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Chapter 1

Introduction

This thesis consists of three chapters that aim to characterize incentive compatible mecha-

nisms in specific mechanism design settings. In these settings, the designer is allowed to use

payments but the net utility of every agent is linear in payments. This particular assumption

on net utility is called quasi-linearity. Each of the three chapters in the thesis identifies a

class of mechanisms and characterizes them (in quasilinear private value environment) using

dominant strategy incentive compatibility and some additional reasonable conditions.

In quasi-linear environment, a mechanism can be decomposed into an allocation rule

and a payment rule for every agent. If a mechanism is dominant strategy incentive com-

patible, then we say that the corresponding allocation rule is implementable. The classic

Vickrey-Clarke-Groves (Vickrey, 1961; Clarke, 1971; Groves, 1973) mechanisms implement

the efficient allocation rule by using Groves payments. Under reasonable conditions, these

are the only payment rules that implement the efficient allocation rule (Holmstrom, 1979).

This feature generalizes to any implementable allocation rule, and is known as the revenue

equivalence principle. As a consequence of the revenue equivalence, the characterization

of the class of incentive compatible mechanism can be done in two steps: (a) characterize

the implementable allocation rules (b) for each implementable allocation rule, identify one

payment rule that implements it. We follow this prescription in all three chapters.

The characterization of implementable allocation rules will depend, among other things,

on the type space considered in the problem. The type space that we consider in all these

three chapters is one dimensional (a connected subset of R++). This makes the characteriza-

tion harder since the type space is restricted. If the type space was unrestricted, then Roberts

(1979) has shown that under mild additional condition only affine maximizer allocation rules

are implementable. Affine maximizers are linear generalization of efficient allocation rule.

In one dimensional type spaces that we consider, we identify a significantly larger class of

implementable allocation rules and characterize them.

The first chapter considers the standard single object auction model in private values

setting. It identifies the class of allocation rules that is called strongly rationalizable alloca-

tion rules. These are the only rules that are implementable and satisfy a condition known
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as non-bossiness (Satterthwaite and Sonnenschein, 1981). Non-bossiness requires that if an

agent changes his type such that his own allocation does not change, then the allocation of

other agents must not change. Under additional technical condition, this characterization

can be sharpened. In particular, we identify a class of allocation rules called simple utility

maximizers and show that each strongly rationalizable allocation rule is equivalent to a sim-

ple utility maximizer under a technical condition. The advantage of this characterization is

that simple utility maximizer is easier to use and interpret than the strongly rationalizable

allocation rule. They are also a natural extension of Roberts’ affine maximizer rules.

The second chapter considers an abstract model where the set of alternatives exhibits

certain discrete structural properties. In particular, we assume that alternatives are bases of

a matroid. Each agent owns an element of the ground set of the matroid. The advantage of

this model is that it covers many practical models as special cases. We show that this model

covers the single object auction problem, multi-unit auction model with unit demand, the

heterogeneous good auction with dichotomous preferences and a connected graph model. Our

main result in this chapter is the complete characterization of implementable allocation rules

for the general matroid model. In particular, we identify a class of implementable allocation

rules called the generalized utility maximizers and show them to be the only implementable

allocation rules. We also discuss implications of anonymity and non-bossiness in some of

these models.

The third chapter deals with the single object auction with externalities. It models

externalities in a specific way. Each agent’s type is his valuation for the object. Further, it

also identifies his valuation when another agent gets the object by assuming a specific nature

of externality. In this problem, we identify a property of the allocation rule that we call

the interval property and show that it is necessary and sufficient for implementability. The

interval property can be thought as a generalization of the monotonicity condition identified

in Myerson (1981) to our model. Using this characterization, we find the revenue maximizing

auction for this model. We also discuss a multi-dimensional model of externalities in this

chapter and discuss the challenges one faces while extending our result to this setting.

We discuss briefly each chapter below.

1.1 Non-bossy Single Object Auctions

In this chapter, we study single object auctions in the private values model and restrict

attention to deterministic single object auctions. We try to identify a set of implementable

allocation rules. In fact, in theory as well as in practice, we know only a very few imple-

mentable allocation rules. For instance efficient allocation rule in the single object auction

private values model is implementable by the Vickrey auction and constraint efficient with

reserve price is implementable by Myerson’s revenue maximizing auction in the independent

private values model etc.

Therefore, it is important to understand how these allocation rules distinguish themselves
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from the remaining implementable allocation rules. A primary motivation of this chapter is

to carry out a systematic analysis of this question axiomatically.

Every auction that we observe generally involves in some form of maximization and are

deterministic dominant strategy incentive compatible. If ties in these maximizations are

broken carefully, then the allocations in these auctions also satisfy an appealing property-

non-bossiness. Non-bossiness is the following requirement. Suppose agent i is not winning

the object at a particular valuation profile (vi, v−i) and we go to another valuation profile

(v′i, v−i) where the valuation of agent i changes, such that agent i still does not win the

object. Then, the agent who is winning the object at valuation profile (vi, v−i) continues to

win the object at (v′i, v−i). In other words, if an agent cannot change his own outcome, then

he cannot change the outcome of any other agent.

We give a complete characterization of implementable and non-bossy allocation rules.

For this characterization, we introduce a novel idea of rationalizability in the single object

allocation model and, use it to define a class of implementable allocation rules that we

call the strongly rationalizable allocation rules. Our result says that an allocation rule is

implementable and non-bossy if and only if it is strongly rationalizable allocation rule.

We further sharpen our characterization by imposing a mild condition of continuity on

allocation rules. We define a notion of a simple utility function for every agent, that is a

non-decreasing function that maps all the possible valuation of an agent to a real number.

Using these simple utility function, we introduce a new class of implementable allocation

rules, which we call simple utility maximizer. A simple utility maximizer is an allocation

rule that chooses a simple utility function for every agent. Then, at every valuation profile

(a) it does not allocate the object if every agent has negative simple utility function and (b)

if at least one agent has positive simple utility, then it allocates the object to the agent who

has the highest simple utility. Our result shows that if an allocation rule satisfies a mild

continuity condition, then it is implementable and non-bossy if and only if it is a simple

utility maximizer allocation rule (with a suitable tie-breaking rule).

Simple utility maximizer includes all the commonly used allocation rules in single object

auctions like efficient allocation rule, efficient allocation rule with reserve price and the

optimal auction rule in Myerson (1981). Hence, our characterization provides an axiomatic

foundation to a very rich class of implementable allocation rules. Since we have characterized

the implementable and non-bossy allocation rules, using revenue equivalence principle we can

pin down all the payments that implement these allocation rules. Thus, we get a complete

characterization of mechanisms that use non-bossy allocation rule.

We also extend our idea of simple utility function to a more general utility function that

maps all the possible type space of all agent to a real number. We define a larger class of

implementable allocation rule than simple utility maximizer, that we call generalized utility

maximizer. We show that implementability is equivalent to generalized utility maximizer

for single object auction model. Generalized utility maximizers are more complex allocation

rules. This shows how a natural condition like non-bossiness helps to have a more simple
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allocation rules.

1.2 Mechanism Design In Single Dimensional Type Spaces

In this chapter, we study a mechanism design problem over a connected graph in quasi-linear

and private value environment. This problem on connected graph captures many practical

situations like mobile network or procurement auction. The planner wants to use a subset

of edges.

We assume that an edge is privately held by a single agent, who incurs some cost when

his edge is used. The costs are private information of agents. The mechanism designer wants

to design a mechanism. Our objective is to characterize the set of all dominant strategy

incentive compatible mechanisms for this problem. We identify a rich set of implementable

allocation rules like the last result for the single object auction model in the previous chapter.

We call them generalized utility maximizers. We also show that there exist payment rules

such that generalized utility maximizers and the corresponding payment rules are dominant

strategy incentive compatible.

A generalized utility maximizer assigns a map, which we call generalized utility function

(GUF), to every agent. A GUF assigns a real number, which we call generalized utility,

to every profile of types. A generalized maximizer chooses a subset of edges at every type

profile such that (a) all the nodes are connected and (b) the sum of generalized utilities of

agents is maximized.

In fact, we extend the characterization of this model to a model where the planner is

choosing a base of a matroid and the matroid is defined by the set of agents as ground set

and the family of subsets of agents being independent set. This model allows us to capture the

connected graph model and many well-studied models in the literature, including multi-unit

auction model, heterogeneous good auction model with dichotomous preferences. Thus, we

characterize the dominant strategy incentive compatible mechanisms for a family of problems

where the type of an agent is a single number (i.e, type is one dimensional) and the set of

alternatives exhibits certain structure.

We consider two more plausible conditions, a suitable version of anonymity and non-

bossiness on top of incentive compatibility and sharpen our characterization. We show that

only dominant strategy incentive compatible mechanisms are the Groves mechanism, i.e, uses

efficient allocation rules. We have established this result for the connected graph model. But

it can be easily extended to the matroid model. Thus, it extends and unifies the similar results

that have been proved in specific models.
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1.3 Single Object Auctions With Externalities: A Tractable

Model

In this chapter, we study a single object auction model with externalities. We know that in

many situations, individuals enjoy some utility even if they do not own a particular object.

In auctioning of many objects like patents and paintings, although a bidder does not win the

object, he may still enjoy some utility.

We restrict attention to deterministic single object auction. We identify a necessary

and sufficient condition for implementable allocation rules in our model. Using revenue

equivalence, we characterize all the dominant strategy incentive compatible mechanisms.

Then, we design a revenue maximizing auction (optimal auction) for our model. The unique

feature of this model is that every agent makes some payment irrespective of whether he is

getting the object or not.

The innovative feature of this paper lies in the way we model externalities. Imagine

a situation where there are certain features of every agent known to everyone that allows

one to infer how he will use the object. For instance, in case of patents, a company’s

past use of patents may reflect how he will use any patent in the market. Such features

directly influence the utility other agents will have from him owning the object. We model

this aspect by assuming that each agent has a a strict ranking over the set of all agents

(including himself) and the seller, where he keeps himself at the top and the seller at the

bottom of the ranking. A commonly known real number is assigned to each position, with

the top position getting 1, the bottom position getting zero, and each intermediate position

getting a number strictly between 0 and 1 with the numbers decreasing with position. The

utility for an agent when an agent gets the object or the seller keeps the object is a product

of his own valuation and the real number associated with the position of the winning agent

in his ranking. For instance, if agent i ranks agent j at the third position, then the utility

of agent i when agent j wins the object is α3vi, where vi is the valuation of agent i for the

object and α3 ∈ (0, 1) is the third position-specific number.

We identify a condition on the allocation rule, which we call the interval property, that

is necessary and sufficient for implementability of the allocation rule. The interval property

requires the following requirement: considering an arbitrary agent i and fixing the valuation

of other agents, if agent j wins the object at vi and agent k wins the object at v′i, where

v′i > vi, then agent k is higher than agent j in the ranking of agent i.

This interval property allows us to pin down one payment rule that implements an imple-

mentable allocation rule. Using revenue equivalence, we can then pin down the entire class

of payment rules that can implement an implementable allocation rule. These ideas are then

used to derive a revenue maximizing auction for this model using Myersonian techniques.
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Chapter 2

Non-bossy Single Object Auctions

2.1 Introduction

We study single object auctions in the private values model. We restrict attention to deter-

ministic single object auctions, i.e., auctions where the probability of allocating the object to

any agent is either zero or one.1 An allocation rule for single object auction is implementable

if we can find payments such that truth-telling is a dominant strategy for every agent. A

central result in mechanism design is that the efficient allocation rule in the single object

auction private values model is implementable using the Vickrey auction (Vickrey, 1961;

Clarke, 1971; Groves, 1973). On the other hand, a revenue maximizing auction in the inde-

pendent private values model maximizes the virtual valuations of the agents (Myerson, 1981).

English auction with a reserve price is popular in practice (seen on EBay and other Internet

sites) and in theory, for instance, in designing approximately optimal auctions (Hartline and

Roughgarden, 2009; Dhangwatnotai et al., 2010). Such an auction implements a constrained

efficient allocation rule with a reserve price - it does not allocate the object if the valuation

of each bidder is less than the reserve price, but when it allocates the object it does so to

the highest bidder.

While the set of implementable allocation rules is quite rich, we encounter only these

particular simple class of implementable allocation rules in theory and practice. Hence,

it is important to understand how these allocation rules distinguish themselves from the

remaining implementable allocation rules. A primary motivation of this paper is to carry

out a systematic analysis of this question axiomatically.

Common features of all these auctions are that the allocation rules are deterministic,

dominant strategy implementable, and involve maximization of some form. If ties in these

maximizations are broken carefully, then the allocation rules mentioned above satisfy another

appealing property - non-bossiness. Non-bossiness is the following requirement. Suppose

agent i is not winning the object at a particular valuation profile (vi, v−i) and we go to

another valuation profile (v′i, v−i), where the valuation of only agent i changes, such that

1A shorter version of this chapter has been published.

7



agent i still does not win the object. Then, the agent who was winning the object at the

valuation profile (vi, v−i) continues to win the object at (v′i, v−i). In other words, if an agent

cannot change his own outcome, then it cannot change the outcome of any other agent. 2

We provide a complete characterization of implementable and non-bossy allocation rules.

For this characterization, we introduce a novel notion of rationalizability in the single object

allocation model, and use it to define a class of allocation rules that we call the strongly ratio-

nalizable allocation rules. Our characterization says that an allocation rule is implementable

and non-bossy if and only if it is a strongly rationalizable allocation rule.

Under a mild continuity condition, we sharpen our characterization. We define the notion

of a simple utility function, which is any non-decreasing function that maps the set of possible

valuations of an agent to the set of real numbers. A simple utility maximizer is an allocation

rule that chooses a simple utility function for every agent. Then, at every valuation profile

(a) it does not allocate the object if every agent has negative simple utility and (b) if at least

one agent has positive simple utility, then it allocates the object to an agent with the highest

simple utility. We show that if an allocation rule satisfies a mild continuity condition, then

it is implementable and non-bossy if and only if it is a simple utility maximizer allocation

rule (supplemented with an appropriate tie-breaking rule).

All the commonly used allocation rules in single object auctions (e.g., efficient allocation

rule, efficient allocation rule with a reserve price, the optimal auction allocation rule in My-

erson (1981)) are simple utility maximizer allocation rules. Hence, our results provide an

axiomatic foundation for a rich class of commonly used allocation rules. Although we char-

acterize implementable and non-bossy allocation rules, using revenue equivalence (Myerson,

1981), we can pin down the payments that will implement these allocation rules. Thus, we

get a complete characterization of “mechanisms” that use non-bossy allocation rules.

Our characterizations have a common feature - implementability and non-bossiness is

equivalent to some form of maximization by the seller at every valuation profile. These results

relate to two fundamental results in mechanism design and auction theory. A benchmark

result in private value mechanism design in quasi-linear environments is the Roberts’ affine

maximizer theorem (Roberts, 1979). It considers general multidimensional type spaces with

finite set of alternatives. A type of an agent in such models is a vector in R|A|, where A is

the set of alternatives. Roberts (1979) showed that if there are at least three alternatives

and the type space is unrestricted (i.e., R|A|), then every onto implementable allocation rule

is an affine maximizer. It can be shown that every affine maximizer is implementable. 3 An

2The use of non-bossiness axiom in social choice theory with private good allocations, specially matching

problems, is extensive - it was first used by Satterthwaite and Sonnenschein (1981), and subsequently in

matching problems (Svensson, 1999; Papai, 2000; Ehlers, 2002; Hatfield, 2009) and cost sharing problem

(Mutuswami, 2005).
3 Carbajal et al. (2013) show that if there are at least three alternatives and the type space of every

agent is unrestricted, then an onto allocation rule is implementable if and only if it is a lexicographic affine

maximizer. Lexicographic affine maximizers contain a particular class of affine maximizers where ties are

broken carefully.
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affine maximizer can be thought to be a linear simple utility function. The single object

auction model has a restricted type space. As a result, Roberts’ result does not apply. Our

characterizations can be thought as extension of Roberts’ affine maximizer result to the single

object auction model.

Further, in a seminal result, Border (1991) showed that the interim allocation probability

obtained by every Bayesian and randomized allocation rule can be obtained by taking con-

vex combination of certain dominant strategy implementable allocation rules that he called

hierarchical allocation rules - see also Manelli and Vincent (2010); Deb and Pai (2013). As

we discuss later, a hierarchical allocation rule can be written as a convex combination of

simple utility maximizer allocation rules that we identify (which are deterministic, dominant

strategy implementable, and non-bossy allocation rules). Hence, the set of dominant strat-

egy implementable and non-bossy deterministic allocation rules occupy a pivotal role in the

set of all randomized and Bayesian implementable allocation rules.

Finally, we extend our idea of simple utility maximizer allocation rule to define an even

larger class of allocation rules that we call generalized utility maximizer allocation rules.

We show that implementability is equivalent to these allocation rules. While this result is

also in the spirit of Roberts’ affine maximizer theorem, the proof is a simple consequence of

Myerson’s monotonicity characterization of implementable allocation rule, which we discuss

below. Generalized utility maximizers are more complex allocation rules than simple utility

maximizers. This shows how a natural condition like non-bossiness helps us to separate

complex auction rules from simple and commonly used auction rules.

2.1.1 Relationship with Literature

Myerson (1981) shows that implementability is equivalent to a monotonicity property of the

allocation rules. 4 The monotonicity property is equivalent to requiring that for every agent

i and for every valuation profile of other agents, there is a cutoff valuation of agent i below

which he does not get the object and above which he gets the object. 5

The relationship between our results and the monotonicity characterization can be best

illustrated by reference to parallel results in the strategic voting literature. Muller and

Satterthwaite (1977) show that Maskin monotonicity, the counterpart of monotonicity in the

strategic voting models, is necessary for dominant strategy implementation, and if the domain

is unrestricted then it is also sufficient. However, the seminal results of Gibbard (1973) and

Satterthwaite (1975) show that dictatorship is the only dominant strategy implementable

voting rule satisfying unanimity.

4 See also extensions of this characterization to the multidimensional private values models in Bikhchan-

dani et al. (2006); Saks and Yu (2005); Ashlagi et al. (2010); Cuff et al. (2012); Mishra and Roy (2013).
5The results in Myerson (1981) are more general. In particular, he considers implementation in Bayes-

Nash equilibrium and allows for randomization. But the expected revenue maximizing allocation rule he

identifies is a deterministic and dominant strategy implementable allocation rule.
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In the quasi-linear private values models, Roberts’ theorem can be thought of as the coun-

terpart of the Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975). After

the result of Gibbard (1973) and Satterthwaite (1975), a vast literature in social choice the-

ory has pursued the characterization of implementable allocation rules in restricted “voting”

domains, e.g., the median voting rule and its generalizations characterize implementable al-

location rules in single-peaked domains (Moulin, 1980; Barbera et al., 1993). Indeed, these

characterizations of implementable allocation rules are all in the spirit of Roberts’ theorem -

they describe the precise parameters that are required to design an implementable allocation

rule. In this spirit, our results give explicit characterization of implementable allocation rules

for the single object auction model.

There have been extensions of Roberts’ theorem to certain environments. For instance,

Mishra and Sen (2012) show that Roberts, theorem holds in certain bounded byt full dimen-

sional type spaces under an additional condition of neutrality along with implementability.

Their neutrality condition is vacuous in the single object auction model. Moreover, the type

space in the single object auction model is not full dimensional. Carbajal et al. (2013) extend

Roberts’ theorem to certain restricted type spaces which satisfy some technical conditions.

Though it covers many interesting models, including those with infinite set of alternatives,

the single object auction model does not satisfy their technical conditions. Marchant and

Mishra (2012) extend Roberts’ theorem to the case of two alternatives. Since the number of

alternatives in the single object auction model is more than two, their results do not hold in

our model.

Jehiel et al. (2008) show that a version of the Roberts’ theorem holds even in the in-

terdependent values model (they require implementation in ex-post equilibrium). They also

require the complete domain assumption like Roberts (1979), and remark that their result

does not hold in restricted one-dimensional settings like the single object auction.

Two related work in computer science literature deserve special mention. Lavi et al.

(2003) focus on a particular restricted domain, which they call order-based domains (this

includes some auction domains). Under various additional restrictions on the allocation rule

(which includes an independence condition), they show that every implementable allocation

rule must be an “almost” affine maximizer - roughly, almost affine maximizers are affine

maximizers for large enough values of types of agents.

Next, Archer and Tardos (2002) consider the single object auction model and show that

if the object is always allocated then the only implementable allocation rules satisfying non-

bossiness and three more additional conditions are min function allocation rules. 6 Min

function allocation rules are simple utility maximizer allocation rules, but with some ad-

ditional limiting and continuity properties. Though our characterization of simple utility

6Archer and Tardos (2002) consider a more general environment than ours in which a planner needs to

select a path in a graph, where each edge represents an agent. Informally, their three additional conditions

are various range and tie-breaking conditions, and called edge autonomy, path autonomy, and sensitivity.

The non-bossy condition is called independence by them.
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maximizer is related to their result, it has several important differences. First, their result

requires that we always sell the good. This rules out any allocation rule with a reserve price,

such as Myerson’s revenue maximizing allocation rule. Further, our proof shows that allow-

ing the object to be not sold adds several non-trivial complications in deriving our results.

Second, they seem to require different types of range and tie-breaking conditions than our

continuity requirement. On the other hand, our characterization of simple utility maximizer

makes it explicit the way ties need to be broken. Finally, they have no analogue of our other

characterizations.

There have been many simplifications of the original proof of Roberts (Jehiel et al., 2008;

Lavi, 2007; Dobzinski and Nisan, 2009; Vohra, 2011; Mishra and Sen, 2012). But none of

these proofs show how Roberts’ theorem can be extended to a restricted domain like the

single object auction model. Unlike most of the literature, our goal is not to characterize

“affine maximizers” - indeed, all our characterizations capture a larger class of implementable

allocation rules than affine maximizers.

An alternate approach is to characterize the set of dominant strategy mechanisms directly

by imposing conditions on mechanisms rather than just on allocation rules. A contribution

along this line is Ashlagi and Serizawa (2011). They show that any mechanism which always

allocates the object, satisfies individual rationality, non-negativity of payments, anonymity in

net utility, and dominant strategy incentive compatiblity must be the Vickrey auction. This

result is further strengthened by Mukherjee (2014), who shows that any strategy-proof and

anonymous (in net utility) mechanism which always allocates the object must use the efficient

allocation rule. Further, Sakai (2013) characterizes the Vickrey auction with a reserve price

using various axioms on the mechanism (this includes an axiom on the allocation rule which

requires a weak version of efficiency). By placing minimal axioms on allocation rules, we are

able to characterize a broader class of dominant strategy incentive compatible mechanisms

(using revenue equivalence) than these papers.

2.2 The Single Object Auction Model

A seller is selling an indivisible object to n potential agents (buyers). The set of agents

is denoted by N := {1, . . . , n}. The private value of agent i for the object is denoted by

vi ∈ R++. The set of all possible private values of agent i is Vi ⊆ R++ - note that we do

not allow zero valuations. We will use the usual notations v−i and V−i to denote a profile of

valuations without agent i and the set of all profiles of valuations without agent i respectively.

Let V := V1 × V2 × . . .× Vn.

The set of alternatives is denoted by A := {e0, e1, . . . , en}, where each ei is a vector

in Rn. In particular, e0 is the zero vector in Rn and ei is the unit vector in Rn with

i-th component 1 and all other components zero. The j-th component of the vector ei

will be denoted by eij. The alternative e0 is the alternative where the seller keeps the

object and for every i ∈ N , ei is the alternative where agent i gets the object. Notice
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that our model focuses on deterministic alternatives. Every agent i ∈ N gets zero value

from any alternative where he does not get the object. An allocation rule is a mapping

f : V → A. For every v ∈ V and for every i ∈ N , the notation fi(v) ∈ {0, 1} will denote if

agent i gets the object (fi(v) = 1) or not (fi(v) = 0) at valuation profile v in allocation rule f .

Payments are allowed and agents have quasi-linear utility functions over payments. A

payment rule of agent i ∈ N is a mapping pi : V → R.

Definition 1 An allocation rule f is implementable (in dominant strategies) if there

exist payment rules (p1, . . . , pn) such that for every agent i ∈ N and for every v−i ∈ V−i

vifi(vi, v−i)− pi(vi, v−i) ≥ vifi(v
′
i, v−i)− pi(v′i, v−i) ∀ vi, v′i ∈ Vi.

In this case, we say (p1, . . . , pn) implement f and the mechanism (f, p1, . . . , pn) is incentive

compatible.

Notice that we focus on deterministic dominant strategy implementation.

Myerson (1981) showed that the following notion of monotonicity is equivalent to imple-

mentability - see also Laffont and Maskin (1980) for a similar characterization.

Definition 2 An allocation rule f is monotone if for every i ∈ N , for every v−i ∈ V−i,
and for every vi, v

′
i ∈ Vi with vi < v′i and fi(vi, v−i) = 1, we have fi(v

′
i, v−i) = 1.

Myerson (1981) shows that an allocation rule is implementable if and only if it is monotone

- this result does not require any restriction on the space of valuations (see Vohra (2011), for

instance). Throughout the paper, our results will be driven by the monotonicity condition.

2.3 Implementation, Non-Bossiness, and Rationalizability

We now provide the main results of this chapter. We will define the notion of a non-

bossy allocation rule. Then, we will provide a complete characterization of non-bossy and

implementable allocation rules. Finally, we will add a mild continuity-like condition to

sharpen this characterization even further.

The backbone of this result is a notion of rationalizability in our model, and this reveals

an elegant structure of implementable and non-bossy allocation rules. We introduce this idea

of rationalizability in the single object auctions next.

2.3.1 Rationalizability

To define rationalizability in our context, we view the mechanism designer as a decision maker

who is making choices using his allocation rule. Notice that at every profile of valuations,

by choosing an alternative, the mechanism designer assigns values to each agent - zero to all
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agents who do not get the object but positive value to the agent who gets the object. Denote

by 1vi the vector of valuations in Rn+, where all the components except agent i has zero and

the component corresponding to agent i has vi. Further, denote by 10 the n-dimensional

zero vector. For convenience, we will write 10 as 1v0 at any valuation profile.

Using this notation, at a valuation profile (v1, . . . , vn), a mechanism designer’s choice of

an alternative in A can lead to the selection of one of the following (n+ 1) vectors in Rn+ to

be chosen - 1v0 ,1v1 , . . . ,1vn . We will refer to these vectors as utility vectors. Any allocation

rule f can alternatively thought of choosing utility vectors at every valuation profile. The

domain of valuations Vi of agent i gives rise to a set of feasible utility vectors where only

agent i gets positive value. In particular define for every i ∈ N , Di := {1vi : vi ∈ Vi}.
Further, let D0 := {1v0} and V0 = {0}. Denote by D := D0 ∪D1 ∪D2 ∪ . . . ∪Dn the set of

all utility vectors consistent with the domain of profile of valuations V .

To define the notion of a rational allocation rule, we will use orderings (reflexive, complete,

and transitive binary relation) on the set of utility vectors D. For any ordering � on D, let

� be the asymmetric component of � and ∼ be the symmetric component of �. A strict

linear ordering is an anit-symmetric ordering with no symmetric component. An ordering �
on D is monotone if for every i ∈ N , for every vi, v

′
i ∈ Vi with vi > v′i, we have 1vi � 1v′i .

Our notion of rational allocation requires that at every profile of valuations it must choose

a maximal element among the utility vectors at that valuation profile, where the maximal

element is defined using a monotone ordering on D.

An example with three agents will clarify some of the concepts.

Example 1

Let N = {1, 2, 3}. So, the set of alternatives is A = {e0, e1, e2, e3}. Let V1 = V2 = V3 =

{1, 2, 3}. In that case, the utility vectors are vectors in R3
+. In particular, D0 contains

the origin, D1 = {(1, 0, 0), (2, 0, 0), (3, 0, 0)}, D2 = {(0, 1, 0), (0, 2, 0), (0, 3, 0)}, and D3 =

{(0, 0, 1), (0, 0, 2), (0, 0, 3)}. Figures 2.1(a) and 2.1(b) show D0, D1, D2, D3 with two valuation

profiles (shown in dark circles in each figure). A valuation profile corresponds to four points

in D ≡ (D0∪D1∪D2∪D3). The valuation profile (v1, v2, v3) corresponding to Figure 2.1(a)

is (2, 3, 1) (the corresponding utility vectors are shown in dark blue dots in the figure) and

that corresponding to Figure 2.1(b) is (2, 1, 1).

Now, consider the following ordering � defined on D: (0, 0, 3) � (0, 3, 0) � (0, 2, 0) �
(3, 0, 0) � (0, 0, 0) ∼ (0, 0, 2) � (0, 1, 0) ∼ (2, 0, 0) � (1, 0, 0) � (0, 0, 1). Note that � is

monotone. Consider an allocation rule f , which chooses the �-maximal utility vector at

every valuation profile. For instance, consider the utility vectors corresponding to valuation

profile (2, 3, 1) (shown in Figure 2.1(a)). The �-maximal utility vector at this valuation

profile is (0, 3, 0) and hence, f allocates the object to agent 2. Similarly, consider the utility

vectors corresponding to valuation profile (2, 1, 1) (shown in Figure 2.1(b)). The �-maximal

utility vector at this valuation profile is (0, 0, 0) and hence, f does not allocate the object to

any agent. We call such allocation rules rationalizable allocation rules.
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Figure 2.1: Illustration of rationalizable allocation rule

We now formally define a rationalizable allocation rule. For every allocation rule f , let

Gf : V → D be a social welfare function induced by f , i.e., for all v ∈ V , Gf (v) = 1vj if

f(v) = ej for any j ∈ {0, 1, . . . , n}.

Definition 3 An allocation rule f is rationalizable if there exists a monotone ordering

� on D such that for all v ∈ V , Gf (v) � 1vj for all j ∈ {0, 1, . . . , n}. In this case, we say

� rationalizes f .

An allocation rule f is strongly rationalizable if there exists a monotone strict linear

ordering � on D such that for all v ∈ V , 1vi � 1vj for all j ∈ {0, 1, . . . , n} \ {i}, where

Gf (v) = 1vi. In this case, we say � strongly rationalizes f .

We will investigate the relationship between (strongly) rationalizable allocation rules and

implementable allocation rules. The following lemma establishes that a rational allocation

rule is implementable.

Lemma 1 Every rationalizable allocation rule is implementable.

Proof : Consider a rationalizable allocation rule f and let � be the corresponding ordering

on D. Fix an agent i and valuation profile v−i. Consider two valuations of agent i: vi and

v′i with vi < v′i with f(vi, v−i) = ei. By definition of �, 1vi � 1vj for all j ∈ (N ∪ {0}) \ {i}.
Since � is monotone, 1v′i � 1vi . By transitivity, 1v′i � 1vj for all j ∈ (N ∪ {0}) \ {i}. Then,

by the definition of �, f(v′i, v−i) = ei. Hence, f is monotone, which further implies that it is

implementable (Myerson, 1981). �

The converse of Lemma 1 is not true. The following example establishes that.
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Example 2

Suppose there are two agents: N = {1, 2}. Suppose V1 = V2 = R++. Consider an allocation

rule f defined as follows. At any valuation profile (v1, v2), if max(v1− 2v2, v2− v1) < 0, then

f(v1, v2) = e0. Else, if v1 − 2v2 < v2 − v1, then f(v1, v2) = e2 and if v1 − 2v2 ≥ v2 − v1, then

f(v1, v2) = e1. It is easy to verify that f is monotone, and hence, implementable.

We argue that f is not a rationalizable allocation rule. Assume for contradiction that f

is a rationalizable allocation rule and � is the corresponding monotone ordering. Consider

the profile of valuation (v1, v2), where v1 = 1 and v2 = 2. For ε > 0 but arbitrarily close to

zero, f(v1, v2 − ε) = e2. Hence, 1v2−ε � 1v0 . By monotonicity, 1v2 � 1v0 . Now, consider the

profile of valuations (v′1, v2), where v′1 = 2 + ε and v2 = 2. Note that f(v′1, v2) = e0. Hence,

1v0 � 1v2 . This is a contradiction.

A feature of this example is that at valuation profile (v1, v2), the allocation rule was

choosing e2. But when valuation of agent 1 changed to v′1, it chose e0 at valuation profile

(v′1, v2). Hence, agent 1 could change the outcome without changing his own outcome. As

we show next, such allocation rules are incompatible with rationalizability.

2.3.2 Non-bossy Single Object Auctions

In this section, we will show that the set of implementable and non-bossy allocation rules

are characterized by strongly rationalizable allocation rules.

Definition 4 An allocation rule f is non-bossy if for every i ∈ N , for every v−i ∈ V−i
and for every vi, v

′
i ∈ Vi with fi(vi, v−i) = fi(v

′
i, v−i), we have f(vi, v−i) = f(v′i, v−i).

Non-bossiness requires that if an agent does not change his own allocation (i.e., whether

he is getting the object or not) by changing his valuation, then he should not be able to

change the allocation of anyone. It was first proposed by Satterthwaite and Sonnenschein

(1981). As discussed in the introduction, it is a plausible condition to impose in private

good allocation problems and has been extensively used in the strategic social choice theory

literature.

The notion of non-bossiness that we use is a non-standard version. The standard version

of non-bossiness in our setting will translate to a condition on mechanism not on allocation

rule. We call this version of non-bossiness as utility non-bossiness. In particular, an incentive

compatible mechanism (f, p) satisfies utility non-bossiness if for every i ∈ N , for every

v−i, and for every vi, v
′
i ∈ Vi, such that vifi(vi, v−i) − pi(vi, v−i) = v′ifi(v

′
i, v−i) − pi(v′i, v−i),

we have vjfj(vi, v−i) − pj(vi, v−i) = vjfj(v
′
i, v−i) − pj(v′i, v−i) for all j ∈ N . In words, if an

agent changes his valuation such that his net utility does not change, then the net utility of

every agent must remain unchanged.
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We do not impose such utility non-bossiness because this is a condition on mechanisms,

and we are interested in a condition on allocation rules. Further, utility non-bossiness is

not satisfied by many canonical mechanisms. For instance, the second-price Vickrey auction

is not utility non-bossy. To see this, consider an example with two agents with valuations

10 and 7 respectively. Note that the allocation rule in a second-price Vickrey auction is

an efficient allocation rule. The net utilities of agents 1 and 2 in the second-price Vickrey

auction are 3 and 0 respectively. Now, consider the valuation profile (10, 8). At this valuation

profile, agent 2 continues to get zero net utility in the second price Vickrey auction, but the

net utility of agent 1 is reduced to 2. This shows that the second-price Vickrey auction is

not utility non-bossy. On the other hand, the efficient allocation rule with appropriate tie

breaking is a non-bossy allocation rule.

In a recent paper, Thomson (2014) discusses the various versions of non-bossiness and

he named our version of non-bossiness subspace non-bossiness. He also illustrated the

difference between subspace non-bossiness and standard definition of non-bossiness.

We give an example of a bossy and a non-bossy allocation rule in Figure 2.2(a) and Figure

2.2(b) respectively. These figures indicate a scenario with two agents. The possible outcomes

of the allocation rules at different valuation profiles are depicted in the Figures. In Figure

2.2(a), the allocation rule is bossy since if we start from a region where alternative e2 is

chosen and agent 1 increases his value, then we can come to a region where alternative e0 is

chosen (i.e., agent 1 can change the outcome without changing his own outcome). However,

such a problem is absent for the allocation rule in Figure 2.2(b).
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Figure 2.2: Bossy and non-bossy allocation rules

Lemma 2 A strongly rationalizable allocation rule is non-bossy.

Proof : Let f be a strongly rationalizable allocation rule with � being the corresponding

ordering on D. Fix an agent i and v−i ∈ V−i. Consider vi, v
′
i ∈ Vi such that f(vi, v−i) = ej 6=
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ei. By definition, 1vj � 1vk for all k ∈ (N ∪ {0}) \ {j}. Suppose f(v′i, v−i) = el 6= ei. By

definition, 1vl � 1vk for all k ∈ (N ∪ {0}) \ {l}. Assume for contradiction el 6= ej. Then, we

get that 1vj � 1vl and 1vl � 1vj , which is a contradiction. �

This leads to the formal connection between implementability and rationalizability.

Theorem 1 An allocation rule is implementable and non-bossy if and only if it is strongly

rationalizable.

The proof of Theorem 1 is in the appendix. Theorem 1 reveals a surprising connection

between rationalizability and single object auction design. Such a connection of rationaliz-

ability and mechanism design was first established in Mishra and Sen (2012). They consider

general quasi-linear environments with private values. They show that if the type space is

a multidimensional open interval, then every implementable and neutral allocation rule is

rationalizable. Note that rationalizability is weaker than strong rationalizability in the sense

that it does not require the underlying ordering to be a strict linear ordering. Our results

depart from those in Mishra and Sen (2012) in many ways. First, as discussed earlier, their

domain condition is not satisfied in our model, and neutrality is vacuous in the single object

auction models. Second, we show that implementability and non-bossiness is equivalent to

strong rationalizability. Mishra and Sen (2012) do not provide any such equivalence. In-

deed, the non-bossiness that we use, is a condition that is specific to private good allocation

problems, and cannot be used in general mechanism design problems.

Notice that Theorem 1 does not require any restriction on Vi. If the strict linear ordering

we constructed in the proof of Theorem 1 can be represented using a utility function, then

the characterization will be even more direct. If for every agent i ∈ N , Vi is finite, then it is

possible. But, as the next example illustrates, this is not always possible.

Example 3

Suppose N = {1, 2} and V1 = V2 = R++. Consider the allocation rule f such that for all

valuation profiles (v1, v2), f(v1, v2) = e1 if v1 ≥ 1, f(v1, v2) = e2 if v1 < 1 and v2 ≥ 1,

and f(v1, v2) = e0 otherwise. It can be verified that f is implementable (monotone) and

non-bossy. By Theorem 1, f is strongly rationalizable. Now, consider the strict linear

order defined in the proof of Theorem 1 that strongly rationalizes f - denote it by �f . If

v1 = v2 = 1, we have f(v1, v2) = e1. Hence, 1v1 �f 1v2 .

Now, consider the following definition.

Definition 5 An ordering � on the set D is separable if there exists a countable set Z ⊆ D

such that for every x, y ∈ D with x � y, there exists z ∈ Z such that x � z � y.

It is well known that an ordering on D has a utility representation if and only if it is

separable - the result goes back to at least Debreu (1954) (see also Fishburn (1970) for

details). We show that �f is not separable. Consider v1 = v2 = 1. By definition of f ,
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1v1 �f 1v2 �f 1v0 . Note that since �f is monotone, any utility vector between 1v1 and 1v2
(according to �f ) will be of the form 1v2+ε or 1v1−ε for some ε > 0. But, f(v1, v2 + ε) = e2

implies that 1v2+ε �f 1v1 for all ε > 0. Also, f(v1 − ε, v2) = e2 implies that 1v2 �f 1v1−ε for

all ε > 0. Hence, there cannot exist z ∈ D such that 1v1 �f z �f 1v2 .

2.3.3 Simple Utility Maximization

We saw that the strict linear ordering that strongly rationalizes an allocation rule may not

have a utility representation. The aim of this section is to explore minimal conditions that

allow us to define a new ordering for any implementable and non-bossy allocation rule which

has a utility representation. This allows us to sharpen our characterization, and relate it to

a seminal result of Border (1991). Our extra condition is a continuity condition.

Definition 6 An allocation rule f satisfies Condition C∗ if for every i, j ∈ N (i 6= j)

and for every v−ij, for every ε > 0, there exists a δε,v−ij > 0 such that for every vi, vj with

f(vi, vj, v−ij) = ei, we have f(vi + ε, vj + δε,v−ij , v−ij) = ei.

Condition C∗ requires some version of continuity of the allocation rule. It says that if

some agent i is winning the object at a valuation profile, for every increase in value of agent

i, there exists some increase in value of agent j such that agent i continues to win the object.

Later, we provide an example to show that Condition C∗ and non-bossiness do not imply

implementability.

If f is monotone (implementable) and non-bossy, then Condition C∗ implies that for every

i, j ∈ N (i 6= j) and for every v−ij, for every ε > 0, there exists a δε,v−ij > 0 such that for

every vi, vj with f(vi, vj, v−ij) = ei, we have f(vi + ε, vj + δ, v−ij) = ei for all 0 < δ < δε,v−ij .

To see this, choose some δ ∈ (0, δε,v−ij) and assume for contradiction, f(vi+ε, vj+δ, v−ij) = ek

for some k 6= i. If k = j, then by monotonicity, f(vi + ε, vj + δε,v−ij , v−ij) = ej, which is a

contradiction to Condition C∗. If k 6= {i, j}, then by non-bossiness, f(vi+ε, vj+δε,v−ij , v−ij) ∈
{ej, ek}, again a contradiction to Condition C∗. Since we will use Condition C∗ along with

implementability and non-bossiness, we can freely make use of this implication.

We will now introduce a new class of allocation rules.

Definition 7 An allocation rule f is a simple utility maximizer (SUM) if there exists

a non-decreasing function Ui : Vi → R for every i ∈ N ∪ {0}, where U0(0) = 0, such that for

every valuation profile v ∈ V , f(v) = ej implies that j ∈ arg maxi∈N∪{0} Ui(vi).

Notice that an SUM allocation rule is simpler to state and, hence, more suitable for

practical use than a strongly rationalizable allocation rule. The aim of this section is to

show that the SUM allocation rules are not much different from the strongly rationalizable

allocation rules.

It can be easily seen that not every SUM allocation rule is non-bossy. For instance,

consider the efficient allocation rule that allocates the good to an agent with the highest
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value. Suppose there are three agents with valuations 10, 10, 8 respectively and suppose that

the efficient allocation rule allocates the object to agent 1. Consider the valuation profile

(10, 10, 9) and suppose that the efficient allocation rule now allocates the object to agent 2.

This violates non-bossiness. As we will show that such violations can happen in case of ties

(as was the case here with ties between agents 1 and 2), and when ties are broken carefully,

an SUM allocation rule becomes non-bossy.

Similarly, not every SUM allocation rule is implementable. For instance, consider an

example with two agents {1, 2} with V1 = V2 = R++. Let U1(v1) = 1 and U1(v2) = v2. Now,

suppose we pick agent 1 as the winner of the object at valuation profile (1, 1) but pick agent

2 as the winner of the object at valuation profile (2, 1). Note that this is consistent with

simple utility maximization but violates monotonicity, and hence, not implementable.

Now, consider the following modification of the SUM allocation rule.

Definition 8 An allocation rule f is a simple utility maximizer (SUM) with order-

based tie-breaking if there exists a non-decreasing function Ui : Vi → R for every i ∈
N ∪ {0}, where U0(0) = 0, and a monotone strict linear ordering � on D such that for

every valuation profile v ∈ V , f(v) = ej implies that j ∈ arg maxi∈N∪{0} Ui(vi) and 1vj � 1vk
for all k 6= j and k ∈ arg maxi∈N∪{0} Ui(vi), i.e., 1vj is the unique simple utility maximizer

according to �.

The tie-breaking rule that we specified is very general. It covers some intuitive tie-

breaking rules such as having an ordering over N ∪{0} and breaking the tie in simple utility

maximization using this ordering.

Lemma 3 An SUM allocation rule with order-based tie-breaking is implementable.

Proof : Suppose f is an SUM allocation rule with order-based tie-breaking. Let the corre-

sponding simple utility functions be U0, U1, . . . , Un and � be the ordering used to break ties.

At any valuation profile v, let

W (v) = {j ∈ N ∪ {0} : Uj(vj) ≥ Uk(vk) ∀ k ∈ N ∪ {0}}.

Fix an agent i and the valuation profile of other agents at v−i. Consider vi, v
′
i such that vi < v′i

and f(vi, v−i) = ei. Then, by SUM maximization, i ∈ W (vi, v−i). Further, by order-based

tie-breaking 1vi � 1vj for all j ∈ W (vi, v−i). Since Ui is non-decreasing, Ui(v
′
i) ≥ Uj(vj)

for all j ∈ (N ∪ {0}) \ {i}. Hence, i ∈ W (v′i, v−i). Again, by order-based tie-breaking,

1v′i � 1vi � 1vj for all j ∈ W (v′i, v−i). This implies that f(v′i, v−i) = ei. So, f is monotone,

and hence, implementable. �

An SUM allocation rule with order-based tie-breaking is also non-bossy.

Lemma 4 An SUM allocation rule with order-based tie-breaking is non-bossy.
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Proof : Let f be an SUM allocation rule with order-based tie-breaking and v be a valuation

profile such that f(v) 6= ej for some j ∈ N . Suppose f(v′j, v−j) 6= ej. Then, by definition,

the unique simple utility maximizer of f remains the same in (vj, v−j) and (v′j, v−j). So,

f(vj, v−j) = f(v′j, v−j), and hence, f is non-bossy. �

We are now ready to state the main result of this section.

Theorem 2 Suppose Vi = (0, βi), where βi ∈ R++ ∪ {∞}, for all i ∈ N and f is an

allocation rule satisfying Condition C∗. Then, the following statements are equivalent.

1. f is an implementable and non-bossy allocation rule.

2. f is a simple utility maximizer allocation rule with order-based tie-breaking.

The proof of Theorem 2 is given in the Appendix. The non-trivial part of the proof is to

establish that under Condition C∗, implementability and non-bossiness imply simple utility

maximization. This part of the proof is long and tedious, but reveals beautiful structure of

implementable and non-bossy allocation rules. Once this is established, we use Theorem 1

to conclude how the ties must be broken. As we discussed earlier, the strict linear ordering

induced by an implementable and non-bossy allocation rule on the set of utility vectors D

may not have a utility representation. Hence, we cannot invoke Theorem 1 directly to show

Theorem 2. The proof of Theorem 2 constructs another ordering (which is not a linear

order) and shows that this has a utility representation under Condition C∗. We provide

some remarks on Theorem 2 below.

Some simple utility maximizers. An efficient allocation rule is also an SUM allocation

rule, where Ui(vi) = vi for all i ∈ N and for all vi ∈ Vi. Similarly, we can define for every

i ∈ N and for every vi ∈ Vi, Ui(vi) = λivi + κi for some λi ≥ 0 and κi ∈ R, and this

SUM will correspond to the affine maximizer allocation rules of Roberts (1979). The simple

utility function in Myerson (1981) takes the form Ui(vi) = vi − 1−Fi(vi)
fi(vi)

, where Fi and fi
are respectively the cumulative density function and density function of the distribution of

valuation of agent i.

Payments. It is well known that revenue equivalence (Myerson, 1981) implies that for any

implementable allocation rule, the payments are determined uniquely up to an additive con-

stant. Suppose Vi is an interval for all i ∈ N . For any implementable allocation rule f , define

the cutoff for agent i and valuation profile v−i as κfi (v−i) = inf{α ∈ Vi : f(α, v−i) = ei},
where κfi (v−i) = 0 if f(α, v−i) 6= ei for all α ∈ Vi. It is well known that for every i ∈ N

and for every (vi, v−i) ∈ V , pfi (vi, v−i) = κfi (v−i) if f(vi, v−i) = ei and pfi (vi, v−i) = 0 if

f(vi, v−i) 6= ei is a payment rule which implements f . Further, by revenue equivalence, any

payment rule p which implements f must satisfy for every i ∈ N and for every (vi, v−i),

pi(vi, v−i) = pfi (vi, v−i)+hi(v−i), where hi : V−i → R is any function. Thus, by characterizing
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implementable allocation rules, we characterize the class of dominant strategy incentive

compatible mechanisms.

Condition C∗. We give an example of an allocation rule which is non-bossy and satisfies

Condition C∗ but not implementable. The example illustrates that Condition C∗ and non-

bossiness do not make implementability a redundant condition. In other words, these two

conditions together are not stronger than monotonicity.

Example 4

Let N = {1, 2}. Suppose V1 = V2 = R++. Let U1(v1) = −v1 and U2(v2) = −v2. The

allocation rule f is defined as follows. It chooses e0 (not allocating the object) if U1(v1) and

U2(v2) are less than −1. Else, it allocates the object to the agent with the highest Ui(vi),

breaking ties in favor of agent 1.

Formally, if max(U1(v1), U2(v2)) ≤ −1, then f(v1, v2) = e0. Else, if U1(v1) ≥
max(U2(v2),−1), then f(v1, v2) = e1 and if U2(v2) > U1(v1) and U2(v2) ≥ −1, then

f(v1, v2) = e2. Clearly, this allocation rule is not monotone, and hence, not implementable.

However, it is non-bossy and satisfies Condition C∗.

2.3.4 Randomization and Bayesian Implementation via

Border’s Hierarchical Allocation Rules

We relate our results to Border’s hierarchical allocation rules (Border, 1991). 7 Border con-

sidered allocation rules which are not necessarily deterministic and Bayesian implementable.

To describe his results, we consider randomized allocation rules in this section. A random-

ized allocation rule is a map f : V → ∆A, where ∆A denotes the convex hull of the (n+ 1)

vectors {e0, e1, . . . , en} in Rn. Hence, fi(v) will now denote the probability of agent i getting

the object at valuation profile v. Border (1991) considers independent private values setting.

Each bidder i has a probability distribution Gi using which it draws its value from Vi. De-

note by G−i(v−i) ≡ ×j 6=iGj(vj). The interim allocation probability of an allocation rule f

for agent i is

afi (vi) =

∫
V−i

fi(vi, v−i)dG−i(v−i).

Border also considers Bayesian implementation. An allocation rule f is Bayesian imple-

mentable if there exists a payment rules (p1, . . . , pn) such that for every i ∈ N , for every

vi, v
′
i ∈ Vi

via
f
i (vi)−

∫
V−i

pi(vi, v−i)dG−i(v−i) ≥ via
f
i (v
′
i)−

∫
V−i

pi(v
′
i, v−i)dG−i(v−i).

7I am grateful to Mallesh Pai for motivating the contents of this section.
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Definition 9 An allocation rule fh is a hierarchical allocation rule if there exists non-

decreasing functions Ii : Vi → R for all i ∈ N such that at every valuation profile v ∈ V

fhi (v) =

{
1

|{j∈N :Ii(vi)=Ij(vj)}| if Ii(vi) ≥ 0 and Ii(vi) ≥ Ij(vj) for all j ∈ N
0 otherwise

In a seminal result, Border showed that for every Bayesian implementable allocation

rule f , there exist a set of hierarchical allocation rules whose randomization gives the same

interim allocation probability as f - see also Manelli and Vincent (2010); Mierendorffl (2011);

Deb and Pai (2013). 8

Now, notice that a hierarchical allocation rule is a randomization over simple utility

maximizers (which are deterministic allocation rules). To see this, we define (n + 1)! order

based tie-breaking rules. Take any strict linear ordering P of the set of alternatives in A.

Define an ordering � on the set of utility vectors D as follows. For any i ∈ N , if 1vi ,1v′i ∈ Di

with vi > v′i, then 1vi � 1v′i . If eiPej, then for every 1vi ∈ Di and every 1vj ∈ Dj, 1vi � 1vj .

Note that � can be defined exactly (n + 1)! ways, one for each P . Let P be the set of

all such orderings of D. Now, given a hierarchical allocation rule with (I1, . . . , In), we can

construct (n + 1)! simple utility maximizers with Ui = Ii for all i ∈ N and taking as tie-

breaking rule one of the orderings in P . Clearly, uniform randomization over these simple

utility maximizers produce the hierarchical allocation rule. Hence, randomization over the

hierarchical allocation rules is equivalent to randomization over simple utility maximizers.

Thus, simple utility maximizers occupy a central role in the theory of private value single

object auctions. By characterizing simple utility maximizers, Theorem 2 indirectly provides

an axiomatic foundation for Border’s hierarchical allocation rules. In particular, the interim

allocation probability of any implementable allocation rule can be obtained by randomizing

over the set of implementable and non-bossy allocation rules satisfying Condition C∗.

2.3.5 Extension of Roberts’ Theorem

Consider a general mechanism design set up with private values and quasi-linear utility. Let

A be a finite set of alternatives. Suppose |A| ≥ 3. The type of agent i is denoted as vi ∈ R|A|
and vi(a) denotes the valuation of agent i for alternative a. Roberts (1979) shows that if

type space of every agent is R|A|, then for every onto and implementable allocation rule f ,

there exists λ1, . . . , λn ≥ 0, not all of them equal to zero, and κ : A→ R such that at every

valuation profile v,

f(v) ∈ arg max
a∈A

[
∑
i∈N

λivi(a) + κ(a)].

Such allocation rules are called affine maximizer allocation rules. Theorems 1 and 2 can be

thought of as the analogue of Roberts’ affine maximizer theorem in the single object auction

8Although Border (1991) does not consider incentive constraints, it is clear how his results can be modified

in the presence of incentive constraints.
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model (under non-bossiness). It shows how much the set of implementable allocation rule

expands in a restricted domain like the single object auction domain.

2.4 The Complete Characterization

Theorems 1 and 2 characterize implementable allocation rules under additional assumptions.

In this section, we drop these additional assumptions and provide a complete characterization

of implementable allocation rules. These characterizations are in the spirit of extending the

Roberts’ affine maximizer theorem. In particular, we show that an implementable allocation

rule is equivalent to a generalized utility maximizer allocation rule.

A generalized utility function (GUF) of agent i ∈ N is a function ui : V → R.

Notice that the generalized utility of an agent may be negative also. Further, a simple utility

function is a GUF. We will need the following version of single crossing property.

Definition 10 The GUFs (u1, . . . , un) satisfy top single crossing if for every i ∈
N , for every v−i ∈ V−i, and for every vi, v

′
i ∈ Vi with vi > v′i and ui(v

′
i, v−i) ≥

max(0,maxk∈N\{i} uk(v
′
i, v−i)), we have ui(vi, v−i) > max(0,maxk∈N\{i} uk(vi, v−i)).

The top single crossing condition is a very general inter-agent crossing condition. Such

crossing conditions are extensively used in the literature of interdependent value auctions -

see for instance, Cremer and McLean (1985); Maskin (1992); Dasgupta and Maskin (2000);

Perry and Reny (2002). For the finite type space, Cremer and McLean (1985) use conditions

similar to our top single crossing to establish implementation (in ex post equilibrium) of the

efficient allocation rule in the interdependent values model.

The standard definition of a “single crossing” property, which implies top single crossing,

is the following.

Definition 11 GUFs (u1, . . . , un) satisfy single crossing if for every i, j ∈ N , for every

v−i ∈ V−i, for every v′i, vi ∈ Vi with vi > v′i, we have ui(vi, v−i) − ui(v′i, v−i) > uj(vi, v−i) −
uj(v

′
i, v−i).

A GUF ui is increasing if for every v−i ∈ V−i and for every vi, v
′
i ∈ Vi with vi > v′i we

have ui(vi, v−i) > ui(v
′
i, v−i).

Lemma 5 If GUFs (u1, . . . , un) satisfy single crossing and ui is increasing for every i ∈ N ,

then they satisfy top single crossing.

Proof : Consider i ∈ N and v−i ∈ V−i. Let vi, v
′
i ∈ Vi such that vi > v′i and ui(v

′
i, v−i) ≥

max(0,maxk∈N\{i} uk(v
′
i, v−i)). Since ui is increasing, ui(vi, v−i) > ui(v

′
i, v−i) ≥ 0. Further,

by single crossing, ui(vi, v−i) − ui(v′i, v−i) > uj(vi, v−i) − uj(v′i, v−i) for all j 6= i. Using the

fact that ui(v
′
i, v−i) ≥ uj(v

′
i, v−i) for all j 6= i, we get that ui(vi, v−i) > uj(vi, v−i) for all

j 6= i. Hence, ui(vi, v−i) > max(0,maxk∈N\{i} uk(vi, v−i)). �

We are now ready to introduce a new class of implementable allocation rules.
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Definition 12 An allocation rule f is a generalized utility maximizer if there exist

GUFs (u1, . . . , un) satisfying top single crossing such that for every v ∈ V , f(v) = ei implies

that i ∈ arg maxi∈N∪{0} ui(v), where u0(v) = 0.

Generalized utility maximizers are implementable. The proof is similar to the proof

in Cremer and McLean (1985), who establish implementation (in ex post equilibrium) of

efficient allocation rule in an interdependent values model.

Lemma 6 If f is a generalized utility maximizer, then it is implementable.

Proof : Fix a generalized utility maximizer f , and let (u1, . . . , un) be the corre-

sponding GUFs satisfying top single crossing. Consider agent i and v−i ∈ V−i.

Also, consider any vi, v
′
i ∈ Vi with vi > v′i and f(v′i, v−i) = ei. By defini-

tion, ui(v
′
i, v−i) ≥ max(0,maxk∈N\{i} uk(v

′
i, v−i)). By top single crossing, ui(vi, v−i) >

max(0,maxk∈N\{i} uk(vi, v−i)). Hence, f(vi, v−i) = ei. So, f is monotone, and hence, im-

plementable. �

This leads to the main result of this section.

Theorem 3 Suppose Vi ⊆ R++ is bounded for every i ∈ N . Then, f is implementable if

and only if it is a generalized utility maximizer.

Proof : Lemma 6 showed that every GUF maximizer is implementable. Now, for the con-

verse, suppose f is implementable. Fix an agent i ∈ N and v−i ∈ V−i. If f(vi, v−i) 6= ei

for all vi ∈ Vi, then define κfi (v−i) = sup{vi : vi ∈ Vi}. Else, define κfi (v−i) = inf{vi ∈
Vi : f(vi, v−i) = ei}. Since Vi is bounded, κfi (v−i) is well defined. Further, since f is mono-

tone, for every agent i ∈ N , for every v−i, and for every vi ∈ Vi, if vi > κfi (v−i), we have

f(vi, v−i) = ei and for every vi < κfi (v−i) we have f(vi, v−i) 6= ei. Define for every i ∈ N and

for every (vi, v−i), ui(vi, v−i) := vi−κfi (v−i). By definition, if f(v) = ei, then vi−κfi (v−i) ≥ 0

and vj − κfj (v−j) ≤ 0 for all j 6= i. Hence, i ∈ arg maxk∈N∪{0} uk(v), where u0(v) = 0.

To show that (u1, . . . , un) satisfy top single crossing, consider i ∈ N and v−i ∈ V−i. Let

vi, v
′
i ∈ Vi such that vi > v′i and ui(v

′
i, v−i) ≥ max(0,maxk∈N\{i} uk(v

′
i, v−i)). Notice that

ui(vi, v−i) > ui(v
′
i, v−i) ≥ 0. By definition of u1, . . . , un, if ui(vi, v−i) > 0, then vi > κfi (v−i),

and hence, f(vi, v−i) = ei. But, this implies that uk(vi, v−i) = vk − κfk(v−k) ≤ 0 for all k 6= i.

Hence, ui(vi, v−i) > max(0,maxk∈N\{i} uk(vi, v−i)). �

Our characterization of implementability shows that implementability is equivalent to

maximizing generalized utilities. Generalized utilities transform the original valuation of

an agent to a new utility, which depends on the valuations of all the agents. In contrast

to simple utility functions, generalized utility functions are much harder to construct. This

illustrates how a natural axiom like non-bossiness helps to simplify the class of implementable

allocation rules.
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Generalized utility maximizers are similar to implementing the efficient allocation rule in

an interdependent values model with the qualification that we allow generalized utilities to

be negative, which is precluded in the standard interdependent value model. It is well known

that the efficient allocation rule is not generally implementable in the interdependent values

single object auction unless some inter agent crossing condition holds (Cremer and McLean,

1985; Maskin, 1992; Dasgupta and Maskin, 2000; Perry and Reny, 2002; Jehiel et al., 2006).

Our top single crossing condition is similar to these conditions in the interdependent values

literature. Our result reveals a surprising and interesting connection between these seemingly

different models.

2.5 Discussions

We conclude by discussing some of the open questions that remain.

Randomization and Bayesian Implementation. Although we focus on deterministic

dominant strategy implementation, randomization is a natural extension of our model. In-

deed, the monotonicity characterization of Myerson (1981) extends to single object auctions

with randomization. Extending characterizations of deterministic allocation rules to ran-

domized allocation rules present several challenges. A natural way to think of randomization

is that of domain restriction - the utility from a lottery alternative is restricted to be the

expected utility from the deterministic alternatives in its support. Thus, the challenges of

going from deterministic to randomized allocation rules is similar to that of going from a

larger domain to a restricted domain. For instance, a counterpart of Roberts’ seminal result

with randomization is still not known in the unrestricted domain.

However, we provided a relationship of our simple utility maximizer and Border’s

hierarchical allocation rules that can be used to obtain interim allocation probability of

every Bayesian and randomized allocation rule. Hence, our characterizations can be used in

an indirect way to characterize interim allocation probabilities of Bayesian implementable

randomized allocation rules. However, the direct characterization remains an open question.

Optimizing payments. A popular research theme in auction theory and mechanism design

is to “optimize” over the set of incentive compatible mechanisms. This usually involves

optimizing over payments and assumes some prior distribution over valuations of agents by

the mechanism designer. The implications of such optimizations in the single object auctions

is fairly well understood.

Clearly, our results do not contribute to this literature. Our characterizations are more

tailored towards understanding the inherent structure of deterministic single object auctions

in private values set up. They completely describe the set of “options” available to a mecha-

nism designer (without bothering about the distributional assumptions) in the single object

auctions. Our main characterizations provide axiomatic foundations to various commonly
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used auctions.

We also believe that this opens a door for carrying out similar exercises in multidimen-

sional mechanism design models, including the multi-object auction model. The problem

of finding an expected revenue maximizing mechanism in such models is considered a dif-

ficult problem Hart and Reny (2012); Hart and Nisan (2012). Perhaps, understanding the

structure of incentive compatible mechanisms will allow us to simplify these problems.

Appendix: Omitted Proofs

Proof of Theorem 1

By virtue of Lemmas 1 and 2, we only need to show that if an allocation rule f is im-

plementable and non-bossy then it is strongly rationalizable. We do the proof in several steps.

Step 1. For any i, j ∈ N ∪{0} with i 6= j, consider 1vi and 1vj for some vi ∈ Vi and vj ∈ Vj.
Suppose for some v−ij, we have f(vi, vj, v−ij) = ei. We will show that if f is non-bossy, then

f(vi, vj, v
′
−ij) 6= ej for all v′−ij. Consider any k /∈ {i, j} and the profile (vi, vj, v

′
k, v−ijk). By

non-bossiness, f(vi, vj, v
′
k, v−ijk) ∈ {ei, ek}. Repeating this argument for all k /∈ {i, j}, we

get f(vi, vj, v
′
−ij) 6= ej.

Step 2. We will first define a binary relations � on D ×D 9 using f as follows. For every

i, j ∈ N ∪ {0} with i 6= j, 1vi ∈ Di and 1vj ∈ Dj, define

1vi � 1vj

if there is some v−ij such that f(vi, vj, v−ij) = ei. Further, for every i ∈ N and every vi ∈ Vi,
define

1vi+ε � 1vi

for all ε > 0 such that (vi + ε) ∈ Vi. Using Step 1, if 1vi � 1vj , then 1vj � 1vi . Hence, � is

anti-symmetric. Further, � is irreflexive by definition.

Step 3. Let Df := {x ∈ D : Gf (v) = x for some v ∈ V }. We now show that � satisfies the

following conditions:

1 for every x, y ∈ Df , either x � y or y � x (but not both), where Df = {x ∈ D :

Gf (v) = x for some v ∈ V },

2 for every x ∈ Df and for every y /∈ Df , x � y,

3 for all v ∈ V , 1vi � 1vj for all j ∈ {0, 1, . . . , n} \ {i}, where Gf (v) = 1vi .

9 To remind, D is the set of all utility vectors given the type space.
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• Proof of (1). Pick x, y ∈ Df . By definition, there is v ∈ V , such that Gf (v) = x. If

x = 1vi , then f(v) = ei. Suppose y = 1v′i . Then, by definition, either x � y or y � x.

Hence, suppose y = 1v′j for some j 6= i. Then, by monotonicity and non-bossiness,

f(vi, v
′
j, v−ij) ∈ {ei, ej}. Hence, either x � y or y � x. Since � is anti-symmetric,

either x � y or y � x but not both.

• Proof of (2). Pick x ∈ Df but y /∈ Df . By definition, there is v ∈ V , such that

Gf (v) = x. If x = 1vi , then f(v) = ei. Suppose y = 1v′i . Then, if v′i > vi, we have

f(v′i, v−i) = ei by monotonicity, and this contradicts the fact that y /∈ Df . Hence,

v′i < vi, and by definition, x � y.

Suppose y = 1v′j for some j 6= i. Then, by monotonicity and non-bossiness,

f(vi, v
′
j, v−ij) ∈ {ei, ej}. Using the fact that y /∈ Df , we get that f(vi, v

′
j, v−ij) = ei.

Hence, x � y.

• Proof of (3). At any valuation profile (v1, . . . , vn), if f(v1, . . . , vn) = ei, then, by

definition, 1vi � 1vj for all j 6= i.

Step 4. We show that � is transitive. Suppose for some i ∈ N , 1vi+ε � 1vi for some ε > 0

such that vi + ε ∈ Vi. Also, for some j 6= i, 1vi � 1vj . Then, by definition, for some v−ij,

f(vi, vj, v−ij) = ei. By monotonicity, f(vi + ε, vj, v−ij) = ei. Hence, 1vi+ε � 1vj .

We also know that for some i ∈ N and for some ε > 0, δ > 0, if 1vi+ε+δ � 1vi+ε and

1vi+ε � 1vi , then 1vi+ε+δ � 1vi .

Finally, pick vi ∈ Vi, vj ∈ Vj and vk ∈ Vk such that 1vi � 1vj and 1vj � 1vk , where

i, j, k are distinct. This means, f(vi, vj, v
′
−ij) = ei for some v′−ij. By monotonicity and non-

bossiness, f(vi, vj, vk, v
′
−ijk) ∈ {ei, ek}. But, 1vj � 1vk implies that f(vi, vj, vk, v

′
−ijk) 6= ek.

Hence, f(vi, vj, vk, v
′
−ijk) = ei. Hence, 1vi � 1vk . This shows that � is transitive.

Step 5. We show that f is strongly rationalizable. Since � is an anti-symmetric, irreflexive

and transitive binary relation on D ×D, we can extend it to an anti-symmetric, irreflexive,

complete, and transitive binary relation �′ on D ×D due to Szpilrajn’s extension theorem

- see Fishburn (1970) for instance. By definition of �′ and Step 3, at any valuation profile

(v1, . . . , vn), if f(v1, . . . , vn) = ei, then, 1vi �′ 1vj for all j 6= i. By definition, �′ is monotone.

Hence, f is strongly rationalizable.

Proof of Theorem 2

By Lemmas 3 and 4, an SUM allocation rule with order-based tie-breaking is implementable

and non-bossy. We show that every implementable and non-bossy allocation rule satisfying

Condition C∗ is an SUM allocation rule with order-based tie-breaking. We do the proof

in various steps. Throughout we assume that Vi = (0, βi), where βi ∈ R++ ∪ {∞}, for all
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i ∈ N .

Step 1. In this step, we show that if f is implementable and non-bossy allocation rule

satisfying Condition C∗, then there is an ordering �f on D which rationalizes f . We construct

this specific �f in this step. 10

Suppose f is an implementable and non-bossy allocation rule satisfying Condition C∗. We

first define the notion of a winning set. The winning set of allocation rule f at a valuation

profile v is denoted as W f (v), and defined as follows. For any i ∈ N , we say ei ∈ W f (v) if

for all ε > 0, we have f(vi + ε, v−i) = ei, where (vi + ε) ∈ Vi. We say that e0 ∈ W f (v) if for

all ε > 0, we have f({vj − ε}j∈N) = e0, where (vj − ε) ∈ Vj for all j ∈ N . The first claim is

that W f (v) is non-empty for all valuation profiles v.

Lemma 7 If f is implementable and non-bossy, then for every value profile v, f(v) ∈ W f (v).

Proof : Consider an implementable and non-bossy allocation rule f and a valuation profile

v. If f(v) = ej 6= e0, then by monotonicity f(vj + ε, v−j) = ej for all ε > 0. Hence,

f(v) ∈ W f (v).

If f(v) = e0, then consider any ε > 0 and a valuation profile v′ such that v′i − ε > 0

for all i ∈ N . We argue that f(v′) = e0, and hence, e0 = f(v) ∈ W f (v). Assume for

contradiction that f(v′) = ej 6= e0. Now, we go from v′ to v by increasing the valuation of

one agent at a time. By monotonicity, f(vj, v
′
−j) = ej. Now, pick any k ∈ N \ {j}. Then,

either f(vj, vk, v
′
−jk) = ek or by non-bossiness f(vj, vk, v

′
−jk) = ej. In both cases, we see that

f(vj, vk, v
′
−jk) 6= e0. Continuing in this manner, we will reach the valuation profile v and get

that f(v) 6= e0, a contradiction. �

Step 1.1. In this step, we show that an implementable and non-bossy allocation rule

satisfying Condition C∗ satisfies a form of independence property.

Definition 13 An allocation rule f satisfies binary independence if for any pair of

alternatives ej, ek ∈ A and any pair of valuation profiles v, v′ such that 1vj = 1v′j and

1vk = 1v′k , the following conditions hold.

1. if ek ∈ W f (v) and ej ∈ W f (v′), then ek ∈ W f (v′),

2. if ej ∈ W f (v) and ek /∈ W f (v), then ek /∈ W f (v′).

Intuitively, the binary independence property says that the comparison of any pair of

utility vectors is independent of what the other utility vectors are.

10Notice that by Theorem 1, if f is implementable and non-bossy, then it is a strongly rationalizable

allocation rule, and hence, a rationalizable allocation rule. The novelty of this step of the proof is to be able

to construct a specific ordering which rationalizes f .
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Proposition 1 An implementable and non-bossy allocation rule satisfying Condition C∗
satisfies binary independence.

Proof : We will use the following lemma to prove the proposition.

Lemma 8 Suppose v and v′ are two distinct valuation profiles such that vi ≥ v′i for all i ∈ N .

Let B(v, v′) = {ei ∈ A : vi > v′i}. If f is an implementable and non-bossy allocation rule,

then W f (v) \B(v, v′) ⊆ W f (v′).

Proof : Let f be an implementable and non-bossy allocation rule and v and v′ be two

distinct valuation profiles with vi ≥ v′i for all i ∈ N . We will go from v to v′ by lowering one

agent’s value at a time. Pick any ej ∈ B(v, v′). Consider a new type profile v′′ such that

the value of every agent i 6= j remains vi and the value of agent j is v′j, which is strictly less

than vj. Pick any ek ∈ W f (v) such that ek 6= ej. Then, we consider two cases.

Case 1: ek 6= e0. We argue that ek ∈ W f (v′′). Assume for contradiction that ek /∈ W f (v′′).

Then, for some ε > 0, we have f(vk + ε, v′j, v−kj) 6= ek. If f(vk + ε, v′j, v−kj) = ej, then by

monotonicity, we have f(vk + ε, vj, v−kj) = ej. This is a contradiction since ek ∈ W f (v).

If f(vk + ε, v′j, v−kj) = el /∈ {ej, ek}, then monotonicity and non-bossiness implies that

f(vk + ε, vj, v−kj) ∈ {el, ej}. But this contradicts ek ∈ W f (v).

Case 2: ek = e0. Since e0 ∈ W f (v), for any ε > 0 such that v̄i := vi − ε > 0 for all

i ∈ N , we have f(v̄1, . . . , v̄n) = e0. Note that v′i − ε = vi − ε = v̄i for all i 6= j for any ε.

Now, fix any ε > 0 such that v′j − ε > 0. Consider the valuation profile (v̄−j, v
′
j − ε). Since

f(v̄1, . . . , v̄n) = e0 and v̄j = vj − ε > v′j − ε, by monotonicity and non-bossiness, we have

f(v′j − ε, v̄−j) = e0. Hence, e0 ∈ W f (v′′).

This establishes that ek ∈ W f (v′′) for any ek 6= ej. Hence, W f (v)\{ej} ⊆ W f (v′′). Repeating

this argument for other elements of B(v, v′) one by one, we conclude that W f (v)\B(v, v′) ⊆
W f (v′). �

Now, let f be an implementable and non-bossy allocation rule satisfying Condition C∗.
Pick any pair of alternatives ej, ek ∈ A and any pair of valuation profiles v, v′ such that

1vj = 1v′j and 1vk = 1v′k . We will show that f satisfies both (1) and (2) of Definition 13.

1. Suppose ek ∈ W f (v) and ej ∈ W f (v′). We will show that ek ∈ W f (v′). Construct a

new type profile v′′ such that v′′i = min(vi, v
′
i) for all i ∈ N . Note that 1v′′j = 1vj = 1v′j

and 1v′′k = 1vk = 1v′k . By Lemma 8, ej, ek ∈ W f (v′′). Now, assume for contradiction

that ek /∈ W f (v′). We now consider various cases.

Case 1: ej, ek ∈ A \ {e0}. Since ek /∈ W f (v′), there exists ε > 0 such that f(v′k +

ε, v′−k) 6= ek. By monotonicity and non-bossiness, for all ε′ > 0 we have f(v′j + ε′, v′k +
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ε, v′−jk) 6= ek. Further, we show that f(v′j + ε′, v′k + ε, v′−jk) = ej for all ε′ > 0. To see

this, suppose f(v′j + ε′, v′k + ε, v′−jk) = el for some el /∈ {ej, ek}. Then, by monotonicity

and non-bossiness, we get f(v′j + ε′, v′k, v
′
−jk) = el, and this contradicts ej ∈ W f (v′).

Hence, f(v′j + ε′, v′k + ε, v′−jk) = ej for all ε′ > 0. Now, applying monotonicity and

non-bossiness again, for all ε′ > 0, we have

f(v′j + ε′, v′k + ε, v′′−jk) = ej. (2.1)

Since ek ∈ W f (v′′), we have f(v′j, v
′
k + ε

2
, v′′−jk) = ek. By Condition C∗, there is an

ε′ > 0 such that f(v′j + ε′, v′k + ε, v′′−jk) = ek. This contradicts Equation 2.1.

Case 2: ej = e0. We have to show that e0 ∈ W f (v′) implies ek ∈ W f (v′). Assume for

contradiction that ek /∈ W f (v′) but e0 ∈ W f (v′). For this, we first show that there is

some εi > 0 for every i ∈ N such that f(v′k + εk, {v′i − εi}i 6=k) = e0.

To see this, suppose f(v′k+εk, {v′i−εi}i 6=k) = ek for all {εi}i∈N . Fix any l 6= k. Then, by

Condition C∗, for every ε there is a δ such that, f(v′k+εk+ε, (v
′
l−εl+δ), {v′i−εi}i 6=k,l) = ek

for all {εi}i∈N . Fix some ε > 0. By, Condition C∗, we can choose εl = δ. Also, let

εk = ε. Hence, we get f(v′k + 2ε, v′l, {v′i − εi}i 6=k,l) = ek. Repeating this, we reach

f(v′k + (n− 1)ε, v′−k) = ek. Since n > 1, we get that ek ∈ W f (v′). But this contradicts

the fact that ek /∈ W f (v′).

Similarly, suppose f(v′k+εk, {v′i−εi}i 6=k) = el for some l 6= 0, k. Then, by monotonicity

and non-bossiness, we get that f({v′i − εi}i∈N) = el. This means f({v′i − εi}i∈N) 6= e0.

Now, choose ε′ < mini∈N εi. Then, consider the profile {v′i − ε′}i∈N . By repeated

application of monotonicity and non-bossiness, f({v′i − ε′}i∈N) 6= e0. This contradicts

e0 ∈ W f (v′).

This shows that there is some εi > 0 for all i ∈ N such that f(v′k+εk, {v′i−εi}i 6=k) = e0.

By monotonicity and non-bossiness, f(v′k + εk, {v′′i − εi}i 6=k) = e0. But ek ∈ W f (v′′)

implies that f(v′′k + εk, v
′′
−k) = ek (to remind, v′k = v′′k). But monotonicity and

non-bossiness implies that f(v′k + εk, {v′′i − εi}i 6=k) = ek. This gives us a contradiction.

Case 3: ek = e0. We have to show that if ej ∈ W f (v′) then e0 ∈ W f (v′). Assume

for contradiction e0 /∈ W f (v′). We first show that for some ε > 0 and ε′ > 0, f(v′j −
ε, {v′i − ε′}i 6=j) = ej.

To see this, suppose that f(v′j − ε, {v′i− ε′}i 6=j) = e0 for all ε, ε′. Then, by monotonicity

and non-bossiness, we see that f({v′i − min(ε, ε′)}i∈N) = e0 for all ε, ε′. But this

contradicts e0 /∈ W f (v′).

Similarly, suppose that f(v′j−ε, {v′i−ε′}i 6=j) = el for some l ∈ N\{j} and for all ε, ε′. By

Condition C∗, there is some δ := δε′,v′−lj < ε′ such that f(v′j− ε+ δ, v′l, {v′i− ε′}i 6=j,l) = el
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for all ε, ε′. Since δ is independent of ε, we can choose ε = δ
2

for every ε′. Hence, we have

f(v′j + δ
2
, v′l, {v′i − ε′}i 6=j,l) = el for every ε′. Further, since ej ∈ W f (v′), we know that

f(v′j + δ
2
, v′−j) = ej for all ε′. By repeatedly applying monotonicity and non-bossiness,

we get that f(v′j + δ
2
, v′l, {v′i − ε′}i 6=j,l) = ej for every ε′. This gives us a contradiction.

This shows that f(v′j − ε, {v′i − ε′}i 6=j) = ej for some ε > 0 and ε′ > 0. By repeatedly

applying monotonicity and non-bossiness, we get that f(v′j − ε, {v′′i − ε′}i 6=j) = ej for

some ε > 0 and ε′ > 0. Since e0 ∈ W f (v′′), we know that f({v′i −min(ε, ε′)}i∈N) = e0.

By repeatedly applying monotonicity and non-bossiness, we get that f(v′j − ε, {v′′i −
ε′}i 6=j) = e0. This is a contradiction.

This concludes the proof of Property (1) in Definition 13.

2. Property (2) in Definition 13 follows by applying Property (1). To see this, pick any

ej, ek ∈ A and v, v′ as in Definition 13. Suppose ej ∈ W f (v) but ek /∈ W f (v′). We need

to show that ek /∈ W f (v′). Assume for contradiction ek ∈ W f (v′). Then, by changing

the role of v and v′ in (1), we get that ek ∈ W f (v), which is a contradiction.

�

Step 1.2. In this step, we define an ordering on the set of utility vectors D. We denote

this ordering as �f . The anti-symmetric part of this ordering is denoted as �f and the

symmetric part is denoted as ∼f . For any i ∈ N and for any vi, v
′
i ∈ Vi with vi > v′i, we

define 1vi �f 1v′i . Further, for every i ∈ N and every vi ∈ Vi, we define 1vi ∼f 1vi (reflexive).

For any i, j ∈ N ∪ {0} (with i 6= j) and any vi ∈ Vi and vj ∈ Vj, we define

1. 1vi �f 1vj , if there exists a valuation profile v′ such that 1v′i = 1vi , 1v′j = 1vj , and

ei ∈ W f (v′) but ej /∈ W f (v′);

2. 1vi ∼f 1vj , if (a) there exists a valuation profile v′ such that 1v′i = 1vi , 1v′j = 1vj , and

ei, ej ∈ W f (v′) or (b) at every valuation profile v′ such that 1v′i = 1vi , and 1v′j = 1vj ,

we have ei, ej /∈ W f (v′).

We show that the binary relation � is well defined.

Lemma 9 Suppose f is implementable, non-bossy, and satisfies Condition C∗. Then, �f is

well-defined.

Proof : Fix some x, y ∈ D. If x, y ∈ Di for some i ∈ N , and x = 1vi and y = 1v′i with

vi > v′i then, by definition, x �f y. Similarly, if x ∈ Di and y ∈ Dj for some i 6= j, and

for every valuation profile v with 1vi = x and 1vj = y we have ei, ej /∈ W f (v), then, by

definition, x ∼f y.

So, we just need to consider the case where x ∈ Di and y ∈ Dj for some i 6= j, and there

is a valuation profile v with 1vi = x and 1vj = y with either ei or ej or both are in W f (v).
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We consider two cases.

Case 1. Suppose ei, ej ∈ W f (v). Now, consider any other valuation profile v′ such that

1vi = 1v′i = x and 1vj = 1v′j = y. By Proposition 1, ei ∈ W f (v′) if and only if ej ∈ W f (v′).

This means that the relation x ∼f y is well-defined.

Case 2. Suppose ei ∈ W f (v) but ej /∈ W f (v). Now, consider any other valuation profile v′

such that 1vi = 1v′i = x and 1vj = 1v′j = y. By Proposition 1, ej /∈ W f (v′). This means that

the relation x �f y is well-defined. �

Step 1.3. In this step, we show that �f is an ordering, i.e., the binary relation is reflexive,

complete, and transitive. The fact that �f is reflexive and complete is clear. We show that

�f is transitive.

Proposition 2 If f is an implementable and non-bossy allocation rule satisfying Condition

C∗, then �f is transitive.

Proof : For this, we will show that �f and ∼f are transitive, and this in turn will imply

that �f is transitive. Pick any x, y, z ∈ D such that x 6= y 6= z. We consider three cases.

Case 1. Suppose x, y, z ∈ Di for some i ∈ N and x = 1vi , y = 1v′i , z = 1v′′i . Suppose x �f y
and y �f z. Then, it must be vi > v′i > v′′i . By definition, we have x �f z.

Case 2. x, y ∈ Di but z ∈ Dj for some i, j where i 6= j. Suppose x = 1vi , y = 1v′i , and

z = 1vj . Suppose x �f y and y �f z. Note that x �f y implies vi > v′i. We consider two

subcases.

Case 2a. Suppose j 6= 0. Since y �f z, there is a valuation profile v′′ such that v′′i = v′i,

v′′j = vj, and ei ∈ W f (v′′) but ej /∈ W f (v′′). Now consider the type profile v̄, where v̄k = v′′k
if k 6= i and v̄i = vi. We show that ei ∈ W f (v̄) and ej /∈ W f (v̄), and this will show

that x �f z. Since ei ∈ W f (v′′), we know that f(v′i + ε, vj, v
′′
−ij) = ei for all ε > 0. By

monotonicity, f(vi + ε, vj, v
′′
−ij) = ei for all ε > 0. Hence, ei ∈ W f (v̄). Since ej /∈ W f (v′′),

there is some ε > 0 such that f(v′i, vj + ε, v′′−ij) 6= ej. By monotonicity and non-bossiness,

f(vi, vj + ε, v′′−ij) 6= ej. Hence, ej /∈ W f (v̄).

Case 2b. Suppose j = 0. So, z is the n-dimensional zero vector. Since y �f z, there is a

valuation profile v̄ with 1v̄i = 1v′i = y and ei ∈ W f (v̄) but e0 /∈ W f (v̄). Now, consider the

valuation profile v′′ ≡ (vi, v̄−i). Since vi > v′i, by monotonicity, we have ei ∈ W f (v′′).

Since e0 /∈ W f (v̄), there is some ε > 0 such that f({v̄k− ε}k∈N) 6= e0. Now, since vi > v′i,

by monotonicity and non-bossiness, f(vi − ε, {v̄k − ε}k 6=i) 6= e0. Hence, e0 /∈ W f (v′′).
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This completes the proof of Case 2.

Case 3. x ∈ Di, y ∈ Dj, z ∈ Dk, where i, j, k are distinct. Suppose x = 1vi , y = 1vj , and

z = 1vk . Here, we will consider transitivity of both �f and ∼f .

Case 3a - Transitivity of �f . Suppose x �f y and y �f z. Since x �f y, there is some

valuation profile v′′ where 1v′′i = x,1v′′j = y, and ei ∈ W f (v′′) but ej /∈ W f (v′′).

First, note that i 6= 0. To see this, since y �f z there is a valuation profile v′ where

1v′j = y,1v′k = z, and ej ∈ W f (v′) but ek /∈ W f (v′). But 1v′i = x implies that y �f x, which

contradicts x �f y. Hence, i 6= 0.

Suppose v′′k < vk. Since ei ∈ W f (v′′), for every ε > 0, f(v′′i + ε, v′′j , v
′′
k , v
′′
−ijk) = ei.

By monotonicity and non-bossiness, f(v′′i + ε, v′′j , vk, v
′′
−ijk) ∈ {ei, ek} for every ε > 0. But

f(v′′i + ε, v′′j , vk, v
′′
−ijk) = ek for any ε > 0 will imply that z �f y, and this will contradict

y �f z. Hence, f(v′′i + ε, v′′j , vk, v
′′
−ijk) = ei for every ε > 0. So, ei ∈ W f (v′′i , v

′′
j , vk, v

′′
−ijk).

Since y �f z, ek /∈ W f (v′′i , v
′′
j , vk, v

′′
−ijk). Hence, x �f z.

Suppose v′′k ≥ vk. As before, since ei ∈ W f (v′′), for every ε > 0, f(v′′i +ε, v′′j , v
′′
k , v
′′
−ijk) = ei.

By monotonicity and non-bossiness, f(v′′i + ε, v′′j , vk, v
′′
−ijk) = ei for every ε > 0. Hence,

ei ∈ W f (v′′i , v
′′
j , vk, v

′′
−ijk). Since y �f z, ek /∈ W f (v′′i , v

′′
j , vk, v

′′
−ijk). Hence, x �f z.

Case 3b - Transitivity of ∼f . Suppose x ∼f y and y ∼f z. Suppose for every valuation

profile v′ such that 1v′i = x and 1v′j = y, we have ei, ej /∈ W f (v′). Further, suppose for

every valuation profile v̄ with 1v̄j = y and 1v̄k = z, we have ej, ek /∈ W f (v̄). Consider any

valuation profile v′′ such that 1v′′i = x and 1v′′k = z. Assume for contradiction ei ∈ W f (v′′).

Consider the valuation profile v̂ such that 1v̂j = y and v̂l = v′′l for all l 6= j. Since 1v̂k = z,

by definition ej, ek /∈ W f (v̂). By monotonicity and non-bossiness, ei ∈ W f (v̂). But, this is

not possible since 1v̂i = x implies that ei, ej /∈ W f (v̂). This means that at every valuation

profile v′′ with 1v′′i = x and 1v′′k = z we must have ei, ek /∈ W f (v′′). Hence, x ∼f z.

Now, consider the case where y ∼f z and there is some valuation profile v′ such that

1v′j = y, 1v′k = z, and ej, ek ∈ W f (v′). If x = 1v0 , then by Proposition 1, ei ∈ W f (v′), and

this immediately implies that x ∼f z. Suppose x = 1vi and i 6= 0. Then, either j 6= 0 or

k 6= 0. We consider the case of j 6= 0 - the proof for k 6= 0 is similar. Since ej ∈ W f (v′),

f(v′j + ε, v′−j) = ej for all ε > 0. By monotonicity and non-bossiness, f(v′j + ε, vi, v
′
−ij) ∈

{ei, ej} for all ε > 0. If f(v′j + ε, vi, v
′
−ij) = ei, then by monotonicity and non-bossiness,

ei ∈ W f (v′j, vi, v
′
−ij). Since, x �f y and y �f z, by repeated application of Proposition 1, we

get that ej, ek ∈ W f (v′j, vi, v
′
−ij). This implies that x �f z. Similarly, if f(v′j+ε, vi, v

′
−ij) = ej,

then ej ∈ W f (v′j, vi, v
′
−ij). Again, using the fact that x �f y and y �f z, by repeated

application of Proposition 1, we get that ei, ek ∈ W f (v′j, vi, v
′
−ij). So, x �f z. �

Step 1.4. We conclude Step 1 by showing that f is a rationalizable allocation rule and

�f rationalizes f . Note that the ordering �f , defined in Steps 1.2 and 1.3, is a monotone
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ordering. By Lemma 7, for every valuation profile v, f(v) ∈ W f (v). Hence, by definition of

�f , Gf (v) �f 1vi for all i ∈ N ∪ {0}. This shows that f is a rationalizable allocation rule

and �f rationalizes f .

Step 2. In this step, we show that if f is a non-bossy allocation rule satisfying Condition

C∗, then it is implementable if and only if it is an SUM allocation rule. By Lemma 3,

an SUM allocation rule is implementable. Suppose f is an implementable and non-bossy

allocation rule satisfying Condition C∗. By Step 1, f can be rationalized by the monotone

ordering �f , defined as in Step 1.2. We say that �f has a utility representation if there

exists a utility function U : D → R such that for all x, y ∈ D we have U(x) > U(y) if and

only if x �f y.

Step 2.1. In this step, we will show that �f is separable in the sense of Definition 5. Let

Z := {x ∈ D : x = 1vi for some i ∈ N ∪ {0} and vi is rational}. Note that since the set

of rational numbers is countable, Z is a countable subset of D. Now, pick x, y ∈ D such

that x �f y. If x, y ∈ Di for some i ∈ N , then let x = 1vi and y = 1v′i . By definition,

vi > v′i. Then, we can find a rational v′′i such that vi > v′′i > v′i (this is because the set of

rational numbers is a dense set). Let z = 1v′′i . By definition, z ∈ Z and x �f z �f y. Now,

assume that x = 1vi and y = 1vj for some i, j ∈ N∪{0} with i 6= j. We consider various cases.

Case A. Suppose i 6= 0 and j 6= 0. Since x �f y, there is a valuation profile

v ≡ (vi, vj, v−ij) such that ei ∈ W f (v) but ej /∈ W f (v). Since ej /∈ W f (v), there is

some ε > 0 such that f(vi, vj + ε, v−ij) 6= ej. This means that ej /∈ W f (vi, vj + ε
2
, v−ij).

Consider any δ > 0. Since f(vi, vj + ε
2
, v−ij) 6= ej, by monotonicity and non-bossiness,

f(vi + δ, vj + ε
2
, v−ij) 6= ej. Since ei ∈ W f (v), f(vi + δ, vj, v−ij) = ei. By monotonicity and

non-bossiness, f(vi + δ, vj + ε
2
, v−ij) ∈ {ei, ej}. This implies that f(vi + δ, vj + ε

2
, v−ij) = ei.

Hence, ei ∈ W f (vi, vj + ε
2
, v−ij). Then, x = 1vi � 1vj+ ε

2
� 1vj = y. Since the set of ra-

tional numbers is dense, we can find a z ∈ Z arbitrarily close to 1vj+ ε
2

such that x �f z �f y.

Case B. Suppose i 6= 0 and j = 0. Since x �f y, there is a valuation profile (vi, v−i)

such that ei ∈ W f (vi, v−i) but e0 /∈ W f (vi, v−i). This means for some δ > 0, we have

f({vj − δ}j∈N) 6= e0. Suppose f({vj − δ}j∈N) = ek for some k 6= 0. Then, 1vk−δ �f y. Since

ei ∈ W f (vi, v−i), we get that x = 1vi �f 1vk �f 1vk−δ. Hence, x �f 1vk−δ �f y. Since the

set of rational numbers is dense, we can choose a z ∈ Z arbitrarily close to 1vk−δ such that

x �f z �f y.

Case C. Suppose i = 0 and j 6= 0. Since x �f y, there is a valuation profile

(vj, v−j) such that ej /∈ W f (vj, v−j) but e0 ∈ W f (vj, v−j). Then, for some ε > 0, we

have f(vj + ε, v−j) = ek, where k 6= j. This implies that 1vk �f 1vj+ε �f 1vj = y.

But e0 ∈ W f (vj, v−j) implies that x �f 1vk . Hence, x �f 1vj+ε �f y. Since the set of
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rational numbers is dense, we can find z ∈ Z arbitrarily close to 1vj+ε such that x �f z �f y.

This shows that �f is separable. Using Debreu (1954), �f has a utility representation.

Let U : D → R be a utility function representing �f . Without loss of generality, we can

assume U(1v0) = 0. Now, for every i ∈ N∪{0}, define Ui : Vi → R as follows: Ui(vi) = U(1vi)

for all vi ∈ Vi. Note that by the definition of �f , each Ui is well-defined and increasing.

Since U represents �f and f is a rationalizable allocation rule with �f being the cor-

responding ordering, we get that for all valuation profiles v, f(v) ∈ arg maxi∈N∪{0} Ui(vi).

Hence, f is an SUM allocation rule.

By Theorem 1, f is a strongly rationalizable allocation rule. Let � be the strict linear

ordering that strongly rationalizes f . By definition, for all x ∈ Df and for all y /∈ Df , x � y.

Further, for all v ∈ V if f(v) = ej, then 1vj � 1vi for all i 6= j. In that case, 1vj � 1vk for all

k 6= j and k ∈ arg maxi∈N∪{0} Ui(vi). Hence, f is an SUM allocation rule with order-based

tie-breaking.
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Chapter 3

Mechanism Design in Single

Dimensional Type Spaces

3.1 Introduction

We study a mechanism design problem over a connected graph in quasi-linear and private

value environment. The planner needs to use a subset of edges of the graph to connect to all

its vertices. For instance, consider a planner who wants to send data over a mobile network.

The nodes in the mobile network are different geographic locations and the planner must

send data to all such locations. These locations (nodes) on the network are connected by

edges which are communication links. Communication links are privately held by different

agents (firms), who incur costs when their links are used.

The cost of each agent is a private information. A mechanism consists of an allocation

rule and a payment rule for every agent. Our objective is to identify the set of all dominant

strategy incentive compatible mechanisms that can be designed in this environment. We

identify a rich class of allocation rules for this problem called generalized utility maximizers,

and show that there exist payment rules such that the generalized utility maximizers and the

corresponding payment rules are dominant strategy incentive compatible. Moreover, every

dominant strategy incentive compatible mechanism consists of an allocation rule which is a

generalized utility maximizer. 1

A generalized utility maximizer assigns a map, which we call a generalized utility function

(GUF), to every agent. A GUF assigns a real number to every profile of types. A generalized

utility maximizer chooses a subset of agents at every type profile such that (a) all the nodes

are connected (b) the sum of generalized utilities of agents is maximized.

We extend the characterization of this model to a model where the planner is choosing

a base of a matroid and the matroid is defined by the set of agents as the ground set

and a family of subsets of agents being independent set. This model allows us to capture

1The well-known revenue equivalence result holds in this environment. Hence, identifying the allocation

rule of a dominant strategy incentive compatible mechanism also pins down the payment rules.
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the connected graph model and many well studied models in the literature, including the

single object auction model, the multi-unit homogeneous goods model with unit demand

and the heterogeneous good auction with dichotomous preferences. Thus, we provide a

complete characterization of dominant strategy incentive compatible mechanisms for a family

of problems where the type of an agent is a single number (i.e., type space is one dimensional)

and the set of alternatives exhibits certain structure.

We sharpen our characterization by adding two reasonable axioms, a suitable version of

anonymity and non-bossiness, on top of incentive compatibility. We show that only dominant

strategy incentive compatible mechanisms are the Groves mechanism, i.e., uses an efficient

allocation. This extends and unifies the similar results which have been proved in specific

models. We discuss these results later.

3.1.1 Relation of Our Result to the Literature

In our connected graph model, any allocation rule implementable by a dominant strategy

incentive compatible mechanism can be characterized by a simple monotonicity condition

(Myerson, 1981). Monotonicity is the following requirement; fixing the type of other agents

if an agent is chosen by the allocation rule at a type, then he continues to be chosen by the

allocation rule at a higher type. While monotonicity is a simple condition to interpret and

use, it is only an implicit characterization of an implementable allocation rule. In contrast,

our characterization of generalized utility maximizer explicitly describes the parameters of

the mechanism in these problems.

Our characterization is in the spirit of a seminal contribution of Roberts (1979) 2. Roberts

shows that with at least three alternatives and in the multi-dimensional unrestricted domain,

an allocation rule is implementable if an only if it is an affine maximizer. Our characteri-

zations are for the restricted single dimensional type spaces and it provides a richer class of

implementable allocation rules than Roberts (1979).

In single dimensional type spaces, several papers show that a mechanism is anonymous in

utility, dominant strategy incentive compatible, individually rational and has non-negative

payments if and only if it is the VCG (Vickrey, 1961; Clarke, 1971; Groves, 1973) mechanism.

For instance, Ashlagi and Serizawa (2011) characterize the VCG mechanism for homogeneous

goods with unit demand with all these axioms and Mukherjee (2014) characterizes the VCG

mechanism for single object auction considering all these axioms. However, we characterize

all dominant strategy incentive compatible mechanisms in a class of single dimensional type

spaces without imposing any condition on mechanism.

A closely related paper that deserves special attention is of Bikhchandani et al. (2011).

They consider selling bases of a matroid using an ascending Vickrey auction. In our matroid

model, we also consider the set of alternatives as the set of all bases of a matroid. But

2See Mishra and Sen (2012); Carbajal et al. (2013); Mishra and Quadir (2014) for various generalizations

of Roberts’ theorem for restricted domains.
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our model differs from theirs in the following ways, (a) we construct our bases of a matroid

considering subsets of agents while they construct bases of a matroid considering subsets of

objects, (b) we characterize all dominant strategy incentive compatible mechanisms while

they design an ascending Vickrey auction and show that truthful bidding is an ex post

equilibrium.

Our paper also contribute to the growing literature of characterizing the fair mechanisms.

A fairness criteria that is very common in the literature is anonymity. In this spirit, we have

provided a characterization of Groves mechanisms using a suitable version of anonymity

and non-bossiness along with incentive compatibility. Recently, using a suitable version of

anonymity along with some other conditions, fair mechanisms have been characterized both

in quasi-linear (Ashlagi and Serizawa, 2011; Andersson et al., 2014) and non-quasilinear

setting (Sakai, 2008; Saitoh and Serizawa, 2008; Morimoto and Serizawa, 2014) in specific

settings.

3.2 The Connected Graph Model

Let N := {1, 2, . . . , n} be a finite set of agents. We consider a connected graph G = (M,E)

where M is the set of nodes and E is the set of edges of the graph. We assume that |N | = |E|
and each edge is owned by an unique agent in N . For notational simplicity, we will refer to

an edge by the agent who owns it. Each agent has a private valuation which can be thought

of as the weight of the edge of the graph owned by that agent.

Let the set of all possible valuations of agent i be Vi = (0, βi) where βi ∈ R++∪{∞}. Note

that we do not allow for zero valuations. We use the standard notation v = (v1, v2, . . . , vn)

as the vector of valuations of agents and v−i as the vector of valuations of all agents except

agent i. Similarly V−i is the set of all profiles of valuations without agent i. Let V :=

V1 × V2 × · · · × Vn.

A tree is a acyclic connected graph. A spanning tree of the graph G = (M,N) is a

subgraph (M,N ′) such that it is a tree i.e, a tree that connects all the nodes of the graph.

There can be many spanning trees of the graph G. Let X be the set of all the spanning trees

of G. Without loss of generality, we will denote a spanning tree by the set of edges only.

We consider a social alternative as a spanning tree. We did not consider a cycle as an

alternative because a cycle is an inefficient way to connect all vertices of a graph. Thus,

spanning tree ensures some minimal efficiency. Another possibility is to consider the set

of alternatives as the set of all trees. We did not consider this because our objective is

to connect all vertices of a graph. In particular, we take into our consideration the case

of telecommunication network where an outsider wants to use the entire network. It is

interesting exercise to consider the set of alternatives as the set of all trees but it constitutes

a new model.

An allocation rule is a mapping f : V → X - note that f(v) is a spanning tree. Notice

that we do not allow for the fact that no spanning tree is selected at some valuation profile.
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Payments are allowed in this model. We define the payment function of an agent i ∈ N as a

mapping pi : V → R. A mechanism is a tuple (f, p) where p = (p1, p2, . . . , pn) is a collection

of payment functions. Net utility of an agent i ∈ N from the mechanism (f, p) when his true

type is vi and the reported profile is (v′i, v−i) is

vi1
f(v′i,v−i)
i − pi(v′i, v−i),

where for every agent i ∈ N and for every spanning tree x ∈ X, we denote by 1xi to indicate

if agent i is in the spanning tree x i.e., 1xi = 1 if i ∈ x and 1xi = 0 if i /∈ x.

Definition 14 An allocation rule f is implementable (in dominant strategies) if there

exist payment functions (p1, p2, . . . , pn) such that for every agent i ∈ N and for every v−i ∈
V−i

vi1
f(vi,v−i)
i − pi(vi, vi) ≥ vi1

f(v′i,v−i)
i − pi(v′i, v−i) ∀vi, v′i ∈ Vi

In this case, we say (p1, p2, . . . , pn) implement f and the mechanism (f, p1, p2, . . . , pn) is

incentive compatible.

It is well-known that implementability is equivalent to the following monotonicity condition

- see (Myerson, 1981; Nisan, 2007).

Definition 15 An allocation rule f is monotone if for every i ∈ N , for every v−i ∈ V−i,
for every vi, v

′
i ∈ V−i with vi > v′i and 1

f(v′i,v−i)
i = 1, we have 1

f(vi,v−i)
i = 1.

3.2.1 The Complete Characterization

We now provide a complete characterization of implementable allocation rules for the con-

nected graph model. Unlike the monotonicity characterization, our characterization is in the

spirit of Roberts (1979) by describing the parameters of the mechanism explicitly.

A cut of a graph is the partitioning of the nodes of the graph into two parts. Formally,

a cut in the graph G = (M,N) is the partitioning of the nodes (S,M \ S) with S 6= ∅ and

S 6= M . Let the set of edges crossing this cut be N(S). At a valuation profile (vi, v−i),

an edge is called the heavy edge of a cut if it has the highest valuation among all edges

crossing this cut of the graph.

Define a generalized utility function (GUF) for agent i as a mapping ui : V → R.

A GUF assigns a real number to every valuation profile. We impose the following condition

on the collection of GUFs (u1, u2, . . . , un).

Definition 16 The GUFs (u1, u2, . . . , un) satisfy top single crossing if for every i ∈ N ,

for every v−i ∈ V−i, for every vi, v
′
i ∈ Vi with vi > v′i, for some cut of the graph (S ′,M \ S ′)

such that i ∈ N(S ′) and ui(v
′
i, v−i) ≥ maxk∈N(S′)\{i} uk(v

′
i, v−i), there exists a cut (S,M \ S)

such that i ∈ N(S) and ui(vi, v−i) > maxk∈N(S)\{i} uk(vi, v−i).
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The top single crossing condition requires that for every valuation profile of other agents,

if agent i is one of the heavy edges in some cut when his valuation is v′i, then he must be

unique heavy edge for some cut when his valuation is increased to vi.

The standard inter-agent crossing condition that is used in the literature is “single cross-

ing” which implies top single crossing.

Definition 17 GUFs (u1, . . . , un) satisfy single crossing if for every i, j ∈ N , for every

v−i ∈ V−i, for every vi, v
′
i ∈ Vi with vi > v′i, we have ui(vi, v−i) − ui(v′i, v−i) > uj(vi, v−i) −

uj(v
′
i, v−i).

A GUF ui is increasing if for every v−i ∈ V−i and for every vi, v
′
i ∈ Vi with vi > v′i, we

have ui(vi, v−i) > ui(v
′
i, v−i).

Lemma 10 If GUFs (u1, u2, . . . , un) satisfy single crossing and ui is increasing for every

i ∈ N , then they satisfy top single crossing.

Proof : Consider an agent i ∈ N and a cut of the graph (S,M \ S) such that i ∈ N(S).

Let vi, v
′
i ∈ Vi with vi > v′i and ui(v

′
i, v−i) ≥ maxk∈N(S)\{i} uk(v

′
i, v−i). Since ui is increasing,

we have ui(vi, v−i) > ui(v
′
i, v−i). Further by single crossing, we have ui(vi, v−i)−ui(v′i, v−i) >

uj(vi, v−i) − uj(v′i, v−i) for all j 6= i. Since this is true for all j 6= i, this is also true for the

cut (S,M \ S) such that i ∈ N(S) and ui(vi, v−i) − ui(v′i, v−i) > uj(vi, v−i) − uj(v′i, v−i) for

all j ∈ N(S). Using the fact that ui(v
′
i, v−i) ≥ uj(vi, v−i) for all j ∈ N(S) \ {i}, we have

ui(vi, v−i) > uj(vi, v−i) for all j ∈ N(S) \ {i}. Thus, there exists a cut (S,M \ S) such that

i ∈ N(S) and we have ui(vi, v−i) > maxk∈N(S)\{i} uk(vi, v−i). �

We now introduce a class of implementable allocation rules.

Definition 18 An allocation rule f is a generalized utility maximizer if there ex-

ist GUFs (u1, u2, . . . , un) satisfying top single crossing such that for every v ∈ V , f(v) ∈
arg max

x∈X

∑
i∈N ui(vi, v−i)1

x
i .

A generalized utility maximizer considers the connected graph G = (M,N) and at every

valuation profile (vi, v−i) assigns a weight ui to the edge owned by agent i. Then, it selects

the maximum weight spanning tree of this weighted graph. In other words, it selects a

spanning tree which maximizes the sum of generalized utility functions.

Note that the utility in GUF has nothing to do with the utility in a mechanism. It is an

artificial construct used by the mechanism designer.

The generalized utility maximizer includes a rich class of allocation rules. The following

examples illustrate this.

Example 5
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Figure 3.1: Illustration of generalized utility maximizer.

Consider the following graph of three edges in Figure 3.1,

Let the edges be {e1, e2, e3}. Every agent has some valuation for owning an edge. Define

a generalized utility function at valuation profile (vi, v−i) as ui : V → R+, for every agent

i = 1, 2, 3 where u1(v1, v−1) = v2
1, u2(v2, v−2) = 2v2 and u3(v3, v−3) = v3. Notice that these

generalized utility functions do not depend on other agents’ valuations. We can assign the

weights of u1, u2 and u3 to the edges e1, e2 and e3 of the graph in Figure 3.1 respectively.

It can be very easily verified that these GUFs satisfy single crossing. Hence, by Lemma 10

they satisfy top single crossing. Therefore, these utility functions define a generalized utility

maximizer.

We give another example where the generalized utility functions of agents depend on the

valuations of other agents.

Example 6

Consider the graph in Figure 3.1 where there are three edges. Every agent has some valuation

for owning the edge. Define a generalized utility function at valuation profile (vi, v−i) for

every agent i = 1, 2, 3 as u1(v1, v−1) = v2
1 +v2+v3, u2(v2, v−2) = v1+2v2+v3 and u3(v3, v−3) =

v1 + v2 + 3v3. Notice that these GUFs also depend on other agents’ valuations. Now assign

the weights u1, u2 and u3 to edges e1, e2 and e3 of the graph in Figure 3.1 respectively. It can

easily be verified that these GUFs satisfy single crossing. Hence, by Lemma 10 they satisfy

top single crossing. Therefore, they define a generalized utility maximizer.

First, we show that a generalized utility maximizer is implementable.

Lemma 11 Every generalized utility maximizer is implementable.

Proof : Consider a generalized utility maximizer f and let (u1, u2, . . . , un) be the corre-

sponding GUFs satisfying top single crossing. Fix an agent i ∈ N and v−i ∈ V−i. Let

vi, v
′
i ∈ Vi with vi > v′i. Suppose i ∈ f(v′i, v−i). This implies that i must be one of the heavy

edges for some cut (S ′,M \S ′). By the top single crossing, there exists a cut (S,M \S) such

that i ∈ N(S) and ui(vi, v−i) > maxk∈N(S)\{i} uk(vi, v−i). Hence, i is the unique heavy edge
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of the cut (S,M \S). Since a maximum weight spanning tree must choose the unique heavy

edge from every cut, i ∈ f(vi, v−i). �

Our main result shows that generalized utility maximizers are the only implementable

allocation rule in the connected graph model.

Theorem 4 An allocation rule is implementable if and only if it is a generalized utility

maximizer.

Proof : Lemma 11 showed that every GUF maximizer is implementable. To prove the

converse, suppose f is implementable. Fix an agent i and v−i ∈ V−i. Define κfi (v−i) :=

inf {vi ∈ Vi : 1
f(vi,v−i)
i = 1}. Since Vi is a bounded interval, κfi is well-defined. Further, since

f is implementable and hence monotone, for every agent i ∈ N , for every v−i ∈ V−i and

for every vi ∈ Vi if vi ≥ κfi (v−i), we have 1
f(vi,v−i)
i = 1 and for every vi < κfi (v−i) we have

1
f(vi,v−i)
i = 0.

Define for every i ∈ N and for every (vi, v−i),

ui(vi, v−i) := vi − κfi (v−i).

By definition, for all i ∈ f(vi, v−i), we have ui(vi, v−i) = vi − κfi (v−i) ≥ 0 and for all

i /∈ f(vi, v−i), we have ui(vi, v−i) ≤ 0. Hence, we have f(vi, v−i) ∈ arg max
x∈X

∑
i∈N

ui(vi, v−i)1
x
i .

Now, we prove that the GUFs (u1, u2, . . . , un) as constructed above satisfy top single

crossing. Fix an agent i ∈ N and vi, v
′
i ∈ Vi with vi > v′i. Consider v−i ∈ V−i and a cut of the

graph (S ′,M \ S ′) such that i ∈ N(S ′). Let ui(v
′
i, v−i) ≥ maxk∈N(S′)\{i} uk(v

′
i, v−i). By the

construction of the GUF ui, we have ui(vi, v−i) = vi − κfi (v−i) > v′i − κ
f
i (v−i) = ui(v

′
i, v−i).

Hence, ui(vi, v−i) > ui(v
′
i, v−i). This implies that ui is an increasing function. We know

that ui(v
′
i, v−i) ≥ maxk∈N(S′)\{i} uk(v

′
i, v−i) for the cut (S ′,M \ S ′) of the graph. Suppose

i ∈ f(v′i, v−i), then we have ui(v
′
i, v−i) ≥ 0. Suppose i /∈ f(v′i, v−i), then some other agent

j ∈ N(S ′) , we have j ∈ f(v′i, v−i) (This is because every spanning tree must choose at least

one edge from every cut). This implies that ui(v
′
i, v−i) ≥ uj(vi, v−i) ≥ 0. Therefore, for both

the cases, we have ui(v
′
i, v−i) ≥ 0. Since ui is increasing, we have ui(vi, v−i) > ui(v

′
i, v−i) ≥ 0.

This implies that vi > κfi (v−i) and hence i ∈ f(vi, v−i).

Since f(vi, v−i) ∈ arg max
x∈X

∑
i∈N

ui(vi, v−i)1
x
i , i belongs to the maximum weight spanning

tree chosen by f at valuation profile (vi, v−i). This implies that there exists a cut (S,M \S)

such that for every j ∈ N(S) \ {i}, we have j /∈ f(vi, v−i).
3 This implies that for every

j ∈ N(S) \ {i}, we have uj(vi, v−i) = vj − κfj (v−j) ≤ 0 < ui(vi, v−i). This proves the claim.

�

3To see this, suppose for every cut (S,M \ S), there is an edge j ∈ N(S) \ {i} such that j ∈ f(vi, v−i),

then we can remove i from f(vi, v−i) and the resulting graph will still be a spanning tree. This contradicts

the fact that f(vi, v−i) is a spanning tree.
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3.2.2 Payments and Revenue Equivalence

In Theorem 4, we characterize only the implementable allocation rules. However, this also

characterizes the set of dominant strategy incentive compatible mechanisms by using the

revenue equivalence principle.

Definition 19 An allocation rule f satisfies revenue equivalence if for every (p1, . . . , pn)

and (p′1, . . . , p
′
n) that implement f , we have for every i ∈ N and for every v−i ∈ V−i, a

mapping hi : V−i → R such that

p′i(vi, v−i) = pi(vi, v−i) + hi(v−i)

for all vi ∈ Vi.

Revenue equivalence holds in our model since Vi is connected for every i ∈ N (Nisan, 2007;

Heydenreich et al., 2009).

An implication of revenue equivalence is that identifying one payment rule that imple-

ments an allocation rule also identifies the entire class of payment rules (upto an additive

constant). Given an implementable allocation rule f (a generalized utility maximizer), define

for every i ∈ N and for every (vi, v−i), pi(vi, v−i) = 0 if i /∈ f(vi, v−i) and pi(vi, v−i) = κfi (v−i)

if i ∈ f(vi, v−i) where κfi is as defined in the proof of Theorem 4. It is easy to verify that this

payment rule implements f if f is monotone. By the revenue equivalence principle, we can

characterize the entire class of payment rules which implement monotone allocation rule f .

3.3 The Matroid Model

We now generalize the ideas we used in the connected graph model to a more general model.

We use the matroid theory to formulate a general model which captures a class of mechanism

design problems with single dimensional type spaces like multi-unit homogeneous goods and

heterogeneous good auction with dichotomous preferences etc.

A matroid is a set system that has specific requirements.

Definition 20 A matroid M is an ordered pair (N, I) where N is a finite ground set and

I is a set of subsets of N satisfying the following axioms,

1. ∅ ∈ I. (Non-emptiness)

2. If I ∈ I and I ′ ⊆ I, then I ′ ∈ I. (Heredity)

3. If I1, I2 ∈ I and |I1| < |I2|, then there exists an element i ∈ I2−I1 such that I1∪{i} ∈ I.

(Exchange property)
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The family of subsets of N that belongs to I is called independent set; all other subsets

of N are called dependent set. Maximal independent set of matroid M is called a basis

of M, set of all bases is denoted as B(M)

To define a matroid model, we take the set of agents N := {1, 2, . . . , n} as the ground

set of a matroid. A base B of a matroid is the maximal independent set of the matroid

M. There are many bases of the matroid M. One of the salient features of the bases of a

matroid is that they have the same number of elements. Let B be the set of all bases of the

matroidM. The set of bases of our matroid form the set of alternatives. Thus, a base is an

alternative, which is a subset of agents. Defining the set B appropriately defines a specific

problem.

Every agent i ∈ N has a weight that we call the valuation of the agent. The valuation

of the agent is his private information. Like in the previous section, let Vi = (0, βi), where

βi ∈ R++ ∪ {∞} be the set of all possible valuations of agent i and V := V1 × V2 × · · · × Vn
be the space of valuation profiles. As before v−i and V−i are the vector of valuations of all

agents and valuation profiles of agents except agent i respectively.

Define an allocation rule as a mapping f : V → B. Notice that now an allocation rule

picks a base of the matroid M. Payment for an agent i ∈ N is a mapping pi : V → R.

Thus, a matroid mechanism is a tuple (f, p) where p = (p1, . . . , pn) is a collection of payment

functions. The definitions of implementability and monotonicity are exactly the same as in

the connected graph model. Only the interpretation of allocation rule has been changed.

Now it is a base of a matroid, earlier it was a spanning tree.

3.3.1 The Complete Characterization For The Matroid

Model

In this section, we provide a complete characterization of implementable allocation rules

for the matroid model. Like the connected graph model, we define top single crossing and

generalized utility maximizer for this model.

Define a co-circuit C∗ of a matroid M as follows: A set C∗ is a co-circuit of M if

and only if C∗ has a minimal non-empty intersection with every basis of M. Notice the

connection between co-circuit of a matroid and a cut of a connected graph. Every cut of a

graph intersects minimally with a spanning tree4 like every co-circuit of a matroid intersects

with every basis of a matroid. An element is called a heavy element of a co-circuit C∗ if it

has the highest weight among all the elements of the co-circuit. There is an algorithm which

uses this property of co-circuits to find out the maximum weight base (it was developed by

Dawson (1980)). We will use this also for our proof.

Define a generalized utility function (GUF) ui : V → R and call it generalized utility

function (GUF). Note that the the utility function is dependent on every agent’s valua-

4A base corresponds to a spanning tree for the the connected graph model.
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tions and may be negative. We impose the following condition on the collection of GUFs

(u1, u2, . . . , un).

Definition 21 The GUFs (u1, u2, . . . , un) satisfy top single crossing if for every i ∈ N ,

for every v−i ∈ V−i, for every vi, v
′
i ∈ Vi with vi > v′i, for some co-circuit C∗ of a matroid M

such that i ∈ C∗ and ui(v
′
i, v−i) ≥ maxk∈C∗\{i} uk(v

′
i, v−i), then there exists a C∗∗ such that

i ∈ C∗∗ and ui(vi, v−i) > maxk∈C∗∗\{i} uk(vi, v−i).

Similar to the connected graph, we introduce a class of implementable allocation rules

for general matroid model.

Definition 22 An allocation rule f is a generalized utility maximizer if there ex-

ist GUFs (u1, u2, . . . , un) satisfying top single crossing such that for every v ∈ V , f(v) ∈
arg max

B∈B

∑
i∈N ui(vi, v−i)1

B
i , where 1Bi = 1 if i ∈ B and 1Bi = 0 if i /∈ B.

We can also prove a lemma like Lemma 10 showing that if GUFs satisfy single crossing

and ui is increasing, then they satisfy top single crossing for the matroid model.

Now we state the main result which shows that generalized utility maximizers are the

only implementable allocation rules in the matroid model.

Theorem 5 An allocation rule is implementable if and only if it is a generalized utility

maximizer.

Proof : The proof of this theorem is similar to the proof of Theorem 4. See the details in

Appendix B. �

Our result says that given the valuations of the agents, we can construct utility functions

for every agent such that these utility functions depend not only on an agent’s own valuation

but also on the valuations of all other agents. After constructing the utility functions,

the allocation rule maximizes the sum of utilities and this generalized utility maximizer is

equivalent to implementable allocation rules. Generalized utility maximizers are similar to

implementing the efficient allocation rules in the interdependent values setting (Cremer and

McLean, 1985; Maskin, 1992; Dasgupta and Maskin, 2000; Perry and Reny, 2002).

Like in the previous section, revenue equivalence principle holds here too. Therefore,

by characterizing the implementable allocation rules, we characterize the set of dominant

strategy incentive compatible mechanisms by the revenue equivalence principle.

This is a very general result in a sense that it covers many single dimensional type spaces

like multi-unit auction model with unit demand, the connected graph model, heterogeneous

good auction model with dichotomous preferences and single object auction model. In the

literature, the VCG mechanism has been characterized in various single dimensional domains

considering the following conditions - anonymity in utility, implementability, individual ra-

tionality and non-negative payments. We characterize all dominant strategy incentive com-

patible mechanisms without any extra conditions. We discuss various applications of this

model in the next subsection.
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3.3.2 Applications

The matroid model unifies many single dimensional mechanism design problems. Now, we

discuss various applications of our result.For instance, the connected graph model, the multi-

unit auction model, heterogeneous good auction with dichotomous preferences model all can

be formulated as a specific types of matroid problem.

3.3.2.1 The connected Graph Model

We can formulate the connected graph model as a matroid known as the graphic matroid.

Let G = (M,N) be a connected graph and define a set I = {F ⊆ N : (M,F ) is a tree}. It

can easily be verified that the set I satisfies all the three axioms of matroid. Thus, the set I
constitutes an independent set of the matroid where N is the ground set which is the set of

edges. Therefore, a graphic matroid is the matroid (N, I) where N is the set of edges and I
is the set of all trees of the graph G. Since we have assumed that each agent owns a unique

edge, N also denotes the set of agents.

Notice that the bases of the graphic matroid is the set of all spanning trees of the graph

G. Hence, our result applies here and Theorem 4 is a corollary to Theorem 5.

3.3.2.2 Multi-unit Auction With Unit Demand

Consider the problem where k homogeneous units of a good are available to be sold and

there are n agents. Let the set of agents be N = {1, 2, . . . , n}. Every agent i demands a

single unit and has some private value vi for the unit. Assume n ≥ k. Our objective is to

characterize incentive compatible mechanisms to allocate the objects to agents.

We show that this problem can be formulated as a matroid known as the uniform matroid.

Let N be a ground set. Define the following collection of subsets of N by:

I = {X ⊆ N : |X| ≤ k} (3.1)

It can be easily verified that the set I satisfies the three axioms of independent set.

Hence, I is an independent set of the matroid on N .

Thus, (N, I) is a matroid. This is called the uniform matroid. A basis here is a subset

of N of size k and the set of bases is B = {X ⊆ N : |X| = k}. Notice that a basis is a subset

of agents who can be allocated all the units. Hence, this auction setting is a special type of

a matroid problem and our result applies here.

A very special case of this problem is when only a single unit is for sale. In this case,

consider the set B as the collection of 1-element subsets of N . Clearly, it is a matroid and B
is the set of bases. So, our result also applies to the single object auction model.
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3.3.2.3 Heterogeneous Good Auction With Dichotomous Preferences

In this model, there is a finite set of items, denoted by M = {1, . . . ,m}. Each agent i ∈ N ,

has a set Di ⊆ M that he desires. The interpretation of Di is that agent i realizes his

valuation vi if and only if he gets an item from Di. If agent i is given an item outside Di,

then he gets zero utility from it.

We assume that for every agent i, his desired set of items Di is common knowledge. An

alternative in this model is a matching of items to agents such that no item is assigned

to more than one agent and no agent is assigned more than one item. We assume that the

collection of desired set of items {D1, . . . , Dn} is such that there exists a matching where

each item in M can be allocated to an agent who desires it. We call such a matching a

perfect matching. The set of all perfect matchings is the set of alternatives in this model.

So, an allocation rule chooses a perfect matching in this problem.

We argue now that the set of alternatives correspond to the set of bases of a matroid. The

fact that the set of perfect matchings form a matroid is well known (Oxley, 2006)) - these

are called transversal matroids. We formally define transversal matroids in Appendix A.

The following example explains the ideal of perfect matching.

Example 7

Consider the problem where two non-identical items are for sale and there are three buyers.

Thus, M = {a, b} and N = {1, 2, 3}. Suppose that the desired set of items for agents 1, 2

and 3 are D1 = {a, b}, D2 = {a} and D3 = {a, b} respectively. We can construct a bipartite

graph like in Figure 3.2.

1

2

3

a

b

Figure 3.2: Bipartite graph to explain perfect matching.

We denote when agent i is matched with item a by ia. In Figure 3.2, there are four

perfect matchings.They are as follows, {1a, 3b}, {1b, 2a}, {1b, 3a} and {2a, 3b}. Thus, we

see that as we determine a perfect matching, we also determine the subset of agents who are

matched in it.

Notice that in our matroid model, each base corresponded to a unique subset of agents

but in this matroid, each base correspond to a unique perfect matching. This means that the
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same subset of agents may be involved in two different bases (alternatives) of the matroid.

For example, in Figure 3.2, we see that the subset of agents {1, 3} is matched in to ways

{1a, 3b} and {1b, 3a}. But this does not create additional complications since two perfect

matchings that involve the same set of agents will give the exact same utility to the agents.

So, these bases can be treated as equivalent. Thus, we can apply Theorem 5 to this model

also.

Note that this problem can not be formulated in the uniform matroid. To see this, modify

the desired set of agent 3 in the above example as D3 = {a} keeping all other features same.

We have the following bipartite graph with this modification.

1

2

3

a

b

Figure 3.3: Bipartite graph for two items and three agents.

But in the graph in Figure 3.3, we see that {2, 3} can not be matched perfectly. Therefore,

it can not be an alternative in this model. However, it forms a basis in the uniform matroid.

This is because we have defined the set of bases in the uniform matroid as the family of all

subsets of N which has m elements.

3.4 Anonymity and Efficient Allocation Rule

In this section, we characterize a specific class of dominant strategy incentive compatible

mechanisms. In particular, we characterize the Groves mechanisms by imposing two more

plausible axioms on mechanisms on top of incentive compatibility.

A standard exercise in mechanism design is to characterize the mechanism imposing some

“good” criteria. One of the good criteria is fairness. Thus, we want to impose anonymity in

utility, a fairness notion on mechanism.

Several papers in the literature focus on characterizing the VCG mechanism in specific

models by imposing axioms like anonymity in utility, incentive compatibility and individual

rationality - (Ashlagi and Serizawa, 2011; Mukherjee, 2014). But in our setting, especially

for the connected graph model, there is incompatibility between efficiency and anonymity in

utility. We discuss this tension later. We only give the characterization for the connected

graph model. The extension to a matroid model can be done straightforwardly.

49



In auctioning of k multi-unit homogeneous goods, we pick the k highest valuation bidders

in an efficient allocation rule. But in the connected graph problem, though an allocation

rule picks (m− 1) agents at every valuation profile (m is the number of nodes), the efficient

allocation rule need not pick the (m − 1) highest valuation agents. The following example

illustrates this:

Example 8

Consider the graph in Figure 3.4 with four nodes and five edges where the number on edges

is the valuation of agents who own them.

a b

c d

e1 = 5

e2 = 4
e3 = 3

e4 = 2

e5 = 1

Figure 3.4: Illustration of not top 3 edges will be chosen.

Let v = (5, 4, 3, 2, 1) be a valuation profile of agents. We have to pick exactly 3 edges

to get a spanning tree in this graph because it has four nodes. If we pick the top three

valuations of agents in this graph, then they form a cycle. Thus, efficient allocation can not

pick top three valuations in this graph.

However, if we consider that there are three copies of a good and 5 agents who are

interested in buying at most one unit. A valuation profile of agents is v = (5, 4, 3, 2, 1).

Then, efficient allocation rule will allocate one copy each to the agents who have valuations

5, 4 and 3 respectively.

This particular property of a maximum value weight spanning tree makes implementabil-

ity, anonymity in utility and efficiency incompatible.

An efficient allocation rule f ∗ is a spanning tree that carries the maximum weight for

every valuation profile v.

Definition 23 An allocation rule f ∗ is efficient if for every v ∈ V∑
i∈N

vi1
f∗(v)
i ≥

∑
i∈N

vi1
x
i for all x ∈ X
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Note that we can have more than one efficient allocation rule if agents do not have distinct

valuations.

Definition 24 A mechanism (f, p) is anonymous in utility if for every v = (v1, v2, . . . , vn),

for every i, j ∈ N and for every v′ such that v′i = vj, v
′
j = vi, v

′
k = vk for all k /∈ {i, j}, we

have

v′i1
f(v′)
i − pi(v′) = vj1

f(v)
j − pi(v)

and

v′j1
f(v′)
j − pj(v′) = vi1

f(v)
i − pi(v).

Anonymity in utility implies that if two agents exchange their valuations, then their net

utilities are also exchanged.

Definition 25 A mechanism (f, p) is individually rational if for every i ∈ N and every

v ∈ V , we have vi1
f(v)
i − pi(v) ≥ 0.

We allow only non-negative payment for every agent, i.e., pi(v) ≥ 0 for every i ∈ N . To

show incompatibility, we need the following lemmas which are consequences of anonymity in

utility, individual rationality, incentive compatibility, and non-negative payment.

Lemma 12 Let (f, p) be an individually rationality and incentive compatible mechanism.

For every v ∈ V if 1
f(vi,v−i)
i = 0, then pi(vi, v−i) = 0.

Proof : From individual rational of mechanism (f, p), we have vi1
f(v)
i − pi(v) ≥ 0. Since

1
f(v)
i , we have pi(v) ≤ 0. From the assumption of non-negative payment, we have pi(v) ≥ 0.

Hence, we have pi(v) = 0. �

Lemma 13 If a mechanism (f, p) is incentive compatible, then for every i ∈ N , for every

v ∈ V and for every v′i ∈ Vi with 1
f(v′i,v−i)
i = 1

f(vi,v−i)
i , we have pi(v

′
i, v−i) = pi(vi, v−i).

It is a well-know result in the literature. We give its proof in Appendix B.

Lemma 14 Let (f, p) be an anonymous in utility, individually rational and incentive com-

patible mechanism. For any i, j ∈ N , vi ∈ Vi, vj ∈ Vj and v−ij ∈ V−ij with vi < vj if

1
f(vi,vj ,v−ij)
i = 1, then 1

f(v′i,vj ,v−ij)
j = 1 when v′i = vj.

Proof : Consider an anonymous in utility, individually rational and incentive compatible

mechanism (f, p). Fix i, j ∈ N , vi ∈ Vi, vj ∈ Vj, v−ij ∈ V−ij with vi < vj and denote v′i,= vj.

Suppose 1
f(vi,vj ,v−ij)
i = 1.

Incentive compatibility implies that f is monotone. Therefore, we have 1
f(v′i,v−i)
i = 1 by

monotonicity. Thus, pi(v
′
i, vj, v−i) = pi(vi, vj, v−ij) by Lemma 13. Assume for contradiction
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that 1
f(v′i,vj ,v−ij)
j = 0. By individual rationality and non-negative payment, vj1

f(v′i,vj ,v−ij)
j −

pj(v
′
i, vj, v−ij) = 0. Since v′i = vj, by anonymity in utility we have

v′i1
f(v′i,v−i)
i − pi(v′i, v−i) = vj1

f(v′i,vj ,v−ij)
j − pj(v′i, vj, v−ij) = 0. (3.2)

Define v′j = vi. We have 1
f(v′i,v−i)
j = 0 by assumption. Thus, 1

f(v′i,v
′
j ,v−ij)

j = 0 by monotonicity

(Since v′j = vi > vj). By Lemma 12, we have v′j1
f(v′i,v

′
j ,v−ij)

j − pj(v′i, v′j, v−ij) = 0. Exchanging

v′i with v′j and applying anonymity in utility we have,

v′j1
f(v′j ,v

′
i,v−ij)

i − pi(v′j, v′i, v−ij) = v′j1
f(v′i,v

′
j ,v−ij)

j − pj(v′i, v′j, v−ij) = 0 (3.3)

Substituting the value v′j = vi and v′i = vj, we have from equation 3,

vi1
f(vi,vj ,v−ij)
i − pi(vi, vj, v−ij) = 0. (3.4)

From equations 2 and 4, we have vi = v′i, a contradiction. �

Now, we use these lemmas and show that anonymity in utility, incentive compatibility and

efficiency are incompatible. Consider the following example which shows this incompatibility.

Example 9

Consider the graph in Figure 3.5 with four nodes and five edges. The numbers on edges are

valuations of agents. Let v = (5, 5, 5, 3, 2).

a b

c d

e1 = 5

e2 = 5
e3 = 5

e4 = 3

e5 = 2

Figure 3.5: Illustration of incompatibility of anonymity in utility and efficiency

An efficient allocation rule f ∗ must choose {e1, e2, e4} at valuation profile v. Now, if we

increase the valuation of edge e4 and equate it with valuation of edge e3, then by Lemma

14 edge e3 will be in allocation rule at the new valuation profile, v̄ = (5, 5, 5, 5, 2). Since

the valuation of edges e1, e2 and e3 are equal, by a similar argument as in Lemma 14, we

conclude that edges e1 and e2 are chosen by the efficient allocation rule f ∗ at v̄. But this is

not possible because f ∗(v̄) forms a cycle.
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Anonymity in utility has been used for characterizing the VCG mechanism in various

setting like multi-unit auction with unit demand (Ashlagi and Serizawa, 2011) and single

object auction (Mukherjee, 2014). As Example 9 illustrated, this is not possible in our

model. Hence, we define a different version of anonymity which we call restricted anonymity.

First, we may consider weakening anonymity in utility to anonymity in allocation. One

natural way to define anonymity in allocation is that if agent i swaps his valuation with

the valuation of agent j, then their allocations are swapped. But defining anonymity in

allocation like this is not consistent with every permutation as for some permutation, we

may not get a spanning tree. The following example illustrates this.

Example 10

Consider the graph in Figure 3.5. Suppose that at some valuation profile (v1, v2, v3, v4, v5),

f(v1, v2, v3, v4, v5) = {e1, e2, e4}. Now, consider another valuation profile after exchanging

the valuation of agent 3 with agent 5, i.e., (v1, v2, v5, v4, v3). By anonymity in allocation, we

have to choose edge e5 in the allocation rule at this new valuation profile. Now, we have

f(v1, v2, v5, v4, v3) = {e1, e2, e5} at this new valuation profile. But it is not a spanning tree.

Now, we introduce our version of anonymity that we call restricted anonymity. A per-

mutation of the set of agents is a map σ : N → N such that it is is one-to-one and onto.

Denote by σ(v) = (vσ(1), . . . , vσ(n)) the valuation vector of agents after the permutation.

Given allocation rule f , for every v ∈ V we say that a permutation σ is valid at v if σ(f(v))

is a spanning tree where we denote by σ(f(v)) = (1
f(v)
σ(1), . . . ,1

f(v)
σ(n)), the collection of edges.

Note that σ(f(v)) need not be a spanning tree.

Definition 26 An allocation rule f is restricted anonymous if for every v ∈ V such

that σ(v) is a valid permutation and v 6= σ(v), we have f(σ(v)) = σ(f(v)).

This says that if agent i exchanges his valuation with the valuation of agent j, then their

allocations are also exchanged if this allocation exchange does form a spanning tree. This

implies that the identity of agents does not matter.

We also need the following non-bossiness condition for our characterization.

Definition 27 An allocation rule f is non-bossy if for every i ∈ N , for every v−i ∈ V−i
and for every vi, v

′
i ∈ Vi with 1

f(vi,v−i)
i = 1

f(v′i,v−i)
i , we have f(vi, v−i) = f(v′i, v−i).

This assumption requires that if an agent cannot change his allocation in the allocation rule

by changing his valuation, then he should not be able to change the allocation of other agents.

Now, we present a proposition that helps us in characterizing the Groves mechanism.

As our definition indicates that we only consider the non-bossiness in allocation. We are

not considering non-bossiness in outcome as first proposed by Satterthwaite and Sonnen-

schein (1981).

Proposition 3 If an allocation rule is implementable, non-bossy and, restricted anony-

mous, then it is an efficient allocation rule.
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Proof : We use the following lemmas to prove the proposition. The proofs of the lemmas

are in Appendix B.

Lemma 15 A maximum weight spanning tree contains at least one heavy edge for every cut

of the graph. Moreover, every edge in maximum weight spanning tree is a heavy edge for

some cut.

We call a cut “loose” at v if f(v) does not choose any heavy edge from the cut.

Lemma 16 For every valuation profile v ∈ V and for any loose cut (S,M\S) at v if i ∈ N(S)

and i ∈ f(vi, v−i), there exists j ∈ N(S) such that j is a heavy edge and f(v) \ {i} ∪ {j} is

a spanning tree.

Consider an allocation rule f which is implementable, non-bossy and, restricted anony-

mous. Picking an efficient allocation is equivalent to picking a maximum weight spanning

tree for this problem. We know by Lemma 15 that a maximum weight spanning tree is the

collection of heavy edges of different cuts of the graph. Therefore, if we can show that an

allocation rule f contains a heavy edge of every cut, then we are done.

If the valuations of all the agents are the same, then we are trivially done. Else, consider

valuation profile (vi, v−i). Consider a cut of the graph (S,M \ S). Assume for contradiction

that no heavy edge of the cut (S,M \ S) is chosen by allocation rule f at valuation profile

(vi, v−i). Let i be one of the heavy edges of the cut (S,M \S). Thus, i /∈ f(vi, v−i). For f to

be a spanning tree at (vi, v−i), there must be an edge j ∈ N(S) such that j is not a heavy

edge and j ∈ f(v).

We can apply permutation σ at v in the cut (S,M \ S), if there exists an edge j ∈ N(S)

such that j is not heavy edge and permutation of the valuation of agent j with the valuation

of agent i is valid. By Lemma 16 such an edge j ∈ N(S) exists and it is not one of the heavy

edges.

Since i is a heavy edge, suppose vi = α > vj = β. Since j ∈ f(vi = α, vj = β, v−ij)

and α > β, by monotonicity j ∈ f(vi = α, v′j = α, v−ij) for v′j = α. By non-bossiness,

i /∈ f(vi = α, v′j = α, v−ij) and j ∈ f(vi = α, v′j = α, v−ij).

By restricted anonymity, we have i ∈ f(v′i = β, v′j = α, v−ij) where v′i = β and j /∈
f(v′i = α, v′j = β, v−ij). Since β < α, we have i ∈ f(vi = α, v′j = α, v−ij) by monotonicity.

By non-bossiness, we have j /∈ f(vi = α, v′j = α, v−ij). But this contradicts the fact that

j ∈ f(vi = α, v′j = α, v−ij). Hence, f must select one of the heavy edges from every cut of

the graph. By Lemma 15, this is a maximum weight spanning tree. �

Using revenue equivalence and Proposition 3, we can now characterize the Groves mech-

anisms.

Definition 28 A mechanism (f, p) is a Groves mechanism if for every v ∈ V , f is an

efficient allocation rule and for every i ∈ N pi(vi, v−i) =
∑

j 6=i vj1
f∗(vi,v−i)
j + hi(v−i), where

hi : V−i → R is any function.
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Now, we state the main result of this section.

Theorem 6 A mechanism (f, p) is incentive compatible where f is non-bossy and restricted

anonymous if and only if it is the Groves mechanisms.

Proof : By Proposition 3, every allocation rule satisfying implementability, non-bossiness

and, restricted anonymity must be an efficient allocation rule. By revenue equivalence (Holm-

strom, 1979), the only efficient incentive compatible mechanisms are the Groves mechanisms.

�

Remark 1: Proposition 3 and Theorem 6 can be easily generalized to the matroid model as

in section 2. We only have to define the restricted anonymity properly. Like in the connected

model, we need valid permutation to define the restricted anonymity in the matroid model.

We can adapt the terminology of the matroid theory to define it. After performing a

permutation on the valuations of agents if we get a base, then the permutation is valid. The

definition of non-bossy is straightforward in the matroid model. With this adaptation of

the restricted anonymity, Proposition 3 can easily be proved and hence Theorem 6.

Remark 2: The requirements of incentive compatibility of mechanism and and allocation

rule satisfying restricted anonymity is crucial for proving Proposition 3. We can easily

construct examples showing that they are independent. As far as the non-bossiness axiom

is concerned, we can not establish its independence for proving efficient allocation rule.

3.5 Conclusion

We characterize all dominant strategy incentive compatible mechanisms for a class of mech-

anism design problems in single dimensional type spaces. In particular, we consider two

mechanism design problems, the connected graph model and the matroid model and find

a broader class of implementable allocation rules. By virtue of revenue equivalence princi-

ple, we pin down the entire class of dominant strategy incentive compatible mechanisms in

both the problems. The matroid model unifies many results like the connected graph model,

multi-unit auction with unit demand and heterogeneous good auction with dichotomous

preferences, which have been looked in specific models. We also characterize the Groves

mechanisms with two extra conditions of restricted anonymity and non-bossiness along with

dominant strategy incentive compatibility.

There are many future research directions. One important question is to explore a suit-

able version of anonymity in the matroid model and characterize the VCG mechanism.

Another question is to look for a parallel result of our Theorem 4 and 5 in multi-dimensional

mechanism design problem.
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Appendix A

We provide some elementary concept of matroid theory and use the standard notation (see

Oxley (2006)). You can also find a very nice introduction of matroid theory in Vohra (2004)

and an intuitive description in Wilson (1973).

A minimal dependent set in an arbitrary matroid M is called a circuit. The set of

circuits is denoted as C(M). We need the following lemma about a property of the bases,

Lemma 17 For every Bi, Bj ∈ B for i 6= j, we have |Bi| = |Bj| .

This lemma says that every base of a matroid has the same cardinality. The proof of this

lemma is pretty standard in matroid theory and can be found in standard matroid book like

Oxley (2006), Vohra (2004) etc.

The dual of a matroid also exists and in fact it is a matroid. There is a strong relationship

between matroid and its dual.

Theorem 7 Let M be a matroid and B∗(M) = {N(M)−B : B ∈ B(M)}. Then B∗(M)

is the set of bases of a matroid on N(M).

Proof : See Oxley (2006), page number 68. �

The matroid generated in the last theorem, whose ground set is N and whose set of

bases B∗(M), is called the dual of matroid M and is denoted by M∗. As we have defined

basis and circuit of matroidM, we can also define the basis and circuit of the matroidM∗.

The bases and circuits of the matroid M∗ are known co-basis and co-circuit of the matroid

M respectively. We denote an arbitrary base and co-circuit as B∗ and C∗. The following

property pins down a very nice relationship between base and co-circuit of a matroid M,

Theorem 8 Let M be a matroid.

1. A set C∗ is a co-circuit of the matroid M if and only if C∗ is a minimal set having

non-empty intersection with every basis of M.

2. A set B is a basis ofM if and only if B is a minimal set having non-empty intersection

with every co-circuit of M.

Transversal Matroids

Let N = {x1, x2, . . . , xn} be a finite set. A family of subsets of the set N is a finite sequence

(A1, A2, . . . , Am) such that for all j ∈ M = {1, 2, . . . ,m}, Aj ⊆ N . Note that the terms in

this sequence may not be distinct.

We define partial transversal in terms of a matching in a bipartite graph. Let A be the

family (A1, A2, . . . , Am) of subsets of N and M . A bipartite graph G(A) associated with A
has vertex set N ∪M . Each edge of G(A) is {xij : xi ∈ Nand j ∈M}.
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A matching in a graph is a set of edges of the graph no two of which have a common end

point. A subset X of N is a partial transversal of A if and only if there is a matching in

G(A) in which every edge has one end point in X. If the matching is perfect, then we have

a transversal.

The following example explains the idea of matching.

Example 11

Let N = {x1, x2, x3, x4, x5, x6}, A1 = {x1, x2, x6}, A2 = {x3, x5, x6}, A3 = {x2, x3} and

A4 = {x2, x4, x6}. For A = (A1, A2, A3, A4), the bipartite graph is given in Figure 3.6 below.

x1

x2

x3

x4

x5

x6

1

2

3

4

Figure 3.6: Bipartite graph.

We can see that {x1, x2, x3, x4} is a transversal of A. To verify that it is a transversal, we

need only to check that {x11, x42, x33, x24} is a matching in G(A). There are many partial

transversals as well. For instance, {x1, x2, x6} and {x6, x2, x4} are partial transversals of A
because {x11, x62, x23} and {x61, x23, x42} are matchings in G(A). There are some other

partial transversals as well.

The following theorem from Oxley (2006) shows that partial transversals are the inde-

pendent sets.

Theorem 9 Let A be a family of (A1, A2, . . . , Am) of subsets of N . Let I be the set of

partial transversal of A. Then, I is a collection of independent sets of a matroid on N .

Such matroids are called transversal matroids.
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Appendix B

Proof of Theorem 5

First we prove that generalized utility maximizer is implementable. Consider a generalized

utility maximizer f and let (u1, u2, . . . , un) be the corresponding GUFs satisfying top single

crossing. Fix an agent i ∈ N and v−i ∈ V−i. Let vi, v
′
i ∈ Vi with vi > v′i and consider a

co-circuit C∗ of the matroidM such that i ∈ C∗. Suppose i ∈ f(v′i, v−i). This implies that i

must be one of the heavy elements for some co-circuit C∗. By the top single crossing, there

exists a co-circuit C∗∗ such that i ∈ C∗∗ and ui(vi, v−i) > maxk∈C∗∗\{i} uk(vi, v−i). Hence, i is

the unique heavy element of the co-circuit C∗∗. Since a maximum weight base must choose

heavy element from every co-circuit, i ∈ f(vi, v−i) - see Oxley (2006).

To prove the converse, suppose f is implementable. Fix an agent i ∈ N and v−i ∈ V−i.
Define κfi (v−i) := inf {vi ∈ Vi : 1fi (vi, v−i) = 1}. Since Vi is a bounded interval, κfi is well-

defined. Further, since f is implementable and hence monotone, for every i ∈ N , for every

v−i ∈ V−i and for every vi ∈ Vi if vi ≥ κfi (v−i), we have 1
f
i (vi, v−i) = 1 and for every

vi < κfi (v−i), we have 1fi (vi, v−i) = 0.

Define for every i ∈ N and for every (vi, v−i),

ui(vi, v−i) = vi − κfi (v−i).

By definition, for every i ∈ f(vi, v−i), we have ui(vi, v−i) ≥ 0 and for all i /∈ f(vi, v−i), we

have ui(vi, v−i) < 0. Hence, we have f(vi, v−i) ∈ arg max
B∈B

∑
i∈N

ui(vi, v−i)1
B
i (vi, v−i).

Now, we show that the GUFs (u1, u2, . . . , un) constructed as above satisfy top single

crossing. Fix an agent i ∈ N and vi, v
′
i ∈ Vi. Consider v−i ∈ V−i and a co-circuit C∗ of

the matroid M = (N, I) such that i ∈ C∗. Let ui(v
′
i, v−i) ≥ maxk∈C∗\{i} uk(v

′
i, v−i). By

the construction of GUF ui, we have ui(vi, v−i) = vi − κfi (v−i) > v′i − κ
f
i (v−i) = ui(v

′
i, v−i).

Hence, ui(vi, v−i) > ui(v
′
i, v−i). This implies that ui is an increasing function. We know

that for some C∗ such that i ∈ C∗, we have ui(v
′
i, v−i) ≥ maxk∈C∗\{i} uk(v

′
i, v−i). Suppose

i ∈ f(v′i, v−i), then we have ui(v
′
i, v−i) ≥ 0. Suppose i /∈ f(v′i, v−i), then some other element

j ∈ C∗, we have j ∈ f(v′i, v−i) (This is because every basis must choose at least one element

from every co-circuit - see Oxley (2006)). This implies that ui(v
′
i, v−i) ≥ uj(v

′
i, v−i) ≥ 0.

Therefore, for both the cases, we have ui(v
′
i, v−i) ≥ 0. Since ui(vi, v−i) > ui(v

′
i, v−i) ≥ 0.

This implies that vi > κfi (v−i) and hence i ∈ f(vi, v−i).

Since f(vi, v−i) ∈ arg max
B∈B

∑
i∈N

ui(vi, v−i)1
B
i , i belongs to a maximum weight base chosen

by f at valuation profile (vi, v−i). This implies that there exists a co-circuit C∗∗ such that

for every j ∈ C∗∗ \ {i}, we have j /∈ f(vi, v−i).
5 This implies that for every j ∈ C∗∗ \ {i}, we

have uj(vi, v−i) = vj − κfi (v−j) ≤ 0 < ui(vi, v−i). This proves the claim.

5To see this, suppose for every co-circuit C∗∗, there is an element j ∈ C∗∗ \ {i} such that j ∈ f(vi, v−i),

then we can remove i from f(vi, v−i) and the resulting independent set will still be a basis. This contradicts

the fact that f(vi, v−i) is a basis.
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Proof of Lemma 13

Consider an incentive compatible mechanism (f, p) and choose v ∈ V , vi, v
′
i ∈ Vi and i ∈ N

with 1
f(vi,v−i)
i = 1

f(v′i,v−i)
i . Consider vi as true value of agent i, then by incentive compatibility

we have

vi1
f(vi,v−i)
i − pi(vi, v−i) ≥ vi1

f(v′i,v−i)
i − pi(v′i, v−i) (3.5)

Consider v′i as true value of agent i, then by incentive compatibility we have

v′i1
f(v′i,v−i)
i − pi(v′i, v−i) ≥ v′i1

f(vi,v−i)
i − pi(vi, v−i) (3.6)

From equation 2, we have pi(vi, v−i) ≤ pi(v
′
i, v−i) and from equation 3, we have pi(vi, v−i) ≥

pi(v
′
i, v−i). Hence, we have pi(v

′
i, v−i) = pi(vi, v−i).

Proof of Lemma 15

Consider a a cut of the graph (S,M \ S) and a spanning tree x. Let N(S) be the set of all

edges that cross the cut (S,M \ S). Suppose no edge from this cut is chosen in spanning

tree x, i.e., x ∩ {N(S)} = ∅. But this is not possible because the remaining set of edges

x \ {N(S)} cannot span all the vertices of the graph. Hence, we have to choose at least one

edge from every cut of the graph.

Now suppose no heavy edge from the cut (S,M \ S) is chosen in x. Then, some edge

j ∈ N(S) such that j is not a heavy edge and j ∈ x. Now delete edge j and include one of

the heavy edges, we will get a spanning tree. We can do this for every cut of the graph and

get a spanning tree which is a collection of heavy edges of different cuts.

Proof of Lemma 16

Consider a valuation profile v and a loose cut (S,M \ S). Since (S,M \ S) is a loose cut, no

heavy edge of this cut belongs to f(v). For f to be a spanning tree at v, we have to choose

at least one edge k ∈ N(S) such that k ∈ f(vi, v−i). By definition k is not a heavy edge.

Let i be one of the heavy edges of (S,M \S). Now, if we add edge i to the spanning tree

chosen by f at v, it will create a cycle, i.e., f(v) ∪ {i} is a cycle. Since f(v) ∪ {i} is a cycle,

there exists an edge j ∈ N(S) \ {i} such that j ∈ f(v) and j is part of the cycle. Thus, if

we remove j, we have f(v) \ {j} ∪ {i} which is a spanning tree.
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Chapter 4

Single Object Auctions With

Externalities: A Tractable Model

4.1 Introduction

In many situations, individuals enjoy some utility even if they do not own a particular object.

For instance, objects like patents and paintings may have positive externalities on agents

who do not own them. We study such a single object auction model where externalities are

modeled in a specific manner.

We restrict attention to deterministic single object auction. An allocation rule for single

object auction is implementable if there exists payments such that truth-telling is a dominant

strategy for every agent. We identify a necessary and sufficient condition for implementable

allocation rules in our model. Using revenue equivalence, we characterize all the dominant

strategy incentive compatible mechanisms. We use our characterization to design a revenue

maximizing auction (optimal auction) for this model. In the optimal auction, every agent

makes some payment irrespective of whether he is getting the object or not.

The innovative feature of this paper lies in the way we model externalities. Imagine a

situation where there are certain features of every agent known to everyone that allows one

to infer how he will use the object. 1 Such features directly influence the utility other agents

will have from him owning the object. We model this aspect by assuming that each agent

has a a strict ranking over the set of all agents (including himself) and the seller, where he

keeps himself at the top and the seller at the bottom of the ranking. A commonly known

real number is assigned to each position, with the top position getting 1, the bottom position

getting zero, and each intermediate position getting a number strictly between 0 and 1 with

the numbers decreasing with position. The utility for an agent when an agent gets the object

or the seller keeps the object is a product of his own valuation and the real number associated

with the position of the winning agent in his ranking. For instance, if agent i ranks agent j

at the third position, then the utility of agent i when agent j wins the object is α3vi, where vi

1In case of patents, a company’s past use of patents may reflect how he will use any patent in the market.
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is the valuation of agent i for the object and α3 ∈ (0, 1) is the third position-specific number.

We identify a condition on the allocation rule, which we call the interval property, that

is necessary and sufficient for implementability of the allocation rule. The interval property

requires the following requirement: considering an arbitrary agent i and fixing the valuation

of other agents, if agent j wins the object at vi and agent k wins the object at v′i, where

v′i > vi, then agent k is higher than agent j in the ranking of agent i.

This interval property allows us to pin down one payment rule that implements an imple-

mentable allocation rule. Using revenue equivalence, we can then pin down the entire class

of payment rules that can implement an implementable allocation rule. These ideas are then

used to derive a revenue maximizing auction for this model using Myersonian techniques.

In the standard single object auction, if agents are symmetric, then when the object is

allocated, it will be allocated efficiently. However, we see that in our optimal auction with

externalities model, the object may be allocated inefficiently even for symmetric agents case.

Thus, we have another source of inefficiency due to externalities.

Throughout, we assume that the ranking of each agent is common knowledge. This makes

the type space one dimensional. However, the specific nature of the utility function makes

our analysis non-trivial. We point out some specific difficulties we encounter if the ranking

of each agent is also a private information.

4.1.1 Related Literature

Specific models of externalities have been studied in the mechanism design literature by Jehiel

et al. (1999). Jehiel et al. (1999) model externalities by considering a multi-dimensional type

space, where each agent has a private valuation for every agent participating in the auction.

This paper contributed to the multi-dimensional mechanism design literature. In particular,

Jehiel et al. (1999) designed a revenue maximizing mechanism for the two bidders case and

some other specific settings. One take-away from their analysis is that designing revenue

optimal auctions is hard in general models of externalities. We circumvent this problem by

analyzing a simpler model of externalities.

Verma (2002) and Aseff and Chade (2008) analyze equilibrium bidding behavior in stan-

dard auctions when there are externalities. Verma (2002) analyzes the equilibrium bidding

behavior in open ascending-bid auction with identity-dependent externalities. Like us, Aseff

and Chade (2008) consider a specific model of externalities to design an optimal auction for

multiple unit allocation. Our paper is different from Aseff and Chade (2008) since the way

we model externalities is quite different leading to different insights.

Our model falls into the general models of one-dimensional mechanism design (Nisan,

2007). These models usually assume a binary outcome space, where each agent gets some

positive utility (captured by the valuation) from one of the outcomes and zero utility from

the other outcome. As a consequence, natural monotonicity conditions can be used to

characterize implementability (Myerson, 1981). However, in our model, an agent gets positive
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utility from various outcomes. As a result, our analysis is different from the traditional one-

dimensional models. 2 We could have resorted to results in the multidimensional mechanism

design literature (Rochet, 1987; Bikhchandani et al., 2006) to get necessary and sufficient

conditions for implementability in our model and then used that to get to our result. But our

proofs are more transparent and illustrate the delicate interplay between incentive constraints

and our characterization condition (interval property).

In a multi-dimensional environment, Carbajal and Muller (2014) discuss one application

of their model in the presence of externalities.

We describe the model in Section 2 and present the main result of this paper for the case

of known ranking in Section 3. We design a revenue maximizing mechanism in Section 4.

Finally, we discuss the difficulty when we relax the assumption of known ranking in Section

5.

4.2 The Model

A seller is interested in selling a single indivisible object to n potential agents (buyers). The

set of agents is denoted by N := {1, 2, . . . , n}. Every agent i has private valuation vi for

the object. The set of all possible valuations of agent i is an open interval, (0, βi) where

βi ∈ R++∪{∞} - note that we do not allow zero valuations. Denote by Vi = (0, βi). We will

use the usual notation v = (v1, v2, . . . , vn) as a profile of valuations for all agents and v−i for

the valuation profile of agents other than i. Let V := V1×V2× · · ·×Vn and V−i := Πn
j 6=iV−j.

We define the set of alternatives as A := {a0, a1, . . . , an}, where ai is the alternative when

agent i receives the object and a0 is the alternative when the object remains unsold.

In our model, an agent may derive some utility if some other agent is assigned the object.

We assume that if the seller keeps the object every agent gets zero utility and the seller also

gets zero utility. However, assigning the object to any agent in N results in some utility for

all the agents. We capture such externalities in our model by considering a strict ranking of

each agent over the set of alternatives. Note that the set of alternatives is nothing but the

set of agents and the seller. Each of these rankings satisfy the property that every agent

keeps himself at the top and the seller at the bottom in his ranking. For instance, agent i

keeps alternative ai at the top and a0 at the bottom in his ranking. We assume that the

rankings of agents are known to everyone and denote this (public) ranking of an agent i as Pi.

We denote by Pi(k) the k-th ranked alternative of agent i. We assign some weight to

every position in the ranking Pi. These weights determine the utility due to externalities

from other agents. Denote by αk the weight assigned to the k-th ranked alternative. Then,

agent i with valuation vi will get a utility of αkvi if the alternative Pi(k) is assigned the

object. With a slight abuse of notation, we will denote by αn+1 the weight on the last ranked

2For instance, unlike the standard single object auction model, in our model, efficiency does not imply

that the object must go to the agent with the highest valuation.
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alternative (the seller getting the object). Further, we assume that α1 = 1, αn+1 = 0, and

α1 > α2 > . . . > αn > αn+1 where every αj ∈ (0, 1) for all j ∈ {2, 3, . . . , n}. We assume that

these weights are common knowledge. Given that the rankings of agents are also common

knowledge, the designer can infer the utilities of the agents once he knows their valuations.

As an example, consider the case where there are three agents {1, 2, 3}. Suppose

α1 = 1, α2 = 0.8, α3 = 0.5, α4 = 0. Then, suppose the ranking of agent 1 is as follows:

a1P1a3P1a2P1a0. In that case if agent 1 has valuation v1, then his utility from different

alternatives are given by

u(a0, v1) = 0, u(a1, v1) = v1, u(a2, v1) = α3v1 = 0.5v1, u(a3, v1) = α2v1 = 0.8v1,

where we used the notation u(a, v1) to denote the utility of agent 1 from an alternative a

when he has valuation v1.

An allocation rule is a mapping f : V → A. Note that we do not consider randomized

allocation rules in our model. We consider only deterministic allocation rules.

We allow payments in this model. A payment function of agent i ∈ N is a mapping

πi : V → R.

We also assume that agents have quasi-linear utility function over payments and are risk

neutral. We define P−1
i (ak) as the position of alternative ak in ith agent ranking Pi. Net

utility of an agent i for every v−i ∈ V−i when his true valuation is vi and he reports v′i is,

ui(v
′
i, v−i) = viαP−1

i (f(v′i,v−i))
− πi(v′i, v−i)

where αP−1
i (f(v′i,v−i))

= α1 = 1 if f(v′i, v−i) = ai and and αP−1
i (f(v′i,v−i))

= αP−1
i (ak) if

f(v′i, v−i) = ak.

Note that every agent gets some utility unlike the standard single object auction where

the utility is binary ,i.e, only winner gets utility, other gets zero utility.

Definition 29 An allocation rule f is implementable (in dominant strategies) if for every

i ∈ N , there exists a payment function πi such that for every v−i ∈ V−i, vi ∈ Vi, and v′i ∈ Vi,

viαP−1
i (f(vi,v−i))

− πi(vi, v−i) ≥ viαP−1
i (f(v′i,v−i))

− πi(v′i, v−i)

In this case, we say that π = (π1, π2 . . . , πn) implement f and the mechanism (f, π) is

incentive compatible.

We state below a well known fact that will be useful for us later. If (f, π1, . . . , πn)

is incentive compatible, then for every i ∈ N , for every (vi, v−i) and (v′i, v−i) such that

f(vi, v−i) = f(v′i, v−i), we have πi(vi, v−i) = πi(v
′
i, v−i) - this can be shown by writing down

the two associated incentive constraints for vi and v′i. As a result, for every i ∈ N , πi can be

written as a map πi : A× V−i → R.
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4.3 Implementable Allocation Rules

In this section, we characterize the implementable allocation rules using a property called

the interval property. This is a natural generalization of the monotonicity condition used to

characterize implementability in the standard single object auction model (Myerson, 1981).

Before defining the interval property formally, we illustrate this with a simple example.

Example 12

Suppose N = {1, 2, 3}. Consider agent 1 and fix the valuations of other agents at v−1.

Suppose the ranking of alternatives of agent 1 is a1P1a3P1a2P1a0. If f is an implementable

allocation rule, we will show that the type space V1 ≡ (0, β1) can be divided into four subin-

tervals, whose interiors are denoted by (0 = β0
1 , β

1
1), (β1

1 , β
2
1), (β2

1 , β
3
1), and (β3

1 , β
4
1 = β1),

where β0
1 ≤ β1

1 ≤ β2
1 ≤ β3

1 ≤ β4
1 . It is possible that some of these subintervals are empty.

For each j ∈ {0, 1, 2, 3}, alternative P1(j) is chosen by f in the subinterval (βj1, β
j+1
1 ). For

instance, for any vi ∈ (β2
1 , β

3
1), f(v1, v−1) = Pi(2) = a3.

This can be illustrated in Figure 4.1 where we assume that none of the above subintervals

is empty. We can see that for given other agents’ valuation v−1 if the valuation of agent 1, v1

is in the subinterval [β0
1 , β

1
1), then allocation rule f(v1, v−1). Similarly if v1 ∈ [β3

1 , β
4
1), then

f(v1, v−1) = a1.

β0
1 = 0

a0 a2

β1
1

a3

β2
1

a1

β3
1 β4

1 = β1

Figure 4.1: Illustration of the interval property.

We now formally define the interval property.

Definition 30 An allocation rule f satisfies the interval property if for every i ∈ N ,

for every v−i ∈ V−i, for every vi, v
′
i ∈ Vi with v′i > vi if f(v′i, v−i) 6= f(vi, v−i), then

P−1
i (f(v′i, v−i)) < P−1

i (f(vi, v−i))

We state the following fact that is a consequence of the interval property and is used for

defining a payment function later.

Fact 1: Suppose an allocation rule f satisfies the interval property. Then for every i ∈ N ,

for every vi ∈ Vi, for every vi, v
′
i ∈ Vi with v′i > vi if f(vi, v−i) = f(v′i, v−i) = ak, then

f(v̂i, v−i) = ak for every v̂i ∈ [vi, v
′
i].

Proof : Let f be an allocation rule satisfying the interval property. Fix an agent i ∈ N

and v−i ∈ V−i. Consider vi, v
′
i inVi with v′i > vi and f(vi, v−i) = f(v′i, v−i) = ak. Assume for

contradiction that there exists v̂i ∈ (vi, v
′
i) such that f(v̂i, v−i) = aj 6= ak. Since vi < v̂i < v′i,

we have P−1
i (ak) < P−1

i (aj) < p−1
i (ak) by the interval property. This is a contradiction. �
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Interval property is implied by implementability.

Lemma 18 Suppose f is an implementable allocation rule. Then, f satisfies the interval

property.

Proof : Suppose f is an implementable allocation rule. Consider i ∈ N and v−i ∈ V−i,

vi, v
′
i ∈ Vi with v′i > vi such that f(vi, v−i) 6= f(v′i, v−i). Then, adding the incentive con-

straints from vi to v′i and from v′i to vi, we have

αP−1
i (f(v′i,v−i))

(v′i − vi) ≥ αP−1
i (f(vi,v−i))

(v′i − vi)

Since v′i > vi and f(v′i) 6= f(vi), we have αP−1
i (f(v′i))

> αP−1
i (f(vi))

. This implies that

P−1
i (f(v′i, v−i)) < P−1

i (f(vi, v−i)). �

We now provide the main result of this section.

Theorem 10 An allocation rule is implementable if and only if it satisfies the interval

property.

Proof : From Lemma 18, interval property is necessary for implementation. For sufficiency,

consider an allocation rule that satisfies the interval property. We will now construct payment

functions that implement f . To do so, fix agent i and types of other agents at v−i. By the

interval property, we can divide the interval Vi = (0, βi) into subintervals such that each

of those subintervals correspond to a unique alternative. For any alternative Pi(k), let the

interior of the unique subinterval where Pi(k) is the outcome be (v
Pi(k)
i , v

Pi(k+1)
i ), i.e., for all

vi ∈ (v
Pi(k)
i , v

Pi(k+1)
i ), we have f(vi, v−i) = Pi(k).

We use this to define a payment function π∗i : A × V−i → R as follows. First, we

set π∗i (a0, v−i) = 0. Now, we define the payment function recursively. Having defined the

payment for the (k + 1)th ranked alternative, we define the payment for the kth ranked

alternative as

π∗i (Pi(k), v−i) := (αk − αk+1)v
Pi(k)
i + π∗i (Pi(k + 1), v−i).

Note that this simplifies to

π∗i (Pi(k), v−i) :=
n∑
d=k

(αd − αd+1)v
Pi(d)
i . (4.1)

To show that π∗i implements f , consider valuations vi, v
′
i ∈ Vi. Let f(vi, v−i) = aj and

f(v′i, v−i) = ak. We have to show that

αP−1
i (aj)

vi − π∗i (aj, v−i) ≥ αP−1
i (ak)vi − π

∗
i (ak, v−i) (4.2)

or αP−1
i (aj)

vi −
n∑

d=P−1
i (aj)

(αd − αd+1)v
Pi(d)
i ≥ αP−1

i (ak)vi −
n∑

d=P−1
i (ak)

(αd − αd+1)v
Pi(d)
i (4.3)
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If aj = ak, then there is nothing to prove. Therefore, assume aj 6= ak. We consider the

following two cases:

CASE 1: P−1
i (aj) < P−1

i (ak). The position of alternative aj is above the position of alterna-

tive ak in ranking Pi. Without loss of generality assume that P−1
i (aj) = j and P−1

i (ak) = k.

Hence, simplifying Inequality 4.2, we have to show the following inequality,

(αj − αk)vi −
k−1∑
d=j

(αd − αd+1)v
Pi(d)
i ≥ 0

To show this, we have the following sequence of inequalities,

(αj − αk)vi −
k−1∑
d=j

(αd − αd+1)v
Pi(d)
i ≥ (αj − αk)vki −

k−1∑
d=j

(αd − αd+1)v
Pi(d)
i

≥ (αj − αk)vki −
k−1∑
d=j

(αd − αd+1)vki

= 0

Using j < k, we see that first inequality follows because vi ≥ vji and vji ≥ vki . Second

inequality follows because v
Pi(d)
i ≥ vki for any d ≥ k and (αd − αd+1) > 0 for any d. Hence,

we are done.

CASE 2: P−1
i (aj) > P−1

i (ak). The position of alternative aj is below the position of alterna-

tive ak. Again, take P−1
i (aj) = j and P−1

i (ak) = k. Since now j > k, simplifying Inequality

4.2, we have to show that

(αj − αk)vi +

j−1∑
d=k

(αd − αd+1)v
Pi(d)
i ≥ 0

Now we have the following sequence of inequalities

(αj − αk)vi +

j−1∑
d=k

(αd − αd+1)v
Pi(d)
i ≥ (αj − αk)vi +

j−1∑
d=k

(αd − αd+1)vi

= 0

Here, we used the fact j > k, to conclude the first inequality since vi ≤ v
Pi(d)
i for all

d ∈ {k, k + 1, . . . , j − 1}. Hence, we are done. �

Theorem 10 not only characterizes all the implementable allocation rules but also provides

an explicit formula for computing a payment function that implements it. Using revenue
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equivalence, we can write the payment function as follows. 3 So, given an allocation rule

satisfying the interval property, for every agent i ∈ N , for every v−i ∈ V−i, and for every

a ∈ A,

πi(a, v−i) = hi(v−i) +
n∑

d=P−1
i (a)

(αd − αd+1)v
Pi(d)
i ,

where hi is a mapping hi : V−i → R. We summarize this in the theorem below.

Theorem 11 A mechanism (f, π1, . . . , πn) is incentive compatible if and only if f satis-

fies the interval property and (π1, . . . , πn) is computed using Equation 4.1 by appropriately

choosing hi for each i ∈ N .

4.4 Revenue Maximization For The Known Ranking

In this section, we design an optimal auction using the characterization results in the last

section. We assume that the valuation of each agent i is drawn using distribution gi with

cumulative density function Gi. The density function is positive everywhere, i.e. gi(vi) > 0

for every vi ∈ Vi. We assume that the valuation of each agent is drawn independently. We

also assume that hazard rate gi(vi)
1−Gi(vi) is non-decreasing in vi. Let ωi : Vi → R be the virtual

valuation function of agent i. It is defined as

ωi(vi) = vi −
1−Gi(vi)

gi(vi)
∀vi ∈ Vi.

Note that the assumption of non-decreasing hazard rate implies that virtual valuation is

increasing in vi for every agent i ∈ N .

The expected revenue in a mechanism (f, π ≡ (π1, . . . , πn)) is defined as,

Π(f, π) =
∑
i∈N

Ev[πi(f(v), v−i)]

where Ev[·] denotes the expectation over all valuation profiles.

Definition 31 A mechanism (f, π) is individually rational if for every i ∈ N and every

valuation profile v ∈ V , we have

αP−1
i (f(v))vi − πi(f(v), v−i) ≥ 0

Our objective is to find a mechanism that yields the maximum expected revenue among

all incentive compatible and individually rational mechanisms.

3Revenue equivalence holds in this model, since utility for an agent i from an alternative a given his type

vi can be written as u(a, vi) and this function is linear in vi. Further type space is convex. Hence, we can

apply the standard envelope theorem to conclude revenue equivalence - see Vohra (2011) for details.
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Definition 32 A mechanism (f, π) is an optimal mechanism if it is incentive compatible,

individually rational, and there does not exist another mechanism (f ′, π′) such that (f ′, π′)

is incentive compatible, individually rational, and Π(f ′, π′) > Π(f, π).

Suppose f is an implementable allocation rule. By Theorem 11, the payment of agent i

at valuation profile v is given by

πi(f(v), v−i) = hi(v−i) +
n∑

d=P−1
i (f(v))

(αd − αd+1)v
Pi(d)
i . (4.4)

We will write this equation in a way such that we can express the expected revenue in

terms of virtual valuation. Then, we can apply Myersonian techniques to conclude. To

write the revenue in the form of virtual valuation, we have to convert the summation part

in the payment function into integral form. For this, we use a new function to capture the

summation part and then write everything in integral form. Consider an agent i ∈ N and a

valuation profile v. Let P−1
i (f(v)) = k. Now, we can re-write the payment function as

πi(f(v), v−i) = hi(v−i) + αkv
Pi(k)
i −

n−1∑
d=k+1

αd(v
Pi(d−1)
i − vpi(d)

i ) + αn+1v
Pi(n)
i

= hi(v−i) + αkvi − αk[vi − vPi(d)
i ]−

n−1∑
d=k+1

αd(v
Pi(d−1)
i − vPi(d)

i ) + αn+1v
pi(n)
i

Define an indicator function as 1[γ,γ′](t) = 1 if t ∈ [γ, γ′] and 1[γ,γ′](t) = 0 if t /∈ [γ, γ′] for

any γ < γ′. Now, define a mapping, H i
v−i

: [0, βi] 7→ R+ as follows

H i
v−i

(t) ≡
n∑
d=1

αd1[vPi(d)i ,vPi(d−1)
i ]

(t)

Now, we can write∫ vi

0

H i
v−i

(t)dt = αk
[
vi − vPi(k)

i

]
+

n∑
d=k+1

αd
[
v
Pi(d−1)
i − vPi(d)

i

]
Note that the integral has been computed over all the sub-intervals till the valuation vi of

agent i.

Now, we can write the payment function in Equation 4.4 as follows

πi(vi, v−i) = hi(v−i) + αkvi −
∫ vi

0

H(i)
v−i

(t)dt

Once we have the payment in this form, we can apply the methodology of Myerson (1981)

to solve for an optimal auction. The expected payment of an agent i in the dominant strategy

incentive compatible mechanism (f, π) is given by

Πi(f, π) =Ev−i

[
hi(v−i) +

∫ βi

0

αP−1
i (f(v))vigi(vi)dvi −

∫ βi

0

(∫ vi

0

H i
v−i

(t)dt

)
gi(vi)dvi

]
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By changing the order of integration in the second part of the above equation, we have∫ βi

0

(∫ vi

0

H i
v−i

(t)dt

)
gi(vi)dvi =

∫ βi

0

(∫ βi

vi

gi(t)dt

)
H i
v−i

(vi)dvi

=

∫ βi

0

(
1−Gi(vi)

)
H i
v−i

(vi)dvi

Observe that H i
v−i

(vi) = αp−1
i (f(v)). Therefore, we have

Πi(f, π) = Ev−i

[
hi(v−i) +

∫ βi

0

αp−1
i (f(v))vigi(vi)dvi −

∫ βi

0

αP−1
i (f(v))

(
1−Gi(vi)

)
dvi

]
= Ev−i

[
hi(v−i) +

∫ βi

0

αP−1
i (f(v))

(
vi −

1−Gi(vi)

gi(vi)

)
gi(vi)dvi

]
Hence, the total expected revenue in the dominant strategy incentive compatible mechanism

(f, π) is given by

Π(f, π) =
∑
i∈N

Ev−i

[
hi(v−i) +

∫ βi

0

αP−1
i (f(v))

(
vi −

1−Gi(vi)

gi(vi)

)
gi(vi)dvi

]
Since we are considering individually rational mechanism, it implies that hi(v−i) ≤ 0 for all

i ∈ N and for all v−i ∈ V−i. Since payment is non-negative, we have πi(0, vi) ≥ 0 for all

v−i ∈ V−i. This implies that hi(v−i) ≥ 0. Hence, hi(v−i) = 0 for every i ∈ N . Now, we can

write the total expected revenue simply as

Π(f, π) = Ev−i

[∑
i∈N

∫ βi

0

αP−1
i (f(v))ωi(vi)gi(vi)dvi

]
= Ev

[∑
i∈N

αP−1
i (f(v))ωi(vi)

]
Let us define a function for each v ∈ V as Ov : A→ R such that

Ov(ak) =
∑
i∈N

αP−1
i (ak)ωi(vi) ∀ak ∈ A

This is the weighted sum of virtual valuation of all the agents for alternative ak ∈ A (notice

that each alternative corresponds to an agent) and for a given valuation profile v. In other

words, it computes “virtual” utilities of agents for a given alternative.

Remark 1: We have Ov(a0) = 0 by definition.

Now the objective is to choose an allocation rule that maximize the expected revenue.

In other words, we want to maximize the function Ov(ak) for all ak ∈ A. If we sidestep

the incentive compatibility requirement of allocation rule f , then we have to do point-wise

maximization.
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Thus, point-wise maximization means that at every valuation profile v we want to com-

pute the value of function Ov(ak) for each alternative ak. We take f is equal to the alternative

that maximize the value of the function Ov(ak).

There may be more than one alternatives that maximize the function Ov(ak). In that

case we break the ties arbitrarily.

Formally, an optimal allocation f ∗ is defined as follows. For any valuation profile v, f ∗ is

f ∗(v) ∈ arg max
ak∈A

Ov(ak) (4.5)

Note that if ωi(vi) < 0 for all i ∈ N , we have f ∗(v) = a0 because a0 maximizes the

function Ov(ak) for all ak ∈ A. In other words, if the maximum virtual valuation of agents

is negative, then the object remains unallocated.

Now, it only remains to prove that f ∗ is an implementable allocation rule. The following

proposition takes care of the implementability of f ∗.

Proposition 4 The allocation rule f ∗ is implementable.

Proof : The proof is in the Appendix. �

This shows that f ∗ along with payment function defined in Theorem 10 is the optimal

mechanism. It is summarized in the following theorem.

Theorem 12 The mechanism given by (f ∗, π∗) where f ∗ is defined as in Equation 4.5 and

π∗ is defined as in Equation 4.1 is optimal.

Remark: There is a tension between optimality and efficiency. Our optimal allocation is

not efficient even for the symmetric agents case unlike the Myerson’ optimal auction. This

has been discussed in Example 14.

Another source of inefficiency emerges when all agents have negative virtual valuation.

This has been discussed in Example 13.

The following example explains how our optimal auction works and how it is different

from the standard single object auction.

Example 13

Consider a setting with three agents whose valuations are distributed uniformly over the

interval (0, 1). Since there are three agents, we have four alternatives {a0, a1, a2, a3, a4}. Let

the rankings of agents 1, 2 and 3 be a1P1a2P1a3P1a0, a2P2a3P2a1P2a0 and a3P3a2P3a1P3a0

respectively. Suppose α1 = 1, α2 = 0.8, α3 = 0.5 and α4 = 0.

The virtual valuation of every agent i ∈ {1, 2, 3} is ωi(vi) = 2vi − 1. Suppose the

valuations of agents 1, 2 and 3 are v1 = 0.8, v2 = 0.7 and v3 = 0.6 respectively. Let us call

this valuation profile v. Thus, the virtual valuations of agents are ω1(v1) = 0.6, ω2(v2) = 0.4

and ω3(v3) = 0.2. Thus, we have non-negative virtual valuation for every agent at the
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valuation profile v. To apply our result, we do the following calculation at the valuation

profile v:

Ov(a1) =
3∑
i=1

αP−1
i (a1)ωi(vi) = 1× 0.6 + 0.5× 0.4 + 0.5× 0.2 = 0.9.

Ov(a2) =
3∑
i=1

αP−1
i (a2)ωi(vi) = 0.8× 0.6 + 1× 0.4 + 0.8× 0.2 = 1.04.

Ov(a3) =
3∑
i=1

αP−1
i (a3)ωi(vi) = 0.5× 0.6 + 0.8× 0.4 + 1× 0.2 = 0.82.

Thus, we have f ∗(v) = a2 in our model.

Consider another valuation profile v′ as v′1 = 0.4, v′2 = 0.3 and v′3 = 0.4. Thus, we have

negative virtual valuation of every agent at v′. Hence, f ∗(v) = a0. The object is not allocated

to anyone.

In the Myerson auction, the reservation valuation is 0.5. Thus, Myerson optimal auction

gives the object to agent 1 at the valuation profile v because agent 1 has the highest virtual

valuation. Therefore, f ∗M(v) = a1 where f ∗M is the Myerson optimal allocation rule. For

the valuation profile v′, we have f ∗M(v′) = a0 because the virtual valuation of every agent is

negative and moreover every one has valuation below the reservation price.

Note that if every agent has negative virtual valuation, then we have the same allocation

in our mechanism as well as in Myerson’ mechanism. We see that in our optimal mechanism,

the allocation rule may not allocate the object to the agent who has the highest virtual

valuation.

We show in the following example that we may allocate the object inefficiently even in

symmetric agents setting. We contrast this with the optimal auction in standard single

object auction model where if the agents are symmetric, then when the object is allocated,

it will be allocated efficiently. Here, we see that even for symmetric agents case, the object

may be allocated inefficiently.

Example 14

Consider three agents whose valuations are uniformly distributed over the interval (0, 1).

We have four alternatives {a0, a1a2, a3, a4}. Let the rankings of agents 1, 2 and 3 be

a1P1a2P1a3P1a0, a2P2a3P2a1P2a0 and a3P3a2P3a1P3a0 respectively. Suppose α1 = 1, α2 =

0.9, α3 = 0.5 and α4 = 0.

Since agents are symmetric, their virtual valuation is ω(vi) = 2vi − 1. Consider the

following profile v̄ such that v1 = 0.3, v2 = 0.8 and v3 = 0.5. Thus, the virtual valuations

for the valuation profile v̄ are ω(v1) = −0.4, ω(v2) = 0.6 and ω(v3) = 0. To apply our result,

we do the following computation at the valuation profile v̄:

Ov̄(a1) =
3∑
i=1

αP−1
i (a1)ω(vi) = 1× (−0.4) + 0.5× 0.6 + 0.5× 0 = −0.1.
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Ov̄(a2) =
3∑
i=1

αP−1
i (a2)ω(vi) = 0.9× (−0.4) + 1× 0.6 + 0.9× 0 = 0.24.

Ov̄(a3) =
3∑
i=1

αP−1
i (a3)ω(vi) = 0.5× (−0.4) + 0.9× 0.6 + 1× 0 = 0.34.

Thus, we have f ∗(v) = a3 in our model.

An allocation rule is efficient if for every v ∈ V , we have

f e ∈ arg max
ak∈A

∑
i∈N

αP−1
i

(ak)vi ∀ak ∈ A.

Now, to see the efficient allocation, we do the following calculation at the valuation profile

v̄:
3∑
i=1

αP−1
i

(a1)vi = 1× 0.3 + 0.5× 0.8 + 0.5× 0.5 = 0.95.

3∑
i=1

αP−1
i

(a2)vi = 0.9× 0.3 + 1× 0.8 + 0.9× 0.5 = 1.52.

3∑
i=1

αP−1
i

(a3)vi = 0.5× 0.3 + 0.9× 0.8 + 1× 0.5 = 1.37.

Hence, f e(v̄) = a2. Note that efficient allocation allocate the object to the person who

has the highest valuation but our allocation does not allocate the object to the agent who

has the highest valuation.

Remark: Agents are symmetric in our example in the sense that they have same distribution.

The asymmetry among agents’ ranking is an integral part of our model. The asymmetry

between the ranking of two agents is emerging because of the externality. Therefore, we have

a different kind of asymmetry because of the externality.

4.5 Private Rankings

In this section, we consider the model in the previous section by assuming that the rankings

of each agent of over the set of alternatives is also a private information. As a result, the

type of an agent consists of both the valuation and the private ranking. This considerably

complicates the model.

As before, let Pi denote the ranking of agent i of the set of alternatives. Let Pi be all

the possible rankings of agent i and P := P1 × P2 × · · · × Pn. We use the usual notations

P−i and P−i as the ranking and profile of all possible rankings of agents other than agent i

respectively. Now, a type profile is a tuple (v, P ), where v is the valuation profile and P is

the profile of rankings.
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An allocation rule is a mapping f : V ×P → A. It means for every (v, P ) ∈ V ×P , f(v, P )

is the alternative chosen. A payment function of agent i ∈ N is a mapping πi : V ×P → R.

For convenience, we fix other agents’ type profile (v−i, P−i) for our analysis. We can also

modify the definition of implementability appropriately for this case.

We show below some natural payment functions and show that they cannot implement

an implementable allocation rules. Our analysis hints that there are no “nice” payment func-

tions associated with an incentive compatible mechanism. This illustrates the fundamental

challenge going from a one-dimensional type space to a type space that is no longer single

dimensional.

Before going into detail, we point out that we are dealing with a non-convex type space

now. The following example explains this.

Example 15

Let N = {1, 2, 3}. There are three agents and the set of alternatives is A = {a0, a1, a2, a3}.
Externalities are captured in numbers by α1 = 1 > α2 > α3 > α4 = 0. Every agent has two

rankings. Consider a type of agent 1 where his rankings are

P1 P ′1
a1 a1

a2 a3

a3 a2

a0 a0

Now take v1 and v′1. Let the type of agent 1 be (v1, P1) and (v′1, P
′
1). We have s1 =

(α1v1, α2v1, α3v1) with respect to type (v1, P1) and t1 = (α1v
′
1, α3v

′
1, α2v

′
1) with respect to

type (v′1, P
′
1). Take w1 = s1+t1

2
=
(
α1(v1 +v′1), α2v1 +α3v

′
1, α3v1 +α2v

′
1

)
. w1 does not produce

either of the rankings P1 or P ′1. Therefore, it is not a convex domain.

Non-convex type spaces pose a major challenge in characterization of implementable

allocation rules (Ashlagi et al., 2010). Now, we discuss various plausible payment rules and

show how they do not work for establishing implementability.

4.5.1 Implementability and Payment Rules

In this subsection, we construct some payment functions and discuss issues with them. If

we fix the ranking of an agent, then Lemma 18 works. This means that we can divide the

valuation space of agent into different sub-intervals for a fixed ranking. Then, by Lemma

18, we have v
Pi(d)
i = inf {vi ∈ Vi : f(vi, Pi) = pi(d)} for a fixed ranking Pi. But this infimum

value depends on the ranking of agent i and it is a private information.

To make the infimum value independent from the ranking of agent i, we define another

infimum over all rankings. To see this, fix a position d in a ranking Pi. Now define the

infimum for the alternative that is at position d in Pi. Similarly, define the infimum value
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for the alternative at position d in ranking P ′i and similarly define the infimum value for the

alternative at position d in every ranking of agent i. In this way, we have a collection of

least values at position d corresponding to all rankings. Then, take another infimum over all

these least values. Since they are finites, the second infimum is well-defined. In other words,

we can take the minimum of v
Pi(d)
i over all rankings. Formally, we have

vdi = min
Pi∈Pi

{vPi(d)
i }

where d denotes the position of alternatives for which these infimums has been considered.

The following example explains it.

Example 16

Consider N = {1, 2, 3, 4,}. There are four agents who are interested in buying the object.

The set of alternatives is A = {a0, a1, a2, a3, a4, a5} where a0 is the alternative where the

object is not assigned to anyone and ai is the alternative when agent i ∈ N gets allocated

the object. Fix agent 1. Then we know that agent 1 has two dimensional private information

(v1, P1) for some v1 ∈ V1 and P1 ∈ P1 where P1 = {P 1
1 , P

2
1 , P

3
1 , P

4
1 , P

5
1 , P

6
1 }. It is given in the

following table where agent 1 keeps himself at the top in each of his rankings and a0 at the

bottom in each of his rankings.

P 1
1 P 2

1 P 3
1 P 4

1 P 5
1 P 6

1

1 a1 a1 a1 a1 a1 a1

2 a2 a3 a4 . . . . . . . . .

3 a3 a4 a3 . . . . . . . . .

4 a4 a2 a2 . . . . . . . . .

5 a0 a0 a0 . . . . . . . . .

By Lemma 18, we can construct v
P 1
1 (k)

1 = {v1 ∈ Vi : f(v1, P
1
1 ) = ak)}. This is infimum calcu-

lated for agent 1, for the alternative which is at the position k and for a fixed ranking P 1
1 .

We see that v
P 1
1 (k)

1 depends on his ranking. To have vd1 independent from his ranking, we

take another infimum of v
P 1
1 (k)

1 over all rankings for position k. For instance, we define

v1
1 = min {vP

1
1 (1)

1 , v
P 2
1 (1)

1 . . . , v
P 6
1 (1)

1 }.

Thus, v1
1 is the value of first position. Similarly, we can construct the infimum values for

other positions too.

We need one more piece of notation for defining a payment function of an agent. Define,

P̄−1
i (ak) = max

Pi∈Pi
{P−1

i (ak) ∈ N : f(vi, Pi) = ak}.
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This is the maximum of positional numbers for alternative ak where f(vi, Pi) = ak at (vi, Pi) ∈
Vi × Pi. Now we define the following payment function for an agent i ∈ N and for an

alternative ak such that f(vi, Pi) = ak at type profile (vi, Pi),

π∗i (f(vi, Pi)) =
n∑

d=P̄−1
i (f(vi,Pi))

(αd − αd+1)vdi

Note that vdi is just the positional value of the interval for alternative at position d.

This is a natural generalization of the payment function defined in the previous section for

single dimensional type space. Observe that if f(vi, Pi) = f(v′i, P
′
i ) at (vi, Pi) ∈ Vi × Pi

and (v′i, P
′
i ) ∈ Vi × Pi, then π∗i (f(vi, Pi)) = π∗i (f(v′i, P

′
i )). Only the weight changes as agent

changes his types. The weights play a very crucial role here in determining payments.

In the following example, we explain why this payment function does not achieve imple-

mentability.

Example 17

Fix an agent i and consider that he has only two rankings as his private information along

with his valuation for the object. His two rankings are given below.

Pi P ′i
...

...
...

...

k ak
...

...
...

j aj
...

k′
... ak

Let us consider Pi and P ′i as the true and misreported rankings of agent i respectively. Let

f(vi, Pi) = aj and f(v′i, P
′
i ) = ak. Suppose the position of alternative aj in Pi is j and the

position of alternative ak in Pi and P ′i is k and k′ respectively as indicated in the above table.

The position of aj cannot be above k′ in P ′i because otherwise we have a contradiction with

2-cycle monotonicity. Now assume that f(v̂i, P
′
i ) 6= aj for any v̂i ∈ Vi. Then, we have to

satisfy the following inequality to show implementability,

αP−1
i (aj)

vi −
n∑

d=P̄−1
i (aj)

(αd − αd+1)vdi ≥ αP−1
i (ak)vi −

n∑
d=P̄−1

i (ak)

(αd − αd+1)vdi

Since P̄−1
i (aj) = j and k′ > j, we can write the payment function of agent i with respect to

alternative aj in recursive form. Thus, we have

αP−1
i (aj)

vi −
k′−1∑
d=j

(αd − αd+1)vdi −
n∑

d=k′

(αd − αd+1)vdi ≥ αP−1
i (ak)vi −

n∑
d=k′

(αd − αd+1)vdi
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Therefore, we have to show the following inequality for implementability,

(αj − αk′)vi −
k′−1∑
d=j

(αd − αd+1)vdi ≥ 0

But it is not satisfied because both the first and second terms are negative in the above

inequality.

We construct one another payment function and show that it also does not ensure imple-

mentability. As before, we have vPii (ak) = inf {vi ∈ Vi : f(vi, Pi) = ak}. This is the infimum

value where f chooses alternative ak in ranking Pi. Now we collect all the least values in

various rankings where alternative ak is picked by allocation rule. Formally,

vi(ak) = min
Pi∈Pi

{vPii (ak)}.

This is the minimum value of alternative ak across all Pi for an agent i ∈ N .

It cannot be the case that vi(ak) alone is a payment function because we multiply value

vi of agent i by α. Therefore, we have to assign some weight to vi(ak). Thus, we define a

payment function of an agent i if f(vi, Pi) = ak as

π∗i (ak) = αP̄−1
i (ak)vi(ak)

where P̄−1
i (ak) = max

Pi∈Pi
{P−1

i (ak) : f(vi, Pi) = ak}. The following example shows why this

payment does not work.

Example 18

Consider an allocation rule f(vi, Pi) = ai when true type of an agent i is (vi, Pi). Now if he

misreports a type (v′i, P
′
i ) such that f(v′i, P

′
i ) = ak, then we have to show for implementability

that,

αP−1
i (ai)

(vi − vi(ai)) ≥ αP−1
i (ak)vi − αP̄−1

i (ak)vi(ak)

or vi − vi(ai) ≥ αP−1
i (ak)vi − αP̄−1

i (ak)vi(ak)

where αP−1
i (ai)

= 1 by definition. Agent i can misreport in such a manner that ak has a lower

position in Pi and higher position in P ′i . That is, P−1
i (ak) is very close to ai and P

′−1
i (ak) is

very close to a0. Then, there will be no way to maintain the above inequality.

We observe that the intuitive and straightforward payment functions will not ensure im-

plementability of the allocation rule for this two dimensional mechanism design problem.

Either, we have to restrict the dimensionality of type space or impose restrictions on allo-

cation rules or type space to come up with some simple condition for implementability. We

employ the former case and restrict our analysis to single dimensional type space considering

rankings of all agents as common knowledge.
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Jehiel et al. (1999) consider a multi-dimensional type space mechanism design problem

with externalities and design a revenue maximizing mechanism only for the case where either

agents have same type vector or only for two agents. From our discussion, it also seems that

it is difficult to design a revenue maximizing mechanism even for a two dimensional type

space.

4.6 Conclusion

We model externalities in a particular way that makes our model tractable. We show that

an allocation rule is implementable if and only if it satisfies the interval property when the

rankings of agents are known. By virtue of the revenue equivalence, we also characterize

the entire class of dominant strategy incentive compatible mechanisms. We also derive an

optimal auction which is very intuitive. Further, we argue by some examples that it is difficult

to find out some simple payment function or condition for ensuring implementability for the

case where both valuation for the object and ranking of agents over other agents are private

information. In future, we will like to investigate this model in detail.

Appendix: Omitted Proofs

Proof Of Proposition 4

By Theorem 10, it is enough to show that f ∗ satisfies the interval property. Fix an agent

i ∈ N and valuation profiles, v−i, of other agents. Consider vi, v
′
i ∈ Vi such that vi > v′i.

Let f ∗(vi, v−i) = ak and f ∗(v′i, v−i) = al, where ak 6= al. We are required to show that

P−1
i (ak) < P−1

i (al). Assume for contradiction that P−1
i (ak) > P−1

i (al). By definition of f ∗,

we have

αP−1
i (ak)ωi(vi) +

∑
j 6=i

αP−1
j (al)

ωj(vj) ≥ αP−1
i (al)

ωi(vi) +
∑
j 6=i

αP−1
i (al)

ωj(vj)

Re-arranging above inequality, we have∑
j 6=i

αP−1
j (al)

ωj(vj)−
∑
j 6=i

αP−1
i (al)

ωj(vj) ≥ [αP−1
i (al)

− αP−1
i (ak)]ωi(vi) (4.6)

The virtual valuation is strictly increasing in vi due to the assumption that hazard rate

is non-decreasing. Hence, we have ωi(vi) > ωi(v
′
i). It is given by our assumption that

P−1
i (ak) > P−1

i (al). This implies that αP−1
i (ak) < αP−1

i (al)
. Therefore, we have[

αP−1
i (al)

− αP−1
i (ak)

]
ωi(vi) >

[
αP−1

i (al)
− αP−1

i (ak)

]
ωi(v

′
i)

Coupled with Inequality 4.6, we have∑
j 6=i

αP−1
j (ak)ωj(vj)−

∑
j 6=i

αP−1
i (al)

ωj(vj) >
[
αP−1

i (al)
− αP−1

i (ak)

]
ωi(v

′
i)
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Re-arranging the terms in the above inequality, we have

αP−1
i (ak)ωi(v

′
i) +

∑
j 6=i

αP−1
j (ak)ωj(vj) > αP−1

i (al)
ωi(v

′
i) +

∑
j 6=i

αP−1
i (al)

ωj(vj)

This implies that al /∈ arg maxam∈AO
∗
v(am). Thus, f ∗(v′i, v−i) 6= al, a contradiction. Hence

f ∗ satisfies the interval property and therefore it is implementable.
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