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Chapter 1

Introduction

This thesis comprises of three chapters relating to strategy-proofness and implementation.

We provide a brief description of each chapter below.

1.1 A Hurwicz Type Result in a Model with Public Good

Production

We consider a two-good model with an arbitrary number of agents. One of the goods is a

public good and the otheris a private good. Each agent has an endowment of the private good

and the private good can be converted into the public good using a well-behaved production

function. A Social Choice Function (SCF) associates an allocation with each admissible

preference profile. We impose the following requirements on the SCF.

• Strategy-proofness: Agent preferences are assumed to be private information and must

be elicited. The SCF therefore must be designed to provide agents with dominant-

strategy incentives to reveal their private information truthfully.

• Pareto-efficiency: The SCF specifies a Pareto-efficient allocation at every preference

profile. If this condition is violated, agents will have incentives to re-trade their received

allocations ex-post.

• Individual Rationality: Agents’ must be at least as well-off as they would had they

consumed their private good endowment. This is a minimal requirement for agents to

participate voluntarily in the mechanism.

We show that these requirements are incompatible with a minimal continuity requirement

on the SCF defined over a “small” preference domain.

For our result, we consider a domain D that consists of all preferences defined by utility

functions of the form

U(xi, y; θi) = θi
√
xi + y, θi > 0.

1



where xi and y refer to the levels of the private good and the public good respectively.

The domain D is a restricted domain - it is a single-crossing domain (see Goswami (2013)

and Saporiti (2009)). We consider SCF’s that satisfy Pareto-efficiency, individual ratio-

nality and continuity (defined with respect to the θi parameters) over D. However, the

SCFs are strategy-proof over a larger domain. This domain consists of D and preferences

that are common concavifications 1 of those in D at every consumption bundle. The entire

classical domain satisfies this requirement but significantly smaller domains are sufficient.

The public good is produced according to a general cost function c(y) that is strictly in-

creasing and weakly convex. According to our result, there does not exist a SCF satisfying

strategy-proofness over the extended domain and Pareto-efficiency, individual rationality and

continuity over D.

1.2 Selecting Winners with Partially Honest Jurors

We consider the effect of “partially honest” jurors, (along the lines of Dutta and Sen (2012))

in a model of juror decisions developed in Amorós (2010).

We analyze the problem of choosing the w contestants who will win a competition within

a group of n > w competitors. All jurors know who the w best contestants are. All of

the jurors commonly observe who the w best contestants are, but they may be biased (in

favour of or against some contestants). We assume that some of these jurors are partially

honest. A partially honest individual has a strict preference for revealing the true state over

lying when truth-telling does not lead to a worse outcome (according to preferences in the

true state) than that which obtains when lying. The socially optimal rule is to always select

the w best contestants, in every possible state of the world. We first look at many person

implementation , when the jury consists of at least two partially honest jurors , whose identity

is not known to the planner. We find that the socially optimal rule is Nash implementable if

for each pair of contestants, there are two jurors who treat the pair in an unbiased manner

and one of these jurors is partially honest. However it is not necessary for the planner to

know the identity of the jurors who are fair over a given pair. The result shows that the

presence of partially honest jurors expands the scope of implementation. We also analyze

the problem , when there are only two jurors and consider cases both with and without the

assumption of partial honesty.

1.3 Adjacent non-manipulability and Strategy-proofness in

Voting Domains

Incentive compatibility is an important question in any model where the agents have private

information. Incentive compatibililty guarantees that every agent truthfully reveals his pri-

1See Goswami (2013) and Barberà and Jackson (1995).
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vate information , irrespective of the announcements made by the other agents. Incentive

compatibility assumes that every feasible preference is a candidiate for manipulation. How-

ever in many settings, it is plausible and much more convenient for the mechanism designer

to consider rules which are immune to candididate manipulations that are “near” or “close”

to the true preference of the agent. We are interested in identifying conditions on the domain

, which will imply that every rule which is immmune to local manipulation is also incentive

compatible (strategy-proof). Sato (2013b) provides a sufficient condition for the equivalence

and a weaker necessary condition. Our main result identifies a weaker sufficient condition

for equivalence ( than that of Sato (2013b)).

3
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Chapter 2

A Hurwicz Type Result in a Model

with Public Good Production

2.1 Introduction

A classic result in the theory of incentive compatibility is Hurwicz (1972). The paper consid-

ered a two-good, two-agent exchange economy and showed the non-existence of strategy-

proof, Pareto-efficient and individually rational social choice functions in this environ-

ment. There is a large literature extending and refining this result for arbitrary exchange

economies.1 In this paper, we consider the same issue in the context of production economies.

We consider a two-good model with an arbitrary number of agents. One of the goods is a

public good and the other, a private good. Each agent has an endowment of the private good

and the private good can be converted into the public good using a well-behaved production

function.

A Social Choice Function (SCF) associates an allocation with each admissible preference

profile. Some standard requirements on SCF’s are imposed.

• Strategy-proofness: Agent preferences are assumed to be private information and must

be elicited. The SCF therefore must be designed to provide agents with dominant-

strategy incentives to reveal their private information truthfully.

• Pareto-efficiency: The SCF specifies a Pareto-efficient allocation at every preference

profile. If this condition is violated, agents will have incentives to re-trade their received

allocations ex-post.

• Individual Rationality: Agents’ must be at least as well-off as they would had they

consumed their private good endowment. This is a minimal requirement for agents to

participate voluntarily in the mechanism.

1See Serizawa (2002), Serizawa and Weymark (2003), Nicoló (2004), Serizawa (2006), Zhou (1991),

Goswami et al. (2014), Barberà and Jackson (1995) and Hashimoto (2008).
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We show that these requirements are incompatible with a minimal continuity requirement

on the SCF defined over a “small” preference domain.

For our result, we consider a domain D that consists of all preferences defined by utility

functions of the form

U(xi, y; θi) = θi
√
xi + y, θi > 0.

where xi and y refer to the levels of the private good and the public good respectively.

The domain D is a restricted domain - it is a single-crossing domain (see Goswami (2013)

and Saporiti (2009)). We consider SCF’s that satisfy Pareto-efficiency, individual rationality

and continuity (defined with respect to the θi parameters) over D. However, the SCFs are

strategy-proof over a larger domain. This domain consists of D and preferences that are

common concavifications 2 of those in D at every consumption bundle. The entire classical

domain satisfies this requirement but significantly smaller domains are sufficient (details can

be found in Section 2.1). The public good is produced according to a general cost function

c(y) that is strictly increasing and weakly convex. According to our result, there does not

exist a SCF satisfying strategy-proofness over the extended domain and Pareto-efficiency,

individual rationality and continuity over D.

Several papers have examined the relationship between our axioms in models with public

good production. These papers differ from ours in their choice of axioms, the domain and

the nature of the cost function. The main contribution of our paper is that we establish

our impossibility result over a specific “narrow” domain with a general cost function using

standard axioms. We briefly outline the relationship of our result with those that already

exist.

Hurwicz and Walker (1990) demonstrate the incompatibility of strategy-proofness and

Pareto-efficiency for interior allocations in the standard quasi-linear domain i.e. utility func-

tions of the form vi(y, θi) + xi.
3 Beviá and Corchón (1995) prove an impossibility result in

the same model with a linear production technology. They require the individual rationality

axiom, but show manipulability at all profiles. The domain must be chosen carefully because

strategy-proofness and Pareto-efficiency are compatible in specific domains - for instance in

the case where the function vi(y, θi) has a quadratic form (see Tian (1996) for a generaliza-

tion). Showing that xi allocations in the quasi-linear domain where Pareto-efficiency and

strategy-proofness are compatible (such as the quadratic case) cannot be designed to satisfy

to individual rationality, is not straight forward. This is because these allocations are not

unique as pointed out in Tian (1996).

Our model has very different structural features from the quasi-linear model discussed

above. Unlike the quasi-linear case, Pareto-efficiency no longer identifies a unique level of

public good. Our result also extends to the case where the production technology is not

2See Goswami (2013) and Barberà and Jackson (1995).
3In their model, although production of the public good does not appear explicitly, it can be embedded

without loss of generality in a model with endowments and a linear production technology.
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linear. Overall our methods are very different from those usually employed in the quasi-

linear case.

Corchón and Rueda-Llano (2008) use a domain similar to our basic domain. They work

on a domain consisting of preferences representable by a additively seperable utility function

satisfying a single-crossing property. It restricts attention to twice-continuously differen-

tiable SCF’s and demonstrates non-existence of a two-person SCF satisfying Pareto-efficiency,

strategy-proofness and non-dictatorship. The generalization to an arbitrary number of agents

requires individual rationality and an additional axiom called weak regularity. Weak regu-

larity is a technical property that is satisfied if there is at least one agent in the economy for

whom telling the truth is the unique best dominant strategy.

Serizawa (1996) considers the domain of all continuous, strictly monotone and strictly

convex preferences in a single public good-single private good model. It characterizes a par-

ticular public good provision/cost sharing rule as the unique rule which is strategy-proof,

non-exploitative, individually rational and non-bossy. A SCF is non-exploitative if no agent

receives a consumption of the private good larger than her endowment. A SCF is non-bossy if

no agent can affect the bundle consumed by any other agent without affecting the bundle con-

sumed by him. This rule violates Pareto-efficiency. An immediate consequence is that there

does not exist a SCF satisfying strategy-proofness, non-exploitation, individual rationality,

non-bossiness and Pareto-efficiency. Deb and Ohseto (1999) show that a strategy-proof, indi-

vidually rational SCF satisfying no-exploitation on the full class of preferences also satisfies

non-bossiness. Therefore the non-bossiness requirement in the impossibility result can be

dropped, i.e. there does not exist a SCF satisfying strategy-proofness, non-exploitation,

individual rationality and Pareto-efficiency.4

Our result differs from both Corchón and Rueda-Llano (2008) and Serizawa (1996) in

important ways. Our continuity assumption is clearly weaker than the differentiability re-

quirement in the former and we do not make the weak regularity assumption. On the other

hand, our domain includes non-single crossing preferences. Our result is also not comparable

to the impossibility result in Serizawa (1996) since it uses an additional continuity assump-

tion while not requiring non- exploitativeness nor non-bossiness. We note that our result

does not make a non-bossiness assumption, an assumption that is pervasive in the literature

on allocation models with at least three agents.5

An alternative approach to the problem can be formulated using ideas in Jackson (2003).

Assume that the cost of producing the public good is shared equally amongst the agents.

The utility function U(xi, y; θi) can then be written as a function of y alone, for every θi
i.e. as vi(y; θi). Standard assumptions on Ui(xi, y, θi) ensure that vi(y; θi) is single-peaked.

4The no-exploitation condition can be regarded as weak. However our model and assumptions allow for

the possibility of its violation. On the other hand, we impose a continuity assumption albeit on a specific

sub-domain. Our results are therefore independent of Serizawa (1996) and Deb and Ohseto (1999).
5See Satterthwaite and Sonnenschein (1981), Serizawa (1996), Barberà and Jackson (1995) and

Goswami et al. (2014).
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Denote the peak of vi(y; θi) by ŷ(θi). A sufficiently rich class of Ui(xi, y; θi) functions will

generate all single-peaked preferences on y. Well known results on strategy-proof rules on

single-peaked domains (Moulin (1980), Weymark (2011)) can be applied to show that that

the public good production rule will be a median rule with phantom voters - a precise result

is stated as Theorem 3 in Jackson (2003). The only rule satisfying individual rationality

in addition to strategy-proofness, is the minimum demand rule. This rule picks mini ŷ(θi)

amongst the agents. However this rule is not Pareto efficient - for example, a change in the

function vi(y; θi) for all i that leaves ŷ(θi) unchanged will keep the chosen level of public good

unchanged but will typically affect its Pareto efficient level. In the paper, we consider a more

general model where the cost shares are not fixed and can depend on the reported vector of

types. This also implies that arguments using single-peakedness cannot be extended easily.

As the cost sharing parameter changes, the vi(.) function itself changes which will typically

lead to complications. However the idea of reducing the problem to one of choosing the level

of the public good in a single-peaked domain (assuming a fixed cost share) serves as a useful

background to our result.

2.2 The Model

We consider an economy with a set of agents I = {1, 2, .., n}. There is a single public good

that can be produced from a private good according to a convex cost function. We let y ∈ ℜ+

denote the amount of public good and xi ∈ ℜ+, the consumption of private good by agent i.

Agent i has an initial endowment of the private good ωi > 0. The aggregate endowment is

ω =
∑

i∈I ωi.

The cost of producing the public good is given by the cost function c : ℜ+ → ℜ+.

We assume that this function is twice-continuously differentiable satisfying the following

conditions (i) ∞ > c′(y) ≥ 0 for y ≥ 0 with c′(y) > 0 whenever y > 0 and (ii) c′′(y) ≥ 0 for

all y ≥ 0.

The set of feasible allocations is

A ≡

{
(y, x1, x2, .., xn) : y ∈ ℜ+, xi ∈ ℜ+ ∀i,

∑
i∈I

xi + c(y) ≤ ω

}
.

Let y∗ be the maximum amount of public good that can be produced given the aggregate

endowment of the private good is ω, i.e. y∗ = c−1(ω).

2.2.1 Preferences

We assume that each agent i has a preference ordering over private-good, public-good bun-

dles. Such a preference will be denoted by Ri. For any pair of private-good, public-good

bundles (xi, y) and (x
′
i, y

′
), if (xi, y) Ri (x

′
i, y

′
) then (xi, y) is weakly preferred to (x

′
i, y

′
). The

asymmetric and symmetric components will be denoted by Pi and Ii respectively. We let

8



R denote the set of all preference orderings that are (a) continuous, (b) strictly monotone

in both public and private good and (c) strictly convex. We refer to such preferences as

classical preferences. A profile R = (R1, . . . , Rn) is an n-tuple of preference orderings, one

for each agent. For any S ⊆ N and profile R, RN\S is the profile of N − S agents where the

preference orderings of agents in S are deleted. In the special case where S = {i}, we write

R−i for RN\S. The set of all profiles is Rn.

Our starting point is the domain D of preferences that can be represented by utility func-

tions of the form ui(xi, y; θi) = θi
√
xi+y where θi > 0. These preferences are parametrized by

the positive real number θi.
6 We shall denote the indifference curve of preference θi through

point allocation (xi, y) by IC(θi, (xi, y)). A preference profile in D can be represented by

an n-tuple θ = (θ1, . . . , θn). Let S ⊆ N , θS = (θi)i∈S and R ∈ Rn, (θS, RN\S) denotes the

profile where agents in S and N \ S have preference orderings in D and R.

We will operate on a strictly larger domain of D which we call Dcc. The larger domain

consists of preferences in D as well as common concavifications of preferences in D. We first

define concavification.

Let (xi, y) be a private-good,public-good pair and Ri be a preference of agent i. Then

UC(Ri, (xi, y)) is the set of commodity bundles that are at least as good as (xi, y) according

to Ri.

Ri

(xi, y)

y

R
′

i

xi

Figure 2.1: Concavification

Definition 1 Let Ri be a preference ordering and let (xi, y) ∈ ℜ2
+ be a private-good,public-

good pair. The preference ordering R
′
i is a concavification of Ri at (xi, y) if

6These preferences have the single-crossing property; see Goswami et al. (2014) and Goswami (2013).

They clearly satisfy properties (a), (b) and (c) above and therefore belong to R.
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(i) UC(R
′
i, (xi, y)) ⊆ UC(Ri, (xi, y)) and

(ii) (x
′
i, y

′
) ∈ UC(R

′
i, (xi, y)) and (x

′
i, y

′
) ̸= (xi, y) =⇒ (x

′
i, y

′
) Pi (xi, y).

This is illustrated in Figure 2.1. Common concavification requires the existence of a

preference that simulataneously concavifies two specifically chosen preferences in D for two

(xi, y) bundles chosen in a particular way. Formally,

Definition 2 Let (xi, y), (x
′
i, y

′
) ∈ ℜ2

+. The bundles (xi, y) and (x
′
i, y

′
) are denoted by a

and b respectively and L(a, b) denotes the line joining a and b. Let θi, θ
′
i be such that

(i) θi
√

x
′
i + y

′
> θi

√
xi + y

(ii) θ
′
i

√
x

′
i + y

′
> θ

′
i

√
xi + y.

(iii) θ
′
i > θi.

(iv) If L(a, b) is downward sloping, then we require that IC(θi, b) cuts L(a, b) from above at

point b. 7

Then Ri ∈ R is a common concavification if Ri is a concavification of θi at (xi, y) and a

concavification of θ
′
i at (x

′
i, y

′
).

This is illustrated in Figure 2.2.

The Appendix provides the details for such a construction. The additional preferences

are classical. They remain “narrow” in the sense that they are strict sub-class of the set of

preferences that are seperable in the public and private good.

2.2.2 Social Choice Functions

In this subsection, we recall some basic definitions.

A Social Choice Function or SCF is a map F : Rn → A. We let F ∗ : Dn → A denote

the restriction of F to the domain Dn. For any profile R, Fi(R) = (xi(R), y(R)) where

i ∈ I. We will write xi(R) and y(R) respectively as the private good allocated to agent

i and the public good produced at profile R by F . Thus, F comprises (n + 1) functions,

xi : Rn → [0, ω], i = 1, . . . , n and y : Rn → [0, y∗]. For a general profile (θS, RN\S) where

S ⊆ N , xi(θS, RN\S) and y(θS, RN\S) will denote the private good allocated to agent i and the

public good produced respectively. Note that in view of our earlier remarks, F ∗ : ℜn
++ → A.

We now describe some properties of SCF’s.

7The absolute value of the slope of IC(θi, b) at point b is strictly greater than the absolute value of the

slope of L(a, b).
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a θ′i
Ri

xi

θi

Ri

y

Figure 2.2: Common Concavification

Definition 3 An SCF F is manipulable on [Dcc]n if there exists agent i and a profile R

such that

F (R
′

i, R−i) Pi F (Ri, R−i).

It is strategy-proof (SP) if it is not manipulable by any agent at any profile.

Strategy-Proofness is the standard notion of Dominant Strategy Incentive Compatibility.

If an SCF is Strategy-Proof, no agent can be strictly better off by misrepresenting his pref-

erences irrespective of the announcements of the other agents. Note that strategy-proofness

is defined on the sub-domain [Dcc]n.

Definition 4 An SCF F is Pareto-efficient on the restricted domain Dn (PERD) if F ∗ is

Pareto-efficient i.e. there does not exist θ ∈ ℜn
++ and (y, x1, ...., xn) ∈ A such that

θi
√
xi + y ≥ θi

√
xi(θ) + y(θ)

for all i with at least one strict inequality.

We require F to be Pareto-efficient only on the sub-domain Dn. Therefore PERD is a

weaker requirement than standard Pareto-Efficiency which would apply to the whole domain.

A similar remark holds for our notion of Individual Rationality which we define below.

11



Definition 5 An SCF F is Individually Rational on the restricted domain Dn (IRED) if

F ∗ is Individually Rational i.e.

θi
√

xi(θ) + y(θ) ≥ θi
√
ωi.

for all i and for all θ.

The Individual Rationality axiom ensures that no agent is strictly better-off by rejecting

the allocation prescribed by the mechanism and consuming only her endowment (of private

good). The implicit assumption is that if an agent chooses not to participate in the mecha-

nism, she will be excluded from public good consumption. This is a weaker requirement than

the one that would hold if the agent was allowed to free-ride on the public good supplied

by the contribution of other agents. This is also the approach of Corchón and Rueda-Llano

(2008). Serizawa (1996) follows an alternative and more general approach. In his model, Ser-

izawa assumes that all agents have access to a personalized public good producing technology

which can be operated by a contribution from the agent’s own private good endowment. In

the special case where this private technology is the “null technology”, Serizawa’s individual

rationality condition reduces to ours.

Definition 6 A SCF F is restricted domain continuous (RDC) if F ∗ is continuous.

Since F ∗ : ℜn
++ → A, there are no technical issues in defining continuity.

2.3 The Result

Our result is the following.

Theorem 1 There does not exist a SCF satisfying Strategy-Proofness, PERD, IRED and

RDC.

We provide a brief description of the proof strategy. We prove the result by way of

contradiction, ie. we assume that there exists a SCF which satisfies all the axioms. The

first step is to show that if the SCF satisfies IRED, then for any arbitrary profile, there will

exist an agent, say i whose private good allocation is strictly positive. Strategy-proofness

implies that both xi(·) and y(·) are monotonic in θi. A key step in the argument is to show

that xj(·) is also monotonic (non decreasing) in θi. This follows from Strategy proofness,

RDC and the fact that the public good allocation affects the utility of all agents. The next

step is to establish that as the type of agent i becomes arbitrarily large, the public good

allocation tends to zero. This fact implies that the SCF cannot satisfy PERD, leading to a

contradiction.

12



2.4 Proof

The proof uses the following key lemmas.

Lemma 1 (PERD Characterization) If F satisfies PERD, there exists α(θ) ∈ Rn
+ with

(0, . . . , 0) ̸= α(θ) ≤ (1, . . . , 1) satisfying∑
i∈N

αi(θ)
2
√

xi(θ)

θi
≤ c′(y(θ)) (2.1)

[∑
i∈N

αi(θ)
2
√

xi(θ)

θi
− c′(y(θ))

]
y(θ) = 0. (2.2)

(1− αi(θ))xi(θ) = 0 for all i ∈ N. (2.3)

These conditions are a special case of the conditions derived for a more general model in

Campbell and Truchon (1988).

If a Pareto-efficient allocation satisfies xi(θ) > 0 for all i, then αi(θ) = 1 for all i. If a

Pareto efficient allocation satisfies y(θ) > 0, then Equation 2.1 holds with equality.

Lemma 2 (Monotonicity) Let F be SP. Pick i ∈ I and R−i ∈ [Dcc]n−1. Then

(i) xi(θi, R−i) is non-decreasing in θi.

(ii) y(θi, θ−i) is non-increasing in θi.

Proof : Consider an agent i with preference θi and θ
′
i with θ

′
i > θi.

From strategy-proofness

θi
√

xi(θi, R−i) + y(θi, R−i) ≥ θi

√
xi(θ

′
i, R−i) + y(θ

′

i, R−i) (2.4)

and

θ
′

i

√
xi(θ

′
i, R−i) + y(θ

′

i, R−i) ≥ θ
′

i

√
xi(θi, R−i) + y(θi, R−i). (2.5)

Adding Equations 2.4 and 2.5 and rearranging, we have

(θ
′

i − θi)

(√
xi(θ

′
i, R−i)−

√
xi(θi, R−i)

)
≥ 0. (2.6)

Equation 2.6 establishes (i).

Rearranging Equation 2.4 also gives

y(θi, R−i)− y(θ
′

i, R−i) ≥ θi

(√
xi(θ

′
i, R−i)−

√
xi(θi, R−i)

)
. (2.7)

Equation 2.7 along with (i) implies (ii). ■
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Lemma 3 (Common Concavification Lemma) Let (xi, y), (x
′
i, y

′
) ∈ ℜ2

+. The bundles

(xi, y) and (x
′
i, y

′
) are denoted by a and b respectively and L(a, b) denotes the line joining a

and b. Let θi, θ
′
i be such that

(i) θi
√

x
′
i + y

′
> θi

√
xi + y

(ii) θ
′
i

√
x

′
i + y

′
> θ

′
i

√
xi + y.

(iii) θ
′
i > θi.

(iv) If L(a, b) is downward sloping, then we require that IC(θi, b) cuts L(a, b) from above at

point b. 8

Then there exists Ri ∈ R such that Ri is a concavification of θi at (xi, y) and a concavification

of θ
′
i at (x

′
i, y

′
).

A formal proof of Lemma 3 is contained in the Appendix. We note that (iv) in the

choice of a and b is a technical requirement that considerably simplifies the construction of

the common concavification. The Lemma is true without the requirement. However the

circumstances where the concavification lemma is used in our proof satisfy (iv). So the

simplified construction suffices for our purpose. Requirements (i) and (ii) are necessary for

common concavification.

We now begin the proof of the theorem.

Proof : Suppose the theorem is false i.e. F is a SCF satisfying SP, PERD, IERD and RDC.

Recall that F ∗ is the restriction of F to the domain Dn.

For the rest of the proof till the end of Claim 3, we fix an arbitrary agent i and θ̂−i.

We claim that there exists θ̂i such that xi(θ̂i, θ̂−i) > 0.

If the claim is false, then IRED for agent i implies

y(θi, θ̂−i) ≥ θi
√
ωi for all θi. (2.8)

The LHS of (2.8) is bounded above by y∗. On the other hand, the RHS can be made

arbitrarily large by choosing θi large enough, leading to a contradiction.

In view of Lemma 2, xi(θi, θ̂−i) and y(θi, θ̂−i), are non-decreasing and non-increasing in

θi respectively. We will show the following:

CLAIM 1: For all j ̸= i, xj(θi, θ̂−i) is non-decreasing in θi.

Suppose Claim 1 is false i.e. there exists θ′i and θ′′i with θ′i > θ′′i and j ̸= i such that and

xj(θ
′
i, θ̂−i) < xj(θ

′′
i , θ̂−i). Note that Lemma 2 implies y(θ′i, θ̂−i) ≤ y(θ′′i , θ̂−i).

The functions xj = xj(θi, θ̂−i) and y = y(θi, θ̂−i) are continuous in θi since F satisfies

RDC. Therefore, θi parametrizes a curve in ℜ2
+ according to θi 7→ ((xj(θi, θ̂−i), y(θi, θ̂−i)).

8The absolute value of the slope of IC(θi, b) at point b is strictly greater than the absolute value of the

slope of L(a, b).
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(See Rudin (1976), page 131). Consider the section of the curve as θi varies from θ′′i to θ′i,

labelled A in Figure 2.3. The curve must pass through the points a and b. By Lemma 2 the

curve must lie below the horizontal line y = y(θ′′i , θ̂−i) and above y = y(θ′i, θ̂−i). These facts

imply the existence of θ∗i ∈ (θ′′i , θ
′
i] such that xj(θi, θ̂−i) > 0 and xj(θi, θ̂−i) ≥ xj(θ

′
i, θ̂−i) for

all θi ∈ (θ
′′
i , θ

∗
i ) ⊆ (θ

′′
i , θ

′
i). Figure 2.3 shows θ∗i for alternative paths A.

xj

xj(θ
′

i, θ̂−i) xj(θ
′′

i , θ̂−i)

a

θ∗i

by(θ
′′

i , θ̂−i)

y(θ
′

i, θ̂−i)

y

A A
A

Figure 2.3: Alternative path A’s

d

d′

b

y

xj

M

y(θ
′′

i , θ̂−i)

c

a

xj(θ
′′

i , θ̂−i)

y(θ∗i , θ̂−i)

xj(θ
∗

i , θ̂−i)

A

B

Figure 2.4: Monotonicity of xj in θi
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Let B be the path parametrized by θj according to θj → ((xj(θ
∗
i , θj, θ̂−ij), y(θ

∗
i , θj, θ̂−i,j))

for θj ≤ θ̂j. Let a denote the point (xj(θ
∗
i , θ̂j, θ̂−i,j), y(θ

∗
i , θ̂j, θ̂−i,j)) (Figure 2.4). Suppose B

is degenerate at a i.e. the path B consists of only point a. This would imply y(θ∗i , θj, θ̂−i,j) =

y(θ∗i , θ̂j, θ̂−i,j for all θj < θ̂j. By SP for agent j, xj(θ
∗
i , θj, θ̂−i,j) = xj(θ

∗
i , θ̂j, θ̂−i,j) for all

θj < θ̂j.

By PERD,

2
√

xj(θ∗i , θj, θ̂−i,j)

θj
+
∑
k ̸=j

αk(θ
∗
i , θj, θ̂−i,j)

2
√
xj(θ∗i , θj, θ̂−i,j)

θk
= c′(y(θ∗i , θj, θ̂−i,j)). (2.9)

The LHS of Equation 2.9 can be made arbitratrily large by choosing θj sufficiently small.

On the other hand, the RHS is a finite constant. Therefore B cannot be degenerate. Let

limθj→0 xj(θ
∗
i , θj, θ̂−i,j) = x̄j and limθj→0 y(θ

∗
i , θj, θ̂−i,j) = ȳ. We can therefore infer that

x̄ < xj(θ
∗
i , θ̂−i) and ȳ > y(θ∗i , θ̂−i).

Pick M such that y(θ∗i , θ̂−i) < M < y(θ
′′
i , θ̂−i). Let θ

′
j and θ̃i be such that y(θ∗i , θ

′
j, θ̂−i,j) =

y(θ̃i, θ̂j, θ̂−i,j) = M . The existence of θ
′
j and θ̃i is guaranteed by our earlier arguments (See

Figure 2.4 and points d and c).

We will find a common concavification for agent j at point c and a point d′ on B,

arbitratrily close to d such that the level of public good at d′ is strictly greater than M . In

order to apply Lemma 3, we need to ensure that c is strictly preferred to d′ at both θ̂j and θ
′′
j

which corresponds to the preference for which the allocation for agent j at (θ∗i , θ
′′
j , θ̂−i,j) is d

′.

Note that condition (iii) in Lemma 3 is satisfied for any point d′ such that d′ is distinct from

a. We also need to satisfy condition (iv) in Lemma 3. We claim that all these properties can

be satisfied by a suitable choice of d′.

Due to the monotonicity of preferences, c is strictly preferred to d at θ̂j. Since preferences

are also continuous, there is a neighbourhood of d where all allocations will be strictly worse

than c under θ̂j. Formally, let LC(θ̂j, c) denote the lower contour set of allocation c under

preference θ̂j. Then d ∈ Int LC(θ̂j, c).
9 Thus there exists a neighbourhood of d, Bδ(d) such

that Bδ(d) ⊆ Int LC(θ̂j, c). The point d′ can be chosen from this neighbourhood to satisfy

condition (ii) of Lemma 3.

As discussed above, we need to ensure that c is strictly preferred to d′ at θ
′′
j where d′

corresponds to the preference profile (θ∗i , θ
′′
j , θ̂−i,j). In order to find such a d′, we prove the

following claim.

Let (x
′
j, y

′
) ∈ Int LC(θ∗j , (x

∗
j , y

∗)). Then there exists a neighbourhood of θ∗j , (θ
∗
j −ϵ, θ∗j +ϵ)

and a neighbourhood of (x
′
j, y

′
), Bδ((x

′
j, y

′
)) such that Bδ((x

′
j, y

′
)) ⊆ Int LC(θj, (x

∗
j , y

∗) for

all θj ∈ (θ∗j − ϵ, θ∗j + ϵ).

We have θ∗j

√
x

′
j + y

′
< θ∗j

√
x∗
j + y∗. This means θ∗j

[√
x

′
j −

√
x∗
j

]
+ y

′ − y∗ < 0. We

define g(θj, xj, y) = θj
[√

xj −
√

x∗
j

]
+ y − y∗. Hence, we have g(θ∗j , x

′
j, y

′
) < 0. Note that

9Int S denotes the interior of set S.
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g(.) is a continuous function on ℜ3
++. Thus by continuity of g(.), we have a neighbourhood

of (θ∗j , x
′
j, y

′
), Bδ(θ

∗
j , x

′
j, y

′
) such that for all (θj, xj, y) ∈ Bδ(θ

∗
j , x

′
j, y

′
), g(θj, xj, y) < 0. Hence

the above claim follows.

Due to monotonicity of preferences c is strictly preferred to d at θ
′
j. Thus by the above

claim, there exists a neigbourhood of d such that all points in this neighbourhood are strictly

worse than c at any θj which belongs to the interval (θ
′
j − ϵ, θ

′
j + ϵ). Thus any point d′ in

this neighbourhood will satisfy condition (i) of Lemma 3. Since xj(θj, θ−j) and y(θj, θ−j) are

both monotone in θj, the curve B is differentiable almost everywhere. Strategy proofness of

agent j implies that at any differentiable point e on Path B, the slope of IC(θ∗j , e) (where

e corresponds to the profile (θ∗i , θ
∗
j , θ̂−i,j)) is equal to the derivative of Path B at point e.

By the single crossing property, θ∗j is unique. Thus now we can choose d′ (which uniquely

corresponds to θ
′′
j ) on path B in the appropriate neighbourhood such that conditions (i) and

(ii) of Lemma 3 are satisfied. We can therefore find a θ
′′
j close to θ

′
j such that d′ is on path

B and satisfies conditions (i) and (ii) of Lemma 3.

Condition (iv) in Lemma 3 requires IC(θ
′′
j , c) cuts L(d

′, c) from above at c. 10 However

the existence of d′ and θ
′′
j as described above does not guarantee that IC(θ

′′
j , c) will cut

L(d′, c) from above.

We will now argue that our choice of d′ satisfies condition (iv) as well. Since the SCF

is continuous, from our arguments above we can infer that for every ϵ > 0, there exists

θϵj ∈ (θ
′
j − ϵ, θ

′
j) and point dϵ on Path B close to d such that conditions (i) and (ii) of Lemma

3 are satisfied.

In the neighbourhood that we defined above to satisfy requirements (i) and (ii) of Lemma

3, we can construct a strictly decreasing sequence {ϵk} converging to 0. Note that every ϵk

corresponds to a point dk on Path B and θkj . Also by construction, θkj < θk+1
j < θ

′
j. The

sequence {θkj } converges to θ
′
j.

We define the function h(θkj ) as follows:

h(θkj ) = −
y(θ∗i , θ

k
j , θ̂−i,j)− y(θ̃i, θ̂j, θ̂−i,j)

xj(θ∗i , θ
k
j , θ̂−i,j)− xj(θ̃i, θ̂j, θ̂−i,j)

.

The function h(.) is the slope (absolute value) of the line L(dk, c). Note that h(.) is

continuous in θj due to the continuity of the SCF. Thus h(.) tends to 0 as θkj converges to

θ
′
j.

The slope (absolute value) of IC(θkj , c) at point c is defined by the function f(θkj ),

f(θkj ) =
θkj

2
√

xj(θ̃i, θ̂j, θ̂−i,j)
.

10L(d′, c) is downward sloping since d′ is chosen such that the level of public good at d′ is strictly greater

than M which is the level of public good at c. Also the level of private good at d′ is strictly less than the

level of private good at c.
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The limit of the function f(θkj ) as θ
k
j tends to θ

′
j is

θ
′
j

2
√

xj(θ̃i,θ̂j ,θ̂−i,j)
which is strictly positive.

Also, the function f(θkj ) is strictly increasing.

Thus there exists θKj such that

f(θKj ) > h(θKj ).

Hence we obtain θ
′′
j = θKj and d′ = dK which satisfies all the conditions of Lemma 3. Let

(xj(c), y(c)) and (xj(d
′), y(d′)) denote the private-good to j, public good pairs corresponding

to c and d′ respectively.

Applying Lemma 3, there exists an Rj, which concavifies θ′′j at d′ and θ̂j at

c (see Figure 2.4). By SP, (xj(θ
∗
i , Rj, θ̂−i,j), y(θ

∗
i , Rj, θ̂−i,j)) = (xj(d

′), y(d′)) and

(xj(θ̃i, Rj, θ̂−i,j), y(θ̃i, Rj, θ̂−i,j)) = (xj(c), y(c)) where (θ̃i, Rj, θ̂−i,j) is a preference profile cor-

responding to (xj(c), y(c)). By construction, θ
′′
i < θ̃i < θ∗i . Since y(c) < y(d′), we have a

contradiction to Lemma 2.

CLAIM 2: limθi→∞ xi(θi, θ̂−i) ≥ ωi.

IRED for agent i requires

y(θi, θ̂−i) ≥ θi

[
√
ωi −

√
xi(θi, θ̂−i)

]
. (2.10)

Since xi(θi, θ̂−i) is bounded and monotone in θi, the limit exists. If the limit is strictly

less than ωi ,then the RHS of Equation 2.10 increases without bound as θi → ∞. On the

other hand, the LHS is bounded above by ω. We therefore have a contradiction.

CLAIM 3: limθi→∞ y(θi, θ̂−i) = 0.

Suppose the claim is false i.e. limθi→∞ y(θi, θ̂−i) = α > 0. We proceed in several steps.

Step 1: There exists j ̸= i such that limθi→∞ xj(θi, θ̂−i) < ωj.

By Claim 1, xj(θi, θ̂−i) is monotone. Therefore limθi→∞
∑

j ̸=i xj(θi, θ̂−i) exists. If the

claim is false, then limθi→∞
∑

j ̸=i xj(θi, θ̂−i) ≥
∑

j ̸=i ωj. However taking limits in the equation

for feasibility and using Claim 2, we have

lim
θi→∞

∑
j ̸=i

xj(θi, θ̂−i) ≤
∑
j ̸=i

ωj − c(α).

By assumption, c(α) > 0 which leads to a contradiction.

In the rest of the proof of Claim 3, j is chosen so that limθi→∞ xj(θi, θ̂−i) < ωj holds. Let

limθi→∞ xj(θi, θ̂−i) = β < ωj.

As before, let θi 7→ (xj(θi, θ̂−i), y(θi, θ̂−i)) for θi > 0 define a curve in (xj, y) space. This

curve is referred to as Curve A. By Claim 1, Curve A is downward sloping and is not

degenerate. Note that for any two points a and b on Curve A such that xj(a) ̸= xj(b) and
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y(a) > y(b), then θbi > θai where (xj(b), y(b)) = (xj(θ
b
i , θ̂−i), y(θ

b
i , θ̂−i)) and (xj(a), y(a)) =

(xj(θ
a
i , θ̂−i), y(θ

a
i , θ̂−i)).

Note that (β, α) is a point on the curve.

Fix θni . The curve B(θni ) is defined by θj 7→ (xj(θ
n
i , θj, θ̂−i), y(θ

n
i , θj, θ̂−i)) for θj > 0. SP

for agent j implies that the curve is downward sloping in (xj, y) space.

Step 2: There exists θni such that B(θni ) does not coincide with Curve A till (β, α). 11

Suppose this is false i.e. B(θqi ) coincides with Curve A till (β, α) for all q.

θ
q
j

y

β β

y

e

h
e

θ
q
j

ωj ωjPanel A Panel B

α

A A

xj xj

α

Figure 2.5:

We have assumed at the outset that xi(θ̂i, θ̂−i) > 0. The allocation for agent j,

(xj(θ̂i, θ̂−i), y(θ̂i, θ̂−i)) lies on Curve A. Since A is not degenerate, we can find a point e

on A, close to this point where the curve is differentiable (follows from the monotonicity of

xj(θi, θ̂−i) and y(θi, θ̂−i) in θi). Thus xi(e) > 0.

By our hypothesis, it follows that for all θqi , there exists θqj such that the allocation for

player j at e equals (xj(e), y(e)) = (xj(θ
q
i , θ

q
j , θ̂−i,j), y(θ

q
i , θ

q
j , θ̂−i,j)).

We argue that θqj does not depend on θqi . Pick an arbitrary θqi . We claim that curve A

must be tangent to indifference curve of preference θqj . Suppose not. In particular, consider

the indifference curve in Figure 2.5 (Panel A) and the allocation h for agent j. By hypothesis,

h lies on B(θqi ) i.e. there exists θ̃j such that (xj(h), y(h)) = (xj(θ
q
i , θ̃j, θ̂−i,j), y(θ

q
i , θ̃j, θ̂−i,j)).

But then j manipulates at θqj via θ̃j. We can conclude therefore that all the indifference

curves corresponding to all the different θqj have a common tangent at e. Thus for θqj and

θq
′

j , we have
θqj

2
√

xj(e)
=

θq
′

j

2
√

xj(e)
which implies that θqj = θq

′

j . We refer to this common θqj as θ̄j.

11 Note that if Curve A is vertical, then our claim is trivially true.
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Now since e lies on B(θqi ) for all q, y(θ
q
i , θ̄j, θ̂−i,j) = y(e). Therefore SP for agent i implies

that xi(θ
q
i , θ̄j, θ̂−i,j) = xi(e) (which is strictly positive).

By PERD

2
√

xi(e)

θqi
+
∑
k ̸=i

α(θqi , θ̄j, θ̂i,j)
2
√

xk(θ
q
i , θ̄j, θ̂−i,j)

θk
= c′(y(e)) ∀ q. (2.11)

The LHS of Equation 2.11 becomes unboundedly large as θqi → 0. On the other hand,

the RHS is finite which leads to a contradiction. This establishes Step 2.

Pick (x′
j, y

′) such that β < x′
j < ωj and 0 < α < y′. Let θ∗j =

y′

(
√
ωj−

√
x′
j)
. The indifference

curve for ordering θ∗j is shown in Figure 2.6. Let θni be the preference ordering of agent i

guaranteed by Step 2 i.e. B(θni ) does not coincide with Curve A till (β, α). IRED for agent

j implies that B(θni ) must enter in the shaded region in Figure 2.6. There are two cases to

consider.

y

α

θ∗j

β

xj
ωj

(x′j, y
′)

Figure 2.6: Existence of θ∗j

Case (i): Some part of the Curve B(θni ) lies below Curve A (Figure 2.7).

Case (ii): Curve B(θni ) lies completely above Curve A (Figure 2.8).

We will show that each case leads to a contradiction.

Case (i): In Figure 2.7, pick points e and h on Curves B(θni ) and A respectively such that

xj(e) < xj(h) and y(e) < y(h) Let e and h correspond to the profiles (θni , θ
e
j , θ̂−i,j) and

(θhi , θ̂j, θ̂−i,j). By assumption and our earlier observations, it follows that θhi > θni . Since

xj(e) < xj(h) and y(e) < y(h), Lemma 3 there exists a common concavification Rj of θ
e
j at

e and θ̂j at h (see Figure 2.7) 12. By SP of agent j,

12Note that in this case, condition (iv) of Lemma 3 is satisfied trivially because L(e, h) is upward sloping.
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B(θni )
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ωj

θni

Figure 2.7: Case (i)

α

xj

θ∗j

h

h′

β ωj

e

B(θni )

A
y

Figure 2.8: Case (ii)

1. (xj(θ
h
i , θ̂j, θ̂−i,j), y(θ

h
i , θ̂j, θ̂−i,j)) = (xj(θ

h
i , Rj, θ̂−i,j), y(θ

h
i , Rj, θ̂−i,j)).

2. (xj(θ
n
i , θ

e
j , θ̂−i,j), y(θ

n
i , θ

e
j , θ̂−i,j)) = (xj(θ

n
i , Rj, θ̂−i,j), y(θ

n
i , Rj, θ̂−i,j)).

Since θhi > θni , we have a contradiction to non-increasingness of y in θi (Lemma 2).

Case (ii): This case proceeds in a manner very similar to Claim 1. Pick points e and h on

Curves A and B(θni ) such that y(e) = y(h). Let h correspond to the profile (θni , θ
′
j, θ−i,j) and

we denote xj(θ
n
i , θ

′
j, θ−i,j) = xj(h). See Figure 2.8.
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Consider h′ suitably close to h on Curve B(θni ) such that y(h′) < y(h). Arguing as we

did in Claim 1, we can find θh
′

j such that (xj(h
′), y(h′)) is strictly preferred to (xj(e), y(e))

under both θh
′

j and θ̂j. We also need to ensure that IC(θ̂j, h
′) cuts L(e, h′) from above at

point h′. Arguing as we did in Claim 1, such a point h′ can be chosen. We can construct a

strictly decreasing sequence of θkj converging to θ
′
j and the corresponding points hk moving

closer to h as k increases. Thus, as θkj approaches θ
′
j, the slope (absolute value) of L(e, hk)

tends to zero. Also, the limit of the slope of IC(θ
′
j, h

k) at point hk is
θ
′
j

2
√

xj(h)
which is strictly

positive. Thus there exists K and hK where condition (iv) of Lemma 3 will be satisfied. We

choose h′ = hK . We can therefore find a common concavification Rj of θ
h′
j at h′ and θ̂j at e

and obtain a contradiction to the non-increasingness of y in θi.

These arguments establish Claim 3.

We now complete the proof of the theorem.

Choose θ̃−i such that ∑
k ̸=i

2
√
ωk

θ̃k
> c′(0) ≥ 0.

Consider a sequence of profiles (θi, θ̃−i), θi → ∞. Since our initial choice of θ̂−i was

arbitrary, we have

lim
θi→∞

y(θi, θ̃−i) = 0. (2.12)

We have already shown that for θi large enough, xi(θi, θ̃−i) > 0. By IRED for agent k ̸= i

and Equation 2.12, we can conclude that

lim
θi→∞

xk(θi, θ̃−i) ≥ ωk > 0 for all k ̸= i. (2.13)

Hence, xk(θi, θ̃−i) > 0 for θi large enough. For these profiles, PERD requires

2
√

xi(θi, θ̃−i)

θi
+
∑
k ̸=i

2
√

xk(θi, θ̃−i)

θ̃k
≤ c′(y(θi, θ̃−i)). (2.14)

Taking limits as θi → ∞, we have

lim
θi→∞

∑
k ̸=i

2
√
xk(θi, θ̃−i)

θ̃k
≥

∑
k ̸=i

2
√
ωk

θ̃k
> c′(0).

However this contradicts our choice of θ̃−i and completes the proof of the theorem.

■
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2.5 Discussion

We would like to draw attention to certain features of the domain of preferences in our

theorem. A SCF in our definition, is defined on the full domain of classical preferences.

Although the PERD, IRED and RDC conditions are required to hold only on the (much

smaller) restricted domain Dn, strategy-proofness is required to hold over the full domain.

However, as the proof of the theorem demonstrates, a much smaller domain suffices for our

argument. The Appendix provides details for the additional preferences required. A natural

question is whether our result is valid for the domain Dn, i.e. whether strategy-proofness

applied only to Dn is sufficient for the result. Unfortunately, we are unable to settle this

issue presently, though we conjecture that it is true.

We make brief remarks regarding the necessity of our axioms. The dictatorial SCF chooses

an allocation that maximizes the preference of a particular agent subject to production and

feasibility constraints. This SCF satisfies PERD, strategy-proofness and RDC but violates

IRED.

Serizawa (1996) proposes a SCF called the convex cost sharing rule that satisfies strategy-

proofness, IRED and RDC but violates PERD.

The set of Pareto-efficient and individually rational allocations at any preference profile

in the domain Dn, is non-empty and compact. Any continuous selection from the Pareto-

efficient and individually rational correspondence will satisfy all requirements of our theorem

except strategy-proofness.

Finally, we make some remarks about our notion of individual rationality. Serizawa (1996)

considers a richer model where each agent i has access to a private public good production

technology with an associated cost function ci(.). There is also a jointly available production

technology with a cost function c(.). An agent has the option of not offering any part of

his endowment for the joint production of the public good (using the cost function c(.)) and

instead producing the public good with her own technology i.e. using ci(.). In our model,

agents cannot produce any public good on their own. This implies that the reservation utility

level of an agent in the Serizawa model is weakly higher than in our model i.e. his individual

rationality constraints are more severe. Our impossiblity result will therefore continue to

hold if our individual rationality constraint is substituted by Serizawa’s individual rationality

constraint. There is however an important caveat. We are assuming that the existence of

agent specific production technologies does not affect the Pareto efficiency condition. For

instance, Pareto efficiency could involve the splitting of the aggregate public good production

into smaller units produced by agents using their individual technologies. This might happen

even in the case when the ci(.) functions are the same as the c(.) function, if the latter is

strictly convex.
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2.6 Appendix

We provide a formal proof of Lemma 3.

Proof : Let (x
′
i, y

′
), (x

′′
i , y

′′
) ∈ ℜ2

+ and θi, θ
′
i be specified in accordance with the statement

of Lemma 3. Assume without loss of generality, x
′
i < x

′′
i and y

′
> y

′′
. We note that θi < θ

′
i,

in all the sections where Lemma 3 is used.

y

b

y
′

x
′

i x
′′

i xi

θ̂ θi

θi

a

y
′′

c

Figure 2.9: Construction of a common concavified preference

In Figure 2.9, the points (x
′
i, y

′
) and (x

′′
i , y

′′
) are denoted by a and b respectively. Let

L(a, b) denote the line joining a and b. The point of intersection of L(a, b) and the y axis

is denoted by c. In view of our hypothesis, IC(θi, a) is not tangential to L(a, b) at a, i.e it

must intersect L(a, b) at a.

Choose θ̃ such that θ̃ > θ
′
i. A direct computation of slopes at a reveals that IC(θ̃, a) cuts

IC(θi, a) from above at a. Also, IC(θ̃, b) cuts IC(θ
′
i, b) from above at b 13.

We denote the absolute value of the slope of L(a, b) by c̄. In view of our hypothesis,

specifically condition (iv) we have,

θi

2
√
x

′′
i

> c̄ =⇒ θi > 2c̄
√
x

′′
i

Thus we can choose θ̂ such that θi > θ̂ > 2c̄
√
x

′′
i . It follows from our construction that

IC(θ̂, b) cuts L(a, b) from above at b.

13The domain D is a single-crossing domain. These properties hold generally for such domains - for details

see Goswami (2013).
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G2

G2

G2

x
′′

i

y
′′

y

xi

G2

Figure 2.10: Construction of a common concavified preference

The parameters θ̃ and θ̂ chosen above can be used to construct a preference Ri which is

a concavification of θi at (x
′
i, y

′
) and θ

′
i at (x

′′
i , y

′′
). The regions G1 and G2 are indicated in

Figure 2.10. An additional parameter t is computed as follows.

Pick an arbitrary (xi, y) ∈ G1. Let h = (xi(h), y(h)) be such that

(i) θ̃
√
xi + y = θ̃

√
xi(h) + y(h) and

(ii) [(xi(h) < x
′′
i , y(h) > y

′′
) and(xi(h), y(h)) lies on L(c, b)] or [xi(h) ≥ x

′′
i , y(h) = y

′′
].

Let t = xi(h)

x
′
i

. The preference ordering Ri is defined below.

Ri(xi, y) =

{
θ̃
√
xi + y −

√
tx

′
i(θ̃ − θ̂), if (xi, y) ∈ G1

θ̂
√
xi + y, if (xi, y) ∈ G2

We omit the verification of the following facts.

(i) Ri is a classical preference.

(ii) It concavifies θi at (x
′
i, y

′
) and θ

′
i at (x

′′
i , y

′′
).

Requirement (iv) in the statement of Lemma 3 ensures that the indifference curves for

Ri do not intersect each other.

■
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Chapter 3

Selecting Winners with Partially

Honest Jurors

3.1 Introduction

The theory of mechanism design investigates the goals that a planner can achieve when these

goals depend on private information held by various agents. The planner designs a mech-

anism that elicits the private information held by various agents. The theory is based on

the assumption that agents act purely to further their self-interest - an assumption that is

common to most of the literature in economics. However, there is both empirical and exper-

imental evidence that considerations other than self-interest influence individual behaviour.

Several recent papers have considered departures from the standard implementation frame-

work.1 In this paper, we investigate the implication of one such behaviourial assumption

- that of partial honesty in the model of juror decisions developed in Amorós (2010) and

Amorós (2013). Our main result is that this assumption expands the scope of implemen-

tation when there are three or more jurors, but has no effect when there are exactly two

jurors.

We briefly describe the juror model. A set of n ≥ 3 contestants are involved in a

competition. A jury must choose a set of w < n contestants who will win the competition.

All jurors know who the w best contestants are. We refer to this set as the set of deserving

winners. Each juror, may be biased in favour of (or against) some contestants. Amorós (2010)

shows the following necessary condition for implementation. Fix a pair of contestants: there

must exist a juror who is fair over this pair and the identity of this juror must be known to

the planner. We say that a juror is fair over a pair of contestants, if while comparing two sets

of winners, which differ exactly in this pair, the juror strictly prefers the set which contains

the contestant which belongs to the deserving set of winners. Amorós (2010) establishes

that this condition is also sufficient for implementation. We note that the condition that

1See also Kartik and Tercieux (2012), Dutta and Sen (2012), Matsushima (2008), Lombardi (2010) and

Lombardi and Yoshihara (2011).
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the identity of the fair juror is known to the planner , is a strong one. We show that in the

presence of partially honest agents, this condition is no longer necessary.

Following Dutta and Sen (2012), we assume that there are some jurors who have an

intrinsic preference for honesty. These jurors have preferences not only on outcomes but also

on the messages that they are required to send to the planner. Suppose the mechanism

used by the planner requires each juror to announce a set of winners. Then a juror is

partially honest , if she strictly prefers to be truthful when this announcement does not

change the outcome (given the messages announced by others). Thus the partially honest

jurors preferences are lexicographic since the preference for honesty is operational only when

the juror is indifferent on the outcome dimension.

An important feature of our definition of partial honesty is that it applies only to contes-

tant pairs over which he is fair. Suppose an agent is fair and partially honest over the pair

(a, b). We illustrate this with an example. Suppose w = 2. Fairness implies that the juror

prefers the set {a, c} to {b, c} for all c whenever a is in the deserving set and b is not. Partial

honesty on the other hand implies the following: suppose a is the deserving set and b is not.

Suppose a truthful message (one which involves announcing the deserving set of winners,

that includes a) and a non-truthful message both lead to the outcome bc in a mechanism.

Then the juror strictly prefers sending the truthful message.

Our main results are the following. We know from Amorós (2010)) that if the identity

of a juror who is fair over an arbitrary contestant pair is known to the planner then imple-

mentation is possible. Suppose this condition fails. We show that for every contestant pair,

there must exist two jurors who are fair over that pair. Note that it is not necessary for the

planner to know the identity of these two fair jurors. If one of these jurors is also partially

honest then implementation is possible. We provide examples to show that implementa-

tion is possible even when the Amorós (2010)) condition fails. We show that the enhanced

possibility result does not extend to the two person case.

We believe that it is appropriate to restrict partial honesty to contestant pairs over which

a juror is fair. This is a natural assumption because the juror is fair over a pair presumably

because she “cares” about the pair. We think of partial honesty therefore as an independent

strengthening of the fairness condition. In Section 3.6, we show by means of an example that

fairness over pairs cannot be substituted by extending partial honesty to pairs over which

the juror is not fair. In the example, all jurors are partially honest over all pairs. However

they are not fair over a specific contestant pair and implementation fails.

3.1.1 Related Literature

Amorós (2013) proposes a generalization of Amorós (2010). It reduces to the model in

Amorós (2010) in a special case. Amorós (2009) analyzes a model where the jurors have to

choose a full ranking of the contestants instead of selecting one winner. This paper provides

necessary and sufficient conditions on the jury for the Nash implementability of the rule
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that always selects the socially optimal ranking. Amorós et al. (2002) study the same model

and analyze implementation when each juror has one friend and is impartial with respect

to the rest of contestants. Amorós (2011) studies a similar problem for subgame perfect

implementation. Amorós (2014) studies conditions on the configuration of the jury when

attention is restricted to simple and “natural” mechanisms.

Several papers examine the implementation of socially optimal rules under the assumption

that some of the agents are responsible. Dogan (2013) studies a model , where a set of tasks

is to be allocated among a set of agents whose preferences over allocations may or may not

be responsive to the optimal allocation. The notion of an agent being responsible in this

paper is similar to that of a juror being fair in our model. This paper shows that the optimal

allocation can be implemented in Nash equilibrium if there are at least three responsible

agents.

In the next section, we describe the model and notation. Section 3.3 introduces the

concept of partially honest jurors. Sections 3.4 and 3.5 present results pertaining to the

many-person and the two-person implementation problems respectively. Section 3.6 discusses

the relationship between partial honesty and fairness. Section 3.7 concludes.

3.2 The Model

We closely follow the model of Amorós (2010) and Amorós (2013).

There is a set N = {a, b, c, ...}, |N | ≥ 3, of contestants in a competition. A group of jurors

J = {1, 2, . . . , |J | } must choose a subset W of winners, where |W | = w and 0 < w < n.

Each juror i has a preference ordering Ri over the set of all possible winners, which are all

subsets of N of size w. Let 2Nw denote the set of all possible subsets of N of size w and let

R denote the set of all orderings over 2Nw .

It is assumed that there is a set of deserving winners W ∗ ∈ 2Nw , which is commonly known

to all jurors. Each juror i’s ordering depends on W ∗, i.e. juror i has a preference function

Ri : 2
N
w → R. The ordering Ri(W

∗) reflects biases that juror i has over contestants. For

instance, Ri(W
∗) may not have W ∗ as a maximal element because i is biased in favour of a

candidate not included in W ∗ or biased against a candidate included in W ∗. The goal of the

mechanism designer is to implement W ∗ irrespective of the preferences of jurors.

We begin by describing admissible preferences for jurors. In what follows, Pi(W
∗) denotes

the asymmetric component of Ri(W
∗).

Let N2 be the collection of all possible pairs of contestants. Fix i ∈ J . Let Fi ⊂ N2, i.e.

Fi is a collection of pairs of contestants (a, b), (c, d) etc.

Definition 7 Fix a, b ∈ N . The sets W,W
′ ∈ 2Nw are said to be (a, b) variant if

1. a ∈ W .

2. b ∈ W
′
.
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3. W \ {a} = W
′ \ {b}.

Definition 8 The preference function Ri : 2
N
w → R is admissible at Fi, if for each pair

(a, b) ∈ Fi, each W ∗ ∈ 2Nw , and each W,W
′ ∈ 2Nw with

(i) W and W ′ are (a, b) variant

(ii) a ∈ W ∗

(iii) b /∈ W ∗,

we have W Pi(W
∗) W

′
.

If (a, b) ∈ Fi and Ri is admissible at Fi, we say that juror i treats (a, b) fairly. We shall

refer to Fi as the fair set for juror i. Suppose W ∗ is the deserving set of winners and a

belongs to W ∗ but b does not. Then for any W,W
′ ∈ 2Nw such that W and W

′
differ only in

a and b, juror i strictly prefers W over W ′. Note that several orderings may be admissible

with respect to Fi. The set of preference orderings admissible with Fi is denoted by R(Fi).

We illustrate this with an example.

Example 1 Let N = {a, b, c, d}, w = 3 and i ∈ J . Then 2Nw = {abc, abd, acd, bcd}. Suppose
Fi = {(a, b)}. Any preference function that is admissible at Fi, Ri ∈ R(Fi) will satisfy the

following restrictions:

1. When W ∗ = acd, the only restriction on Ri(acd) is acd Pi(acd) bcd.

2. When W ∗ = bcd, the only restriction on Ri(bcd) is bcd Pi(bcd) acd.

Note that no restrictions are imposed on Ri(W
∗) when W ∗ ∈ {abc, abd} , since both con-

testants in the pair (a, b) belong to W ∗. Also when comparing abc with abd, the only two

contestants whose winner status changes are c and d. Since (c, d) /∈ Fi, both rankings,

abc Ri(W
∗) abd and abd Ri(W

∗) abc are admissible for any W ∗. When comparing abc and

acd, the only two contestants whose winner status changes are b and d. Since (b, d) /∈ Fi,

both rankings abc Ri(W
∗) acd and acd Ri(W

∗) abc are admissible for any W ∗. This is

summarized in Table 3.1 below.

Let F ≡ (Fi)i∈J denote a profile of fair sets of the jurors. The planner is uncertain

about the fair sets. This uncertainty is represented by the set Ω where Ω = {F, F ′
, ...}. The

interpretation of the structure Ω is that the planner is unaware of the realization of the fair

set in Ω.

A state of the world is a pair (R,W ∗) ∈ R|J | × 2Nw where R ≡ (Ri)i∈J ∈ ×i∈JR(Fi) for

some F ∈ Ω. Let S(Ω) be the set of the admissible states of the world, i.e.
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Ri(abc) Ri(abd) Ri(acd) Ri(bcd)

. .

. .

No restriction No restriction acd bcd

. .

. .

bcd acd

Table 3.1: Example 1

S(Ω) =
{
(R,W ∗) ∈ R|J | × 2Nw : ∃F ∈ Ω s.t. R ≡ (Ri)i∈J ∈ ×i∈JR(Fi)

}
The socially optimal rule is the function φ : S(Ω) → 2Nw where φ(R,W ∗) = W ∗ for each

(R,W ∗) ∈ S(Ω). The socially optimal rule selects the deserving winners for each admissible

state.

A mechanism is a pair Γ ≡ (M, g), where M = ×i∈JMi, Mi is the message space for

juror i and g : M → 2Nw is an outcome function. A message m ∈ M is a Nash equilibrium of

Γ ≡ (M, g) at (R,W ∗) ∈ S(Ω) if for each i ∈ J and each m̂i ∈ Mi, g(m) Ri(W
∗) g(m̂i,m−i).

Let N(Γ, R,W ∗) ⊆ M denote the set of Nash equilibria of Γ at (R,W ∗). The mechanism

must select the deserving winners in equilibrium in each state. We state this formally below.

Definition 9 The mechanism Γ ≡ (M, g) Nash-implements φ if for each (R,W ∗) ∈ S(Ω)

(i) there exists m ∈ N(Γ, R,W ∗) such that g(m) = W ∗ and

(ii) if m ∈ M is such that g(m) ̸= W ∗, then m /∈ N(Γ, R,W ∗).

If such a mechanism exists, then φ is Nash-implementable.

The remark below highlights an important difference between our model and that of

Amorós (2010) and Amorós (2013).

REMARK: Amorós (2013) and Amorós (2010) define the fair set as a subset of the set of

contestants. One implication of his formulation is that if i treats (a, b) and (b, c) fairly, then i

treats (a, c) fairly. This is not true for our model as we allow for the possibility that i may not

treat (a, c) fairly while treating (a, b) and (b, c) fairly. We believe that our assumption is more

natural if one believes that treating contestants fairly is a matter of personal characteristics.

Our assumption permits a larger class of admissible preferences. Our assumption also has a

bearing on the two person case which we will comment on in Section 5.

31



3.3 Partially Honest Jurors

The classical literature on implementation assumes that individuals are fully strategic and

care only about the realized outcomes. Some recent papers consider departures from the

standard model by assuming that the agents are not fully rational. In particular some

agents may have a preference for honesty.2

Dutta and Sen (2012) define a notion of honesty (called partial honesty) and consider

the implications of this assumption for the standard implementation model. An individual is

said to be partially honest if she strictly prefers to be truthful whenever a lie does not affect

her material payoff. This restriction is weak since payoff considerations lexicographically

dominates the desire to be truthful. The concept used in our paper links unbiasedness to

honesty. It requires a partially honest individual to be honest only over winner sets that

differ only over pairs of contestants which the juror treats fairly.

We focus on mechanisms in which one component of each individual’s message space is the

announcement of the set of winners. Consider a mechanism Γ where Mi = 2Nw × Si for each

i ∈ J and Si denotes the other components of the message space. Following Dutta and Sen

(2012), an individual’s ordering over 2Nw can be extended to an ordering≿W ∗
i over the message

space M . The asymmetric component of ≿W ∗
i will be denoted by ≻W ∗

i .

Definition 10 A juror i is Fi-partially honest if for each pair (a, b) ∈ Fi, each W ∗ ∈ 2Nw
and each W,W

′ ∈ 2Nw satisfying

(i) a ∈ W ∗, b /∈ W ∗.

(ii) W and W
′
are (a, b) variant.

(iii) (mi,m−i), (m
′
i,m−i) ∈ M with

(a) mi ∈ {W} × Si

(b) m
′
i ∈ {W ′} × Si

(c) g(mi,m−i) = g(m
′
i,m−i) = W

′

we have (mi,m−i) ≻W ∗
i (m

′
i,m−i).

In all other cases, (mi,m−i) ∼W ∗
i (m

′
i,m−i) if g(mi,m−i) = g(m

′
i,m−i).

The juror (agent) may be honest only over the pairs of contestants that he treats fairly.

Thus he is honest only when comparing sets of winners that differ exactly in the pair that

he treats fairly and when one of the contestants in the pair is in W ∗ (while the other is not).

Suppose juror i treats the pair (a, b) fairly. Let a ∈ W ∗ and b /∈ W ∗. Then for all sets W,W ′

that are (a, b) variant, juror i’s preference is WPi(W
∗)W ′. Consider messages m,m′ ∈ M

of juror i. Suppose m and m′ involve the announcement of W and W ′ respectively and

2 See Kartik and Tercieux (2012).
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the outcome of both messages is W ′. If juror i is partially honest, he strictly prefers the

message m over m′ even though both result in the outcome W ′. Note that Fi-partial honesty

is weaker than partial honesty.

3.4 Many Person Implementation

Amorós (2013) provides a necessary and sufficient condition for Nash implementation. The

condition is as follows: For each (a, b) ∈ N2, there exists a juror i who is known to the

planner to be fair over that pair. Formally

Definition 11 The structure Ω satisfies Condition A if for each (a, b) ∈ N2, there exists

i ∈ J such that (a, b) ∈ Fi for all F ∈ Ω.

Since (a, b) ∈ Fi for all F ∈ Ω, it follows that the planner knows the identity of the

juror who is fair over a given pair. The goal of this section is to show that the condition for

implementability can be significantly weakened if some jurors are partially honest.

Definition 12 The structure Ω satisfies Condition B if for each F ∈ Ω and (a, b) ∈ N2,

(i) There exists i, j ∈ J such that (a, b) ∈ Fi and (a, b) ∈ Fj.

(ii) There exists k ∈ {i, j} such that k is Fk-partially honest.

The structure Ω satisfies Condition B if for any given pair there exist two jurors who are

fair with respect to it. In addition, one of the fair jurors is also partially honest. In contrast

to Condition A, the identities of the fair/partially honest jurors need not be known to the

planner. Our first result shows that the Condition B is sufficient for implementation.

Theorem 2 Suppose that there are at least three jurors and Ω satisfies Condition B. Then

φ is Nash implementable.

Proof : Let Γ ≡ (M, g) be a mechanism where for each i ∈ J , Mi = 2Nw × {1, 2, ...., |J |}.
The outcome function is specified by the following rules:

Rule 1: If for each i ∈ J , (Wi, zi) = (W, z), then g(m) = W .

Rule 2: If there is j ∈ J such that

1. (Wi, zi) = (W, z) for each i ̸= j.

2. (Wj, zj) ̸= (W, z).
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then g(m) = W .

Rule 3: In all the other cases, g(m) = Wj for j ∈ J such that j = (
∑

i∈J zi)(mod |J |).

We will show that the mechanism Γ Nash-implements the socially optimal rule.

Claim 1: For each (R,W ∗) ∈ S(Ω), there exists m ∈ N(Γ, R,W ∗) such that g(m) = W ∗.

Let (R,W ∗) ∈ S(Ω). Consider message m = ((Wi, zi))i∈J where for each i ∈ J , (Wi, zi) =

(W ∗, n) for some integer n. Then Rule 1 of the mechanism is applicable and g(m) = W ∗.

We argue that m ∈ N(Γ, R,W ∗).

Fix j ∈ J . Consider a deviation by agent j to message m̂j = (Ŵj, ẑj). By Rule 2,

g(m̂j,m−j) = W ∗, i.e. m ∈ N(Γ, R,W ∗).

Claim 2: For each (R,W ∗) ∈ S(Ω) and m ∈ M such that g(m) ̸= W ∗, we have m /∈
N(Γ, R,W ∗).

Let (R,W ∗) ∈ S(Ω). Fix an F ∈ Ω such that R is admissible with respect to F . Let

m ∈ M be such that g(m) = W ̸= W ∗. There are several cases to consider.

Case 1: Rule 1 applies to m. Then mi = (W, z) for each i ∈ J .

Since W ̸= W ∗, there exists (a, b) ∈ N2 such that (i) a ∈ W ∗, a /∈ W and (ii) b /∈ W ∗,

b ∈ W . For an arbitrary F ∈ Ω and the pair (a, b), we know from Condition B: there exist

i, j ∈ J such that (a, b) ∈ Fi and (a, b) ∈ Fj. We assume without loss of generality that juror

i is Fi partially honest.

Let Ŵ ∈ 2Nw be such that (Ŵ ,W ) are (a, b) variant. Consider a unilateral deviation by

agent i from the message (mi,m−i) to m̂i = (Ŵ , zi). Rule 2 is applicable for the message

(m̂i,m−i) and g(m̂i,m−i) = W . Since g(m̂i,m−i) = g(mi,m−i) = W and i is Fi-partially

honest, we have (m̂i,m−i) ≻W ∗
i (mi,m−i), and so m /∈ N(Γ, R,W ∗).

Case 2: Rule 2 applies to m. There exists k ∈ J such that for i ̸= k, (Wi, zi) = (W, z) and

(Wk, zk) ̸= (W, z). Since W ̸= W ∗, there exists (a, b) ∈ N2 such that (i) a ∈ W ∗, a /∈ W

and (ii) b /∈ W ∗, b ∈ W . From Condition B, there exist i, j ∈ J such that (a, b) ∈ Fi

and (a, b) ∈ Fj. Therefore there exist h ̸= k and (a, b) ∈ Fh. Let Ŵ ∈ 2Nw be such that

(Ŵ ,W ) are (a, b) variant. Consider a unilateral deviation by juror h to m̂h = (Ŵ , ẑh)

where h = (ẑh +
∑

q ̸=h zq)(mod |J | ). Rule 3 is applicable for the message (m̂h,m−h) and

g(m̂h,m−h) = Ŵ . Since (a, b) ∈ Fh, we have ŴPh(W
∗)W . Therefore m /∈ N(Γ, R,W ∗).

Case 3: Rule 3 applies to m and g(m) = W ̸= W ∗.

Since W ̸= W ∗, there exists a, b ∈ N such that (i) a ∈ W ∗, a /∈ W and (ii) b /∈ W ∗, b ∈ W .

From Condition B, we know that there exist i, j ∈ J such that (a, b) ∈ Fi and (a, b) ∈ Fj.

Let Ŵ ∈ 2Nw be such that (Ŵ ,W ) are (a, b) variant. Consider a unilateral deviation by juror
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i to m̂i = (Ŵ , ẑi) where i = (ẑi +
∑

k ̸=i zk)(mod |J | ). Rule 3 is applicable for (m̂i,m−i) and

the outcome is g(m̂i,m−i) = Ŵ . Since Ŵ Pi(W
∗) W , we have m /∈ N(Γ, R,W ∗).

Cases 1, 2 and 3 are exhaustive. Therefore Claim 2 is established and the proof is

complete. ■

Conditions A and B are not comparable with respect to the fair sets of jurors for contes-

tant pairs. While Condition A requires the identity of the fair juror over a pair to be known

to the planner, Condition B does not. However Condition B requires the existence of two

fair jurors for every contestant pair. They are equivalent only in the special case of exactly

three jurors.

We show below that aspects of Condition B are necessary for implementation.

Theorem 3 Suppose φ is Nash implementable in the presence of partially honest jurors.

Fix (a, b) ∈ N2. Then

1. For each F ∈ Ω and (a, b) ∈ N2, there exists i ∈ J such that (a, b) ∈ Fi.

2. Suppose Condition A does not hold. Then for each F ∈ Ω, there exist i, j ∈ J such

that (a, b) ∈ Fi and (a, b) ∈ Fj.

Proof : We first prove Part 1 of the necessary condition.

Let φ be implementable by a mechanism Γ = (M, g). Suppose there exists F ∈ Ω and

(a, b) ∈ N2 such that (a, b) /∈ Fi for all i ∈ J . Let W ∗, Ŵ ∗ ∈ 2Nw be (a, b) variant. Then there

exists R ≡ (Ri)i∈J ∈ ×i∈JR(Fi) such that Ri(W
∗) = Ri(Ŵ

∗) for all i (see Table 1 for an

illustration of such preferences). By (i) in the definition of Nash implementability, there exists

m ∈ N(Γ, R,W ∗) with g(m) = W ∗. The definition of Fi-partial honesty implies that there

does not exist any juror i who is partially honest over (a, b). We claim thatm ∈ N(Γ, R, Ŵ ∗).

To see this, consider a unilateral deviation m
′
i by player i. If g(m

′
i,m−i) = W ′ ̸= W ∗, then

W ∗Ri(W
∗)W ′. Since Ri(W

∗) = Ri(Ŵ
∗) and considerations of partial honesty do not apply

(since W ′ ̸= W ∗), we have m ∈ N(Γ, R, Ŵ ∗). Suppose g(m
′
i,m−i) = W ∗. Because Ri(W

∗) =

Ri(Ŵ
∗) and considerations of partial honesty are not applicable, m ∈ N(Γ, R, Ŵ ∗), which

leads to a contradiction.

Suppose Part 2 of the necessary condition is violated. This implies that there exists

(a, b) ∈ N2 such that (i) there exist F ∈ Ω and i ∈ J with (a, b) ∈ Fi and (a, b) /∈ Fj for all

j ̸= i and (ii) there exists F̂ ∈ Ω with (a, b) /∈ F̂i (since A does not hold).

Pick W ∗, Ŵ ∗ ∈ 2Nw that are (a, b) variant. We claim that there exist (i) R ∈ R(F ) where

R is illustrated in Table 3.2 below and (ii) R̂ ∈ R(F̂ ) where R̂ is illustrated in Table 3.3

below.

Let W ∗ = {a, x1, . . . , xK} and Ŵ ∗ = {b, x1, . . . , xK}. Construct a function ui : N → R
satisfying the following properties:
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W ∗ =

Pref.

Ri

. W ∗ .

. W ∗ .

. Ŵ ∗ .

. . .

Rj

. W ∗ .

. Ŵ ∗ .

. . .

. . .

Table 3.2: R ∈ R(F )

W ∗ =

Pref.

R̂i

. Ŵ ∗ .

. W ∗ .

. . .

. . .

Table 3.3: R̂ ∈ R(F̂ )

1. ui(p) > ui(q) for all p ∈ W ∗ and q /∈ W ∗.

2. ui(p) > u(a) for all p ∈ W ∗ \ {a}.

3. ui(b) > u(q) for all q /∈ N \W ∗ ∪ {b}.

Define Ri(W
∗) as follows: for any W,W ′ ∈ 2Nw , WRi(W

∗)W ′ iff
∑

p∈W ui(p) ≥∑
q∈W ′ ui(q). A suitable perturbation of ui will make the ordering Ri(W

∗) anti-symmetric.

Observe that these preferences are consistent with (a, b) ∈ Fi. Note that Ri(W
∗) is consistent

with any Fi ⊆ N2. Let Ri(Ŵ
∗) = Ri(W

∗). Note that this is consistent with any F̂i with

(a, b) ∈ F̂i. Hence Ri(Ŵ
∗) is admissible with respect to F̂i.

Define uj : N → R by replacing a and b in ui. Construct Rj(W
∗) from uj in the same way

as Ri(W
∗) was constructed from ui. Observe that Ŵ ∗ is Rj(W

∗) maximal and admissible

with respect to Fj.

By the definition of implementation, there exists m(Ŵ ∗) ∈ M such that g(m(Ŵ ∗)) = Ŵ ∗

and m(Ŵ ∗) ∈ N(Γ, R̂, Ŵ ∗). Consider (R,W ∗) ∈ S(Ω) where R ∈ R(F ). Since g(m(Ŵ ∗)) ̸=
W ∗, it must be the case that m(Ŵ ∗) /∈ N(Γ, R,W ∗) by part (ii) of the definition of Nash

implementability. Consider j ̸= i. The definition of partial honesty implies that j is not

partially honest over the pair (a, b). There does not exist any mj ∈ M such that a unilateral

deviation to mj is profitable for player j (since Ŵ ∗ is Rj(W
∗)-maximal and considerations

of partial honesty do not apply).

We claim that there exists m̃i ∈ Mi such that g(m̃i,m−i(Ŵ
∗)) = W ∗. To see this,

consider a unilateral deviation to m
′
i by i. If g(m

′
i,m−i(Ŵ

∗)) = Ŵ and m
′
i, mi(Ŵ

∗) are

messages where W ∗ and Ŵ ∗ are announced respectively, then i benefits from truth telling
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and the unilateral deviation to m
′
i is profitable. Thus m(Ŵ ∗) /∈ N(Γ, R,W ∗). We now argue

that (m
′
i,m−i(Ŵ

∗)) /∈ N(Γ, R,W ∗). The message profile (m
′
i,m−i(Ŵ

∗)) is such that (i) m
′
i is

the message with the announcement W ∗ and (ii) g(m
′
i,m−i(Ŵ

∗)) = g(m(Ŵ ∗)) = Ŵ ∗. Any

message m
′′
i that keeps the outcome fixed at Ŵ and involves the announcement of W cannot

be compared to m
′
i using considerations of partial honesty. A message m

′′
i that results in

g(m
′′
i , ,m−i(Ŵ

∗)) = W ′ ̸= Ŵ ∗ will be a profitable deviation for i if W ′ = W ∗ ( because

W ∗Pi(W
∗)Ŵ ∗ and Ŵ ∗ is the second best alternative in Ri(W

∗)). Thus there exists m̃i ∈ Mi

such that g(m̃i,m−i(Ŵ
∗)) = W ∗, which leads to a contradiction.

Since g(m̃i,m−i(Ŵ
∗)) = W ∗ and W ∗ P̂ (Ŵ ∗) Ŵ ∗, we have m(Ŵ ∗) /∈ N(Γ, R̂, Ŵ ∗). This

contradicts the assumption that Γ implements φ.

■

3.4.1 Discussion

Our necessary condition can be interpreted in the following way. If Condition A holds,

Amoros’s result implies that φ is implementable. This result continues to hold if some of

the jurors are partially honest - the same mechanism will continue to work. According to

our result, implementation is possible even if Condition A fails. Theorem 3 shows that there

must exist at least two jurors who are fair over every pair. If one of these jurors is also

partially honest, Theorem 2 shows that φ is implementable. We conclude that the scope for

implementation is enhanced significantly.

The example below demonstrates the existence of situations where implementation is

possible even when Condition A fails.

Example 2 Let N = {a, b, c} and J = {1, 2, 3, 4}. The set Ω = {F, F̂}, where F and F̂ are

described in Table 3.4 and 3.5.

F1 F2 F3 F4

{(a, b), (a, c)} {(b, c), (a, b)} {(a, c)} {(b, c)}

Table 3.4: The collection F

In addition, all jurors k ∈ {1, 2, 3}) are assumed to be Fk-partially honest.

Fix an arbitrary pair of contestants. Observe that the planner does not know the identity

of a juror who is fair over that pair. For instance {1, 2} are fair over (a, b) in F (but not

in F̂ ) and {3, 4} are fair over (a, b) in F̂ (but not in F ). Therefore the structure Ω violates

Condition A. However Ω satisfies Condition B and hence is implementable.
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F̂1 F̂2 F̂3 F̂4

{(b, c)} {(a, c)} {(a, b), (b, c)} {(a, b), (a, c)}

Table 3.5: The collection F̂

3.5 Two person Implementation

It is well known in implementation theory that the two person case has to be treated seper-

ately from the three or more person case. The reason for this is that an additional incentive

compatibility condition known as the intersection property becomes necessary for imple-

mentation. Details can be found in Dutta and Sen (1991), Moore and Repullo (1990) and

Busetto and Codognato (2009).

Our main objective in this section is to show that the assumption of partial honesty

does not enhance the scope of implementation. We proceed as follows. We first derive a

necessary and sufficient condition for implementation in the standard model. Amorós (2013)

does not treat the two person case for reasons that are discussed later. Then we show that

this condition remains necessary even when both jurors are assumed to be partially honest.

Theorem 4 Assume there are two jurors who are not partially honest. Then Condition A

is necessary and sufficient for Nash implementation.

Proof : The necessary and sufficient condition for implementation of φ when there are only

two jurors is condition A, i.e. for each (a, b) ∈ N2, there exists i ∈ J such that (a, b) ∈ Fi

for all F ∈ Ω.

The necessity of Condition A follows from the arguments in Amorós (2013) and Amorós

(2010) for |J | ≥ 3 case.3 We therefore omit the proof of necessity of Condition A. The proof

of sufficiency requires a new argument. We first introduce a definition that is important for

the construction of the mechanism. In what follows the two jurors will be referred to as i

and j.

Let W, Ŵ ∈ 2Nw be such that W ̸= Ŵ . We say that (W, Ŵ ) satisfies Property δ for juror

i if there exists a sequence W 1, ...,W s ∈ 2Nw such that

(i) W 1 = W and W s = Ŵ .

(ii) for each q ∈ {2, ..., s} there exist aq, bq ∈ N such that

(a) (W q−1,W q) are (aq, bq) variant.

3 In the Amorós (2010) model, except for the trivial case in which the planner knows a juror who treats

all contestants fairly (i.e. there is i ∈ J such that Fi = N for each F ∈ Ω), Condition A cannot be fulfilled

if there are only two jurors.
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(b) For all F ∈ Ω, (aq, bq) ∈ Fi.

(iii) for each r ̸= q, aq ̸= ar and aq ̸= br.

Property δ is illustrated in Example 4 in the Appendix. We note three important facts

about Property δ.

(i) If (W, Ŵ ) satisfies Property δ for i, then so does (Ŵ ,W ).

(ii) Consider W,W
′
,W

′′ ∈ 2Nw . Suppose (W,W
′
) and (W ′,W

′′
) satisfy Property δ for i.

Then (W,W
′′
) satisfies Property δ for i.

(iii) If (W, Ŵ ) satisfy Property δ for i, then WPi(W )Ŵ and ŴPi(Ŵ )W .

Parts (i) and (ii) can be easily verified. Part (iii) holds for the following reason. The only

difference between any two consecutive sets in the sequence (W q−1,W q) is that aq is replaced

by bq. Morover since W 1 = W and aq ̸= br for each r ̸= q, we have aq ∈ W and bq /∈ W . We

know that (aq, bq) ∈ Fi for all F ∈ Ω and for all q.4 Thus W 1Pi(W )W 2, W 2Pi(W )W 3, . . .,

W s−1Pi(W )W s. Therefore WPi(W )Ŵ . Similarly ŴPi(Ŵ )W .

The next step is to construct a function α : 2Nw × 2Nw → 2Nw satisfying the following

properties.

(i) α(W,W ) = W for all W ∈ 2Nw .

(ii) α(W, Ŵ ) = W if (W, Ŵ ) satisfies Property δ for i.

(iii) α(W, Ŵ ) = Ŵ if (W, Ŵ ) satisfies Property δ only for j.

(iv) If (W, Ŵ ) does not satisfy Property δ for both jurors, then α(W, Ŵ ) = Wh such that

(a) Wh ∈ 2Nw \ {W, Ŵ}.

(b) (Ŵ ,Wh) satisfies Property δ for i.

(c) (Wh,W ) satisfies Property δ for j.

Note that if (W, Ŵ ) satisfies Property δ for both jurors, then α(W, Ŵ ) = W .5

Lemma 4 Suppose Condition A is satisfied. Then there exists α : 2Nw × 2Nw → 2NW as defined

above.

Proof : Condition A guarantees that for any given pair, there exists a juror who is known to

the planner to be fair over the pair. Let W, Ŵ be such that W ̸= Ŵ . Consider an arbitrary

4This means that the planner knows that i is the juror who treats (aq, bq) fairly.
5This means that all ties are broken in favour of juror i.
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sequence of pairs {(aq, bq)} such that aq ∈ W,aq /∈ Ŵ and bq /∈ W, bq ∈ Ŵ .6 We know that

for each q, (aq, bq) ∈ Fk (for all F ∈ Ω) for some k ∈ {i, j}. There are two possibilities. The

first possibility is that for each q, we have (aq, bq) ∈ Fk (for all F ∈ Ω) for some k ∈ {i, j}.
This implies that either part (ii) or (iii) is true, i.e. (W, Ŵ ) satisfies Property δ for i or j or

both.

The other possibility is that all elements of the sequence do not belong to the fair set of

one juror. We know for every q, there exists some k ∈ {i, j} such that (aq, bq) ∈ Fk (for all

F ∈ Ω). We can partition the elements of the sequence into two sets. The set Gi consists

of all pairs that juror i is known to treat fairly (all the q’s such that (aq, bq) ∈ Fi for all

F ∈ Ω). The set Gj consists of all pairs for which juror j is known to treat fairly.7 Thus we

can redefine the order in the original sequence as {{(aq, bq)}q∈Gi
, {(aq, bq)}q∈Gj

}. We denote

the new sequence of pairs {(ap, bp)}. There exists an integer K (1 < K < s) such that (i)

(ap, bp) ∈ Fi (for all F ∈ Ω) for all p ≤ K and (ii) (ap, bp) ∈ Fj (for all F ∈ Ω) for all p > K.

We obtain a corresponding sequence of sets {(W p−1,W p)} such that (W p−1,W p) are (ap, bp)

variant and W 1 = Ŵ , W s = W . By construction, (Ŵ ,WK) satisfies Property δ for i and

(WK ,W ) satisfies Property δ for j. The arguments above show that α(·) is well defined and

satisfies conditions (i), (ii), (iii) and (iv). ■

The construction of α(·) is illustrated in Example 5 in the Appendix. We now complete

the proof of the Theorem.

Let Γ ≡ (M, g) be a mechanism where for each i ∈ J , Mi = 2Nw × 2Nw × 2Nw ×{Y,N}×N .

Note that N is the set of non-negative integers. The outcome function is specified by the

following rules:

Rule 1: (1.1) If for each k ∈ {i, j}, mk = (W, Ŵk, W̃k, Y, zk), then g(m) = W .

(1.2) If for each k ∈ {i, j}, mk = (Wk, Ŵk, W̃k, Y, zk) where Wi ̸= Wj, then g(m) =

α(Wi,Wj).

Rule 2: If mi = (Wi, Ŵi, W̃i, Y, zi) and mj = (Wj, Ŵj, W̃j, N, zj) then

(i) g(m) = Ŵj if (Ŵj, α(Wi,Wj)) satisfies Property δ for j.

(ii) Otherwise, g(m) = α(Wi,Wj).

Rule 3: If mi = (Wi, Ŵi, W̃i, N, zi), mj = (Wj, Ŵj, W̃j, N, zj) and zi > zj, then g(mi,mj) =

W̃i. Ties are broken in favour of agent i.

We will show that the mechanism Γ Nash implements φ.

6The sequence of pairs {(aq, bq)} (for q ∈ {1, . . . , s} for some integer s) also satisfies the property that for

each q and r ̸= q, we have aq ̸= ar and aq ̸= br. For instance, let N = {a, b, c, d, e, f} and w = 3. Consider

the sets abc and def . Some examples of such a sequence are {(a, d), (b, e), (c, f)}, {(a, e), (b, d), (c, f)},
{(b, d), (a, f), (c, e)}, etc.

7Any pair which is treated fairly by both jurors can be arbitrarily assigned to either Gi or Gj .
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Claim 1: For each (R,W ∗) ∈ S(Ω), there exists m ∈ N(Γ, R,W ∗) such that g(m) = W ∗.

Let (R,W ∗) ∈ S(Ω). Consider message m = ((W ∗, Ŵk, W̃k, Y, zk))k∈{i,j}. Then Rule

(1.1) of the mechanism is applicable and g(m) = W ∗. We argue that m ∈ N(Γ, R,W ∗).

Fix i ∈ J . Consider a deviation by agent i to m
′
i = (Wi,W

′
i ,W

′′
i , Y, z

′
i) with Wi ̸=

W ∗. Then Rule (1.2) of the mechanism is applicable and g(m
′
i,mj) = α(Wi,W

∗). Let

α(Wi,W
∗) ̸= W ∗. There are two possibilities. We know that α(Wi,W

∗) = Wi if (Wi,W
∗)

satisfies Property δ for juror i. Then W ∗Pi(W
∗)Wi and juror i does not improve his welfare

by deviating to m
′
i. The second case is that α(Fi, Fj,Wi,W

∗) = Wh, where (W ∗,Wh) and

(Wh,Wi) are admissible for i and j respectively. This implies that W ∗ Pi(W
∗) Wh and juror

i does not improve his welfare by the deviation.

Consider a deviation by agent i to m
′
i = (Wi,W

′
i ,W

′′
i , N, z

′
i). Then Rule 2 of the mecha-

nism is applicable. There are two possibilities.

Case 1: g(m
′
i,mj) = W

′
i . This case arises when (W

′
i , α(Wi,W

∗)) is admissible for juror i.

(i) If (Wi,W
∗) satisfies Property δ for juror i, we have α(Wi,W

∗) = Wi. Thus (W
′
i ,W

∗)

satisfies Property δ for i (as (W
′
i , α(Wi,W

∗)) satisfies Property δ for i).

(ii) α(Wi,W
∗) = W ∗. This implies that (W

′
i ,W

∗) satisfies Property δ for i.

(iii) α(Wi,W
∗) = Wh where (W ∗,Wh) satisfies Property δ for i and (Wi,Wh) satisfies Prop-

erty δ for j. Thus (W
′
i ,W

∗) is admissible for juror i.

We have shown that (W
′
i ,W

∗) satisfies Property δ for juror i. Therefore W ∗Pi(W
∗)W

′
i

and deviation by i to m
′
i is not profitable.

Case 2: g(m
′
i,mj) = α(Wi,W

∗).8 The deviation by i to m
′
i is not profitable as

W ∗Pi(W
∗)α(Wi,W

∗).

Claim 2: For each (R,W ∗) ∈ S(Ω) and each m ∈ M such that g(m) ̸= W ∗,

m /∈ N(Γ, R,W ∗).

Let (R,W ∗) ∈ S(Ω) and m ∈ M be such that g(m) ̸= W ∗. There are several cases to

consider.

Case 1. Rule 1 applies to m. There are two possibilities.

(1.1) Rule (1.1) applies to m. Then mk = (W, Ŵk, W̃k, Y, zk) for all k ∈ {i, j}.
Since W ̸= W ∗, there exists (a, b) ∈ N2 such that (i) a ∈ W ∗, a /∈ W and (ii) b ∈ W ,

b /∈ W ∗. Let Ŵ ∈ 2Nw be such that (Ŵ ,W ) are (a, b) variant.

From Condition A, there exists k ∈ {i, j} such that (a, b) ∈ Fk for all F ∈ Ω. Thus

ŴPk(W
∗)W and (W, Ŵ ) satisfies Property δ for k.

8This case arises when (W
′

i , α(Wi,W
∗)) does not satisfy Property δ for juror i.
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Suppose k = i. Consider a unilateral deviation by agent i to m̂i = (Ŵ , Ŵi, W̃i, Y, zi).

Rule (1.2) is applicable to the message (m̂i,mj) and g(m̂i,mj) = α(Ŵ ,W ) = Ŵ (since

(Ŵ ,W ) satisfies Property δ for i). Thus m /∈ N(Γ, R,W ∗).

Suppose k = j and k ̸= i. Consider a unilateral deviation by agent j to m̂j =

(Ŵ , Ŵj, W̃j, Y, zj). Rule (1.2) is applicable and since k ̸= i, we have g(mi, m̂j) = α(W, Ŵ ) =

Ŵ . Thus m /∈ N(Γ, R,W ∗).

(1.2) Rule (1.2) applies to m. Then mi = (Wi, Ŵi, W̃i, Y, zi) and mj = (Wj, Ŵj, W̃j, Y, zj)

with Wi ̸= Wj. The outcome is g(m) = α(Wi,Wj) ̸= W ∗.

We have to consider the following cases.

(i) α(Wi,Wj) = Wi. This is the case when (Wi,Wj) satisfies Property δ for i. Since

g(m) = Wi ̸= W ∗, there exists a, b ∈ N such that (i) a ∈ W ∗, a /∈ Wi and (ii) b ∈ Wi,

b /∈ W ∗. Let Ŵ ∈ 2Nw be such that (Ŵ ,Wi) are (a, b) variant. From Condition A, there

exists k ∈ {i, j} such that (a, b) ∈ Fk for all F ∈ Ω. We have ŴPk(W
∗)Wi and (Ŵ ,Wi)

satisfies Property δ for agent k.

Suppose k = i. We know that both (Wi,Wj) and (Wi, Ŵ ) satisfy Property δ for i. Thus

(Ŵ ,Wj) also satisfies Property δ for agent i. Consider a unilateral deviation by i to

m̂i = (Ŵ , Ŵi, W̃i, Y, zi). Rule 1 is applicable and g(m̂i,mj) = Ŵ . Since ŴPi(W
∗)Wi,

we have m /∈ N(Γ, R,W ∗).

Suppose k = j and k ̸= i. Consider a unilateral deviation by j to m̂j =

(Wj, Ŵ , W̃j, N, zj). Rule 2 is applicable to (mi, m̂j) and g(m̂i,mj) = Ŵ (since (Wi, Ŵ )

satisfies Property δ for j). Thus m /∈ N(Γ, R,W ∗).

(ii) α(Fi, Fj,Wi,Wj) = Wj. This case arises when (Wi,Wj) satisfies Property δ only for j.

It can be shown that m /∈ N(Γ, R,W ∗) (using arguments similar to those used in (i)).

(iii) α(Fi, Fj,Wi,Wj) = Wh, where (Wj,Wh) satisfies Property δ for i and (Wh,Wi) satisfies

Property δ for j. Since g(m) = Wh ̸= W ∗, there exists (a, b) ∈ N2 such that (i) a ∈ W ∗,

a /∈ Wh and (ii) b ∈ Wh, b /∈ W ∗. Let Ŵ ∈ 2Nw be such that (Ŵ ,Wh) are (a, b) variant.

From Condition A, there exists k ∈ {i, j} such that (a, b) ∈ Fk for all F ∈ Ω. So

ŴPk(W
∗)Wh and (Ŵ ,Wh) satisfies Property δ for agent k. Fix k = j. Consider a

unilateral deviation by agent j to m̂j = ((Wj, Ŵ , W̃j, N, zj). Rule 2 is applicable to

(mi, m̂j) and g(mi, m̂j) = Ŵ . This is because (Ŵ , α(Wi,Wj)) ( α(Wi,Wj) = Wh)

satisfies Property δ for j. Thus m /∈ N(Γ, R,W ∗).

Case 2. Rule 2 applies to m. Then mi = (Wi, Ŵi, W̃i, Y, zi) and mj = (Wj, Ŵj, W̃j, N, zj).

We refer to agent j as the dissident (the agent who has announced N in the message m).

There are several cases to consider.

(2.1) g(m) = Ŵj. This case arises when (Ŵj, α(Wi,Wj)) satisfies Property δ for j. Since

Ŵj ̸= W ∗, there exists (a, b) ∈ N2 such that (i) a ∈ W ∗, a /∈ Ŵj and (ii) b ∈ Ŵj, b /∈ W ∗. Let
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Ŵ ∈ 2Nw be such that (Ŵ ,Wj) are (a, b) variant. From Condition A, there exists k ∈ {i, j}
such that (a, b) ∈ Fk for all F ∈ Ω. We have ŴPk(W

∗)Wj and (Ŵ ,Wj) satisfies Property δ

for agent k.

Suppose k = i. Consider a unilateral deviation by i to m̂i = (Wi, Ŵi, Ŵ , N, ẑi) such that

ẑi > zj. Rule 3 applies to (m̂i,mj) and g(m̂i,mj) = Ŵ . Thus m /∈ N(Γ, R,W ∗).

Suppose k = j. We know that (Ŵ , Ŵj) and (Ŵj, α(Wi,Wj)) both satisfy Property δ for

j.Thus (Ŵ , α(Wi,Wj)) satisfies Property δ for j. Consider a unilateral deviation by j to

m̂j = (Wj, Ŵ , W̃j, N, zj). Rule 2 is applicable and g(mi, m̂j) = Ŵ . Since Ŵ Pj(W
∗) Ŵj, we

have m /∈ N(Γ, R,W ∗).

(2.2) g(m) = α(Wi,Wj).
9

(i) α(Wi,Wj) = Wi if (Wi,Wj) satisfies Property δ for i. Since g(m) = Wi ̸= W ∗, there

exist (a, b) ∈ N2 such that (i) a ∈ W ∗, a /∈ Wi and (ii) b ∈ Wi, b /∈ W ∗. Consider

Ŵ ∈ 2Nw such that (Ŵ ,Wi) are (a, b) variant.

From Condition A, there exists k ∈ {i, j} such that (a, b) ∈ Fk for all F ∈ Ω. Thus we

have ŴPk(W
∗)Wi and (Ŵ ,Wi) satisfies Property δ for agent k.

Suppose k = j. Consider a unilateral deviation by j to m̂j = (Wj, Ŵ , W̃j, N, zj). Rule

2 applies to (mi, m̂j) and g(mi, m̂j) = Ŵ (as α(Wi,Wj) = Wi and (Ŵ , α(Wi,Wj))

satisfies Property δ for j). Since ŴPj(W
∗)Wi, we have m /∈ N(Γ, R,W ∗).

Suppose k = i. Consider a unilateral deviation by i to m̂i = (Wi, Ŵi, Ŵ , N, ẑi) with

ẑi > zj. Rule 3 is applicable and g(m̂i,mj) = Ŵ . Thus m /∈ N(Γ, R,W ∗).

(ii) α(Fi, Fj,Wi,Wj) = Wj. It can be shown that m ∈ N(Γ, R,W ∗) (using arguments

similar to those used in (i)).

(iii) α(Fi, Fj,Wi,Wj) = Wh, where Wh ̸= Wi and Wh ̸= Wj. We have m /∈ N(Γ, R,W ∗)

(using arguments similar to those used in (i)).

Case 3. Rule 3 applies to m. Then mi = (Wi, Ŵi, W̃i, N, zi) and mj = (Wj, Ŵj, W̃j, N, zj).

We assume that zi > zj and g(m) = W̃i.

Since W̃i ̸= W ∗, there exists (a, b) ∈ N2 such that (i) a ∈ W ∗, a /∈ W̃i and (ii) b ∈ W̃i,

b /∈ W ∗. Let Ŵ ∈ 2Nw such that (Ŵ , W̃i) are (a, b) variant. By Condition A, there exists

k ∈ {i, j} such that (a, b) ∈ Fk for all F ∈ Ω.

Suppose k = i. Consider a unilateral deviation by agent i to m̂i = (Wi, Ŵi, Ŵ , N, zi).

Rule 3 is applicable and g(m̂i,mj) = Ŵ . Since ŴPi(W
∗)Wi, we have m /∈ N(Γ, R,W ∗).

Suppose k = j. Consider a unilateral deviation by agent j to m̂j = (Wj, Ŵj, Ŵ , N, ẑj)

with ẑj > zi. Rule 3 applies and g(mi, m̂j) = Ŵ . Since ŴPj(W
∗)Wi, we have m /∈

N(Γ, R,W ∗).

9This case arises when (Ŵj , α(Wi,Wj)) does not satisfy Property δ for agent j and the dissident’s an-

nouncement Ŵj is not chosen as the outcome.
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Cases 1, 2 and 3 are exhaustive. Therefore Claim 2 is established and the proof is

complete. ■

We would like to point out an important difference between our model and that of Amorós

(2010) that has an important bearing on the two person case. In our model, fairness is defined

over individual pairs of contestants, i.e Fi ⊆ N2. It is therefore possible for a juror to be fair

over (a, b) and (b, c) without being fair over (a, c). In Amorós (2010) model, jurors are fair

over subsets of contestants, i.e. Fi ⊆ N . In this case, a juror who is fair over (a, b) and (b, c)

has to be fair over (a, c). It follows that if Condition A is satisfied, there must exist a juror

who is known to be fair over all pairs. For such a juror, the maximal element in any preference

ordering is the true set of deserving winnners. The implementation problem is now trivial -

the dictatorial mechanism where this juror (Condition A requires the identity of this juror

to be known to the planner) is the dictator will always implement φ. On the other hand, in

our model, Condition A can be satisfied without the existence of a juror who is known to the

planner to be fair over all pairs. For instance, N = {a, b, c}, (a, b), (b, c) ∈ F1 and (a, c) ∈ F2

for all F ∈ Ω satisfies Condition A. The implementation problem is no longer trivial. In

Theorem 4, we show that Condition A is necessary and sufficient for implementation.

We now show that assuming partial honesty does not enhance implementation possibili-

ties.

Corollary 1 Assume each juror i is Fi-partially honest. Condition A is necessary and

sufficient for implementation.

Proof : The arguments in Theorem 3 apply to this case without any change. Suppose

Condition A does not hold. It follows that for each pair there exist two jurors who treat the

pair fairly in each F ∈ Ω. Thus both jurors are known to treat all pairs fairly and Condition

A holds. Therefore Condition A always holds.

The mechanism used in the sufficiency part of Theorem 4 can be used once again in this

case. It suffices to note that truth-telling will continue to remain an equilibrium when players

are partially honest. ■

The results in two person case stand in contrast to the many person implementation.

3.6 Fairness and partial honesty

We have assumed that a juror can be partially honest over a contestant pair only if he

is fair over that pair. In this section, we show that partial honesty cannot substitute for

fairness. Suppose we redefine partial honesty to apply to all pairs irrespective of whether or

not the juror is fair over the pair. Definition 3 can be suitably qualified to include all pairs

of contestants (replace for all (a, b) ∈ Fi by (a, b) ∈ N2).
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Implementation will not be possible if there exists a pair for which no juror is fair. We

illustrate this with an example.

Example 3 Let N = {a, b, c}, |J | = 3 and w = 1. Let Ω = {F, . . .}. Let F1 = {(b, c)} and

F2 = F3 = {(a, c)}. Note that (a, b) /∈ Fi for all i ∈ J . Consider R below, which is admissible

with respect to F .

W ∗ =

Pref.

R1

a b c

a a a

b b c

c c b

R2

a b c

a a b

b b c

c c a

R3

a b c

a a b

b b c

c c a

Table 3.6: Example 3

Note that Ri(a) = Ri(b) for all i ∈ J .

Suppose that φ is implementable by the mechanism Γ = (M, g). By definition, there

exists m ∈ M such that m ∈ N(Γ, R, a) and g(m) = a. Since g(m) ̸= b, it must be the case

thatm /∈ N(Γ, R, b). Since a is Ri(b)-maximal for all i, there must exist a juror i (say 1) and a

messagem
′
1 such that g(m

′
1,m−1) = a andm

′
1 = {b}×· · · , i.e. m′

1 involves the announcement

of the true winner b by 1. Now consider the message (m
′
1,m−1). Since g(m

′
1,m−1) = a and

a is Ri(b)-maximal for all i, there must exist a juror j ∈ {2, 3} (say 2) and a message m
′
2

such that g(m
′
1,m

′
2,m3) = a and m

′
2 = {b} × · · · , i.e. m

′
2 involves the announcement of

the true winner b by 2. Repeating the argument, there must exist a message m
′
3 such that

g(m
′
1,m

′
2,m

′
3) = a and m

′
3 = {b} × · · · . However note that (m

′
1,m

′
2,m

′
3) ∈ N(Γ, R, b) since

the outcome is a and all agents are announcing the true winner b. This contradicts the

assumption that φ is implementable.

It is clear that the necessity of jurors who are fair over any given contestant pair holds

generally. We therefore see partial honesty as a strengthening of the fairness condition rather

than a replacement for it.

3.7 Conclusion

The paper explores the consequences of introducing the behaviourial assumption of partial

honesty for jurors in the model proposed by Amorós (2010). We show that this assumption

leads to a weakening of the conditions for implementation in the case of three or more agents.

However no such weakening is possible in the case of two agents.
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3.8 Appendix

Examples 4 and 5 below illustrate various features of the construction if the mechanism used

in proof of Theorem 4.

Example 4 Let N = {a, b, c, d}, w = 2 and 2Nw = {ab, ac, ad, bc, bd, cd}. The sets ab and cd

differ in the elements {a, b, c, d}. Suppose the structure Ω satisfies either (1) or (2).

1. (a, c), (b, d) ∈ Fi for all F ∈ Ω.

2. (a, d), (b, c) ∈ Fi for all F ∈ Ω.

Assume that (1) holds. Consider the sequence {ab, cb, cd}. This sequence of sets is such

that (i) (ab, cb) are (a, c) variant where (a, c) ∈ Fi (for all F ∈ Ω) and (ii) (cb, cd) are (b, d)

variant where (b, d) ∈ Fi (for all F ∈ Ω). Thus (ab, cd) satisfy Property δ for juror i. We

have abPi(ab)cb (as (a, c) ∈ Fi) and cbPi(ab)cd (as (b, d) ∈ Fi). Thus abPi(ab)cd.

Example 5 Let N = {a, b, c, d}, w = 2 and 2Nw = {ab, ac, ad, bc, bd, cd}. Suppose Ω is such

that Fi = {(a, b), (a, c), (a, d)} and Fj = {(b, c), (b, d), (c, d)} for all F ∈ Ω. Consider the

sets W = ab and Ŵ = cd. The possible sequences between ab and cd are {(a, c), (b, d)},
{(a, d), (b, c)}, {(b, d), (a, c)} and {(a, d), (b, c)}. Note that (ab, cd) is not admissible for both

jurors. Thus α(ab, cd) /∈ {ab, cd}.
Consider the sequence {(a, c), (b, d)}. Note that (cd, ad) is admissible for juror i as (a, c) ∈

Fi (for all F ∈ Ω). Also (ad, ab) is admissible for juror j. For the sequence {(a, d), (b, c)},
we know that (a, d) ∈ Fi and (b, c) ∈ Fj (for all F ∈ Ω). We have (cd, ac) and (ac, ab) are

admissible for i and j respectively. Thus α(ab, cd) ∈ {ad, ac}.
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Chapter 4

The equivalence between adjacent

non-manipulability and

strategy-proofness in voting domains:

A sufficiency result

4.1 Introduction

In any model where the agents have private information, the primary objective of the mech-

anism designer is to design rules which provide agents the incentive to reveal their private

information truthfully. Incentive compatibility guarantees that every agent truthfully reveals

his private information, irrespective of the announcements made by other agents. Incentive

compatibility assumes that every feasible preference is a candidate for manipulation. Thus

the task of designing truthful rules may be too demanding in many settings, as it requires

the mechanism designer to check all possible incentive constraints.

On the other hand if the rule is immune to candidate manipulations that are “near” or

“close” to the true preference of an agent, then the rule satisfies local incentive compatibility.

Every incentive compatible rule is locally incentive compatibilty. However it is possible that

a rule is locally incentive compatible, but not incentive compatible. The question that we

are interested in is when a locally incentive compatible rule is also incentive comptaible. In

any setting where local incentive compatibility implies incentive compatibility, the designer’s

task is now only involves checking only the local incentive constraints.

Several papers have examined this issue in different settings. Sato (2013b) considers the

standard voting model without transfers. He provides a sufficient condition and a weaker

necessary condition for the equivalence. Sato (2013a) shows that the results obtained about

the equivalence do not carry forward to the case where the domain includes weak orders.

We prove a sufficiency result that is weaker than Sato’s sufficiency result.

In related literature, Carroll (2012) considers both voting models and allocation models
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with transfers. In voting models, he shows that a number of specific domains such as the

full domain, the domain of all single peaked preferences etc are domains where local incen-

tive compatibility implies incentive compatibility. However, he does not provide a general

condition for voting domains. In models with transfers, he shows that convexity of the type

space is sufficient and almost necessary. Mishra et al. (2015) consider allocation models with

transfers. They show that convexity of the type space is not necessary, if an additional

assumption on transfers is made. Archer and Kleinberg (2014) examine an allocation model

with money and a different notion of local incentive compatibility.

The paper is organized as follows. Section 4.2 gives basic notation and definitions. Section

4.3 describes the existing results. Section 4.4 gives our result and Section 4.5 concludes.

4.2 Basic Notation and Definations

Through out the paper, we shall assume that there is a single agent/voter. In our analysis

there is no loss of generality in making this assumption.1 We let A be a finite set of alter-

natives with |A| = m. The set of linear or antisymmetric orders over the elements of A is

denoted by L. Elements of L will be denoted by P, P ′ etc and will be referred to as pref-

erence orderings or orderings. For all a, b ∈ A, aPb is interpreted as “a is strictly preferred

to b according to P”. For every P ∈ L and k ∈ {1, . . . ,m}, rk(P ) denote the kth ranked

alternative in P i.e. rk(P ) = a =⇒ |{b ∈ A : bPa}| = k − 1.

Two alternatives x and y are contiguous in P if there exists k ∈ {1, . . . ,m− 1} such that

rk(P ) = x, rk+1(P ) = y or rk(P ) = y, rk+1(P ) = x. Two preferences P and P ′ are adjacent

if P ′ can be obtained by swapping contiguous alternatives x and y in P without changing

the ranks of other alternatives different from x and y. If P and P ′ are adjacent, we shall

let A(P, P ′) be the ordered pair of alternatives which are swapped in P to obtain P ′ i.e.

A(P, P ′) = (x, y) implies rk(P ) = x, rk+1(P ) = y and rk(P
′) = y, rk+1(P

′) = x. Let A(P )

denote the set of all preference relations that are adjacent to P .

A domain is a set D where D ⊂ L. A domain D is interpreted as the set of admissible

preference orderings. A rule (or social choice function) is a map f : D → A.

The standard notion of incentive compatibility is strategy-proofness.

Definition 13 A rule f : D → A satisfies strategy-proofness if for every P, P ′ ∈ D, either

f(P ) = f(P ′) or f(P )Pf(P ′).

If a rule is strategy-proof, an agent cannot manipulate, i.e. cannot get a strictly preferred

alternative by misrepresenting her true preference.

1Equivalently we can assume that the preferences of all other agents is fixed. For example see Mishra et al.

(2015).
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A local notion of incentive compatibility introduced by Sato (2013b) and Carroll (2012)

is AM-proofness (Adjacency Manipulable proofness).

Definition 14 A rule f : D → A satisfies AM-proofness if for every P ∈ D and every

P ′ ∈ A(P ) ∩D, either f(P ) = f(P ′) or f(P )Pf(P ′).

The AM-proofness of a rule can be characterized by some elementary properties. We

describe these below using the terminology of Gibbard (1977).

Definition 15 The rule f : D → A is local and non-perverse if for every P, P ′ ∈ D with

P ′ ∈ A(P ) ∩D and A(P, P ′) = (x, y) we have

(i) [f(P ) = y] =⇒ [f(P ′) = y]

(ii) [f(P ) = x] =⇒ [f(P ′) ∈ {x, y}]

(iii) [f(P ) = z] =⇒ [f(P ′) = z] when z ̸= x, y

This definition is illustrated in Table 4.1.

P P ′

z z

. .

x [y]

[y] x

. .

P P ′

z z

. .

[x] [y]

y [x]

. .

P P ′

[z] [z]

. .

x y

y x

. .

Table 4.1: AM-proofness

Proposition 1 A rule f is AM-proof iff it is local and non-perverse.

The proof of this standard and may be found in Sato (2013b) .

It is clear that a strategy-proof rule is also AM-proof. The goal of this paper is to analyze

domains where the converse holds.

Definition 16 A domain D satisfies equivalence if every AM-proof rule is also strategy-

proof.

The next section discusses existing results in this area.
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4.3 Existing Results

Carroll (2012) shows that several well known domains satisfy the equivalence for both deter-

ministic and random rules.

Sato (2013b) investigates the question more generally. He gives a sufficient condition on

domains that ensures the equivalence. He also provides a weaker necessary condition. We

illustrate the issues involved and the results in Sato (2013b). The example below illustrates

that not every domain satisfies equivalence.

Example 6 Let A = {a, b, c} and D be the following domain.

P 1 P 2 P 3

a [b] c

[b] a b

c c [a]

Table 4.2: Domain D

P 3 is not adjacent to any preference in D. Consider the following rule;

f(P ) =

{
b if P ∈ {P 1, P 2}
a otherwise

Note that f is AM-proof since no restrictions are imposed on f(P 3). However f is not

strategy-proof since f(P 3)P 1f(P 1).

Definition 17 A path from P to P ′ in D, denoted by σ(P, P ′), is a sequence of distinct

preferences (P 1, P 2, . . . , PL) in D satisfying

(i) P = P 1 and P ′ = PL.

(ii) P h+1 ∈ A(P h), h ∈ {1, 2, . . . , L− 1}.

Let
∑

(P, P ′) denote the set of all paths between P and P ′ in D. Two preferences

P, P ′ ∈ D are connected in D if there exists a path between P and P ′ in D. A domain D is

connected if for all P, P ′ ∈ D, there exists a path between P and P ′ in D. The domain D

in Example 6 is not connected.

Proposition 2 (Sato (2013b)) If Domain D satisfies equivalence then D is connected.
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P 1 P 2 P 3 P 4 P 5

x [y] [y] [y] [x]

[y] x x x y

v v v z z

w w z v v

z z w w w

Table 4.3: Domain D
′

Connectedness is necessary for the equivalence of AM-proofness and strategy-proofness

on a domain. However connectedness is not sufficient for equivalence. Example 7 below

illustrates this i.e. the domain D′ is connected but does not satisfy equivalence.

Example 7 Let A = {x, y, v, w, z} and D′ be the following domain.

Let the rule f be defined as follows;

f(P ) =

{
x if P = P 1

y otherwise

Proposition 1 can be applied to verify that f is AM-proof. The outcome at P 1 is y;

the contiguous alternatives x and y are swapped from P 1 to P 2. Applying Proposition 1,

the outcome at P 2 is y. Since there are no contiguous swaps involving y from P 2 to P 3

and from P 3 to P 4, the outcome remains y (by part (iii)). Since y and x are contiguous

and are swapped between P 4 and P 5, according to part (ii) of Proposition 1, the outcome

at P 5 is either x or y. However if f(P 5) = x then strategy-proofness is violated because

f(P 5)P 1f(P 1).

Example 7 identifies the reason why equivalence fails in a connected domain. There may

exist alternatives x and y that are contiguous and swapped initially in the sequence and

reverse swapped later in the sequence. The lack of symmetry between conditions (i) and

(ii) in Proposition 1 can lead to a failure of strategy-proofness. We shall refer to the path

(P 1, P 2, P 3, P 4, P 5) as a problem path. Strategy-proofness can be restored if there exists an

alternative antidote path that rules out f(P 1) = y and f(P 5) = x in Example 7. This is

illustrated in Example 8 below.

Example 8 Consider the domain D′′ below.

Note that D′′ consists of D′ with the additional ordering P 6.

Consider the rule f defined in Example 7. We claim that there is no AM-proof extension

of f on the domain D′′. To see this observe f(P 5) = x and Proposition 1 imply f(P 6) =

f(P 7) = f(P 8) = f(P 1) = x contradicting f(P 1) = y.
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P 1 P 2 P 3 P 4 P 5 P 6

x y y y x x

y x x x y y

v v v z z v

w w z v v z

z z w w w w

Table 4.4: Domain D
′′

The path (P 1, P 6, P 5) in Example 7 is the antidote path and it addresses the potential

difficulties arising from the problem path (P 1, P 2, P 3, P 4, P 5). The insights from Examples 7

and 8 are formalized in the sufficiency result of Sato (2013b) which we state below.

Fix a, b ∈ A. The path (P 1, . . . , PL) is with {a, b} restoration if A(P k, P k+1) = (a, b)

and A(P h, P h+1) = (b, a) for some distinct h, k ∈ {1, . . . , L− 1} or A(P k, P k+1) = (b, a) and

A(P h, P h+1) = (a, b). In Example 7, the path (P 1, P 2, P 3, P 4, P 5) is with {x, y} restoration.

Theorem 5 (Sato (2013b)) Suppose that for each P, P ′ ∈ D, there exists a path

(P 1, . . . , PL) in D from P to P ′ which satisfies the following property: if there exists

x, y ∈ A such that the path (P 1, . . . , PL) is with {x, y} restoration and xPy, then for each

h ∈ {1, . . . , L} such that yP hx and xP h+1y, there exists a path from P to P h+1 along which

x overtakes no alternative.

We know that for any two adjacent preferences P, P ′, A(P, P ′) is the ordered pair of

alternatives which are swapped in P to obtain P . Let A(P, P ′) = (x, y). Then we say that x

overtakes y in the passage from P to P ′. Any path along which x overtakes no alternatives

is such that it does not contain the contiguous swap (x, q) for any q ∈ A \ {x}.

In Example 8, x does not overtake any alternative in the path (P 1, P 6, P 5). Sato (2013b)

also proved the following necessary condition.

Proposition 3 (Sato (2013b)) If D satisfies equivalence then for each P, P ′ ∈ D and

each x, y ∈ A, there exists a path in D between P and P ′ which is without {x, y} restoration.

4.4 The Result

In this section we prove a sufficiency result that is weaker than Sato’s sufficiency result. The

idea behind the new sufficient condition is quite simple. Consider the path in Example 7

which we referred to as a problem path. An alternative antidote path was required which

ruled out the case where f(P ) = y and f(P ′) = x. In the antidote path from P ′ to P , x

is always “rising” in preference orderings which rules out f(P ) = y. However the antidote
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path can be constructed without this condition being satisfied. Suppose there exists a path

between P and P ′ without a sequence of contiguous swaps that begin with y and end in x;

clearly f(P ) = y and f(P ′) = x is ruled out.

We define the condition precisely below. We illustrate all concepts and definitions by

means of Example 9.

Fix σ(P, P ′) = (P 1, . . . , PL) ∈
∑

(P, P ′). The path σ(P, P ′) is associated with a sequence

of ordered pairs of alternatives,

S(σ(P, P ′)) = {A(P s, P s+1) = (us, us+1) : s ∈ {1, . . . , L− 1}}

Example 9 Let A = {x, y, v, z, w, u} and D̂ be the following domain. Fix alternatives

x, y ∈ A and preferences P 1, P 10 ∈ D̂. There is only one path between P 1 and P 10. So∑
(P 1, P 10) = {(P 1, P 2, P 3, P 4, P 5, P 6, P 7, P 8, P 9, P 10)}.

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10

x x v v v v v v x x

y v x x z z x x v y

v y y z x x z y y v

z z z y y y y z z z

w w w w w u u u u u

u u u u u w w w w w

Table 4.5: Domain D̂

In Example 9, S(P 1, P 2, . . . , P 10) is described below.

S((P 1, P 2, . . . , P 10)) = {(y, v), (x, v), (y, z), (x, z), (w, u), (z, x), (z, y), (v, x), (v, y)}

Observe that (y, v) is the contiguous swap between P 1 and P 2, (x, v) the contiguous swap

between P 2 and P 3, (y, z) the contiguous swap between P 3 and P 4 and so on.

Fix a, b ∈ A. An essential sequence between the alternatives a, b on a path is a sequence

of contiguous swaps that begin with a and end in b on this path. Formally σe(σ(P, P ′); a, b)

is an ordered selection {(usi , usi+1) : i ∈ {1, . . . , H}} from S(σ(P, P ′)) such that (i) us1 = a

and usH = b and (ii) usi+1 = usi+1 for all si. The set of all such essential sequences is denoted

by
∑e(σ(P, P ′); a, b).

In Example 9, observe that {(x, v), (v, y)} is an essential sequence since it is a selection

from S((P 1, P 2, . . . , P 10) that begins with x and ends with y. Similarly {(x, z), (z, y)} is also

an essential sequence. Therefore
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∑e((P 1, P 2, . . . , P 10); x, y) = {{(x, v), (v, y)}, {(x, z), (z, y)}}.

Definition 18 (Condition α) Let P 1, P h, P h+1 ∈ D and x, y ∈ A be such that xP 1y,

P h+1 ∈ A(P h) and A(P h, P h+1) = (y, x). Let Z(x, y) = {z ∈ A \ {x, y} :

xP 1z, zP 1y and yP h+1z}. For all w ∈ Z(x, y) ∪ {y}, there exists a path σ ∈
∑

(P, P h+1)

such that
∑e(σ;w, x) = ∅ and

∑e(σ;x,w) = ∅.

This condition is satisfied if there exists an alternative path without an essential sequence

for every problem path. The formal proof for the sufficiency of Condition α is provided below.

Theorem 6 If D is connected and satisfies Condition α, it satisfies equivalence.

The proof uses the following lemma.

Lemma 5 Fix a, b ∈ A and preferences P, P ′ ∈ D such that [aPb and aP ′b]. Suppose there

exists σ ∈
∑

(P, P ′) such that
∑e(σ; b, a) = ∅. Then [f(P ) = b] =⇒ [f(P ′) ̸= a].

Proof : Suppose the claim is false, i.e f(P ) = b and f(P ′) = a. Let σ(P, P ′) =

(P 1, P 2, . . . , P l).

Since f(P ′) ̸= b and f is AM-proof, there exists k1 ∈ {1, . . . , l − 1} such that

A(P k1 , P k1+1) = (b, u1) for some u1 ∈ A \ {b}. Proposition 1 implies that f(P k1+1) = u1.

If u1 = a then (b, a) ∈
∑e(σ(P, P ′); b, a), which is in contradiction with the assumption

that
∑e(σ(P, P ′); b, a) = ∅. If u1 ̸= a (note that u1 ∈ A \ {b, a}) then AM-proofness of

f and f(P ′) = a imply that: there exists k2 ∈ {k1 + 1, . . . , l − 1} and u2 ∈ A \ {b, u1}
such that A(P k2 , P k2+1) = (u1, u2). This follows from Proposition 1 and the fact that

f(P k1+1) ̸= f(P ′). Proposition 1 also implies that f(P k2+1) = u2. If u2 = a = f(P ′) then

(b, u1), (u1, a) ∈
∑e(σ(P, P ′); b, a) which results in a contradiction. However if u2 ̸= a, then

there exists k3 ∈ {k2+1, . . . , l−1} and u3 ∈ A\{b, u1, u2} such that A(P k3 , P k3+1) = (u2, u3).
2

In this manner, at each step we obtain ki and the corresponding alternative ui such that

A(P i, P i+1) = (ui−1, ui). Since S(σ) is a finite set, thus there exists K < l − 1 such that

uK = a. This implies that {(b, u1), (u1, u2), . . . , (uK − 1, a)} ∈
∑e(σ(P, P ′); b, a), which

contradicts our assumption that this set is null. ■

We now begin the proof of the theorem.

Proof : Let D be a connected domain satisfying Condition α and f be an AM-proof rule

on D. It is sufficient to show that f is strategy-proof. Let P, P ′ ∈ D. The lower contour

set for alternative x at the preference P is denoted by L(P, x) = {y ∈ A : xPy} ∪ {x}. Our

objective is to prove that: f(P ′) ∈ L(P, f(P )).

2Note that u1, u2 and u3 are distinct from each other.
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Because D is connected, there exists a path between P and P ′ in D, (P 1, . . . , PL) where

P 1 = P and PL = P ′.

Step 1: At each step from P h to P h+1 (h ∈ {1, . . . , L − 1}) in the path (P 1, . . . , P l), the

outcome can change only when A(P h, P h+1) = (f(P h), a) where a is the alternative right

below f(P h) in P h. In all other cases the outcome does not change (By Proposition 1).

Step 2: For each k ∈ {1, . . . , l − 1}, if
[
f(P k) ∈ L(P, f(P )) and f(P ) ∈ L(P k, f(P k))

]
then[

f(P k+1) ∈ L(P, f(P )) and f(P ) ∈ L(P k+1, f(P k+1))
]
.

By Step 1, it suffices to consider the case where a is the alternative right below f(P k) in

P k and A(P k, P k+1) = (f(P k), a). By AM-proofness, f(P k+1) ∈ {f(P k), a}.

Case 1: f(P k+1) = a.

Since f(P ) ∈ L(P k, f(P k)) and A(P k, P k+1) = (f(P k), x). Thus we have f(P ) ∈
L(P k+1, f(P k+1)). We claim that f(P k+1) ∈ L(P, f(P )).

Suppose the claim is false i.e. aPf(P ). Since f(P )Pf(P k), this implies that aPf(P h).

We note that P, P k, P k+1 and the alternatives x, f(P h) ∈ X are such that

1. P k+1 ∈ A(P k).

2. A(P k, P k+1) = (f(P k, a).

3. f(P ) ∈ Z(a, f(P k)).

Thus comparing with Condition α, we deduce that P = P 1, P k = P h and P k+1 = P h+1.

Also a = x and f(P k) = y.

Case 1.1: f(P ) = f(P k). Since the domain satisfies Condition α, there exists σ ∈
∑

(P, P k+1)

such that
∑e(σ; f(P k), a) = ∅. This along with Lemma 5 leads to a contradiction.

Case 1.2: f(P ) ̸= f(P k). Since the domain satisfies Condition α, there exists σ′ ∈∑
(P, P k+1) such that

∑e(σ′; f(P ), a) = ∅. This along with Lemma 5 leads to a contra-

diction.

Case 2: f(P k+1) = f(P k) (where f(P k) ̸= a). In this case, it trivially follows that f(P k+1) ∈
L(P, f(P )). Now, L(P k, f(P k)) = L(P k+1, f(P k+1)) ∪ {a}. To complete the proof, we need

to show that f(P ) ̸= a.

Let us suppose by way of contradiction that f(P ) = a. We have assumed that the

outcome at P k+1 is f(P k).

Comparing with Condition α, we know the following:

1. x = f(P ) = a

2. y = f(P k

3. P 1 = P , P h = P k and P h+1 = P k+1.
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4. aPf(P k) and A(P k, P k+1) = (f(P k, a).

Thus there exists a path σ ∈ Σ(P, P k+1) such that Σe(σ, a, f(P k)) = ∅. This observation
along with Lemma 5 leads to a contradiction.

■

The domain in Example 10 below is connected and satisfies Condition α and thereby

admits equivalence.

Example 10 Let X = {a, x, y, z, v, w, u} and Ds be the following domain.

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10

a a a a a x x x x a

x y y y x a a a a x

y x x x y y y z z z

z z z z z z z y y y

v v v u u v v v u u

w w u v v w u u v v

u u w w w u w w w w

Table 4.6: Domain Ds

It can be verified that the only problem path in this example is (P 1, P 2, P 3, P 4, P 5).

Consider preferences P 1, P 4 and P 5. In this example xP 1y, A(P 4, P 5) = (y, x) and Z(x, y) =

∅. The path (P 1, P 6, P 7, P 8, P 9, P 10, P 5) does not contain any essential sequence for the

alternatives y, x. This path does not contain any essential sequence for the alternatives

x, y. This path is the alternative antidote path which eliminates the non strategy-proof

rules generated by the problem path (P 1, P 2, P 3, P 4, P 5). Therefore Condition α is satisfied.

Table 4.6 lists the preferences in Ds and Figure 4.1 represents the adjacency relations in Ds.

P 1 P 2 P 3 P 4 P 5

P 6 P 7 P 8 P 9 P 10

(x, y) (w, u) (v, u) (y, x)

(z, y)
(a, x)

(w, u) (y, z) (v, u) (x, a)

Figure 4.1: Adjacency between preference relations in Ds
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We note that a domain satisfying Condition α also satisfies Sato (2013b) sufficient con-

dition.

Proposition 4 Suppose that for each P, P ′ ∈ D, there exists a path (P 1, . . . , PL) in D

from P to P ′ which satisfies the following property: if there exists x, y ∈ A such that the

path (P 1, . . . , PL) is with {x, y} restoration and xPy, then for each h ∈ {1, . . . , L} such that

yP hx and xP h+1y, there exists a path from P to P h+1 along which x overtakes no alternative.

Then D satisfies Condition α.

Proof : Consider preferences P 1, P h, and P h+1 on the path (P 1, . . . , PL). We know xP 1y,

P h+1 ∈ A(P h), and A(P h, P h+1) = (y, x). Thus there exists an alternative path σ from P 1

to P h+1 along which x does not overtake any alternative, i.e. this path does not contain the

contiguous swap (q, x) for any q ∈ A \ {x}.

Claim 1:
∑e(σ;w, x) = ∅ for all w ∈ Z(x, y) ∪ {y} for the path σ.

To see this, consider any w ∈ Z(x, y) ∪ {y}. Suppose
∑e(σ;w, x) ̸= ∅ and

{(w, u1), (u1, u2), . . . , (uK , x)} belongs to this set. However (uK , x) contradicts the assump-

tion that σ is a path along which x does not overtake any alternative.

Observation 1: Claim 1 and [xPw and xP h+1w] together imply that for any preference P̂

which belongs to the path σ, xP̂w.

Suppose not, i.e. there exists P̂ on σ where wP̂x. This implies that there is a (x,w)

swap on σ (between P and P̂ ). We know that xPw, wP̂x and xP h+1w. Thus there exists a

(w, x) swap on σ (between P̂ and P h+1). Thus (w, x) ∈
∑e(σ;w, x). This contradicts Claim

1.

Claim 2:
∑e(σ;x,w) = ∅ for all w ∈ Z(x, y) ∪ {y} for the path σ.

To see this, consider any w ∈ Z(x, y) ∪ {y}. Suppose
∑e(σ;x,w) ̸= ∅ and

{(x, q1), (q1, q2), . . . , (qK , w)} belongs to this set.

(i) Since (x, q1) belongs to σ, there exists P̂ 1 on the path σ where q1P̂
1x. We now show

that for any preference P̄ lying after P̂ 1 on the path σ, we have q1P̄ x. Suppose not i.e. xP̄ q1.

Since q1P̂
1x, there exists a (q1, x) swap on σ. This is not possible as by assumption, x does

not overtake any alternative on the path σ.

(ii) (q1, q2) belongs to the path σ (in particular, it appears after the (x, q1) swap). Thus

there exists a preference P̂ 2 on the path σ (P̂ 2 lies after P̂ 1 on σ), where q2P̂
2q1 and q1P̂

2x

(from (i)). Note that for any preference P̄ after P̂ 2 on σ is such that q2P̄ x.

By following the sequence {(x, q1), (q1, q2), . . . , (qK−1, qK), (qK , w)} and using similar ar-

guments, we know that there exists a preference P̂K on σ where qKP̂
KqK−1 and qK−1P̂

Kx.

For any preference P̄ lying after P̂K on σ, we have qKP̄ x.

Table 4.7 illustrates the preferences in Claim 2.

The final swap in the sequence present on σ is (qK , w). We know that any preference P̄

after P̂K will satisfy:
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P P̂ 1 P̂ 2 P̂K P h+1

. . . . .

x . . . .

. q1 . qK x

. x q2 qK−1 .

w . q1 . w

. w . x .

. . x . .

. . . w .

. . w . .

Table 4.7: Preferences in Claim 2

1. qKP̄ x

2. xP̄w

In order to finally have a (qK , w) swap on σ and given the placement of the alternatives

qK , x and w in P̂K . There must exist either a (qK , x) or a (x,w) swap before (qK , x) on σ.

If there exists (q1, x), then (i) above is violated. We know that (i) must hold since σ is a

path on which x does not overtake any alternative.

If there exists a (x,w) swap on σ, then we have a contradiction by Observation 1.

■

Our result therefore implies Sato (2013b) sufficiency result. Our result is strictly stronger.

The domain in Example 10 satisfies Condition α and therefore satisfies equivalence. However

we claim that it does not satisfy the sufficiency condition is Sato.

We conjecture that Condition α is also necessary for equivalence. Suppose this condition

does not hold. Then there exists P 1, P h+1 ∈ D and x, y ∈ A such that xP 1y and xP h+1y and

all paths between P 1 and P h+1 contain an essential sequence between y and x. We conjecture

that it is possible in this case to construct a social choice function where equivalence breaks

down. Note that it is possible to assign alternatives to all preferences on any path between P 1

and P h+1 with f(P 1) = y and f(P h+1) = x and satisfying AM-proofness. Strategy-proofness

is violated because there exists a manipulation at P 1 via P h+1. If all paths between P 1 and

P h+1 have no preferences in common except P 1 and P h+1, then the argument is complete.

However if the paths have a preference in common, a more refined argument is required. We

believe that such a social choice function can be constructed.

4.5 Conclusion

We provide a weaker sufficient condition than Sato (2013b). This condition illustrates the

issues involved behind equivalence. We believe that our condition will be helpful in identi-
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fying more transparent conditions that guarantee equivalence when rules satisfy multi-agent

properties such as unanimity, tops-onlyness, etc.
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