there are factors such as state-specific policies that may also be correlated with other

explanatory variables such as income which may influence electricity demand significantly

though this model does not account for them. The key advantage of this model is that

it estimates coeffi cients using variation across states within a region, and variation within

states over time. This would result in more precise estimates for the variables which are

observed annually such as GDPPC, population, and price as the variation within a state

over time is relatively much less than variation across states.

3.5 Regression Results

Table (3.2) summarizes results from all the models. The Table shows the marginal

effects and associated standard errors of all the variables at sample means. Table A1 in the

appendix reports the full estimation results. I use a range of models in order to explore the
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sensitivity of calculated coeffi cients to the equation specification. All models are estimated

by ordinary least squares OLS. I report Newey-West type standard errors by Driscoll and

Kraay (1998) that allow for autocorrelated and cross-sectionally correlated errors of the

general form.

Column (1) of Table (3.2) reports the estimates of the basic model without interac-

tions as in eq(3.1). In column (2), I interact HDD with the HDDI and CDD with the CDDI

and estimate eq(3.2). In addition to the weather and climate interaction in column (2),

column (3) adds the interaction of HDD with the HDDI and GDPPC and CDD with the

CDDI and GDPPC to estimate eq(3.3). Column (4) estimates a region fixed-effects model

as in eq(3.4). The R2 value in all models is essentially unity; however, this is an artifact of

the inclusion of state or region dummies. I prefer the full interacted state fixed-effect Model

C over other models as it has the lowest standard errors for most of the coeffi cients. For

purposes of robustness checks, I also estimated (but do not report for brevity) models with

state-by-quarter fixed-effects and state-specific trends and find the results of the study to

remain substantively unchanged.

Of primary interest here is the impact of change in the weather (CDD, HDD) and

climate (HDDI, CDDI) on electricity demand. The basic results remain similar across mod-

els although in the more restricted state fixed-effect models (column (1-3)), the coeffi cients

and standard errors of weather and climate variables are smaller than those in the region

fixed-effects regression (column (4)), suggesting that unobserved state differences (for e.g.,

state-specific policies) may have biased the parameter estimates in the column (4).

As discussed above, the impact of temperature on electricity demand is non-linear
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Table 3.2: Marginal Effect of Determinants of Electricity Demand at Sample Mean

State Fixed-Effect Region Fixed-Effect
(1) (2) (3) (4)

Model A Model B Model C Model D

VARIABLES
Key Variables
HDD -0.00586*** -0.00111*** -0.00162*** -0.0152***

(0.000994) (0.000246) (0.000236) (0.000711)
CDD 0.0196*** 0.0147*** 0.0145*** 0.0196***

(0.000911) (0.000876) (0.000839) (0.000872)
CDDI 0.00554*** 0.00544*** 0.00736***

(0.000330) (0.000316) (0.000328)
HDDI 0.00135*** 0.00197*** 0.0184***

(0.000298) (0.000286) (0.000862)
Log(GDPPC) 1.130*** 1.132*** 1.131*** .706***

(0.0212) (0.0208) (0.0192) (.0069)
Control Variables
Log(Population) 0.109 0.111 0.168** 0.883***

(0.104) (0.113) (0.0817) (0.00430)
Log(Price) 0.0114 0.0125 0.0104 -0.188***

(0.0102) (0.0109) (0.0106) (0.00815)
MIIP 1.51e-05*** 1.80e-05*** 1.88e-05*** 2.01e-05***

(2.17e-06) (2.27e-06) (2.34e-06) (2.29e-06)
% Villages Elect 0.00984***

(0.000112)
Industry Share 0.0257***

(0.000403)
Major Holiday 0.000923 0.00223 -0.0157***

(0.00382) (0.00368) (0.00542)
Log(Agr_Pumpsets) 0.0100** 0.00986** 0.0122*** 0.0400***

(0.00487) (0.00502) (0.00420) (0.00272)
Rainfall_Weeksum -0.000506*** -0.000522*** -0.000465*** -0.000387***

(4.58e-05) (4.63e-05) (4.67e-05) (8.94e-05)
Observations 50,932 50,932 50,932 50,932
R-squared 0.993 0.993 0.994 0.97
State FE YES YES YES NO
Quarter FE YES YES YES YES
Day of Week FE YES YES YES YES
Region FE NO NO NO YES

Driscoll and Kraay (1998) Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
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with the slope going from negative or zero at low temperatures to positive impacts with

increases in temperature. This pattern is borne out clearly in Table (3.2). The impact of

a 10C change in temperature in winters (when temperature is below 20.30C) is small but

negative and significant across all specifications. The impact of a 10C change in temperature

in summers (when temperature is above 20.30C) is large and positive and significant across

all specifications.

The magnitude of the coeffi cient of the CDD exceeds the coeffi cient of the HDD

in all the models. The results indicate a seasonal heterogeneity in how people will respond

to climate change along intensive margins of adjustment. For example, for the preferred

Model C of this study, a 10C increase in temperature in summer increases expected daily

electricity demand by 1.5 per cent (as a result of greater usage of cooling equipment) while

a 10C increase in temperature in winter reduces electricity demand by about 0.2 percent

(due to lower usage of heating equipment) at the sample mean of income and climate.

The response to the CDDI and HDDI captures the adjustment along the extensive

margin due to climate change. Across specifications, the marginal impacts of CDDI and

HDDI are positive and significant. For my preferred specification (Model C), I estimate an

average of a 0.5 percent and 0.2 percent increase in electricity demand for a 100-degree day

increase in the CDDI and HDDI, respectively. In Model D, the marginal effect is slightly

higher at 0.7 percent for the CDDI (with the same standard error as in Model C) whereas

it is significantly higher at 1.8 percent for the HDDI (though very noisy).

The results provide useful insights on how the intensive adjustments may depend

on the extensive adjustments due to climate change. In Model B, when I include only
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the two-way interaction term of CDD and CDDI in summers and HDD and HDDI in

winters, both the interactions are significant and have the expected signs. The interaction

of CDD with CDDI is positive signifying that a hotter climate will lead to more space-

cooling equipment and higher temperature sensitivity. The interaction of HDD with HDDI

is negative signifying that the colder climate will lead to more space-heating equipments

and higher negative temperature sensitivity.

In Models C and D, the interaction of the CDD with the gross domestic income per

capita and CDDI is positive and significant at the p<.01 level. The sizes of the coeffi cients

suggest that the interaction effect of the CDDI with income that I have identified is quite

large. Thus, I expect the effects of hotter climate to be more pronounced at the higher

income levels. The interaction of the HDD with the gross domestic income per capita and

HDDI is negative and significant at the p<.11 level in Model C. Model D (estimated with

region fixed effects), which includes both the two-way interaction of HDD and HDDI and

the three-way interaction of HDD, HDDI and income, lead to a positive and significant

coeffi cient on the three-way interaction term. This may indicate misspecification in the

model as the variation in the HDDI is less (with many states having zero HDDI) and it

may not be enough to estimate this effect. Thus, I drop the three-way interaction of HDD,

GDPPC and HDDI in Model D to get meaningful estimates of the coeffi cients.

Although these results provide good insight into the magnitude and importance of

each interaction effect, a visual inspection of the marginal effect of temperature at various

combinations of climate and income may be more helpful in recognizing the presence of

interactions. Figures (3.3) and (3.4) present the temperature sensitivity in summers and
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Figure 3.3:

winters, respectively, from Model C. At the mean income (INR 29,234) and CDDI of 2000,

a 1 degree increase in temperature in summer increases expected daily electricity demand

by about 1.6 per cent. At the highest level of income (INR 89,355) in the sample and CDDI

of 2000, a 1 degree increase in temperature in summer increases expected daily electricity

demand by about 3.6 per cent. At the mean income (INR 29,234) and HDDI of 500, a

1 degree increase in temperature in winter decreases expected daily electricity demand by

about 0.2 per cent. At the highest level of income (INR 89,355) in the sample and HDDI

of 500, a 1 degree increase in temperature in winter decreases expected daily electricity

demand by about 0.4 per cent.

I draw the following conclusions based on the above results. The degree to which
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Figure 3.4:
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electricity demand in a given state is sensitive to changes in climate will depend both on its

climate type and on the level of its economic development. As people’s standard of living

improves, their use of air conditioners and other temperature-controlling equipment tool

will increase, thus increasing their sensitivity to climate change. As discussed earlier, the

overall impact of climate change will be jointly determined by both intensive and extensive

adjustments. The study finds that the interaction of income with the CDDI and CDD in

summers has a much higher impact on electricity demand than the interaction of income

with the HDDI and HDD in winters. As income determines how people adapt to climate

change, both global warming and income growth will have asymmetric effects on electricity

consumption in summers and winters. The results also indicate that an increase in temper-

ature in summers has an impact on electricity consumption which is seven times the size of

the impact of an equivalent increase in temperature on electricity consumption in winters

and that an increase in net electricity demand would therefore be the likely result of climate

change.

The control variables in Table (3.2) provide a rich set of results in and of them-

selves. The coeffi cients of the socio-economic variables such as GDPPC, population, price

and pumpsets turn out to be more precise with much smaller standard errors in the re-

gion fixed-effects regression than the state fixed-effects regressions. The reason is the much

larger variance in the socio-economic variables across states within a region than within a

state over time, which results in greater residual variation and more precise estimates in

the region fixed-effect model than in the state fixed-effect model.

Electricity demand is higher in the wealthier states than in the poorer states. A
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1 percent increase in income per capita results in about 1-0.7 percent increase in daily

electricity demand in most models. Interestingly, the elasticity of electricity demand with

respect to GDPPC is higher than elasticity of electricity demand with respect to tempera-

ture and climate. As expected, price has a significant negative impact and population has

a significant positive impact on electricity demand in the region fixed-effects regression. A

1 percent higher electricity price results in about 0.2 percent decrease in daily electricity

demand. A 1 percent increase in population results in almost 0.9 percent increase in the

daily electricity demand of a state. As expected, in the state fixed-effect models, price

and population (with a small, within-state variation) turns out to be insignificant in most

models. Most models suggest that higher the use of agricultural pumpsets higher the elec-

tricity demand; that rainfall has a significant negative impact on electricity demand; that

the interaction of pumpsets with accumulated rainfall in the last thirty days is negative and

significant; that on holidays, Saturdays and Sundays, expected electricity demand is esti-

mated to be somewhat lower than the average level; that the index of industrial seasonality

has a positive impact on electricity demand; that an increase in the proportion of villages

electrified results in an increase in electricity demand; that higher industrial share in the

income of a state increases electricity demand.

3.6 Impact of Climate Change on Electricity Demand

In this section, I explore the effect of predicted climate change on electricity de-

mand. I calculate the predicted impact on electricity demand for each state as a difference

between predicted electricity demand under the reference scenario of no climate change and
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the predicted electricity demand under the climate change scenario for two time-periods,

short-term (2030) and mid-term (2050). I then sum each state’s change in electricity de-

mand to calculate the impact on India. Although these short- and mid-term predictions

have important implications for analyzing the impact of global warming on electricity de-

mand because they are based on available data for the past five-years, these long-term

forecasts may not carry a very high degree of precision. In an uncertain world, the underly-

ing assumptions of our predictions may not hold true till 2030 and 2050. Hence, the results

obtained in this study should not be interpreted as exact forecasts but as roughly indicative

of the direction and magnitude of the effects that might be expected from climate change

on electricity demand.

According to the fifth assessment report by the Intergovernmental Panel on Cli-

mate Change (IPCC), the mean surface temperature increase in South Asia is likely be

in the range of 1◦C to 1.5◦C (medium confidence) for the period 2016-2035 (relative to

1986-2005) and in the range of 1.5-3◦C (medium confidence) for the period 2046-2065. In

line with these scenarios, for the purposes of projections in this paper, I consider a uniform

increase of 1◦C in the mean temperature for 2030 and a uniform increase of 2◦C in the mean

temperature for 2050. I apply these scenarios uniformly by season and region to India in

the calculations that follow. In addition to these two uniform scenarios, I also predict the

future electricity demand under the reference scenario of no climate change.

I consider two different scenarios for future growth in the gross domestic product

of India: a) the target average growth rate in the twelfth Five-Year Plan of 6 percent per

year from 2010 to 2050; b) average annual growth rate of 4 percent per year from 2010
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to 2050. I assume population to grow at an average annual rate of 1.1 percent per year

(medium UNDP scenario). I assume that the individual states will grow at a rate that

will enable them to maintain their share in India’s GDP at the same mean share rate as

during the 2005-2009 period. I assume the same for future state population projections.

The percentage of villages electrified, the number of agricultural pumpsets and the share of

the industry in the state’s GDP in each state increase linearly between 2010 and 2050 at

the rate achieved during 2005-2009. For other predictor variables such as-rainfall, prices,

holiday and week day dummy, and industrial seasonality index (MIIP), I assume the same

values as in 2009.

Between 2009 and 2030, India’s GDP will double if it grows at the 4 percent p.a.

and treble if it grows at 6 percent p.a. According to the preferred Model C of this study,

in a reference scenario with no climate change, electricity demand in India is expected to

double (that is, increase by 105 percent) between 2009 and 2030 with 4 percent p.a. GDP

growth and more than treble (i.e., increase by 224 percent) with 6 percent p.a. GDP growth.

Between 2009 and 2050, India’s GDP will increase by a factor of 4 if it grows at 4 percent

p.a. and by a factor of 10 if it grows at 6 percent p.a. The electricity demand is expected

to become 4 times (i.e., increase by the factor of 3) with 4 percent p.a. GDP growth and

10 times (i.e., increase by the factor of 9) with 6 percent p.a. GDP growth by 2050.

Estimates of the impact of climate change: Results from the two models (C and D)

are given in Table(3.3). Although climate change will happen in future, I present climate

change impacts for the 2009 economy in order to compare the impacts with the richer

economies of 2030 and 2050. The study finds that the climate sensitivity of electricity
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Table 3.3: Predicted Impact of Climate Change on Electricity Demand

State Fixed Effect (Model C) Region Fixed Effect (Model D)
GDP growth p.a from 2009

Year Intensive(I) / Scenario 4% 6% 4% 6%
Extensive (E)

2009 I 10c 2 2 2.5 2.5
2009 I+E 10c 4.4 4.4 5.9 5.9
2030 I 10c 3 3.7 3.8 4.9
2030 I+E 10c 6.9 8.6 8.95 11.6
2050 I+E 10c 9.4 13 12.1 17.7
2050 I+E 20c 21.6 30.7 28.5 43

demand in India is likely to be highly sensitive to income growth. In 2009, I expect a 1

degree increase in the mean temperature to result in about 4—6 percent increase in the

electricity demand over the reference scenario of no climate change. In 2030, I expect a

1 degree increase in the mean temperature to result in about 7—9 percent increase in the

electricity demand over the reference scenario with a 4 percent growth in the GDP and

about 9—12 percent increase in the electricity demand over the reference scenario with a 6

percent growth in the GDP. In the most likely scenario of a mean temperature increase of

about 20C by 2050, I expect electricity demand to rise about about 22-29 percent higher

with a 4 percent growth in the GDP and about 31-43 percent higher over the reference

scenario with a 6 percent growth in the GDP. In 2030 and 2050, India will be a much richer

economy; thus, I predict the impact of a 1 degree increase in the mean temperature to be

accordingly higher in comparison with 2009.

Table(3.3) also presents the contributions of intensive and extensive adjustments

separately in the event of an increase in total electricity demand due to climate change for

the years 2009 and 2030. i obtain the contribution of intensive adjustments by allowing the

temperature distribution to change where the CDD and HDD on each day is increased by
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10c holding the CDDI and HDDI constant. The results suggest that the contribution of

extensive adjustments is somewhat higher than that of intensive adjustments. Also the share

of extensive adjustments in total climate impacts increases with the level of income. For

example, according to the preferred Model C of my study, the share of extensive adjustments

in total impacts is about 54 percent in 2009 and 57 percent in 2030 (in the 6 percent growth

scenario). Of the total increase in electricity demand of 8.6 percent over the reference

scenario in 2030 under the 6 percent GDP growth scenario, I predict a 3.7 percent increase

due to intensive adjustments and 4.9 percent increase due to extensive adjustments. Thus,

extensive adjustments play an important role in determining the impact of climate change

on electricity demand in India. The results of the study suggest that electricity demand

models that do not account for extensive adjustments are likely to underestimate the climate

change impacts on electricity demand, especially in developing countries like India, where

the current penetration of space conditioning equipment is very low.

The extent of climate change effects on individual states will depend on their cli-

mate type and level of income. Thus, Delhi, Chandigarh, Gujarat, Maharashtra, Haryana,

Punjab, Kerala, Karnataka, Andhra Pradesh and Tamil Nadu can be categorized as rela-

tively rich and hot states with above average gross domestic product per capita and cooling

degree days. Bihar, Jharkhand, Orissa, Uttar Pradesh, Madhya Pradesh, Rajasthan, Chhat-

tisgarh and West Bengal, on the other hand, are relatively hot but poor states with above

average cooling degree days and below average gross domestic product per capita. Himachal

Pradesh with above average gross domestic product per capita and above average heating

degree days is a relatively rich and cold state. Uttarakhand and Jammu and Kashmir with
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below average gross domestic product per capita and above average heating degree days are

relatively poor and cold states. Figures (3.5) and (3.6) show the predicted climate change

impacts by state across India in 2030.

The five rich and hot states-Delhi, Maharashtra, Gujarat, Andhra Pradesh and

Tamil Nadu-will therefore be the most affected in terms of electricity demand due to climate

change with an estimated impact of 11-17 percent. The next most affected group includes

Karnataka, Kerala, Haryana, Orissa and Chandigarh with the estimated impact at 8-12

percent. The third most affected group comprises poor and hot states such as Bihar,

Jharkhand, Uttar Pradesh, Madhya Pradesh and all north-eastern states with the estimated

impacts at 3-10 percent. The least affected states are the three cold states-Jammu and

Kashmir, Himachal Pradesh, and Uttarakhand. Jammu and Kashmir turns out to be the

only state the net electricity demand of which reduces by 1-5.5 percent due to climate change

in 2030. In the case of Himachal Pradesh and Uttarakhand, there will be an increase in

electricity demand but it would be less than 2 percent.

3.7 Conclusion

The empirical evidence from India in this study suggests that the climate sensitiv-

ity of electricity demand in a developing country is likely to be highly sensitive to income

growth. I use a state-level panel dataset to estimate the effect of daily temperature (a
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Figure 3.5:
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Figure 3.6:
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key indicator of weather) and long-term climate on electricity demand which is conditional

on state or region fixed-effects. My preferred estimates, using a 1 degree Celsius uniform

climate change scenario, indicate that climate change will increase electricity demand by

6.9 percent with 4 percent p.a. GDP growth and by 8.6 percent with 6 percent p.a. GDP

growth in 2030 over the reference scenario of no climate change. This reflects the fact that

the estimated marginal effect of a hotter climate on electricity demand is greater when in-

come is higher among the populace than otherwise. It points to the critical need to engage

in electricity demand management and boost effi ciency in use of electricity to become a

low-energy consuming society in the future.

The rapid increase in electricity demand due to climate change results from both

intensive and extensive adjustments in heating and cooling requirements. The findings

of the study suggest that over 50 percent of the climate change impacts will be due to

extensive adjustments. This highlights the importance of potential interactions between

increasing cooling degree days and increasing incomes, and the impact of the resulting long-

term adjustments (such as the higher penetration of air cooling devices) on the electricity

sector. Electricity demand models that do not account for extensive adjustments are likely

to underestimate the climate change impacts on electricity demand, especially in developing

countries like India where the current penetration of space conditioning equipment is very

low.

Additionally, the analysis indicates considerable heterogeneity in the predicted

impacts across states. The nature and extent of the impacts will vary geographically,

depending on the climate and development status of the states. Thus, the states to be most
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affected by climate change will be the rich and hot states. Further, research using data

from other countries and sectors would prove extremely useful in helping us understand not

just how climate and income changes in the future may impact electricity demand but also

how historic climatic and income differences across different parts of the world may have

contributed to existing differences in electricity demand between nations.

Appendix Tables
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Table 3.4: Estimates of Electricity demand Models 2005-2009

State Fixed-Effect Region Fixed-Effect
(1) (2) (3) (4)

Model A Model B Model C Model F

VARIABLES
Log(GDPPC) 1.130*** 1.132*** 1.019*** 0.551***

(0.0212) (0.0208) (0.0191) (0.00882)
Log(Population) 0.109 0.111 0.168** 0.883***

(0.104) (0.113) (0.0817) (0.00430)
Log(Price) 0.0114 0.0125 0.0104 -0.188***

(0.0102) (0.0109) (0.0106) (0.00815)
Log(Agr_Pumpsets) 0.0115** 0.0118** 0.0140*** 0.0454***

(0.00484) (0.00502) (0.00418) (0.00268)
MIIP 1.51e-05*** 1.80e-05*** 1.88e-05*** 2.01e-05***

(2.17e-06) (2.27e-06) (2.34e-06) (2.29e-06)
Major Holiday 0.000923 0.00161 0.00223 -0.0157***

(0.00382) (0.00378) (0.00368) (0.00542)
lpump_rainsum7 -4.85e-05*** -6.03e-05*** -5.72e-05*** -0.000169***

(1.11e-05) (1.12e-05) (1.12e-05) (1.68e-05)
Rainfall_Weeksum -1.34e-05 8.99e-05 0.000117 0.00133***

(0.000113) (0.000111) (0.000112) (0.000177)
HDD -0.00586***

(0.000994)
CDD 0.0196***

(0.000911)
HDDI*HDD -0.000337*** 0.00250 -0.00230***

(7.46e-05) (0.00192) (0.000108)
CDDI*CDD 0.000791*** -0.00772*** -0.0111***

(4.71e-05) (0.000433) (0.000538)
HDDI*HDD -0.000293+

*Log(GDPPC) (0.000188)
CDDI*CDD 0.000833*** 0.00120***
*Log(GDPPC) (4.34e-05) (5.28e-05)
% Villages elect 0.00984***

(0.000112)
Industry share 0.0257***

(0.000403)
Constant -8.791*** -8.873*** -8.789*** -18.11***

(1.770) (1.955) (1.429) (0.116)

Observations 50,932 50,932 50,932 50,932
R-squared 0.993 0.993 0.994 0.97
State FE YES YES YES NO
Quarter FE YES YES YES YES
Day of Week FE YES YES YES YES
Region FE NO NO NO YES
Driscoll and Kraay (1998) standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1, +p<.11
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Chapter 4

Climate Change, Food Prices, and

Poverty in India1

4.1 Abstract

We develop a simple two-sector (food and non-food) general equilibrium model

for studying the long-run impact of climate change on food prices and the distribution

of welfare in India. We find that food prices were 4 to 8 percent higher and the real

income of the landless poor was 2.4 to 4.8 percent lower in 2009 relative to a counterfactual

without climate change and pollution (over the past three decades). In 2030, agricultural

productivity is 7% lower compared to a scenario without further climate impacts, then

food prices will be 3.6 to 10.8 percent higher and real income of the landless 1.6 to 5.6%

lower. The lower numbers are obtained in open economy scenarios and the higher in closed

economy scenarios, showing that trade helps to protect the poor. If the economy is closed,

1This chapter is joint with Prof. E. Somanathan and Prof. Bharat Ramaswami
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then improving the productivity of the agricultural sector has the greatest impact on the

welfare of the poor. In contrast, if the economy is open and there are no barriers to labor

movement out of agriculture, then the non-agricultural sector plays a bigger role in driving

the welfare of the poor than mitigation of climate change.

4.2 Introduction

Climate change is expected to have major impacts on agricultural productivity

and poverty with South Asia being one of the most vulnerable regions of the world. One

of the emerging challenges will be to understand and quantify the impacts of a changing

climate on the welfare of the poor. Between 1950-51 and 2010-2011, India’s per-capita gross

domestic product has increased greatly by almost 500 percent, but per-capita foodgrain

output has increased by just 28 percent [GOI, 2011]. About 17.5% of the population in

India was undernourished in 2010-12 [von Grebmer et al., 2013]. Real food prices have risen

significantly in the last two decades. An Indian population increasing from 1.2 billion in

2009 to 1.5 billion by 2030 together with higher incomes will lead to increased food demand.

In this context, reduced food availability and higher food prices resulting from climate

change can have large effects on poverty [Hertel & Rosch, 2010] [Datt & Ravallion, 1998]

[Ravallion, 1990] [Chakravorty et al., 2012a].

Agriculture accounts for about 15% of India’s GDP so that even a significant

decline in agricultural output of, for example, 20%, would mean a decline of only 3% in GDP.

But this assumes that food prices would not rise when food output falls. Food accounted

for more than one-half of the average household’s expenditure in 2009 and this share was
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about two-thirds for the poorest household. So a rise in food prices can be very serious and

climate change can impose significant welfare losses, with the poor being affected the most.

For these reasons, past studies that quantify the impact of climate change on agriculture

in terms of GDP loss (either using cross-sectional or panel data) are of limited value when

assessing the impacts on economic welfare. As food prices may change significantly relative

to current food prices, welfare impacts have to be analyzed within a general equilibrium

framework.

The main question of interest here is: How important will climate change be

relative to other factors in determining the welfare of the poor? We find that a combination

of trade and economic growth can help buffer the poor against climate change. If the

economy is closed, then improving the productivity of the agricultural sector has the greatest

impact on the welfare of the poor. In contrast, if the economy is open, then the non-

agricultural sector plays a bigger role in driving the welfare of the poor. The key implication

of the analysis in this paper is that changes in productivity growth will have a much larger

impact on the welfare of the poor than mitigation of climate change (unless climate impacts

are larger than those considered in this study).

In this paper, we develop a stylized two-sector (food and non-food) general equilib-

rium framework inspired by [Eswaran & Kotwal, 1993] for studying the impact of climate

change on food prices and household welfare in India. The demand side is modelled by a

preference structure rooted in Engel’s law, according to which there is an inverse relation-

ship between a household’s income and its share devoted to food. The analysis is conducted

separately under closed and open economy assumptions in order to judge the impact of
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trade. The simplicity of the model allows us to transparently assess the factors driving

the results. Since there are only a few parameters, sensitivity analysis on them can be

conducted. The framework indicates how the initial conditions in terms of the level and

distribution of wealth and land results in heterogeneity in a household’s vulnerability to

climate change in an economy.

The model is first calibrated to data from 2009. We estimate the impact of historic

climate change and pollution trends over a 30-year period (1980-2009) on food prices and the

welfare of the poor in 2009. We find that food prices were 4 - 8 percent higher and the real

income of the landless poor was 2.4 - 4.8 percent lower relative to counterfactuals without

climate change in the open and closed economy models respectively. We then examine

impacts for the economy calibrated to projections for 2030. If the economy is closed to

trade, a landless poor person is made significantly worse off by climate change since the

price of food rises considerably. If agricultural productivity is 7% lower in 2030 compared

to a scenario without climate and pollution impacts, then food prices will be about 10.8

percent higher and the real income of the landless 5.6% lower. For nearly all farmers,

landholdings are too small for the resulting higher land rent to compensate for the fall in

real income. Opening the economy to trade makes the poor (who depend mainly on labor

rather than land for their incomes) better off by moderating the rise in the price of food. In

the open-economy case, food prices are 3.6 % higher and the real income of the landless 1.6

percent lower than the counterfactual of no further climate change and pollution. For 2030

we consider seven combinations of agricultural productivity, non-agricultural productivity

and population. It should be stressed that our results are the outcomes that would obtain
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without frictions in consumption, trade and labor market. For instance, we assume that

all foods are perfect substitutes and that there are no barriers to trade and labor market

movements between agriculture and non-agriculture happens smoothly. Frictions would

possibly exacerbate the climate change impacts.

The major impact of climate change in India on income is expected to come via

losses in crop production.2 [Mendelsohn et al., 2001] using a Ricardian approach, finds that

climate change reduces yields by about 30-60% in the long run (2080) relative to the1990s.

[Rosenzweig & Iglesias, 2006] using an agronomic crop model find that yields are expected

to fall by about 14.3% in the long run (2080) relative to the 1990s due to climate change.

[Guiteras, 2009] using annual panel data on yields and weather, projects that climate change

over the period 2010-2039 will reduce major crop yields by 4.5 to 9 %, while in the long-run

(2070-2099) yields are likely to fall by 25 % or more in the absence of adaptation relative

to 1990s. [Auffhammer et al., 2012] found that during 1966-2002 the rice yield was about

5.7% lower due to climate change since the 1960s. [Gupta et al., 2013] found that wheat

yields in India would have been higher in 2009 by 0.7-3.3% if climate has not changed during

1981-2009. According to a recent study, wheat and rice yields are lower by 5.2% and 2% in

India and by 5.5% and 0.1% in the world respectively, compared to yield projections without

climate trends during the period 1980-2008 ([Lobell et al., 2011]). In addition to climate

change, higher ozone concentrations are expected to reduce yields in 2030 over 2009 by 5-7%

for India and by 2-3% for the world ([Van Dingenen et al., 2009] and [Avnery et al., 2011]).

Further, it is expected that CO2 fertilization is likely to increase global yields in the next

2There is recent research suggesting adverse impacts of climate change on non-agricultural sectors
([Dell et al., 2013] [Hsiang et al., 2011] [Sudarshan & Tewari, 2013]) that we do not examine here.



94

20 years at 1.8% per decade ([Lobell & Gourdji, 2012]). The estimates of the climate

change impact on crop yields vary across studies due to different models and assumptions.

[Gosling et al., 2011] provides an extensive review of studies done for India. While these

studies are important to quantify the output loss due to climate change, we also need to

estimate the impact of climate change on food prices if we want to obtain the effect of

climate change on economic welfare.

Further, climate change is likely to have a more serious impact on tropical countries

like India than on temperate countries. This shift in the geographic distribution of produc-

tion is expected to result in a corresponding shift in trade flows3. [Fischer et al., 2002]

estimate that by 2080 cereal imports by developing countries would rise by 10-40%. Thus,

the net economic effect of climate change on the agriculture of any country will depend as

much on its role in agricultural trade as on the impacts of the changed climate on crop

yields. [Reilly & Hohmann, 1993] using static world policy simulation (SWOPSIM) model

found that international trade will reduce the severity of climate change impacts on world

agriculture and result in relatively small impacts on individual economies.

[Nelson et al., 2010] find that climate change will increase the number of malnour-

ished children in 2050 relative to perfect mitigation by about 9-10 percent using the Impact

model. Because Impact is a partial equilibrium model it cannot estimate directly the poverty

effects of agricultural productivity declines from climate change.[Jacoby et al., 2011] quan-

tifies the distributional impacts of climate change in rural India. Using a comparative static

framework, the impact of climate change on household consumption is expressed as the im-

3[Huang et al., 2011] provides an extensive review of studies on climate change and trade in agriculture.
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pact of changes in temperature on returns to land and labor. The key idea is that food

prices remaining constant, a fall in agricultural productivity leads to changes in returns to

land and labor. In general equilibrium, however, a change in food prices also matters to

wages and rentals and their model considers this impact as well. However, the Jacoby

et.al model does not solve for equilibrium food prices. The study takes price changes from

the projections of [Hertel et al., 2010]. Because the price changes are taken as exogenous,

their model is not appropriate to study the role of trade as an adaptation mechanism. For

instance, how do welfare impacts vary between a closed and an open economy? Such a

question cannot be answered within the Jacoby et.al analysis. In addition, it is not clear

whether the framework allows climate change in India to affect world food prices4.

In sum, while there are a number of studies that quantify the impact of climate

change on agricultural yields there are very few studies examining the impact of climate

change on the income of the poor that take general equilibrium effects into account. In

this study, we examine the total welfare loss and the distribution of losses in India under

two different climate change scenarios, explicitly taking into account changes in the price

of food and its impact on the distribution of income.

4.3 The Model

4.3.1 Closed economy case

Consider an economy of N individuals of which Nl are in the labour force. The

total land in the economy is denoted by A. Production functions in both food and non-food

4India accounts for about 20 percent of world rice production, 13 percent of world wheat production.
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sectors exhibit constant returns to scale. The agricultural sector produces food (F ) using

two inputs, land (AF ) and labour (LF ). The food production function is Cobb-Douglas:

YF = θFA
1−α
F LαF . (4.1)

The non-food sector using only labour (LT ) produces a good that, for the sake of

concreteness, we will refer to as textiles (T ) . We use textiles as the numeraire good and

we use P to denote the price of food. The non-food production function is

YT = θTLT . (4.2)

The linear technology means that the wage in terms of textiles is fixed:

W = θT (4.3)

Thus, market clearing conditions for land and labour are A = AF and Nl =

LF +LT .We denote the wage rate by W , labor income per capita by w =WNl/N and per

unit land rent by r. Using (4.3), we obtain labour demand in agriculture as

θT = PθFαA
1−α
F Lα−1F

So

LF = A

(
αPθF
θT

) 1
1−α

(4.4)

Labour market clearing implies

LT = Nl −A
(
αPθF
θT

) 1
1−α

(4.5)
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We can write the equilibrium rent equation as

r = θ

α
α−1

T

(
1− α
α

)
(Pθ

F
)

1
1−αα

1
1−α (4.6)

On the consumption side, individuals have identical Stone-Geary preferences, used

to capture Engel’s Law in a simple way. The utility function of an individual i is

Ui = (fi − f)ρ(ti − t)1−ρ (4.7)

with 0 < ρ < 1, (fi − f) > 0, (ti − t) > 0.

Here, fi and ti represents total food consumption and non-food consumption of

the ith individual, and f and t represent the subsistence food and non-food consumption.

An individual maximizes utility subject to the budget constraint given by Mi = w + rai

where ai is the amount of land possessed by individual i. We obtain the demand for F and

T by individual i as

fi = f +
ρ

P

(
w + rai − Pf − t

)
(4.8)

ti = t+ (1− ρ)(w + rai − Pf − t) (4.9)

Multiplying (4.8) by P , we see that ρ is the proportion of the excess of income

over subsistence consumption that is spent on food, so that expenditure on each commodity

is linear in the excess of total expenditure over subsistence expenditure. We obtain total

demand for F and T in this economy by adding demand functions of all the individuals.

Fd represents total food demand and Td represents total food demand.
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Fd = fN +
ρ

P
(wN + rA− PF fN − tN) , (4.10)

Td = tN + (1− ρ)(wN + rA− PF fN − tN) , (4.11)

In general equilibrium, all four markets clear: A = AF ; Nl = LF + LT ; Fd = YF ;

Td = YT . The market clearing condition for food can be dropped by Walras’ law. We

have already used the first two conditions. The general equilibrium of this closed economy

is entirely determined by the solution to the remaining textile market clearing condition.

Using (4.2), (4.3), (4.5), (4.6) and (4.11), we can write this equation only in P and the

exogenous parameters:

tN + (1− ρ)
(
θTNl +A

(
θ

α
α−1

T

(
1− α
α

)
(PθF )

1
1−αα

1
1−α

)
− Pf N − tN

)
(4.12)

= θT

(
Nl −A

(
θT

αPθF

) 1
α−1
)

(4.13)

Totally differentiating eq(4.13) with respect to to θF and simplifying, we obtain

the elasticity of the price of food with respect to the total factor productivity θF . The

elasticity of the price of food with respect to temperature is then just the product of the

elasticity of the elasticity of the price of food with respect to the total factor productivity

θF (εPθF ) and the elasticity of the total factor productivity θF with respect to temperature

(ε
θ
F
τ
) and is given by

−
(
dP

dθF

θF
P

)
= ε

PθF
=


(
1−α
α + 1

1−ρ

)
YF

(
α
1−α

)
(
1−α
α + 1

1−ρ

)
YF

(
α
1−α

)
− f N

 = 1

1− f N

Y
F

(
1+ η

(1−ρ)

) , (4.14)
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Note that, by assumption
f N

Y
F
< 1 and 1−ρ > 0, so ε

PθF
> 1. In a closed economy,

the price of food rises more than proportionally with a decline in θF .

−
(
dP

dτ

τ

P

)
= εPτ (4.15)

=

(
dθ
F
dτ

τ
θ
F

)
1− f N

Y
F

(
1+ η

(1−ρ)

) =
ε
θ
F
τ

1− f N

Y
F

(
1+ η

(1−ρ)

) , (4.16)

where η = α
1−α and τ is temperature.

From eq(4.15) we have three key results: First, the higher is the share of minimum

food consumption in total food supply
(
f N

Y
F

)
, the greater will be the response of food prices

to global warming (εP
F
τ ). This happens because a productivity decline in agriculture

reduces incomes and reduces the demand for both goods. However, when
(
f N

Y
F

)
is high,

the reduction in non-food demand has to be proportionately greater. So this has to be

matched with a corresponding shift of labour from the non-food sector to the food sector.

So the relative price of food has to increase enough to induce this shift. As the economy

grows, food prices will be less sensitive to climate impacts. When the economy is richer,

the marginal product of labor in agriculture is higher and
(
f N

Y
F

)
is low. So, a smaller

food price rise is suffi cient to induce enough labor into agriculture to increase food supply

to meet demand.

Second, if α is high, then so is η and therefore the elasticity of food prices with

respect to temperature will be low. This follows from the fact that α is the output elasticity

of labor. So when this is high, any fall in agricultural productivity is easily met with a

small shift of labor from the non-food sector to the food sector and therefore, the required



100

rise in the price of food is small.

Finally, the higher is ρ i.e., the proportion of excess income spent on food, the

lower will be εP
F
τ . As noted earlier, the loss in agricultural productivity reduces incomes

and demands for both goods. When ρ is high, the percentage decline in food demand is

much greater than when ρ is low. Hence the sectoral shifts in labor and output are also

smaller in the case when ρ is high. Therefore, the food price increase is also smaller.

4.3.2 Open economy case

We now allow India to be an open economy. There are 2 economies- India (I) and

Rest of the World (R). Both the economies have the same form of the production functions

and utility functions as in the closed economy case. Economies differ only in their labour

shares, total factor productivities and endowments. In Appendix A, we have derived the

general equilibrium equation for P in the open economy case. We obtain

−
(
dP

dτ

τ

P

)
= −εPτ =

sIε(θI
F
τ)( η

I

1−ρ + 1) + s
Rε(θR

F
τ)( η

R

1−ρ + 1)

1 + sI( η
I

1−ρ) + s
R( η

R

1−ρ)−
f (NG)

(Y G
F
)

.

=
sIε(θI

F
τ) + sRε(θR

F
τ)

1− f (NG)

(Y G
F
)
(
1+ η

(1−ρ)

) if ηI = ηR.

Here, ε(θI
F
τ) denotes the elasticity of agricultural productivity in India with re-

spect to the climate change (τ), ε(θR
F
τ) denotes the elasticity of agricultural productivity

in rest of the world with respect to the climate change (τ). N I , NR and NG(which equals

N I
F
+NR

F
) denote the supply of labour in India, the rest of the world and world respectively,

Y I , Y R and Y G(which equals Y I
F
+ Y R

F
) denote the supply of food in India, the rest of

the world and world respectively, α is the share of labour in food output of India and we
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represent the ratio ( α
1−α) by η

I , β is the share of labour in food output of the rest of the

world and we represent the ratio ( β
1−β ) by η

R, sI( which equals
Y I
F

(Y I
F
+Y R

F
)
) is India’s share

in world food supply and sR(which equals
Y R
F

(Y I
F
+Y R

F
)
) is the share of the rest of the world in

world food supply,
f (NG)

(Y G
F
)
is the minimum food required for survival as a share of global

food supply. We find that now the food price elasticity is a weighted average of productivity

elasticities in both regions. India being a tropical country, we expect ε(θI
F
τ) > ε(θR

F
τ). If

climate change affects agricultural productivity less in the rest of the world, as is expected,

than in India, the net increase in the food price in India will be less compared to a closed

economy case. Thus, one of the key contributions of this study is to help understand how

international trade can function as an adjustment mechanism.

4.3.3 Welfare analysis

We use equivalent variation as a measure of welfare change5. Equivalent variation

(EV) is defined as the amount of money paid to an individual with base prices and income

that leads to the same satisfaction as that generated by a price and income change. In other

words, EV satisfies V (P,Mi + EV ) = V (P ′,M ′i) where V is the indirect utility function.

EVi = e(P, Vi(P
′,M ′i))−Mi.

where e is the expenditure function. Therefore, from the definition, EV > 0 if and only

if the individual is better off with the price and income change. We are interested in the

EV of a change in θF to θ
′
F
when climate changes. A change from θF to θ

′
F
results in P

5We have used Equivalent Variation (EV) for welfare analysis and not Compensating Variation (CV)
because with EV we can measure and compare income in different scenarios in current or 2009 prices. This
is not possible with CV as in case of CV income in each scenario is measured at new prices.
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changing to P ′ as given by (4.13), and income w+ rai changing to w+ r′ai s given by (4.6).

From eq(4.7), eq(4.8) , eq(4.9) and expenditure minimization we can derive the expression

for the equivalent variation as

EVi = θT ×
(
Nl

N

)[(
P

P ′

)ρ
− 1
]
+ fP − fP ′

(
P

P ′

)ρ
+

[
t− t

(
P

P ′

)ρ]
−ai (θT )

α
α−1

(
1− α
α

)
α

1
1−α

[
(θFP )

1
1−α −

(
θ′
F
P ′
) 1
1−α

(
P

P ′

)ρ]

Note that if (θFP )
1

1−α <
(
θ′
F
P ′
) 1
1−α

(
P
P ′
)ρ
for θ′

F
< θF , then the second term is positive and

the EV is increasing in land ownership. By putting EVi = 0, we obtain the cut-off level of

land â such that individual i is indifferent to the change

â =
θT ×

(
Nl
N

) [(
P
P ′
)ρ − 1]+ fP − fP ′ ( PP ′ )ρ + [t− t ( PP ′ )ρ]

(θT )
α
α−1

(
1−α
α

)
α

1
1−α

[
(θFP )

1
1−α −

(
θ′
F
P ′
) 1
1−α

(
P
P ′
)ρ]

We discuss the distribution of losses in both closed and open economy cases.

4.4 Data sources and method used for calibration

4.4.1 Production parameters in the food sector

The model is calibrated using data from 2009. Table (4.1) displays the list of

production parameters, their calibrated values and the data sources used in the process.

In this table, data values on gross cropped area in India, arable and permanent crops land

for the rest of the world, Indian population, rest of the world population, value of labor

elasticity or α measured as the share of labor income (wages) in total agricultural output for

India and the rest of the world, productivity in the non-food sector for India θIT measured
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as the annual wage income of casual workers were directly drawn from the mentioned data

sources. For other variables, the data sources were used to construct the desired variable.

For both India and the world, the output of food in the production function is

obtained from food balance sheets of the Food and Agriculture Organization6 (FAO). By

multiplying each food item by its calorific value and summing over all food items total food

output is obtained in calories. We find that India’s share in world calories is about 14%.

For India data on gross cropped area (AF ) of 195 million hectares is taken from the land use

statistics. For the rest of the world, Arable and permanent crops land is taken from the FAO.

The total number of agricultural workers is computed as product of population, workforce

participation rate and the proportion of workers employed in the agricultural sector. Given

agricultural output and the factor inputs of land and labor employed in agriculture and

the production function parameter α the agriculture total factor productivity (TFP) for

India and rest of the world is solved from the production function specification. The non-

agriculture TFP of India θIT of Rs 30039 is assumed to be equal to the average annual

wage of casual workers in the agriculture and non-agriculture sectors. The only production

parameter that remains to be fixed is the productivity in the non-food sector in the rest of

the world. As we will see later this parameter will be pinned down by the general equilibrium

condition.

6The food items in the food balance sheets included cereals, pulses, sugarcrops, sugar and sweeteners,
oilcrops, vegetable oils, vegetables, fruits, spices, stimulants (tea,coffee etc), alcoholic beverages, meat, animal
fat, milk, aquatic products.
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Table 4.1: Production Parameters (2009)

Parameter Value Source

1 Annual Food output India ( Y I
F
) trillion calories/year 1040 Computed from FAO

2 Annual Food output ROW ( Y R
F
) trillion calories/year 6410 Computed from FAO

3 India’s share in world calories

(
Y I
F

(Y I
F
+Y R

F
)

)
14% Computed from FAO

4 Gross cropped area India (AIF ) in million hectares 195 Land use statistics
5 Arable and permanent crops land for ROW (ARF ) 1338.35 FAO
6 India population (N I) in million 1207.74 FAO
7 ROW population (NR) million 5449.14 FAO
8 Work force Participation rate, India .3966 Intrapolation,Censuses 2001, 2011
9 Work force Participation rate, ROW .469 [Bank, 2011]
10 % of total workers in agriculture, India .49 [GOI, 2009]
11 % of total workers in agriculture, ROW .3456 [Bank, 2011]
12 Agriculture workers India (LIF ) million 234.7 Computed as 6*8*10
13 Agriculture workers ROW (LRF ) million 883 Computed as 7*9*11
14 α, share of labor in output for India .46 [Eswaran et al., 2007]
15 α, share of labor in output for ROW .35 [Alston et al., 2010]
16 θIF , Productivity in the non-food sector in India 4897500 Using 1,4,12,14 as explained in text
17 θRF , Productivity in the non-food sector in ROW 5539400 Using 2,5,13,15 as explained in text
18 θIT , Productivity in the non-food sector in India (Rs) 30039 [GOI, 2009]

4.4.2 Consumption parameters

Table (4.2) displays the list of consumption parameters. First, we calculate the

calorie price P , measured as an average household price from the consumption schedue

of the National Sample Survey (2009). For each food item the National Sample Survey

gives expenditure and quantity consumed. We calculate total calories consumed by each

household using calorific values for each food item obtained from the National Sample

Survey (2009). We calculate the food price for each household by dividing food expenditure

of a household by food calories consumed. The average price for all the households (with

adult equivalent calorie consumption per day greater than 500 and less than 10000) is Rs

.0104 per kcal.
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Second, we estimate the Stone-Geary linear food expenditure function using the

individual level data from National Sample consumption expenditure survey (2009) by non-

linear least squares to obtain the value of three unknown parameters f , t and ρ.

Ph fh
nh

= Ph f + ρ

(
Mh

nh
− Phf − t

)
+ εh

where Ph is the calorie price of the household h , fh denotes calories consumed by houshold

h, nh is number of equivalent adults in household7 h, Mh
represents total income of house-

hold h as measured by the sum of food and non-food expenditure. f and t are constrained to

be non-negative. We obtain f as 61,5216 calories adult equivalent per year or 1685 calories

adult equivalent per day, t as 0 and ρ as .25.

4.4.3 General Equilibrium

Given the production and consumption parameters in Table (4.1) and (4.2), the

general equilibrium equation in the open economy is used to solve for the only remaining

unknown, i.e., the productivity in the non-food sector of the rest of the world. This is

displayed in Table(4.3). If this economy were closed, the equilibrium price would be different

and we can no longer use the price computed in table that is valid for a open economy.

To consider the implications of climate change for a closed economy, we use the general

equilibrium condition in eq(4.13) for a closed economy to compute the equilibrium food

price. This is also shown in Table (4.3). We find that the price of food would be about 14

percent higher if the economy was closed to trade. The next section numerically simulates

7To determine adult equivalent reference scale we used the consumer unit (that is used as an indicator
of the energy requirement of a group of persons of different sexes and ages in NSS 2009 nutrition intake
report) weight 1 for male in the age group 20-39 as the norm. The average calorie requirements of males and
females of other age groups are expressed as a ratio to this norm. The adult-equivalent fraction assigned to
each individual varied from .43 for the new borns to 1.03 for males in the age group of 10 to12 years of age.
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Table 4.2: Consumption Parameters (2009)

Parameter Value Source

P (Rs per Kcal) in the open economy .0104 Computed from NSSO (2009)
ρ .25 Estimated from Non-linear Least squares
f (calories per day) adult equivalent 1685 Estimated from Non-linear Least squares
t 0 Estimated from Non-linear Least squares

Table 4.3: Calibrated Values from General Equilibrium

Parameter Value Source

θRT , Productivity in the non-food sector 37,455 Solved from General Equilibrium of Open Economy
(Rs) in rest of the world
P (Rs per Kcal) in the closed economy .0119 Solved from General Equilibrium of Closed Economy

the open and closed economy to past climate change and pollution trends.

4.5 Impact of changes in climate and pollution during 1980-

2009

In this section, we seek to understand the impact of historic climate change and

pollution trends over a 30-year period (1980-2009) on food prices and welfare of the poor in

the calibrated economy compared to a counterfactual economy (without climate change). In

Section 5, we reconsider these impacts for an economy that is calibrated to data projected

for 2030. This analysis helps us to compare the welfare impacts obtained in 2009 with the

richer economy of 2030 and understand the underlying adjusting mechanism. Table (4.8)

provides information on estimated impacts on crop yields of past changes in climate and

pollution. Based on the existing literature on climate change impacts, we derive past loss in

crop yields for India and the rest of the world by adding the estimated impacts of warming,

CO2 fertilization, and ozone pollution, on crop yields.
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Table 4.4: Climate Impacts on Agricultural Productivity during 1980-2009

Parameter India Rest of the World

% change Source % change Source
Global Warming -3.5 [Lobell et al., 2011] -3.1 [Lobell et al., 2011]
CO2 fertilization +3 [Lobell & Gourdji, 2012] +3 [Lobell & Gourdji, 2012]
Ozone -4.7 [Van Dingenen et al., 2009]; -2.4 [Van Dingenen et al., 2009]

[Avnery et al., 2011] [Avnery et al., 2011]
Total -5.3 -2.5

For India, a 5.3% fall in θF during 1980-2009 is obtained by adding a 3.5 percent

fall in yields (as estimated by [Lobell et al., 2011]) and a 4.7 percent fall in yields due to

the ozone effect (obtained by backward projection of the estimated impact of ozone during

2000-2030 by [Van Dingenen et al., 2009]) to a 3 percent positive effect of CO2 fertilization

(1.5 percent per decade as given in [Lobell & Gourdji, 2012]). Similarly, we obtain a 2.5%

decline in agricultural productivity for the rest of the world during 1980-2009. In case

of ozone impacts, we find that there are limited past studies available and thus we have

obtained a rough estimate for crop yield loss during 1980-2000 due to ozone pollution by

projecting expected future changes ( during 2000-2030) backward till 1980. For instance,

for India the studies by [Van Dingenen et al., 2009] and [Avnery et al., 2011] find that on

average (over rice with 57% share and wheat with 43% share) crop yield losses due to

ozone during 2000-2030 in India are likely to be about 2.34 percent per decade. As in the

past, ozone concentrations would have been lower than in the present and future, we have

assumed 4.7 % loss in yields in India due to ozone over during 1980-20098.

8We multiply 2.3 by 2 (resulting in 4.7%) and not 3 for estimating the the likely impact of ozone on crop
yields in India during past 3 decades 1980-2009. This is done as in the past ozone concerteration would have
been lower than in present. This is only a very rough estimate.
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4.5.1 Closed Economy

The closed economy equilibrium in calibrated and counterfactual 2009 economies

is described in the first three columns of Table (4.5). The calibrated equilibrium food price

is about Rs .0119 per calorie and the share of the food sector is about 52%. About 33% of

the total workforce is employed in the food sector. We get a high share of agriculture in

total output and a lower share of agriculture in the labor force as compared to reality in

India as we have not incorporated human and physical capital in the non-food sector. Since,

we are interested mainly in the impact on the poor who don’t have human and physical

capital, this does not matter much for our purposes. The annual wage rate or θT is about

Rs 30000 and rent per hectare is Rs 28770. The income of the landless is about Rs 14716.

It is obtained by multiplying θT with the ratio of the number of workers to the number of

adult equivalent persons in the economy. The share of food in the total expenditure of the

landless is 62.5%.

We now discuss the total welfare loss and the distribution of losses relative to

a counterfactual without climate change. Welfare impacts of climate change in the past

three decades are presented in Figure(4.1). As productivity in the agricultural sector falls,

so does the food supply. Since food demand is inelastic, P rises by more than the fall in

productvity. We find that in the closed economy case food prices rise significantly as a result

of an adverse productivity change or climate change. With 5.3% decline in θF relative to

counterfactual, P increases by about 8.3%. With higher P, the marginal revenue product

of labor increases in the agricultural sector and labor shifts from the non-food sector to the

food sector. The labor force in the food sector (LF ) increases by about 4.8%.
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Table 4.5: General Equilibrium in the Closed and Open Economies (2009)

Variable Closed Open
Economy Economy

Counterfactual Baseline Counterfactual Baseline

No climate change No climate change

Food Demand (1012 kcal) 898.6 869.7 923.9 901.8
Food Demand (Kcal) 2517 2436.8 2589 2527
adult equivalent/day
Non-Food Demand (1012 Rs) 9.8 9.6 9.6 9.4
labor in Food sector (106) 152 159 125 122
labor in Non-Food (106) 327 320 354 356
Food Price (Rs/kcal) .0110 .0119 .0099 0.0104
Annual Wage Rate (Rs) 30039 30039 30039 30039
Rent per hectare (Rs) 27444 28770 22668 22180.5
Food sector share (%) 50 52 43.5 43.1
Share of food in 59.6 62.5 56 57.5
expenditure of landless(%)
Food imports as % - - 11 14.4
of food demand
Non-Food exports as % - - 9.5 12.6
of Non-food output



110

Figure 4.1: The Impact of Past Climate Change and Pollution in Closed and Open
Economies on Welfare in 2009 Relative to a Counterfactual with no Climate and Pollu-
tion Change Over 1980-2009
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Figure 4.2: The Impact of Past Climate Change and Pollution in Closed and Open
Economies by Land Ownership

As regards returns to factors of production, real wages fall with higher food prices

but rents increase because of greater farm employment. The net impact of higher food prices

on real wages and rental income from land will determine an individual’s welfare loss or

gain from climate change. Since wage and rental incomes move in opposite directions, there

exists a threshold level of land such that if an individual owns land above that threshold he

gains from the higher food price from climate change. Figure(4.2) plots equivalent variation

as percentage of income and land owned per adult equivalent. The equivalent variation as

percentage of income increases as the land per adult equivalent of an individual increases.

The threshold level of land is equal to .94 hectares. In India more than 50% owns no land

or only tiny amount of land (less than .009 hectares), 75% of the population owns land per

adult equivalent less than .15 hectares and 90% owns land per adult equivalent less than

.40 hectares (National Sample Survey 2009).
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Qualitatively, the direction of outcomes can be anticipated. As the price of food

increases it reduces the real wage rate received by the landless poor making them worse-off.

This will adversely impact their consumption of food and non-food. As the relative price

of food increases the demand for food falls due to the substitution effect. Further, as real

income falls, food and non food demand both fall due to the income effect. As substitution

and income effects work in the same direction for food, food consumption of the landless

poor falls. For non-food demand, substitution and income effects work in opposite directions

and the relative strength of the two effects determines the final consumption of non-food.

The calibrated model can be used to quantify these effects. For landless workers, the fall in

θF of 5.3% leads to a decline in non-food consumption by about 7% and a decline in food

consumption by about 3%. The share of food in total expenditure increases from 59.6%

to 62.5%. The landless workers are worse off and the equivalent variation is negative. It

is Rs. 711 or 4.8% of the income. These numbers illustrate clearly that ignoring general

equilibrium effects will greatly understate the impact of global warming on the poor. The

EV for the landless falls one-for-one with declining food productivity alone even though the

food sector constitutes only 52% of the economy in the baseline model.

For a landowning farmer, rent increases with higher P (given that the percentage

increase in price is greater than the percentage fall in agricultural productivity). For a small

landholder the fall in labor income may not be fully compensated by higher rent and thus

such farmers lose from climate change . For a large land holder the fall in labor income may

be more than fully compensated by higher rent and he gains from climate change. Consider

a small land holder (with owned land of 0.1 hectare) and a larger landholder (with holding
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of 1.5 hectares). The small farmer loses from climate change and ends up with a negative

EV of about Rs 635. However, the larger landowner gains enough from higher rents and

ends up with a positive EV of about Rs 424.

We now examine the sensitivity of these results to changes in key parameter values.

The idea is to obtain interval estimates rather than point estimates for a reasonable range

of parameter values. Figure (4.3) displays results for different values of ρ, the proportion

of excess income spent on food. In the baseline, ρ =.25. We observe that the results are

not highly sensitive to ρ . As discussed in Section 2.1, higher ρ implies lower food price

elasticity with respect to θF . We see that even if we double the value of ρ from 0.25 (when

the food price rises by 8.3%) to 0.5, the food price still rises substantially by 7%. Similarly,

we see that the equivalent variation as a percentage of income for a landless person does

not vary much with different values of ρ.

Figure (4.4) displays results for three different values of α which is the output

elasticity of labor. The baseline closed-economy case is based on α =.46. We observe that

results are quite sensitive to α . Lower value of α results in higher food price elasticity with

respect to θF and higher equivalent variation and higher welfare losses for a landless person.

As α for the world is .35, we reduce α by 23% from the baseline to see what happens if

India’s output elasticity of labor converges to the world average. When α is equal to .35

the food price rises by more than 9% as against 8.3% in the baseline and the equivalent

variation as percentage of income also falls from -4.8% to -5.9% .

Figure (4.5) displays results for three different values of f , the subsistence level of

food consumption. In the baseline closed economy case f=1685 calories/day. From Section
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Figure 4.3: Sensitivity Analysis on the Share of Food in Excess Income

(ρ)

Figure 4.4: Sensitivity Analysis on the Output Elasticity of Labor in the Food Sector

( α)
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Figure 4.5: Sensitivity Analysis on Subsistence Food Consumption

( f )

2.1, we know that higher f implies higher food price elasticity. For doing sensitivity analysis

we take lower and higher values of f as compared to the baseline value. We observe that

food prices are relatively less sensitive to f . If we increase f by 20%, equivalent variation

as percentage of income of a landless person falls from -4.8% to almost -6% , and food prices

rise by about 8.7%.

Overall, we see that the welfare impacts are more sensitive to production parame-

ters than consumption parameters . So substitutability between labor and land, and hence

the nature of agricultural technology will be one of the key determinants of the impact of

climate change on the welfare of the poor.
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4.5.2 Open economy

We now discuss the open economy. The baseline open economy equilibrium before

climate change is described in the last two columns of Table (4.5). The equilibrium food

price of about Rs .0103 per calorie is about 15% lower than in the closed economy. The

share of the food sector in total output is 43% rather than 52%. India imports about 14.4%

of total food demand from the rest of the world. About 25.5% of the total workforce is

employed in the food sector. Relative to the closed economy the labor force employed in the

non-food sector is higher and so is the output of the non-food sector. India exports about

12.5 percent of its non-food output to the rest of the world. As the non-food total factor

productivity θIT is the same in the closed and open economies, the annual wage rate in the

open economy is also the same as in the closed economy i.e., Rs 30000. However, rent per

hectare falls to Rs 22100 because of lower food sector employment. Wage rate per adult

equivalent and the income of the landless is about Rs 14700 as before. The food share of

the landless falls to 57.5%.

Figures (4.1) displays open economy results for the climate change scenarios. Due

to θIF being by 5.3% lower relative to the counterfactual in India and a fall in θRF by 2.5%

in the rest of the world, food prices are 4.4% higher. The food price impact is smaller for

the open economy as compared to the closed economy. For a landless person, the (negative)

EV is Rs 355 or 2.4% of the income. Thus a landless individual is better off in the open

economy as compared to the closed economy. Thus, what happens in the rest of the world

really matters to the poor in India.

As the gap between the percentage decline in agricultural productivity and the



117

consequent percentage rise in food prices is lower in the open economy, land rents in India

are lower relative to the counterfactual with no climate and ozone change. Figure(4.2) plots

EV as % of income and land adult equivalent. The equivalent variation is a decreasing

function of land per adult equivalent and is negative for all farmers. Thus, all farmers lose

and in fact the large farmers lose more than the small farmers. The closed economy result is

overturned because the increase in food prices is less than the fall in agricultural productivity

and, therefore, rents fall. In this scenario (negative) EV for the small landholder of .1

hectares is Rs 428 and EV for the landholder of 1.5 hectares is even more negative at Rs

1440.

This result is similar to [Jacoby et al., 2011] which finds that in the most likely

scenario of stable and falling food prices the welfare declines for the wealthiest households

are marginally more severe than for the poorest. However, in the more pessimistic scenario

for global food prices, wealthy households do a lot better and even gain from climate change.

It is important to note that the real economy impacts would be some where between

the closed and open economy results as for some goods we observe trade is open and for

some it is closed. Thus, closed and open economy results provide the higher and lower

bounds of the impacts. We conclude that food prices were 4 - 8 percent higher and the real

income of the landless poor was 2.4 - 4.8 percent lower relative to counterfactual without

climate change and pollution (over past three decades) in 2009.
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Table 4.6: Population and Total Factor Productivity Average Annual Growth Rates for the
Three Scenarios During 2009-2030

Variable Region Low Medium High Source

N India 0.8% 1.1% 1.38% UNDP Forecasts
θF India .75% 1.5% 2.25% Bosworth and Collins (2007)
θT India 1.52% 3.04% 4.56% Bosworth and Collins (2007)
N Rest of the world .66% .94% 1.21% UNDP Forecasts
θF Rest of the world .92% 1.84% 2.76% Alston etal (2010)
θT Rest of the world 1.1% 2.2% 3.3% Bosworth and Collins (2003)

Note: For all variables but population the low scenario has a growth rate that is 50% lower than in the

medium scenario and the high scenario has a growth rate that is 50% higher than in the medium scenario.

4.6 Impact of changes in climate and pollution from 2009-

2030

In this section, we study how changes in climate and pollution will impact welfare

in an economy calibrated to data projected for 2030. The calibrated values for 2030 are

same as that of 2009 except in the following ways. The 2030 economy will be different from

the 2009 economy in three key respects- the state of technology9 in the food sector and

in the non-food sector, and the level of population. While the first two could reduce the

impact of global warming, population growth will intensify the problem by increasing food

demand. We use scenarios for total factor productivity growth in agriculture, total factor

productivity growth in non-agriculture, and population growth, and consider the impact

of different assumptions by comparing equivalent variation under different scenarios. Table

(4.6) discusses assumptions and sources used for constructing different scenarios.

A medium or baseline 2030 scenario assumes that all three variables will be growing

9In our model that has no capital, technology and productivity are equivalent.
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at rates projected by the sources in Table (4.6). In the high population scenario, the

population in 2030 is 6 percent higher than in the medium population growth scenario,

while productivity growth in agriculture and non-agriculture follow the medium scenarios.

In the low population scenario, the population in 2030 is 6 percent lower than the medium

population growth scenario, while growth in agricultural and non-agricultural productivity

follows the medium scenario. A high productivity in agriculture scenario is one where total

factor productivity (TFP) in agriculture in 2030 is 16.7 percent higher than in the medium

agriculture productivity growth scenario, while non-agriculture TFP and population follow

the medium scenario. A low productivity in agriculture scenario is one where TFP in

agriculture in 2030 is 14.4 percent lower than in the medium productivity growth scenario,

while growth in non-agriculture TFP and population follows the medium growth scenario.

A high productivity in non-agriculture scenario is one where TFP in non-agriculture in 2030

is 36% higher than in the medium productivity growth scenario and growth in agriculture

TFP and population follow the medium scenario. A low productivity in non-agriculture

scenario is one where TFP in non-agriculture in 2030 is 26.8% lower than in the medium

productivity growth scenario and growth in agriculture TFP and population follow the

medium scenario. We summarize these scenarios in Table (4.7).

In the analysis changes in climate and pollution are introduced by changing total

factor productivity (θF ) in the agricultural sector. According to the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change (IPCC), the projected change

in global mean surface air temperature for the period 2016—2035 (relative to 1986—2005)

is likely to be in the range 0.3—0.7◦C (medium confidence) (See [IPCC, 2013]). The mean
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Table 4.7: Summarizing 7 Scenarios for 2030

Scenarios (2030) Region N I θIF θIT
Medium or Baseline India Medium Medium Medium
High population India High Medium Medium
Low population India Low Medium Medium

High productivity in agriculture India Medium High Medium
Low productivity in agriculture India Medium Low Medium

High productivity in non-agriculture India Medium Medium High
Low productivity in non-agriculture India Medium Medium Low

Note: In the all above scenarios it is assumed that NR, θRF and θRT in the rest of the world grow at the

medium rate.

surface temperature increase in South Asia is likely be in the range of 1◦C to 1.5◦C (medium

confidence) . Based on the existing literature on climate change impacts discussed in the

introduction, we derive scenarios for India and the rest of the world by adding the estimated

impacts of warming, CO2 fertilization, and ozone, on crop yields. Table (4.8) shows climate

impacts in moderate and severe scenarios drawn from the literature. A moderate scenario

corresponds to a one-degree increase in temperature and a severe scenario corresponds to a

2-degree increase in temperature.

A moderate scenario of a 7% fall in θF is obtained by adding a 5.5 percent fall

in yields due to 1 0C temperature rise (as estimated by [Lobell et al., 2011] in Fig s7) and

a 5 percent fall in yields due to an increase in ozone pollution in the next two decades

(which is esimated by taking average of mid range loss estimates given in two studies -

[Van Dingenen et al., 2009] and [Avnery et al., 2011] ) to a 3.6 percent positive effect of

CO2 fertilization expected in the next two decades (1.8 percent per decade as given in

[Lobell & Gourdji, 2012]). Similarly, we obtain a severe scenario of a 13% decline in agri-
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Table 4.8: Climate Impacts in Moderate and Severe Scenarios, 2009-2030

Parameter India (% change) Rest of the World (% change)

M S Source M S Source

Global** -5.5 -11 [Lobell et al., 2011] -3 -6 [Lobell et al., 2011]
Warming
CO2 +3.6 +3.6 [Lobell & Gourdji, 2012] +3.6 +3.6 [Lobell & Gourdji, 2012]
fertilization
Ozone** -5 -6 [Van Dingenen et al., 2009] -2.2 -3.37 [Van Dingenen et al., 2009]

[Avnery et al., 2011] [Avnery et al., 2011]
Total* -7 -13 -2 6

Note: M-Moderate scenario S-Severe scenario.

*The total impacts are rounded to the nearest integer value. ** For India we have taken weighted average

of loss estimates for 2 major crops-wheat (with share 43%) and rice (with share 57%). For ROW we have

taken weighted average of loss estimates for 3 major crops—wheat (with share 47%), maize (with

share12.6%) and rice (with share 40%).
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cultural productivity in India by adding 11% fall in yields due to 2 0C temperature rise

(obtained by doubling the 5.5% impact in moderate scenario of 1 0C increase in temper-

ature) and a 6 percent fall in yields due to an increase in ozone pollution in the next two

decades (which is esimated by taking average of higher end loss estimates given in two stud-

ies -[Van Dingenen et al., 2009] and [Avnery et al., 2011] ) to a 3.6 percent positive effect of

CO2 fertilization. A moderate scenario of a 2% fall in agricultural productivity for the rest

of the world is obtained by adding 3% fall in yields (estimated based on past 3 decades crop

losses estimated during 1980-2008) and a 2.2 percent fall in yields due to an increase in ozone

pollution in the next two decades (which is esimated by taking average of mid range loss

estimates given in two studies -[Van Dingenen et al., 2009] and [Avnery et al., 2011] ) to a

3.6 percent positive effect of CO2 fertilization. A severe scenario of 6% fall in agricultural

productivity in the rest of the world is obtained by adding 6% fall in yields (doubling the

impact estimated in moderate scenario) and a 3.37 percent fall in yields due to an increase

in ozone pollution in the next two decades (which is esimated by taking average of high end

loss estimates given in two studies -[Van Dingenen et al., 2009] and [Avnery et al., 2011]

) to a 3.6 percent positive effect of CO2 fertilization. We impose these scenarios on the

economy when it is closed to trade and when it is open to trade.

The effect of climate change can also be described in terms of a reduction in the

growth rate of θIF and θ
R
F over 2009-2030. In the medium scenario, θIF and θ

R
F growth is

reduced by 0.36 % p.a and 0.1% p.a in the moderate scenario respectively and 0.67% p.a

and 0.3% p.a in the severe scenario respectively.
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4.6.1 Closed Economy

The second and third columns of Table (4.9) show values of important variables

obtained in general equilibrium in 2030 under the medium scenario with no climate change.

Food prices are about 43% higher than in 200910. The landless poor are about 75% richer.

In the richer economy, as expected the share of the food sector falls to 46.4% in 2030 from

52% in 2009. About 28.5% of the total workforce is employed in the food sector. The

annual wage rate or θT is Rs 56340 and rent per hectare is Rs 58206. Wage rate per adult

equivalent or the income of the landless is Rs 27600. The food share of the landless falls to

53.5% from 62.5% in 2009.

Figure (4.6) shows results for the medium growth scenario. In the 2030 baseline

economy the share of subsistence food consumption in total food consumption
(
f N

Y
F

)
is

lower than in 2009. So the elasticity of the food price with respect to θF is lower. However,

the impact of climate change is still quite high. Even the moderate decline of 7% in θF

increases food prices by almost 10.8% while this is 22% in case of a severe decline in θF

of 13%. In this scenario, the landless poor are 75% richer and the equivalent variation as

percentage of income is -5.6% when θF falls by 7% and is -11% when θF falls by 13%.

Figure(4.7) shows the income of the landless poor in seven different socio-economic

development scenarios for 2030 economy discussed above at 2009 prices. Thus the 2030

income in 2009 prices is obtained by adding the 2009 income and the equivalent variation

10[Headey, 2014] finds that there is a long-run correlation between higher food prices and lower poverty.
Our model suggests that the causality that [Headey, 2014] assumes is wrong. The conclusion of our model
is that reduced poverty comes from higher productivity growth. If there is greater productivity growth in
the non-food sector than in the food sector, then food prices rise. But, higher food prices do not cause
lower poverty. If higher food prices result from lower productivity in agriculture, for example, from climate
change, then they are associated with increased poverty.
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Figure 4.6: Impact of Climate Change and Pollution from 2009-2030 on Welfare in Closed
and Open Economies

Note: Moderate scenario of 7% fall in θIF and 2% fall in θRF : Growth rate of agricultural productivity

(θIF ) in India declines by .36% p.a and in ROW (θRF ) declines by .1 p.a relative to no climate change

medium growth scenario in 2030.

Severe scenario of 13% fall in (θIF ) and 6% fall in (θRF ): Growth rate of agricultural productivity (θ
I
F ) in

India declines by .67% p.a and in ROW (θRF ) by .3% p.a relative to no climate change medium growth

scenario in 2030.
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Table 4.9: General Equilibrium in Baseline Cosed and Open Economies (2030)

Closed Economy Open Economy
Variable Value Change over Value Change over

2030 2009 baseline (%) 2030 2009 baseline (%)

Food Demand (1012 kcal) 1231 41.5 1398.5 55
Food Demand (kcal) 2741 12.5 3114.5 23
adult equivalent/day
Non-Food Demand ( 1012 Rs) 24.3 153 23.1 145.7
labor in Food sector (106) 172 8 89.2 -26.8
labor in Non-Food (106) 431 34.7 513.5 44
Food Price (Rs/kcal) 0.017 42.9 0.0119 15.4
Annual Wage Rate (Rs) 56340 87.5 56340 87.5
Rent per hectare (Rs) 58206 102 30254 36.4
Food sector share (%) 46.4 -15.6 27.4 -36.4
Food share of landless(%) 53.5 -14.4 45 -21.7
Nominal income of the landless (Rs) 27600 87.5 27600 87.5
Real income of the landless 25781 75 26236 78
in 2009 prices (Rs)
Food imports as % of food demand - - 35 143
Non-Food exports as % of Non-food output - - 20.2 60.3

of the change from 2009 to 2030. In each scenario, the length of the bar denotes the income

of the landless poor without the climate change. The first break from the right in the bar

shows what the income would be if there is moderate climate change ( 7% fall in θF ) and

the second break from the right shows what income would be if there is a severe climate

change ( 13% fall in θF ).

In 2030, the landless poor are better off than in 2009 in all scenarios even with

severe climate change. Income of the poor differs in all these seven socio-economic devel-

opment scenarios in 2030. It is highest in the high non-agricultural productivity scenario,

followed by high agricultural productivity scenario. In both these scenarios the income of

the poor with moderate climate change is higher as compared to baseline 2030 (medium

growth for all variables) without climate change. Income of the poor is lowest in the low
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Figure 4.7: Real Income of the Landless under Different Growth Paths in Closed and Open
Economies

Note: Moderate scenario of 7% fall in θIF and 2% fall in θRF : Growth rate of agricultural productivity

(θIF ) in India declines by .36% p.a and in ROW (θRF ) declines by .1 p.a relative to no climate change

medium growth scenario in 2030.

Severe scenario of 13% fall in (θIF ) and 6% fall in (θRF ): Growth rate of agricultural productivity (θ
I
F ) in

India declines by .67% p.a and in ROW (θRF ) by .3% p.a relative to no climate change medium growth

scenario in 2030.
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agricultural productivity scenario, followed by low non-agricultural productivity scenario.

In both these scenarios income of the poor even without climate change is lower as compared

to baseline 2030 with moderate climate change. The severe climate change in baseline 2030

is nearly similar to being at the lower end of agricultural productivity or non-agricultural

productivity. The implication is that plausible variation in productivity growth in both

agriculture and non-agriculture can affect the welfare of the poor by as much or more than

the mitigation of climate change.

Another way to understand the relative importance of factors that determine the

welfare of the poor is to derive the percentage change in the income of the poor in 2030 in

each of the scenarios over the baseline medium growth scenario as a result of a one percent

increase in agricultural productivity over the baseline medium growth scenario, one percent

increase in non-agricultural productivity over the baseline medium growth scenario and one

percent reduction in the population over the baseline medium growth scenario. We find

that a one percent increase in agricultural productivity is likely to increase the real income

of the poor by .82 percent. On the other hand a one percent increase in productivity in

the non-agriculture will increase income of the poor by .51 percent and one percent lower

population is expected to increase the real income of the poor by about .45 percent. When

India is closed to trade, agricultural productivity growth increases the welfare of the poor

more than non-agricultural sector growth or controlling population.

Open economy

The last two columns of Table (4.9) show values of important variables obtained in

general equilibrium in 2030 in the medium scenario in the open economy case. We assume
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that the rest of the world would be growing at the medium rate of 1.84 % (θRF ), 2.2 percent

(θRT ) and .94 percent (N). In the richer economy, since agricultural productivity is projected

to grow faster and non-agricultural productivity slower in the rest of the world than in India,

the share of the food sector in india falls considerably to 27.4 percent in 2030 from 43.1

percent in 2009. The world equilibrium price of food increases by about 20 percent from

.01 in 2009 Rs to .012 in 2030. About 14.8 percent of the total workforce is employed in

the food sector. The annual wage rate or θT is about 56000 Rs (87% higher than in 2009)

and rent per hectare is 30000 Rs. Wage rate per adult equivalent in the economy or model

income for the landless poor is about 27600 Rs. The food share of the landless poor falls

to 45 percent from 57.5 percent in the open economy of 2009.

Figure(4.6) shows the impacts of moderate and severe climate change on the 2030

baseline open economy, i.e. assuming medium growth scenario. The moderate decline in θF

increases food prices by 3.6% and by 10% with severe decline in θF . The price increase with

the moderate decline in θF is consistent with previous projections by [Hertel et al., 2010]

that predicted 3.6 % increase in the world average price for all cereals in the most likely

scenario of climate change. For a landless person, the equivalent variation as a percentage

of income is -1.6% in the moderate decline in θF and -4.4% in the severe decline in θF .

As in the closed economy case, we have considered the same seven socio-economic

development scenarios in this open economy as discussed above. Figure(4.7) compares the

income of the landless poor in these scenarios. Clearly, in contrast to the closed economy

the moderate climate change results in only a small decline in the income of the poor in

all the scenarios. Income of the poor is highest in the high non-agricultural productivity
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scenario and even with the severe climate change, income in this scenario is higher than the

income in the baseline 2030 without climate change. Similarly, the income of the poor is

lowest in the low non-agricultural productivity scenario and even without climate change

income in this scenario is much lower compared to the baseline 2030 income with severe

climate change. The implication is that plausible changes in productivity growth in the

non-agriculture sector will have a much larger impact on the welfare of the poor than the

mitigation of climate change. Thus, the effect of the improvement in the non-agricultural

productivity on the welfare of the poor stands out. On the other hand, improving agriculture

productivity does not make much difference to the income of the poor because India is a

food importer.

A 1% increase in agricultural productivity over the baseline medium growth sce-

nario increases income of the poor by only .076% over the baseline medium growth scenario.

But, a 1% increase in productivity in non-agriculture increases income of the poor by .96%.

In 2030, India will account for only 18% of the total global food supply and import 35%

of its food. Higher agricultural productivity impacts the poor by reducing food prices and

thereby increasing the real income of the poor. However, food prices fall by only a small

amount and improves the welfare of the landless only marginally. On the other hand, higher

non-agricultural productivity increases the real income of the poor by increasing wages di-

rectly and thus have a much bigger impact. A 1% lower population increases the income

of the poor by only .06%. Lower population impacts the poor indirectly by lowering food

prices and thus has a much lower impact as in the case of agricultural productivity. If India

can import its food without frictions from the rest of the world, improving non-agricultural



130

productivity is likely to increase income and welfare of the poor much more than improv-

ing agricultural productivity to reduce climate change impacts or spending resources in

controlling population.

4.7 Conclusion

Some of the key results of the study are as follows. First , the buffering effect

of international trade on the welfare of the poor can be very important. In the closed

economy case, the landless poor are significantly worse offwith climate change as prices rise

considerably. In the open economy case, the landless poor are better off because the price

increase is moderated by trade. It really matters to the poor what happens in the rest of

the world. If climate change results in a large decline in agricultural productivity in the

the rest of the world as well, then food prices rise significantly in the open economy and

affect the welfare of the poor negatively. Second, in the richer economy of 2030 the welfare

impacts of climate change are less severe. Thus, climate is only one of the many factors

that will shape food security and welfare of the poor in future.

The combination of trade and economic growth can buffer the poor against climate

change. In the richer closed economy, improving the productivity of the agricultural sector

has the greatest impact on the welfare of the poor. In contrast, in the richer open economy,

the non-agricultural sector plays a bigger role in driving the welfare of the poor. The

implication is that changes in productivity growth in the non-agricultural sector will have a

much larger impact on the welfare of the poor than mitigation of climate change (unless there

are impacts unforseen in this study). By importing food and exporting non-agricultural
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good, in which it has relative comparative advantage, the poor can be better off.

It should be stressed that these results are the outcomes that would obtain without

frictions. For instance, we assume that all foods are perfect substitutes, labor is perfectly

mobile between sectors and that there are no barriers to trade. Frictions would possibly

exacerbate the climate change impacts. For instance, the above analysis is carried out

under the crucial assumption that there are no human capital barriers and there is a free

movement of labor between agriculture and non-agriculture. Between 2009 and 2030 if labor

cannot move out from the agriculture to the non-agriculture sector welfare implications for

the poor will be much more severe. Non-agricultural growth and trade will be of much less

help to the poor if the mobility of labor from agriculture to non-agriculture is constrained

by a lack of education or other barriers. [Eswaran et al., 2009] find that despite the rapid

growth of the non-farm sector, its success in drawing labor from the agriculture has been

limited. They provide some evidence to suggest that lack of human capital has hindered

the movement of labor to non-agriculture.

We have also assumed that the productivity change due to climate change is Hicks

neutral and affects the marginal product of both labor and land in the same way. If we

assume that the climate change will affect the marginal product of land more than labor,

then this could require a larger sectoral shift of labor from the non-agricultural sector to the

agricultural sector, and a greater increase in the food prices, and thus worsen the condition

of the poor.

More research is needed in future to study the welfare implications for the poor

when the assumptions in the above analysis fail to hold. This is beyond the scope of this
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paper but is an important issue of future research. While the quantitative investigation is

geared to throw light on this issue for India, we expect the methodology of this research

can be applied to other developing countries as well.

4.8 Appendix A: Open economy case

We assume that the factor markets clear locally and the goods market clear inter-

nationally. The total food production is given as YF = Y I
F
+ Y R

F
.

Here,

Y I
F
= θI

F
AIF

(
LIF
AIF

)α
for I and

Y R
F
= θR

F
ARF

(
LRF
ARF

)β
for R.

Similarly, the total non-food production is given as YT = Y I
T +Y

R
T . Here Y I

T = θI
T

LIT for I and Y R
T
= θR

T
LRT for R. Factor market clearing conditions for land and labour for

I are N I
l = LIF +L

I
T and A

I = AIF . Similarly for R we have N
R
l = LRF +L

R
T and A

R = ARF .

We denote the wage rate by W I in I , wI per capita wage in I , wR per capita wage in R

and by WR in R. We denote per unit land rent by rI in I and by rR in R.

On consumption side, as previously we have

U I
i
= (f I

i
− f)ρ(tI

i
− t)1−ρ
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for I and

UR
i
= (fR

i
− f)ρ(tR

i
− t)1−ρ

for R. Individuals in both regions maximize utility subject to their respective income

constraints M I
i
= wI + rIai for I and M

R
i
= wR + rRai for R. As in the previous section

we can derive total demands of F and T in both the economies in the following way:

F Id = fN I +
ρ

P
(wIN I

l + rA
I − PfN I − tN I)

FRd = fNR +
ρ

P
(wRNR

l + rA
R − PfNR − tNR)

Global food demand is obtained as Fd = F Id + F
R
d

Similarly, for non-food we have

T Id = tN I + (1− ρ)(wIN I
l + r

IAI − PfN I − tN I)

TRd = tNR + (1− ρ)(wRNR
l + r

RAR − PfNR − tNR)

Global non-food demand is obtained as Td = T Id + T
R
d

As in the closed economy case, we obtain optimal labour, rent and output supply

from marginal conditions in both sectors of the respective economies.

In general equilibrium, all four markets clear.Land: AI = AIF ;A
R = ARF ;Labour:

N I
l = LIF + L

I
T ;N

R
l = LRF + L

R
T ;Food: Fd = F Id + F

R
d = YF = Y R

F
+ Y I

F

Textile: Td = T Id + T
R
d = YT = Y R

T
+ Y I

T
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As shown previously general equilibrium can be obtained with textile market equi-

librium condition as follows: Td = T Id + T
R
d = YT = Y R

T
+ Y I

T

(
θI

α
α−1

T

(
1− α
α

)
Pθ

I 1
1−α

F α
1

1−α

)
AI − PfN I +

(
θR

β
β−1

T

(
1− β
β

)
Pθ

R 1
1−β

F β
1

1−β

)
AR − PfNR

+
1

(1− ρ)A
I

(
θI
T

αPθI
F

) 1
α−1

+
1

(1− ρ)A
R

(
θR
T

βPθR
F

) 1
β−1

=
ρθI

T
N I + ρθR

T
NR − ρt N I − ρt NR

(1− ρ)

From the above equation we determine equilibrium international price of food P.
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