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Abstract

This thesis discusses the K-theory of quadratic modules by studying Roy’s elementary

orthogonal group of the quadratic space Q⊥H(P ) over a commutative ring A. We estab-

lish a set of commutator relations among the elementary generators of Roy’s elementary

orthogonal group and use this to prove Quillen’s local-global principle for this elementary

group. We also obtain a result on extendability of quadratic modules. We establish nor-

mality of the elementary orthogonal group under certain conditions and prove stability

results for the K1 group of this orthogonal group. We also prove that Roy’s elementary

orthogonal group and Petrov’s odd hyperbolic unitary group coincides when the quadratic

modules Q and P are free.
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1
Introduction

In its most familiar versions, algebraic K-theory consists of the study of groups of classes of

algebraic objects. It focuses on a sequence of abelian groups Kn(A) associated to each ring

A which encode deep arithmetic information about the ring. The first of these is K0(A),

the Grothendieck group which generalizes the construction of the ideal class group of a

ring, using projective modules. It is used to create a dimension for R-modules that lack a

basis. The group K1 was defined by H. Bass, K2 by J. Milnor and, subsequently, higher

K-functors by D. Quillen and others. The group K1(A) generalizes the group of units of a

ring. The group K2(A) measures the fine details of row-reduction of matrices over A.

In 1976, D. Quillen and A.A. Suslin independently proved the famous local-global prin-

ciple to settle the question of J.-P. Serre as to whether projective modules over a polynomial

extension of a field are free. This principle demonstrates that a finitely presented module

over a polynomial ring R[X] is extended from R if and only if it is locally extended from Rm

for every maximal ideal m of the commutative ring R. Later, J.-P. Serre related these ques-

tions with the question of efficient generation of ideals in polynomial rings. Over the years,

several new cases and versions of the local-global principle have been established. Related

to these is the dilation principle which says the following: Suppose α(X) ∈ GL(n,R[X]) is

such that α(0) = I and αs(X) ∈ E(n,Rs[X]) for some non-nilpotent element s ∈ R. Then

there exists some β(X) ∈ E(n,R[X]) such that β(0) = I and βs(X) = α(bX) ∈ E(n,R[X]),

where b ∈ slR, for some l ≫ 0.
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Chapter 1. Introduction

Localization is one of the most powerful tools in the study of structure of quadratic

modules and more generally, of algebraic groups over rings. It helps to reduce many

important problems over arbitrary commutative rings to similar problems for semilocal

rings. There are two well-known versions of localization: localization and patching as

proposed by D. Quillen in [43] and A.A. Suslin in [57], and localization-completion as

proposed by A. Bak in [12].

A. Roy studied a generalization of quadratic forms and their similarity groups over

projective modules in his Ph.D. thesis. In this work, we study these quadratic modules

and the corresponding orthogonal groups and establish extendability results. Towards that,

we establish a dilation principle and a local-global principle. We use these to deduce the

action version of local-global principle. We also prove normality of the Roy’s elementary

orthogonal group in the corresponding orthogonal group and a stability theorem for the

corresponding quotient group K1. The analysis of these quadratic modules involves finding

suitable commutator formulae among the elementary generators of Roy’s orthogonal group.

The commutator relations turn out to be rather technical and we obtain these relations

by relating the elementary generators of Roy’s group to a different group studied by G.

Tang. We then verify them directly by hand, though a knowledge of the software GAP

(see [26]) helped in discovering their form in very small dimensions. We obtain several

such commutator formulae and apply them to the proofs of the above mentioned results.

To describe the results more precisely, let A be a commutative Noetherian ring in which

2 is invertible and let B be the polynomial A-algebra A[X1, . . . , Xn] in n indeterminates.

Let Q = (Q, q) be a quadratic space over B and let Q0 = (Q0, q0) be the reduction of Q

modulo the ideal of B generated by X1, . . . , Xn. In [58], A.A. Suslin and V.I. Kopĕıko

proved that if Q is stably extended from A and for every maximal ideal m of A, the Witt

index of Am ⊗A (Q0, q0) is larger than the Krull dimension of A, then (Q, q) is extended

from A. In the doctoral thesis of R.A. Rao (see [44, 45]), it was shown that one can

improve this result to Witt index at least d, when A is a local ring at a non-singular point

of an affine variety of dimension d over an infinite field. Moreover, a question posed at

the end of the thesis asks whether extendability can be shown for quadratic spaces with
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1.1. Roy’s Orthogonal Group

Witt index at least d over polynomial extensions of any equicharacteristic regular local ring

of dimension d. In this thesis, we give an affirmative answer to this question. The analysis

of the equicharacteristic regular local ring is done by a patching argument, akin to the one

developed by A. Roy in his paper [49]. This argument reduces the problem to the case of a

complete equicharacteristic regular ring; which is a power series ring over a field, provided

one can patch the information.

We show that the patching process is possible by establishing a local-global principle for

the elementary orthogonal group of a quadratic space with a hyperbolic summand. For this,

we follow the broad outline of A.A. Suslin’s method in [57] which leads to a K1 analogue

of D. Quillen’s local-global principle in [43]. Instead of using Suslin’s ‘theory of generic

elementary forms’, we follow the more ‘hands-on’ approach via the yoga of commutators.

For this, we first find an appropriate generating set for Roy’s group using a lemma of

V. Suresh in [55].

1.1 Roy’s Orthogonal Group

1.1.1 A Brief Historical Review

A. Roy defined elementary orthogonal transformations in [48] for quadratic spaces with a

hyperbolic summand over a commutative ring in which 2 is invertible. These transforma-

tions (over fields) are classically known as Siegel transformations or Eichler transformations

in the literature. These transformations (in matrix form) of quadratic spaces (V, q) over

finite fields was defined by L.E. Dickson in p.126, p.135 of [23], which is an unaltered

republication of the first edition (Teubner, Leipzig, 1901).

Later in [24], J. Dieudonné extended Dickson’s results to infinite fields. These orthog-

onal transformations (in matrix form) over general fields, also appeared in the paper [50]

of C.L. Siegel with an alternate interpretation in [51]. There he used it to define the

mass for the representation of 0 by an indefinite quadratic form. M. Eichler studied these

transformations of Q⊥H(k), where H(k) is the hyperbolic plane, in his study of the or-

thogonal group over fields k and made the first systematic use of them in his famous book
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Chapter 1. Introduction

“Quadratische Formen und Orthogonale Gruppen”, first published in 1952, and reprinted

in 1974 (Eichler credits Siegel’s 1935 paper for introducing these transformations in the

notes in §3, p.212 of his book, and also refers to the paper [51] of Siegel in p.218).

A. Roy studied C.T.C. Wall’s paper [63], who relied on Eichler’s book and rewrote the

transformations of Eichler appearing in Wall’s paper. In his doctoral thesis (1967), A. Roy

generalizes these transformations to any commutative ring R in which 2 is invertible. We

shall call these the DSER (Dickson-Siegel-Eichler-Roy) elementary orthogonal transfor-

mations or just Roy’s elementary orthogonal transformation group. A. Bak was aware of

Roy’s transformations which he mentions in the introduction of his doctoral thesis. A. Bak

and L.N. Vaserstein independently defined transformations over Λ-rings in their respective

doctoral theses which reminds us of Roy’s transformations. However, the groups generated

by these are not always comparable to the one generated by Roy’s transformations.

In [39], V. Petrov introduced a new classical-like group called odd unitary group over

odd form rings. This group generalizes and unifies all known classical groups such as the

quadratic groups of A. Bak (see [11,28]), Hermitian groups (see [11,33]), classical Chevalley

groups, and the group U2n+1(R) of E. Abe (see [1]). V. Petrov established normality of

the elementary subgroup of odd unitary group and surjective stability for odd unitary K1.

In [39], Petrov describes the elementary subgroup of an odd hyperbolic unitary group.

We shall compare this group over commutative ring with Roy’s group in Section 3.2 of

Chapter 3.

We will see that Roy’s elementary group coincides with Petrov’s odd hyperbolic unitary

group over commutative rings! Indeed, we first verified that the former is contained in the

latter but realized later that the groups are the same. In other words, one may think of

our study of Roy’s group as a concrete realization of Petrov’s group. We can now ask the

question: Is the ESD group the correct generalization of Roy’s group to form rings which

is the concrete realization of Petrov’s group?

Let G be an isotropic reductive algebraic group over a commutative ring R. In [40],

V. Petrov and A. Stavrova introduced the notion of an elementary subgroup E(R) of the

group of points G(R). Let P be a parabolic subgroup of the reductive group G over R, and
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1.1.2. Preliminaries

let UP be its unipotent radical. There is a unique parabolic subgroup P− in G that is oppo-

site to P with respect to LP . Then they define the elementary subgroup EP (R) correspond-

ing to P as the subgroup of G(R) generated as an abstract group by UP (R) and UP−(R).

In [40, §7, Example 2], they state that the elementary subgroup EP (R) of O
+(V,Q), where

V is a projective module of rank 2n endowed with a nondegenerate quadratic form Q,

coincides with the group generated by the so-called Eichler-Siegel-Dickson transvections.

Here O+(V,Q) denote the kernel of the Dickson map (see [33]) from the orthogonal group

O(V,Q). As Roy’s elementary transformations can be realized as Eichler-Siegel-Dickson

transvections, Roy’s elementary group is contained in the above mentioned elementary

group.

However, we do not yet know if Roy’s group coincides with the group generated by ESD

transvections or not.

1.1.2 Preliminaries

Let A be a commutative ring in which 2 is invertible. A quadratic A-module is a pair

(M, q), where M is an A-module and q is a quadratic form on M . Let M∗ denote the dual

of the module M . Let Bq be the symmetric bilinear form associated to q on M , which is

given by Bq(x, y) = q(x + y) − q(x) − q(y) and the induced map dBq
: M → M∗ is given

by dBq
(x) = Bq(x,−) for x ∈ M . We say that (M, q) is a non-singular quadratic space or

q is a non-singular quadratic form if dBq
is an isomorphism. A quadratic space over A is

a pair (M, q), where M is a finitely generated projective A-module and q : M −→ A is a

non-singular quadratic form. Given two quadratic A-modules (M1, q1) and (M2, q2), their

orthogonal sum (M, q) is defined by takingM =M1⊕M2 and q((x1, x2)) = q1(x1)+ q2(x2)

for x1 ∈M1, x2 ∈M2. Denote (M, q) by (M1, q1)⊥(M2, q2) and q by q1⊥q2.

Let P be a finitely generated projective A-module. The module P ⊕ P ∗ has a natural

quadratic form given by p((x, f)) = f(x) for x ∈ P and f ∈ P ∗. The corresponding bilinear

form Bp is given by

Bp((x1, f1), (x2, f2)) = f1(x2) + f2(x1)

for x1, x2 ∈ P and f1, f2 ∈ P
∗.
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Chapter 1. Introduction

Definition 1.1.1. The quadratic space (P ⊕P ∗, p), denoted by H(P ), is called the hyper-

bolic space of P . A quadratic space M is said to be hyperbolic, if it is isometric to H(P )

for some finitely generated projective module P . The quadratic space H(A) is called a

hyperbolic plane. The orthogonal sum H(A)⊥H(A)⊥· · ·⊥H(A) of n hyperbolic planes is

denoted by H(A)n.

Definition 1.1.2. Let Q be a quadratic space.

(a) Q is said to have Witt index ≥ n if Q ∼= Q0⊥H(P ), where rank (P ) ≥ n.

(b) Q is said to have hyperbolic rank ≥ n if Q⊥H(A)k with k ≥ n.

(c) Q is said to be cancellative if, for any quadratic A-spaces Q1, Q2 with

Q⊥Q2
∼= Q1⊥Q2, then Q ∼= Q1.

If Q⊥H(A) ∼= Q1⊥H(A) implies Q ∼= Q1, then Q is cancellative.

Let Q be a quadratic A-space and P be a finitely generated projective A-module. Let

M = Q⊥H(P ). This is a quadratic space with the quadratic form q⊥p. The associated

bilinear form on M , denoted by 〈·, ·〉, is given by

〈(a, x), (b, y)〉 = Bq(a, b) + Bp(x, y) for all a, b ∈ Q and x, y ∈ H(P ),

where Bq and Bp are the bilinear forms on Q and P respectively.

Let M =M(B, q) be a quadratic module over A with quadratic form q and associated

symmetric bilinear form B. Then the orthogonal group of M is defined as follows:

OA(M) = {σ ∈ AutA(M) | q(σ(x)) = q(x) for all x ∈M}, (1.1.1)

where AutA(M) be the group of all A-linear automorphisms of M .

For A-linear maps α : Q → P and β : Q → P ∗, the dual maps αt : P ∗ → Q∗ and

βt : P ∗∗ ≃ P → Q∗ are defined as αt(ϕ) = ϕ ◦ α and βt(ϕ∗) = ϕ∗ ◦ β for ϕ ∈ P ∗ and

ϕ∗ ∈ P ∗∗.

We now recall from [48] that the A-linear maps α∗ : P ∗ → Q and β∗ : P → Q are defined

by α∗ = d−1
Bq
◦αt and β∗ = d−1

Bq
◦βt ◦ε, where ε is the natural isomorphism P → P ∗∗. These
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1.1.2. Preliminaries

maps are characterized by the relations

(f ◦ α)(z) = Bq (α
∗(f), z) for f ∈ P ∗, z ∈ Q (1.1.2)

and (β(z))(x) = Bq (β
∗(x), z) for x ∈ P, z ∈ Q. (1.1.3)

In [48], A. Roy defined the “elementary” transformations Eα and E∗
β of Q⊥H(P ) as

Eα(z) = z + α(z) E∗
β(z) = z + β(z)

Eα(x) = x E∗
β(x) = −β∗(x) + x− 1

2
ββ∗(x)

Eα(f) = −α∗(f)− 1
2
αα∗(f) + f E∗

β(f) = f

for z ∈ Q, x ∈ P and f ∈ P ∗. In the same article, he also observed that these transforma-

tions are orthogonal with respect to the above quadratic form q⊥p.

The orthogonal group of Q⊥H(P ) is denoted by OA(Q⊥H(P )), where Q and P are

finitely generated projective A-modules.

Definition 1.1.3. EOA(Q ⊥ H(P )) is defined to be the subgroup of OA(Q ⊥ H(P ))

generated by Eα and E∗
β, where α ∈ HomA(Q,P ) and β ∈ HomA(Q,P

∗). We call this group

Roy’s elementary orthogonal group and these transformations Roy’s elementary orthogonal

transformations.

Definition 1.1.4. For a ring R, an R[T1, · · · , Tn]-module M is extended from R if there

exists an R-module M0 such that M ∼= R[T1, · · · , Tn]⊗R M0.

More generally, if φ : B → C is a homomorphism of rings and Q is a quadratic C-space,

then we say that Q extends from B if there is a quadratic B-space Q0 with Q ∼= Q0⊗B C.

In [43], D. Quillen gave the following remarkable local-global criterion for a module M

to be extended.

Theorem 1.1.5 (Quillen’s Patching Theorem). Let A be a commutative ring. Assume M

is a finitely presented module over A[T ] and that Mm is an extended Am[T ]-module for each

maximal ideal m of A. Then M is extended.

7



Chapter 1. Introduction

1.1.3 Elementary Generators in the Free Case

In this section, we assume that P and Q are free A-modules of rank m and n respectively.

Then P and P ∗ can be identified with Am and Q can be identified with An. Let {zi : 1 ≤

i ≤ n} be a basis for Q, {gi : 1 ≤ i ≤ n} be a basis for Q∗, {xi : 1 ≤ i ≤ m} be a basis for

P and {fi : 1 ≤ i ≤ m} be a basis for P ∗.

For a free A-module Ar of rank r, we have the projection maps pi : Ar −→ A for

1 ≤ i ≤ r, which are the projections onto the ith component and the inclusion maps

ηi : A −→ Ar for 1 ≤ i ≤ r which are the inclusions into the ith component.

For α ∈ HomA(Q,P ) and for 1 ≤ i ≤ m and 1 ≤ j ≤ n, let αi, αij ∈ HomA(Q,P ) be

the maps given by

αi := ηi ◦ pi ◦ α and αij := ηi ◦ pi ◦ α ◦ ηj ◦ pj.

Clearly α = Σm
i=1αi = Σm

i=1Σ
n
j=1αij Then α

∗
i , α

∗
ij ∈ HomA(P

∗, Q) are the maps given by

α∗
i := (αi)

∗ = α∗ ◦ ηi ◦ pi and α∗
ij := (αij)

∗ = ηj ◦ pj ◦ α
∗ ◦ ηi ◦ pi.

Also, α∗ = Σm
i=1α

∗
i = Σm

i=1Σ
n
j=1α

∗
ij.

We can also see that these definitions of α∗
i and α∗

ij coincide with those obtained by

using α∗ = dBq

−1 ◦ αt ∈ HomA(P
∗, Q) for αi and αij.

Now we shall describe how the linear transformations Eαij
and E∗

βij
are defined in terms

of the bases given above.

Let z = Σn
l=1dlzl ∈ Q for some dl ∈ A. Then, for 1 ≤ k ≤ m and 1 ≤ l ≤ n,

α(zl) = Σm
k=1bklxk for some bkl ∈ A,

α(z) = Σn
l=1Σ

m
k=1djbklxk,

αk(z) = Σn
l=1dlbklxk and αkl(z) = dlbklxk.

For 1 ≤ k ≤ m, let wk = α∗(fk). If f = Σm
k=1ckfk for some ck ∈ A, then ck = 〈f, xk〉 and

so α∗(f) = Σm
k=1〈f, xk〉wk. If wk = Σn

l=1ylzl for some yl ∈ A, then wkl = ylzl ∈ Q.
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1.1.3. Elementary Generators in the Free Case

For 1 ≤ i, k ≤ m and 1 ≤ j ≤ n, the maps α∗
i and α∗

ij’s are given by

α∗
i (fk) =





wi if k = i,

0 if k 6= i.

α∗
ij(fk) =





wij if k = i,

0 if k 6= i.

Let β ∈ HomA(Q,P
∗). Set β∗(xi) = vi for some vi ∈ Q. Let vij denote the element

ηj ◦ pj(vi). Now, by defining the maps βi, βij, β
∗
i , β

∗
ij similarly and extending these to the

whole of Q⊥H(P ), we will get the maps as follows:

For z ∈ Q, x ∈ P , f ∈ P ∗, 1 ≤ i ≤ m and 1 ≤ j ≤ n;

αij(z, x, f) = (0, 〈wij, z〉xi, 0), βij(z, x, f) = (0, 0, 〈vij, z〉fi) ,

αi(z, x, f) = (0, 〈wi, z〉xi, 0) , βi(z, x, f) = (0, 0, 〈vi, z〉fi) ,

α(z, x, f) = (0,Σm
i=1〈wi, z〉xi, 0) , β(z, x, f) = (0, 0,Σm

i=1〈vi, z〉fi) ,

α∗
ij(z, x, f) = (〈f, xi〉wij, 0, 0) , β∗

ij(z, x, f) = (〈x, fi〉vij, 0, 0) ,

α∗
i (z, x, f) = (〈f, xi〉wi, 0, 0) , β∗

i (z, x, f) = (〈x, fi〉vi, 0, 0) ,

α∗(z, x, f) = (Σm
i=1〈f, xi〉wi, 0, 0) , β∗(z, x, f) = (Σm

i=1〈x, fi〉vi, 0, 0) .

With these notations, the orthogonal transformation Eαij
ofQ⊥H(P ) for α ∈ HomA(Q,P )

is given by the equation

Eαij
(z, x, f) =

(
I − α∗

ij + αij −
1

2
αijα

∗
ij

)
(z, x, f)

=
(
z − 〈f, xi〉wij, x+ 〈wij, z〉xi − 〈f, xi〉q(wij)xi, f

)
.

The orthogonal transformation E∗
βij

of Q⊥H(P ) for β ∈ HomA(Q,P
∗) is given by

E∗
βij
(z, x, f) =

(
I − β∗

ij + βij −
1

2
βijβ

∗
ij

)
(z, x, f)

=
(
z − 〈fi, x〉vij, x, f + 〈vij, z〉fi − 〈x, fi〉q(vij)fi

)
.

The inverses of the orthogonal transformations Eαij
and E∗

βij
are given by the following:

For 1 ≤ i ≤ m and 1 ≤ j ≤ n,

E−1
αij

(z, x, f) =
(
z + 〈f, xi〉wij, x− 〈wij, z〉xi − 〈f, xi〉q(wij)xi, f

)
,

9
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E∗−1

βij
(z, x, f) =

(
z + 〈fi, x〉vij, x, f − 〈vij, z〉fi − 〈x, fi〉q(vij)fi

)
.

Since Q and P are free modules, the elements of OA(Q⊥H(P )) can be represented as

matrices over A by choosing a basis for Q and P . i.e., we can identify OA(Q⊥H(P )) as a

subgroup of GLn+2m(A) and we shall denote it by OA(Q⊥H(A)m).

IfQ and P are free A-modules of rank n andm respectively, then we have the elementary

transformations of the type Eαij
and E∗

βij
for 1 ≤ i ≤ m, 1 ≤ j ≤ n. We shall use these

generators and the relations among them to prove our results. We shall denote the group

EOA(Q⊥H(P )) by EOA(Q⊥H(A)m).

The following lemma gives a characterization of an element in the orthogonal group.

Lemma 1.1.6. An (n+2m)×(n+2m) matrix T =




a b c

d e f

g h j


 belongs to OA(Q⊥H(A)m)

if and only if either of the following two equations hold:

(i) T tψT = ψ, for ψ =




φ 0 0

0 0 Im

0 Im 0


, where φ is the matrix associated to the bilinear

form Bq and


 0 Im

Im 0


 is the matrix of the hyperbolic form on H(A)m.

(ii)




φ−1Atφ φ−1H t φ−1Dt

Ctφ Kt Gt

Btφ J t F t


 .




A B C

D F G

H J K


 = I(n+2m)×(n+2m).

Proof. Let ψ = ϕ ⊥


 0 Im

Im 0


, where ϕ is the matrix associated to the bilinear form Bq on

Q and


 0 Im

Im 0


 be the matrix of the hyperbolic form Bp on H(A)m. By equation (1.1.1),

10
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it follows that T ∈ OA(Q⊥H(A)m) if and only if T tψT = ψ. That is,



a d g

b e h

c f j







ϕ 0 0

0 0 Im

0 Im 0







a b c

d e f

g h j


 =




ϕ 0 0

0 0 Im

0 Im 0


 .

This equation is equivalent to the following set of equations:

atϕa+ gtc+ ctg = ϕ, btϕa+ htc+ etg = 0, ctϕa+ jtc+ f tg = 0,

atϕb+ gte+ cth = 0, btϕb+ hte+ eth = 0, ctϕb+ jte+ f th = Im,

atϕc+ gtf + ctj = 0, btϕc+ htf + etj = Im, ctϕc+ jtf + f tj = 0.

These equations are equivalent to the equation

T−1T = I(n+2m)×(n+2m), where T
−1 =




ϕ−1atϕ ϕ−1gt ϕ−1dt

ctϕ jt f t

btϕ ht et


 .

This characterization helps us to prove normality. Also, we shall use the natural em-

bedding OA(Q⊥H(A)m) −→ OA(Q⊥H(A)m+1) of groups for proving normality. Using

this, define the stable orthogonal group and the stable elementary orthogonal group as

follows:

OA = lim
m→∞

OA(Q⊥H(A)m) and

EOA = lim
m→∞

EOA(Q⊥H(A)m).

Define KO1,m (Q⊥H(A)m) = OA (Q⊥H(A)m) /EOA (Q⊥H(A)m), which is a coset space.

The natural embedding OA (Q⊥H(A)m) −→ OA (Q⊥H(A)m+1) induces the stabilization

map on the corresponding coset spaces.

1.2 Some more Definitions

In this section, we first recall the notion of generalized dimension function from [41]. Let

P ⊂ SpecA be a set of primes, N be the set of natural numbers and d : P → N∪ {0} be a

function. For primes p, q of P , define a partial order ≪ on P as p≪ q if and only if p ⊂ q

and d(p) > d(q).

11
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Definition 1.2.1. A function d : P → N ∪ {0} is a generalized dimension function if, for

any ideal I of A, V (I) ∩ P has only a finite number of minimal elements with respect to

the partial ordering ≪.

Definition 1.2.2. We say that (P,B) is an inner product space (IPS) over a commutative

ring R if P ∈ P(R) (i.e., P is a finitely generated projective R-module) and B : P×P → R

is a symmetric bilinear form, satisfying the following “nonsingularity” condition:

For any f ∈ P ∗ = HomR(P,R), there exists a unique m ∈ P such that f = B(−,m).

(1.2.1)

Definition 1.2.3. Let f : R→ R′ be a homomorphism of commutative rings. We say that

an IPS (P ′, B′) over R′ is extended from the IPS (P,B) over R if we can write P ′ = R′⊗RP

and B′ is given by

B′(r′1 ⊗m1, r
′
2 ⊗m2) = r′1r

′
2.f(B(m1,m2)) (r

′
i ∈ R

′,mi ∈ P ).

An IPS (P ′
1, B

′
1) over R

′ is stably extended from R if there exist IPS’s (P ′
2, B

′
2), (P

′
3, B

′
3)

extended from R such that

(P ′
1, B

′
1)⊥(P ′

2, B
′
2)
∼= (P ′

3, B
′
3).

See [36, Chapter VII] for more details on inner product spaces.

Definition 1.2.4. Let A be an associative ring with identity. A vector (a1, . . . , an) with

coefficients ai ∈ A is called right unimodular if there are elements b1, . . . , bn ∈ A such that

a1b1 + . . .+ anbn = 1.

Definition 1.2.5. The ring A is said to satisfy Bass’s stable range condition SAl in

the formulation of L.N. Vaserstein if, whenever (a1, . . . al+1) is a unimodular vector, there

exist elements b1, . . . , bl ∈ A such that (a1 + al+1b1, . . . , al + al+1bl) is unimodular.

It follows easily that SAl ⇒ SAk for any k ≥ l.

12



1.2. Some more Definitions

Definition 1.2.6. The stable rank of A, s-rank (A) is defined to be the smallest positive

integer k such that A satisfies SAl. If no such l exists, then the stable rank of A can be

taken to be infinite. If A is a local ring, s-rank (A) = 1.

Definition 1.2.7. If V is an A-module and v ∈ V , the order ideal of v is defined by

O(v) = {α(v)|α ∈ HomA(V,A)}.

Let R be a ring with 1 and pseudoinvolution σ : R → R, a 7→ a. Let Λ be a form

parameter in the sense of Bak.

Definition 1.2.8. The ring R is said to satisfy the Λ-stable rank condition Λ-SAl if

SAl ≤ l and for every unimodular vector (a1, . . . al+1, b1, . . . bl+1)
t ∈ R2l+2, there exists an

(l+1)×(l+1) matrix β with β = 1β1 and 1βii ∈ Λ, such that (a1, . . . al+1)
t+β(b1, . . . bl+1)

t ∈

Rl+1 is unimodular.

In this thesis, we shall be dealing with the case Λ = 0. i.e., when the ring is commuta-

tive.

Let H1, H2, . . . , Hr be subsets of a group G. Then H1H2 ·. . .·Hs denote their Minkowski

product H1H2 · . . . ·Hr = {h1h2 · . . . · hr|hi ∈ Hi}.

Definition 1.2.9 (Patching Technique). LetQuad (R) denote the category of all quadratic

R-spaces. Given that φ : B → A is analytically isomorphic along a non-zero divisor s in

B, we can state that the corresponding square

Quad (B) Quad (Bs)

Quad (A) Quad (As)

is cartesian.

Given Q1 ∈ Quad (Bs), Q2 ∈ Quad (A), we denote their fibre product over an iso-

morphism σ : Q1 ⊗ As
≃
→ (Q2)s of quadratic As-spaces, by either Q1 ⊗σ Q2 or by a triple

(Q1, σ, Q2).

13
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Let Q = (Q1, σ, Q2) be a quadratic B-space for some σ ∈ OAs
(Q ⊗ As). An element

ε ∈ OAs
(Q⊗As) is defined to be a deeply split orthogonal transformation if, for sufficiently

large integer N , one can split ε as a product ε = (ε1)s(ε2 ⊗ 1) with εi ∈ O(Qi) for i = 1, 2

and ε2 ≡ I mod (sN).

Definition 1.2.10. Let A be a local ring with maximal ideal m. We call A an equichar-

acteristic local ring if A has the same characteristic as its residue field A/m.

Definition 1.2.11. Let A be a local ring with maximal ideal m. A is said to be complete

with respect to its m-adic topology if the natural map from A to lim
←−

A/mi is an isomorphism.

Definition 1.2.12. A regular local ring is said to be unramified if the characteristic of the

residue field is p 6= 0 and p is in m, then p is not in m2.

Notation 1.2.13. Let G be a group. For any x, y ∈ G, the commutator of x and y is denoted

by [x, y] = xyx−1y−1.

1.3 Chapter-wise Summary

In Chapter 2, we state and give the explicit proofs of several commutator relations among

the elementary generators for the elementary orthogonal group EOA (Q⊥H(P )), where A

is a commutative ring, Q is a non-singular quadratic A-space of rank n and H(P ) is the

hyperbolic space of a finitely generated projective module P of rank m with the natural

quadratic form on it. We prove the commutator relations where Q and P are free modules.

These proofs constitute the second chapter of this thesis and, are part of the preprint

named “Yoga of Commutators in Roy’s Elementary Orthogonal Group”.

With the aid of these commutator relations, we establish a “local-global principle” of

D. Quillen for the Dickson–Siegel–Eichler–Roy (DSER) elementary orthogonal transfor-

mations and a dilation principle. In this chapter, we also deduce an action version of the

local-global principle. These results will appear in Chapter 3 and are used in Chapter 4

to prove certain extendability results on quadratic modules. As an interesting by-product,

we realize from the yoga of commutators that the DSER group mimics G. Tang’s Hermi-

tian group (see [60]) in some features, and also the unitary transvection group of H. Bass
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defined in [16] in some ways. We prove that the DSER group is contained in the ESD

group. We also compare the DSER group with Petrov’s odd hyperbolic unitary group

and show that they coincide when the projective A-modules Q and P are free and A is

a commutative ring in which 2 is invertible. In particular, the proofs of the local-global

principle, normality and stability that we give for Roy’s group yield proofs for the group of

Petrov over a commutative ring when the projective modules Q and P are free.

In Chapter 4, we prove that a quadratic A[T ]-module Q with Witt index (Q/TQ) at

least d, where d is the dimension of the equicharacteristic regular local ring A, is extended

from A. This improves a theorem of R.A. Rao who proved it when A is the local ring at a

smooth point of an affine variety over an infinite field. These results are part of an article

titled “Extendability of quadratic modules over a polynomial extension of an equicharac-

teristic regular local ring” (see [5]). To establish this result, we apply the “local-global

principle” established for the Dickson–Siegel–Eichler–Roy (DSER) elementary orthogonal

transformations in Chapter 3.

In Chapter 5, once again we use the commutator relations of Chapter 2 to establish

the we establish normality results for DSER group and stability results for DSER group

under Bak’s Λ-stable range condition. In particular, we establish normality when m ≥

dimMax (A) + 2 and also when m > l provided A satisfies the stable range condition 0-

SAl. This shows that the corresponding coset space K1 is a group. We prove the surjective

and injective stability of K1 under the 0-stable range condition. We also prove the injective

stability for K1 of the orthogonal group under stable range condition. A useful tool in the

proof is a decomposition theorem for the elementary subgroup that we will establish on

the way under the usual stable range condition.
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2
Commutator Calculus in Roy’s Elementary

Orthogonal Group

For elementary groups, commutator relations are useful tools for establishing theories like

local-global principle, normality etc. It involves a large body of calculations which is

known as commutator calculus. The standard commutator formulas for GLn was proved

by L.N. Vaserstein in [62] and independently by Z.I. Borewich and N.A. Vavilov in [20].

The commutator calculus for relative elementary congruence subgroups are done in [29–31].

These commutator relations are generalized to a Chevalley group G(R) over a commutative

ring R by A. Stepanov in [54].

In this chapter, we establish various commutator relations among the elementary gen-

erators of Roy’s elementary orthogonal group which were defined in Chapter 1. Obtaining

commutator relations is the key to establish the local-global principle and the normality

of the elementary subgroup in the orthogonal group we are looking at. We will use these

commutator relations to prove the local-global principle over a polynomial extension in

Chapter 3 and use them to prove the normality of the elementary orthogonal group in

Chapter 5 .

Most of the results in this chapter are from [4].

17



Chapter 2. Commutator Calculus

2.1 Commutators of Elementary Transformations

In this section, we establish various commutator relations among the elementary generators

of Roy’s elementary orthogonal group. We will carry out the computations in two different

ways - one is by choosing bases (which we call the method using coordinates), and the other

by just using the formal definition without choosing bases (which we call the coordinate-

free method). We need commutator relations of length up to 16. By the ‘length’of a

commutator, we mean the number of words in the commutator expression. We begin by

recalling the definition of Roy’s elementary generators by both methods which was done

in the previous chapter.

The following is a coordinate-free definition of the elementary generators.

Definition 2.1.1. For θ ∈ HomA(Q,P ) or HomA(Q,P
∗), define θ∗ as d−1

Bq
◦θt or d−1

Bq
◦θt◦ε,

where ε is the natural isomorphism P → P ∗∗ according to whether θ ∈ HomA(Q,P ) or

HomA(Q,P
∗) respectively. Then the elementary transformations Eθ and E

−1
θ are given by

Eθ = I + θ − θ∗ −
1

2
θθ∗,

E−1
θ = I − θ + θ∗ −

1

2
θθ∗ = E(−θ).

We now recall the definition of elementary generators using coordinates from Chapter 1.

Definition 2.1.2. Let α, δ ∈ HomA(Q,P ); β, γ ∈ HomA(Q,P
∗) and wi, ti, vi, ci ∈ Q for

1 ≤ i ≤ m. Then, choosing bases {xi}
m
i=1, {fi}

m
i=1, {zi}

m
i=1 respectively for P, P ∗, Q, one can

define the following elements in HomA(Q ⊥ H(P )).

αij (z, x, f) = (0, 〈wij, z〉xi, 0), α∗
ij (z, x, f) = (〈f, xi〉wij, 0, 0),

δkl (z, x, f) = (0, 〈tkl, z〉xk, 0), δ∗kl (z, x, f) = (〈f, xk〉tkl, 0, 0),

βij(z, x, f) = (0, 0, 〈vij, z〉fi), β∗
ij(z, x, f) = (〈x, fi〉vij, 0, 0),

γkl(z, x, f) = (0, 0, 〈ckl, z〉fk), γ∗kl(z, x, f) = (〈x, fk〉ckl, 0, 0).
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Here wij, vij denote the elements ηj ◦ pj(wi), ηj ◦ pj(vi) respectively and ckl, tkl denote the

elements ηl ◦ pl(ck), ηl ◦ pl(tk), where pj is the j
th projection as defined in Section 1.1.3 of

Chapter 1.

Now, for 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n, the corresponding orthogonal transformations

Eαij
, Eδkl , E

∗
βij
, E∗

γkl
and their inverses have the following form.

Eαij
(z, x, f) =

(
z − 〈f, xi〉wij, x+ 〈wij, z〉xi − 〈f, xi〉q(wij)xi, f

)
,

Eδkl (z, x, f) =
(
z − 〈f, xk〉tkl, x+ 〈tkl, z〉xk − 〈f, xk〉q(tkl)xk, f

)
,

E∗
βij

(z, x, f) =
(
z − 〈fi, x〉vij, x, f + 〈vij, z〉fi − 〈x, fi〉q(vij)fi

)
,

E∗
γkl

(z, x, f) =
(
z − 〈fk, x〉ckl, x, f + 〈ckl, z〉fk − 〈x, fk〉q(ckl)fk

)
,

E−1
αij

(z, x, f) =
(
z + 〈f, xi〉wij, x− 〈wij, z〉xi − 〈f, xi〉q(wij)xi, f

)
,

E−1
δkl

(z, x, f) =
(
z + 〈f, xk〉tkl, x− 〈tkl, z〉xk − 〈f, xk〉q(tkl)xk, f

)
,

E∗−1

βij
(z, x, f) =

(
z + 〈fi, x〉vij, x, f − 〈vij, z〉fi − 〈x, fi〉q(vij)fi

)
,

E∗−1

γkl
(z, x, f) =

(
z + 〈fk, x〉ckl, x, f − 〈ckl, z〉fk − 〈x, fk〉q(ckl)fk

)
.

The first (and the simplest) set of commutators which we compute is between elemen-

tary generators corresponding to two elements of HomA(Q,P ); this is given in the following

lemma.

Lemma 2.1.3. Let α, δ ∈ HomA(Q,P ). Then, for i, j, k, l with 1 ≤ i, k ≤ m and

1 ≤ j, l ≤ n, the commutator of the type
[
Eαij

, Eδkl

]
is given by

[
Eαij

, Eδkl

]
(z, x, f) =

(
I + δklα

∗
ij − αijδ

∗
kl

)
(z, x, f)

=
(
z, x+ 〈f, xi〉〈tkl, wij〉xk − 〈f, xk〉〈wij, tkl〉xi, f

)
.

In particular, if i = k, then
[
Eαij

, Eδkl

]
= I.

Proof. For α, δ ∈ HomA(Q,P ) and for any i, j, k, l with 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n,

using the coordinate-free definition of the elementary generators, we have the commutator
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relation

[
Eαij

,Eδkl

]
(z, x, f)

= Eαij
EδklE

−1
αij
E−1

δkl
(z, x, f)

= Eαij
EδklE

−1
αij

((
I − δkl + δ∗kl −

1

2
δklδ

∗
kl

)
(z, x, f)

)

= Eαij
Eδkl

((
I − δkl + δ∗kl −

1

2
δklδ

∗
kl − αij + α∗

ij −
1

2
αijα

∗
ij − αijδ

∗
kl

)
(z, x, f)

)

= Eαij

((
I − αij + α∗

ij −
1

2
αijα

∗
ij − αijδ

∗
kl + δklα

∗
ij

)
(z, x, f)

)

=
(
I − αijδ

∗
kl + δklα

∗
ij

)
(z, x, f).

Using coordinates, we may compute the above commutator as

[
Eαij

,Eδkl

]
(z, x, f)

= Eαij
EδklE

−1
αij

(
z + 〈f, xk〉tkl, x− 〈tkl, z〉xk − 〈f, xk〉q(tkl)xk, f

)

= Eαij
Eδkl

(
z + 〈f, xi〉wij + 〈f, xk〉tkl, x−

{
〈wij, z〉+ 〈f, xi〉q (wij)

+〈f, xk〉〈wij, tkl〉
}
xi −

{
〈tkl, z〉+ 〈f, xk〉q(tkl)

}
xk, f

)

= Eαij

(
z + 〈f, xi〉wij, x−

{
〈wij, z〉+ q(wij)〈f, xi〉+ 〈f, xk〉〈wij, tkl〉

}
xi

+〈f, xi〉〈tkl, wij〉xk, f
)

=
(
z, x+ 〈f, xi〉〈tkl, wij〉xk − 〈f, xk〉〈wij, tkl〉xi, f

)
.

If i = k, then we have

δklα
∗
ij(z, x, f) =

(
0, 〈f, xi〉〈til, wij〉xi, 0

)
= αijδ

∗
kl(z, x, f).

Hence
[
Eαij

, Eδil

]
= I.

As a consequence of this lemma, we have the following commutator relations.

Corollary 2.1.4. For any i, j, k, l with 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n and for a, b, c, d ∈ A

with ab = cd, the following equation holds.

[
Eaαij

, Ebδkl

]
=
[
Ecαij

, Edδkl

]
.
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Proof. For α, δ ∈ HomA(Q,P ) and for any i, j, k, l with 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n and

a, b, c, d ∈ A with ab = cd, we have

[
Eaαij

, Ebδkl

]
= I − abαijδ

∗
kl + abδklα

∗
ij (by Lemma 2.1.3)

= I − cdαijδ
∗
kl + cdδklα

∗
ij =

[
Ecαij

, Edδkl

]
.

We now compute the ‘mixed commutator’ of elementary generators corresponding to

elements of HomA(Q,P ) and HomA(Q,P
∗). These also yield commutator relations. The

expression for the commutator as given in the proof of the lemma below may appear

complicated and we need only its special case i 6= k. This special case can be deduced

after obtaining the general expression and specializing it.

Lemma 2.1.5. Let α ∈ HomA(Q,P ) and β ∈ HomA(Q,P
∗). Then, for i, j, k, l with

1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n with i 6= k,

[
Eαij

, E∗
βkl

]
(z, x, f) =

(
I − αijβ

∗
kl + βklα

∗
ij

)
(z, x, f)

=
(
z, x− 〈x, fk〉〈wij, vkl〉xi, f + 〈f, xi〉〈vkl, wij〉fk

)
.

Remark 2.1.6. In the proof of the above lemma, we obtain an explicit expression for the

commutator in the general case which specializes to the given expression when i 6= k.

Proof of Lemma 2.1.5. For α ∈ HomA(Q,P ), β ∈ HomA(Q,P
∗) and for any i, j, k, l with

1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n with i 6= k, we have the coordinate-free expression

[
Eαij

, E∗
βkl

]
(z, x, f)

= Eαij
E∗

βkl
E−1

αij
E∗−1

βkl
(z, x, f)

= Eαij
E∗

βkl
E−1

αij

((
I − βkl + β∗

kl −
1

2
βklβ

∗
kl

)
(z, x, f)

)

= Eαij
E∗

βkl

((
I − βkl + β∗

kl −
1

2
βklβ

∗
kl − αij + α∗

ij −
1

2
αijα

∗
ij − αijβ

∗
kl

−α∗
ijβkl −

1

2
α∗
ijβklβ

∗
kl +

1

2
αijα

∗
ijβkl +

1

4
αijα

∗
ijβklβ

∗
kl

)
(z, x, f)

)

= Eαij

((
I + α∗

ij − α
∗
ijβkl −

1

2
α∗
ijβklβ

∗
kl + β∗

klαij +
1

2
β∗
klαijα

∗
ij + β∗

klαijβ
∗
kl
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−
1

2
β∗
klαijα

∗
ijβkl −

1

4
β∗
klαijα

∗
ijβklβ

∗
kl − αij −

1

2
αijα

∗
ij − αijβ

∗
kl

+
1

2
αijα

∗
ijβkl +

1

4
αijα

∗
ijβklβ

∗
kl + βklα

∗
ij − βklα

∗
ijβkl +

1

2
βklβ

∗
klαij

−
1

4
βklβ

∗
klαijα

∗
ijβkl +

1

4
βklβ

∗
klαijα

∗
ij −

1

8
βklβ

∗
klαijα

∗
ijβklβ

∗
kl

)
(z, x, f)

)

=
(
I + β∗

klαij +
1

2
β∗
klαijα

∗
ij + β∗

klαijβ
∗
kl −

1

2
β∗
klαijα

∗
ijβkl −

1

4
β∗
klαijα

∗
ijβklβ

∗
kl

− α∗
ijβkl −

1

2
α∗
ijβklβ

∗
kl − α

∗
ijβklα

∗
ij + α∗

ijβklα
∗
ijβkl −

1

2
α∗
ijβklβ

∗
klαij

−
1

4
α∗
ijβklβ

∗
klαijα

∗
ij +

1

4
α∗
ijβklβ

∗
klαijα

∗
ijβkl +

1

8
α∗
ijβklβ

∗
klαijα

∗
ijβklβ

∗
kl

− αijβ
∗
kl +

1

2
αijα

∗
ijβkl +

1

4
αijα

∗
ijβklβ

∗
kl − αijα

∗
ijβkl −

1

2
αijα

∗
ijβklβ

∗
kl

+ αijβ
∗
klαij +

1

2
αijβ

∗
klαijα

∗
ij + αijβ

∗
klαijβ

∗
kl −

1

2
αijβ

∗
klαijα

∗
ijβkl

−
1

4
αijβ

∗
klαijα

∗
ijβklβ

∗
kl + βklα

∗
ij − βklα

∗
ijβkl +

1

2
βklβ

∗
klαij +

1

4
βklβ

∗
klαijα

∗
ij

−
1

4
βklβ

∗
klαijα

∗
ijβkl −

1

8
βklβ

∗
klαijα

∗
ijβklβ

∗
kl

)
(z, x, f).

Now using coordinates, we have
[
Eαij

, E∗
βkl

]
(z, x, f) = Eαij

E∗
βkl
E−1

αij
E∗−1

βkl
(z, x, f)

= Eαij
E∗

βkl
E−1

αij

(
z + 〈x, fk〉vkl, x, f −

{
〈vkl, z〉+ 〈x, fk〉q(vkl)

}
fk

)

= Eαij
E∗

βkl

(
z +

{
〈f, xi〉 − 〈vkl, z〉〈fk, xi〉 − 〈x, fk〉〈fk, xi〉q(vkl)

}
wij

+〈x, fk〉vkl, x−
{
〈wij, z〉+ 〈f, xi〉q(wij) + 〈x, fk〉〈wij, vkl〉

−〈vkl, z〉〈fk, xi〉q(wij)− 〈fk, xi〉〈x, fk〉q(wij)q(vkl)
}
xi,

f −
{
〈vkl, z〉+ 〈x, fk〉q(vkl)

}
fk

)

= Eαij

(
z +

{
〈f, xi〉 − 〈vkl, z〉〈fk, xi〉 − 〈x, fk〉〈fk, xi〉q(vkl)

}
wij

+
{
〈wij, z〉〈fk, xi〉+ 〈x, fk〉〈wij, vkl〉〈xi, fk〉+ 〈f, xi〉〈xi, fk〉q(wij)

−〈vkl, z〉〈fk, xi〉
2q(wij)− 〈x, fk〉〈fk, xi〉

2q(vkl)q(wij)
}
vkl, x

−
{
〈wij, z〉+ 〈x, fk〉〈wij, vkl〉+ 〈f, xi〉q(wij)− 〈vkl, z〉〈fk, xi〉q(wij)

−〈x, fk〉〈fk, xi〉q(vkl)q(wij)
}
xi, f +

{
〈wij, z〉〈xi, fk〉q(vkl)

+ 〈xi, f〉〈xi, fk〉q(vkl)q(wij)− 〈vkl, z〉〈xi, fk〉
2q(vkl)q(wij)
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+〈f, xi〉〈vkl, wij〉 − 〈x, fk〉〈xi, fk〉
2q(vkl)q(wij)

−〈vkl, z〉〈vkl, wij〉〈xi, fk〉
}
fk

)

=
(
z +

{
〈wij, z〉+ 〈x, fk〉〈wij, vkl〉+ 〈f, xi〉q(wij)

−〈vkl, z〉〈fk, xi〉q(wij)− 〈x, fk〉〈fk, xi〉q(vkl)q(wij)
}
〈xi, fk〉vkl

−
{
〈vkl, z〉+ 〈x, fk〉q(vkl) + 〈xi, f〉〈vkl, wij〉

− 〈vkl, z〉〈vkl, wij〉〈xi, fk〉+ 〈xi, f〉〈xi, fk〉q(vkl)q(wij)

+ 〈wij, z〉〈xi, fk〉q(vkl)− 〈vkl, z〉〈xi, fk〉
2q(vkl)q(wij)

−〈x, fk〉〈xi, fk〉
2q(vkl)q(wij)

}
〈xi, fk〉wij,

x+
{
−〈x, fk〉〈wij, vkl〉 − 〈vkl, z〉〈xi, fk〉q(wij)

− 〈x, fk〉〈xi, fk〉q(wij)q(vkl) + 〈wij, z〉〈vkl, wij〉〈fk, xi〉

+ 〈x, fk〉〈vkl, wij〉
2〉〈xi, fk〉 − 〈x, fk〉〈vkl, wij〉〈fk, xi〉

2q(vkl)q(wij)

− 〈wij, z〉〈xi, fk〉
2q(vkl)q(wij)− 〈xi, f〉〈xi, fk〉

2q(vkl)q(wij)
2

+〈vkl, z〉〈xi, fk〉
3q(vkl)q(wij)

2 + 〈x, fk〉〈xi, fk〉
3q(vkl)q(wij))

2
}
xi,

f +
{
〈xi, f〉〈xi, fk〉q(vkl)q(wij)− 〈vkl, z〉〈xi, fk〉

2q(vkl)q(wij)

+ 〈f, xi〉〈vkl, wij〉+ 〈wij, z〉〈xi, fk〉q(vkl)

−〈x, fk〉〈xi, fk〉
2q(vkl)q(wij)− 〈vkl, z〉〈vkl, wij〉〈xi, fk〉

}
fk

)
.

In the special case when i 6= k, using the fact that 〈xi, fk〉 = 0, we obtain

[
Eαij

, E∗
βkl

]
(z, x, f) =

(
z, x− 〈x, fk〉〈wij, vkl〉xi, f + 〈f, xi〉〈vkl, wij〉fk

)
.

Now αijβ
∗
kl(z, x, f) =

(
0, 〈x, fk〉〈wij, vkl〉xi, 0

)
, βklα

∗
ij(z, x, f) =

(
0, 0, 〈f, xi〉〈vkl, wij〉fk

)
.

Hence if i 6= k, then

[
Eαij

, E∗
βkl

]
(z, x, f) =

(
z, x− 〈x, fk〉〈wij, vkl〉xi, f + 〈f, xi〉〈vkl, wij〉fk

)

=
(
I − αijβ

∗
kl + βklα

∗
ij

)
(z, x, f).
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The following corollary lists the resultant commutator relations from the above lemma.

Corollary 2.1.7. For any i, j, k, l with 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n, i 6= k and for

a, b, c, d ∈ A with ab = cd, the following equation holds.

[
Eaαij

, E∗
bβkl

]
=
[
Ecαij

, E∗
dβkl

]
.

The lemma below computes the commutator of elementary generators corresponding

to two elements of HomA(Q,P
∗).

Remark 2.1.8. For any i, j, k, l with 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n and i 6= k, the commutator[
Eαij

, E∗
βkl

]−1

is given by

[
Eαij

, E∗
βkl

]−1

(z, x, f) =
(
z, x+ 〈x, fk〉〈wij, vkl〉xi, f − 〈f, xi〉〈vkl, wij〉fk

)

=
(
I + αijβ

∗
kl − βklα

∗
ij

)
(z, x, f)

=
[
E∗

βkl
, Eαij

]
(z, x, f).

Lemma 2.1.9. Let β, γ ∈ HomA(Q,P
∗). Then, for i, j, k, l with 1 ≤ i, k ≤ m and

1 ≤ j, l ≤ n, the commutator [E∗
βij
, E∗

γkl
] is given by

[
E∗

βij
, E∗

γkl

]
(z, x, f) =

(
I + γklβ

∗
ij − βijγ

∗
kl

)
(z, x, f)

=
(
z, x, f + 〈x, fi〉〈ckl, vij〉fk − 〈x, fk〉〈vij, ckl〉fi

)
.

In particular, if i = k, then [E∗
βij
, E∗

γkl
] = I.

Proof. For β, γ ∈ HomA(Q,P
∗) and for any i, j, k, l with 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n, we

have the coordinate-free expression

[
E∗

βij
, E∗

γkl

]
(z, x, f) = E∗

βij
E∗

γkl
E∗−1

βij
E∗−1

γkl
(z, x, f)

= E∗
βij
E∗

γkl
E∗−1

βij

((
I − γkl + γ∗kl −

1

2
γklγ

∗
kl

)
(z, x, f)

)

= E∗
βij
E∗

γkl

((
I − γkl + γ∗kl −

1

2
γklγ

∗
kl − βij + β∗

ij −
1

2
βijβ

∗
ij − βijγ

∗
kl

)
(z, x, f)

)

= E∗
βij

((
I − βij + β∗

ij −
1

2
βijβ

∗
ij − βijγ

∗
kl + γklβ

∗
ij

)
(z, x, f)

)
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=
(
I − βijγ

∗
kl + γklβ

∗
ij

)
(z, x, f).

Using coordinates, we have

[
E∗

βij
, E∗

γkl

]
= E∗

βij
E∗

γkl
E∗−1

βij
E∗−1

γkl
(z, x, f)

= E∗
βij
E∗

γkl
E∗−1

βij

(
z + 〈x, fk〉ckl, x, f − 〈ckl, z〉fk − 〈x, fk〉q(ckl)fk

)

= E∗
βij
E∗

γkl

(
z + 〈x, fk〉ckl + 〈x, fi〉vij, x, f −

{
〈vij, z〉+ 〈x, fi〉q(vij)

+〈x, fk〉〈vij, ckl〉
}
fi −

{
〈ckl, z〉+ 〈x, fk〉q(ckl)

}
fk

)

= E∗
βij

(
z + 〈x, fi〉vij, x, f −

{
〈vij, z〉+ q(vij)〈x, fi〉

+〈x, fk〉〈vij, ckl〉
}
fi + 〈x, fi〉〈ckl, vij〉fk

)

=
(
z, x, f + 〈x, fi〉〈ckl, vij〉fk − 〈x, fk〉〈vij, ckl〉fi

)
.

If i = k, then

γklβ
∗
ij(z, x, f) =

(
0, 0, 〈x, fi〉〈ckl, vij〉fk − 〈x, fk〉〈vij, ckl〉fi

)
= βijγ

∗
kl(z, x, f).

Hence
[
E∗

βij
, E∗

γil

]
= I.

Immediately, we deduce the following commutator relations.

Corollary 2.1.10. For any i, j, k, l with 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n and for a, b, c, d ∈ A

with ab = cd, the following equation holds.

[
E∗

aβij
, E∗

bγkl

]
=
[
E∗

cβij
, E∗

dγkl

]
.

Remark 2.1.11. In the following sections, we will prove more complicated commutator

relations of lengths 10 and 16; we will show how the indices may be specialized so that the

commutator is non-trivial.

2.2 Triple Commutators

In this section, we prove certain triple commutator relations among the elementary gen-

erators of Roy’s elementary orthogonal group. We start with a commutator of length 10
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which involves a commutator of elementary generators corresponding to two elements of

HomA(Q,P ).

Lemma 2.2.1. Let α, δ ∈ HomA(Q,P ) and β ∈ HomA(Q,P
∗). Then, for i, j, k, l, p, q with

1 ≤ i, k, p ≤ m, 1 ≤ j, l, q ≤ n and k 6= p, the triple commutator
[
E∗

βij
,
[
Eαkl

, Eδpq

]]
is

given by

[
E∗

βij
,
[
Eαkl

, Eδpq

]]
=





Eλkj

[
E∗

βij
, Eλkj

2

]
if i = p,

Eξpj

[
E∗

βij
, E ξpj

2

]
if i = k,

I if i 6= p and i 6= k,

where λkj = αklδ
∗
pqβij and ξpj = −δpqα

∗
klβij.

Proof. For α, δ ∈ HomA(Q,P ), β ∈ HomA(Q,P
∗) and for i, j, k, l, p, q with 1 ≤ i, k, p ≤ m,

1 ≤ j, l, q ≤ n and k 6= p, we have

[
Eαkl

, Eδpq

]
(z, x, f) =

(
I + δpqα

∗
kl − αklδ

∗
pq

)
(z, x, f)

=
(
z, x+ 〈f, xk〉〈tpq, wkl〉xp − 〈f, xp〉〈tpq, wkl〉xk, f

)
.

(by Lemma 2.1.3)

[
Eαkl

, Eδpq

]−1
(z, x, f) =

[
Eδpq , Eαkl

]
(z, x, f)

=
(
I − δpqα

∗
kl + αklδ

∗
pq

)
(z, x, f)

=
(
z, x− 〈f, xk〉〈tpq, wkl〉xp + 〈f, xp〉〈tpq, wkl〉xk, f

)
.

(by Lemma 2.1.3)

Hence we get the coordinate-free expression

[
E∗

βij
,
[
Eαkl

, Eδpq

]]
(z, x, f) = E∗

βij

[
Eαkl

, Eδpq

]
E∗−1

βij

[
Eαkl

, Eδpq

]−1
(z, x, f)

= E∗
βij

[
Eαkl

, Eδpq

]
E∗−1

βij

((
I + αklδ

∗
pq − δpqα

∗
kl

)
(z, x, f)

)

= E∗
βij
[Eαkl

, Eδpq ]
((
I + β∗

ij + β∗
ijαklδ

∗
pq − β

∗
ijδpqα

∗
kl − βij −

1

2
βijβ

∗
ij

+αklδ
∗
pq − δpqα

∗
kl −

1

2
βijβ

∗
ijαklδ

∗
pq +

1

2
βijβ

∗
ijδpqα

∗
kl

)
(z, x, f)

)
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= E∗
βij

((
I − βij + β∗

ij −
1

2
βijβ

∗
ij + β∗

ijαklδ
∗
pq −

1

2
βijβ

∗
ijαklδ

∗
pq

+
1

2
βijβ

∗
ijδpqα

∗
kl + αklδ

∗
pqβij +

1

2
αklδ

∗
pqβ

∗
ijβij −

1

2
δpqα

∗
klβijβ

∗
ij

− δpqα
∗
klβij −

1

2
αklδ

∗
pqβijβ

∗
ijδpqα

∗
kl −

1

2
δpqα

∗
klβijβ

∗
ijαklδ

∗
pq

+
1

2
αklδ

∗
pqβijβ

∗
ijαklδ

∗
pq +

1

2
δpqα

∗
klβijβ

∗
ijδpqα

∗
kl − β

∗
ijδpqα

∗
kl

)
(z, x, f)

)

=
(
I + β∗

ijαklδ
∗
pq −

1

2
αklδ

∗
pqβijβ

∗
ijδpqα

∗
kl +

1

2
βijβ

∗
ijαklδ

∗
pq

+
1

2
αklδ

∗
pqβijβ

∗
ij −

1

2
δpqα

∗
klβijβ

∗
ijαklδ

∗
pq + αklδ

∗
pqβij

+
1

2
δpqα

∗
klβijβ

∗
ijδpqα

∗
kl −

1

2
βijβ

∗
ijδpqα

∗
kl − δpqα

∗
klβij

− β∗
ijδpqα

∗
kl −

1

2
δpqα

∗
klβijβ

∗
ij+

1

2
αklδ

∗
pqβijβ

∗
ijαklδ

∗
pq

)
(z, x, f).

(2.2.1)

On computing using coordinates, we get

[
E∗

βij
,
[
Eαkl

, Eδpq

]]
(z, x, f) = E∗

βij

[
Eαkl

, Eδpq

]
E∗−1

βij

[
Eαkl

, Eδpq

]−1
(z, x, f)

= E∗
βij

[
Eαkl

, Eδpq

]
E∗−1

βij

(
z, x− 〈f, xk〉〈tpq, wkl〉xp

+〈f, xp〉〈tpq, wkl〉xk, f
)

= E∗
βij

[
Eαkl

, Eδpq

] (
z +

{
〈f, xp〉〈tpq, wkl〉〈xk, fi〉

−〈f, xk〉〈tpq, wkl〉〈xp, fi〉+ 〈x, fi〉
}
vij, x− 〈f, xk〉〈tpq, wkl〉xp

+ 〈f, xp〉〈tpq, wkl〉xk, f −
{
〈f, xp〉〈tpq, wkl〉〈xk, fi〉q(vij)

−〈f, xk〉〈tpq, wkl〉q(vij) + 〈x, fi〉q(vij) + 〈vij, z〉
}
fi

)

= E∗
βij

(
z +

{
〈f, xp〉〈xk, fi〉〈tpq, wkl〉 − 〈f, xk〉〈xp, fi〉〈tpq, wkl〉

+ 〈x, fi〉
}
vij, x−

{
〈x, fi〉q(vij) + 〈xk, fi〉〈f, xp〉〈tpq, wkl〉q(vij)

+〈vij, z〉 − 〈f, xk〉〈xp, fi〉〈tpq, wkl〉q(vij)
}
〈fi, xk〉〈tpq, wkl〉xp

+
{
〈vij, z〉+ 〈x, fi〉q(vij) + 〈f, xp〉〈xk, fi〉〈tpq, wkl〉q(vij)

−〈xk, f〉〈xp, fi〉〈tpq, wkl〉q(vij)
}
〈fi, xp〉〈tpq, wkl〉xk,

f −
{
〈x, fi〉q(vij + 〈xk, fi〉〈f, xp〉〈tpq, wkl〉q(vij)
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+〈vij, z〉 − 〈f, xk〉〈xp, fi〉〈tpq, wkl〉q(vij)
}
fi

)

=
(
z +

{
〈f, xp〉〈xk, fi〉 − 〈f, xk〉〈xp, fi〉

}
〈tpq, wkl〉vij,

x−
{
〈vij, z〉+ 〈x, fi〉q(vij) + 〈fi, xk〉〈f, xp〉〈tpq, wkl〉q(vij)

−〈fi, xp〉〈f, xk〉〈tpq, wkl〉q(vij)
}
〈fi, xk〉〈tpq, wkl〉xp

+
{
〈vij, z〉+ 〈fi, x〉q(vij) + 〈fi, xk〉〈f, xp〉〈tpq, wkl〉q(vij)

−〈f, xk〉〈fi, xp〉〈tpq, wkl〉q(vij)
}
〈fi, xp〉〈tpq, wkl〉xk,

f +
{
〈f, xp〉〈fi, xk〉 − 〈f, xk〉〈fi, xp〉

}
〈tpq, wkl〉q(vij)fi

)
.

(2.2.2)

Now, for λkj = αklδ
∗
pqβij as in the statement, we can describe the maps λkj, λ

∗
kj,

1
2
λkjλ

∗
kj

and the elementary transformation Eλkj
as

λkj(z, x, f) = αklδ
∗
pqβij(z, x, f) =

(
0, 〈vij, z〉〈fi, xp〉〈wkl, tpq〉xk, 0

)
,

λ∗kj(z, x, f) = β∗
ijδpqα

∗
kl(z, x, f) =

(
〈f, xk〉〈tpq, wkl〉〈xp, fi〉vij, 0, 0

)
,

1

2
λkjλ

∗
kj(z, x, f) =

(
0, 〈f, xk〉〈fi, xp〉

2〈wkl, tpq〉
2q(vij)xk, 0

)
,

Eλkj
(z, x, f) =

(
I + λkj − λ

∗
kj −

1

2
λkjλ

∗
kj

)
(z, x, f)

=
(
z − 〈f, xk〉〈fi, xp〉〈wkl, tpq〉vij, x+

{
〈vij, z〉

−〈f, xk〉〈fi, xp〉〈wkl, tpq〉q(vij)
}
xk, f

)
.

If i 6= k, then, by Remark 2.1.8, we have

[
E∗

βij
, Eλkj

2

]
(z, x, f) =

[
Eλkj

2

, E∗
βij

]−1

(z, x, f)

=
(
I −

1

2
βijλ

∗
kj +

1

2
λkjβ

∗
ij

)
(z, x, f)

=
(
z, x+ 〈x, fi〉〈fi, xp〉〈wkl, tpq〉q(vij)xk,

f − 〈f, xk〉〈fi, xp〉〈wkl, tpq〉q(vij)fi

)

and hence we get

Eλkj

[
E∗

βij
, Eλkj

2

]
(z, x, f) =

(
I + λkj − λ

∗
kj −

1

2
λkjλ

∗
kj −

1

2
βijλ

∗
kj +

1

2
λkjβ

∗
ij

)
(z, x, f)
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=
(
z − 〈f, xk〉〈xp, fi〉〈tpq, wkl〉vij, x+

{
〈fi, x〉q(vij)

− 〈f, xk〉〈fi, xp〉〈tpq, wkl〉q(vij) + 〈vij, z〉
}
〈tpq, wkl〉

〈fi, xp〉xk, f − 〈f, xk〉〈fi, xp〉〈tpq, wkl〉q(vij)fi

)
. (2.2.3)

Similarly, if i 6= p, we have

Eξpj

[
E∗

βij
, E ξpj

2

]
(z, x, f) =

(
I + ξpj − ξ

∗
pj −

1

2
ξpjξ

∗
pj −

1

2
βijξ

∗
pj +

1

2
ξpjβ

∗
ij

)
(z, x, f)

=
(
z − 〈f, xk〉〈xp, fi〉〈tpq, wkl〉vij, x+

{
〈fi, x〉q(vij)

− 〈f, xk〉〈fi, xp〉〈tpq, wkl〉q(vij)+〈vij, z〉
}
〈tpq, wkl〉

〈fi, xp〉xk, f − 〈f, xk〉〈fi, xp〉〈tpq, wkl〉q(vij)fi

)
. (2.2.4)

We now consider the following possible conditions on the indices.

Case (i): i = p.

If i = p, then, by Equations (2.2.2), (2.2.1), and (2.2.3), we have

[
E∗

βij
,
[
Eαkl

, Eδpq

]]
(z, x, f) =

(
I − β∗

pjδpqα
∗
kl + αklδ

∗
pqβpj +

1

2
αklδ

∗
pqβpjβ

∗
pj −

1

2
βpjβ

∗
pjδpqα

∗
kl

−
1

2
αklδ

∗
pqβpjβ

∗
pjδpqα

∗
kl

)
(z, x, f)

=
(
z − 〈f, xk〉〈tpq, wkl〉vpj, x+

{
〈vpj, z〉 − 〈f, xk〉〈tpq, wkl〉q(vpj)

+〈fp, x〉q(vpj)
}
〈tpq, wkl〉xk, f − 〈f, xk〉〈tpq, wkl〉q(vpj)fp

)

= Eλkj

[
E∗

βij
, Eλkj

2

]
(z, x, f).

Case (ii): i = k.

If i = k, then, by Equations (2.2.2), (2.2.1), and (2.2.4), we have

[
E∗

βij
,
[
Eαkl

, Eδpq

]]
(z, x, f) =

(
I + β∗

kjαklδ
∗
pq +

1

2
βkjβ

∗
kjαklδ

∗
pq −

1

2
δpqα

∗
klβkjβ

∗
kj

−δpqα
∗
klβkj −

1

2
δpqα

∗
klβkjβ

∗
kjαklδ

∗
pq

)
(z, x, f)

=
(
z + 〈f, xp〉〈tpq, wkl〉vkj, x−

{
〈vkj, z〉+ 〈f, xp〉〈tpq, wkl〉q(vkj)

+〈x, fk〉q(vkj)
}
〈tpq, wkl〉xp, f + 〈f, xp〉〈tpq, wkl〉q(vkj)fk

)
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= Eξpj

[
E∗

βkj
, E ξpj

2

]
(z, x, f).

Case(iii): i 6= k and i 6= p.

If i 6= k and i 6= p, then, by Equation (2.2.2), we have

[
E∗

βij
,
[
Eαkl

, Eδpq

]]
(z, x, f) = I(z, x, f).

As a consequence of the above lemma on triple commutators, we observe the following

commutator relations.

Corollary 2.2.2. For any i, j, k, l, p, q with 1 ≤ i, k, p ≤ m, 1 ≤ j, l, q ≤ n, i 6= k and

k 6= p and a, b, c, d, e, f ∈ A with abc = def and a2bc = d2ef , the following equation holds.

[
E∗

aβij
,
[
Ebαkl

, Ecδpq

]]
=
[
E∗

dβij
,
[
Eeαkl

, Efδpq

]]
.

Proof. For any i, j, k, l, p, q with 1 ≤ i, k, p ≤ m, 1 ≤ j, l, q ≤ n, i 6= k and k 6= p and

a, b, c, d, e, f ∈ A with abc = def and a2bc = d2ef , we have

[
E∗

aβij
,
[
Ebαkl

, Ecδpq

]]
(z, x, f) =

(
I − a2bcβ∗

ijδpqα
∗
kl + abcαklδ

∗
pqβij +

1

2
a2bcαklδ

∗
pqβijβ

∗
ij

−
1

2
a2bcβijβ

∗
ijδpqα

∗
kl −

1

2
a2b2c2αklδ

∗
pqβijβ

∗
ijδpqα

∗
kl

)
(z, x, f)

=
(
I − d2efβ∗

ijδpqα
∗
kl + defαklδ

∗
pqβij +

1

2
d2efαklδ

∗
pqβijβ

∗
ij

−
1

2
d2efβijβ

∗
ijδpqα

∗
kl −

1

2
d2e2f 2αklδ

∗
pqβijβ

∗
ijδpqα

∗
kl

)
(z, x, f)

=
[
E∗

dβij
,
[
Eeαkl

, Efδpq

]]
(z, x, f).

The following lemma on triple commutators involves a mixed commutator.

Lemma 2.2.3. Let α, δ ∈ HomA(Q,P ) and β ∈ HomA(Q,P
∗). Then, for i, j, k, l, p, q with

1 ≤ i, k, p ≤ m, 1 ≤ j, l, q ≤ n and k 6= p, the triple commutator
[
Eαij

,
[
Eδkl , E

∗
βpq

]]
is

given by

[
Eαij

,
[
Eδkl , E

∗
βpq

]]
=





Eµkj

[
Eαij

, Eµkj
2

]
, if i = p,

I if i = k or i 6= p,

where µkj = δklβ
∗
pqαij.
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Proof. For α, δ ∈ HomA(Q,P ), β ∈ HomA(Q,P
∗) and for i, j, k, l, p, q with 1 ≤ i, k, p ≤ m,

1 ≤ j, l, q ≤ n and k 6= p, we have the coordinate-free expression

[
Eδkl , E

∗
βpq

]
(z, x, f) =

(
I + βpqδ

∗
kl − δklβ

∗
pq

)
(z, x, f)

=
(
z, x− 〈x, fp〉〈tkl, vpq〉xk, f + 〈f, xk〉〈tkl, vpq〉fp

)
.

(by Lemma 2.1.5)
[
Eδkl , E

∗
βpq

]−1

(z, x, f) =
[
E∗

βpq
, Eδkl

]
(z, x, f)

=
(
z, x+ 〈x, fp〉〈tkl, vpq〉xk, f − 〈f, xk〉〈tkl, vpq〉fp

)
.

(by Remark 2.1.8)

Hence we get

[
Eαij

,
[
Eδkl , E

∗
βpq

]]
(z, x, f) = Eαij

[
Eδkl , E

∗
βpq

]
E−1

αij

[
Eδkl , E

∗
βpq

]−1

(z, x, f)

= Eαij

[
Eδkl , E

∗
βpq

]
E−1

αij

((
I − βpqδ

∗
kl + δklβ

∗
pq

)
(z, x, f)

)

= Eαij

[
Eδkl , E

∗
βpq

] ((
I + α∗

ij − α
∗
ijβpqδ

∗
kl + δklβ

∗
pq − αij

−
1

2
αijα

∗
ij − βpqδ

∗
kl +

1

2
αijα

∗
ijβpqδ

∗
kl

)
(z, x, f)

)

= Eαij

((
I + α∗

ij − α
∗
ijβpqδ

∗
kl − αij +

1

2
αijα

∗
ijβpqδ

∗
kl

+ δklβ
∗
pqαij −

1

2
δklβ

∗
pqαijα

∗
ijβpqδ

∗
kl − δklβ

∗
pqδklβ

∗
pq

+
1

2
δklβ

∗
pqαijα

∗
ij − βpqδ

∗
klβpqδ

∗
kl −

1

2
αijα

∗
ij

)
(z, x, f)

)

=
((
I − α∗

ijβpqδ
∗
kl + α∗

ijβpqδ
∗
klβpqδ

∗
kl +

1

2
δklβ

∗
pqαijα

∗
ij

− δklβ
∗
pqδklβ

∗
pq −

1

2
δklβ

∗
pqαijα

∗
ijβpqδ

∗
kl

− βpqδ
∗
klβpqδ

∗
kl +

1

2
αijα

∗
ijβpqδ

∗
klβpqδ

∗
kl + δklβ

∗
pqαij

−
1

2
αijα

∗
ijβpqδ

∗
kl

)
(z, x, f)

)
. (2.2.5)

Now if we use coordinates, we obtain

[
Eαij

,
[
Eδkl , E

∗
βpq

]]
(z, x, f) = Eαij

[
Eδkl , E

∗
βpq

]
E−1

αij

[
Eδkl , E

∗
βpq

]−1

(z, x, f)
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= Eαij

[
Eδkl , E

∗
βpq

]
E−1

αij

(
z, x+ 〈x, fp〉〈tkl, vpq〉xk, f − 〈f, xk〉〈tkl, vpq〉fp

)

= Eαij

[
Eδkl , E

∗
βpq

] (
z + 〈f, xi〉wij − 〈f, xk〉〈tkl, vpq〉〈fp, xi〉wij, x

− 〈wij, z〉xi + 〈x, fp〉〈tkl, vpq〉xk + 〈f, xk〉〈tkl, vpq〉〈fp, xi〉q(wij)xi

−〈f, xi〉q(wij)xi, f − 〈f, xk〉〈tkl, vpq〉fp

)

= Eαij

(
z +

{
〈f, xi〉 − 〈f, xk〉〈tkl, vpq〉〈fp, xi〉

}
wij, x−

{
〈wij, z〉

+〈f, xi〉q(wij) + 〈f, xk〉〈tkl, vpq〉〈fp, xi〉q(wij)
}
xi

+
{
〈wij, z〉 − 〈f, xk〉〈xi, fp〉〈tkl, vpq〉q(wij)+〈f, xi〉q(wij)

}

〈xi, fp〉〈tkl, vpq〉xk, f − 〈f, xk〉〈tkl, vpq〉
2〈fp, xk〉fp

)

=
(
z − 〈f, xk〉〈tkl, vpq〉〈fp, xi〉wij, x+

{
〈f, xi〉q(wij)

+〈wij, z〉 − 〈f, xk〉〈tkl, vpq〉〈xi, fp〉q(wij)
}
〈tkl, vpq〉

〈xi, fp〉xk − 〈f, xk〉〈tkl, vpq〉〈xi, fp〉q(wij)xi, f
)
. (2.2.6)

The maps µkj, µ
∗
kj,

1
2
µkjµ

∗
kj and the elementary transformation E∗

µkj
are given by the fol-

lowing expressions.

µkj(z, x, f) = δklβ
∗
pqαij(z, x, f) = (0, 〈wij, z〉〈tkl, vpq〉〈xi, fp〉xk, 0),

µ∗
kj(z, x, f) = α∗

ijβpqδ
∗
kl(z, x, f) = (〈f, xk〉〈tkl, vpq〉〈xi, fp〉wij, 0, 0),

1

2
µkjµ

∗
kj(z, x, f) = (0, 〈f, xk〉〈tkl, vpq〉

2〈xi, fp〉
2q(wij)xk, 0),

E∗
µkj

(z, x, f) =

(
I + µkj − µ

∗
kj −

1

2
µkjµ

∗
kj

)
(z, x, f)

= (z − 〈f, xk〉〈tkl, vpq〉〈xi, fp〉wij, x+ 〈wij, z〉〈tkl, vpq〉〈xi, fp〉xk

− 〈f, xk〉〈tkl, vpq〉
2〈xi, fp〉

2q(wij)xk, f ).

If i 6= k, then, by Lemma 2.1.3, we have

[
Eαij

, Eµkj
2

]
(z, x, f) =

(
I +

1

2
µkjα

∗
ij −

1

2
αijµ

∗
kj

)
(z, x, f)

=
(
z, x+ 〈f, xi〉〈tkl, vpq〉〈xi, fp〉q(wij)xk − 〈f, xk〉〈tkl, vpq〉〈xi, fp〉q(wij)xi, f

)
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and hence we get

Eµkj

[
Eαij

, Eµkj
2

]
(z, x, f) =

(
I + µkj − µ

∗
kj −

1

2
µkjµ

∗
kj +

1

2
µkjα

∗
ij −

1

2
αijµ

∗
kj

)
(z, x, f)

=
(
z − 〈f, xk〉〈tkl, vpq〉〈xi, fp〉wij, x+

{
〈f, xi〉q(wij)

+ 〈wij, z〉 − 〈f, xk〉〈tkl, vpq〉〈xi, fp〉q(wij)
}
〈tkl, vpq〉

〈xi, fp〉xk − 〈f, xk〉〈tkl, vpq〉〈xi, fp〉q(wij)xi, f
)
. (2.2.7)

We now consider the following possible conditions on the indices.

Case(i): i = p.

If i = p, then, by Equations (2.2.6), (2.2.5) and (2.2.7), we have

[
Eαij

,
[
Eδkl , E

∗
βpq

]]
(z, x, f) =

((
I − α∗

ijβpqδ
∗
kl + δklβ

∗
pqαij +

1

2
δklβ

∗
pqαijα

∗
ij

−
1

2
δklβ

∗
pqαijα

∗
ijβpqδ

∗
kl −

1

2
αijα

∗
ijβpqδ

∗
kl

+α∗
ijβpqδ

∗
klβpqδ

∗
kl

)
(z, x, f)

)

=
(
z − 〈f, xk〉〈tkl, vpq〉wij, x+ 〈wij, z〉〈tkl, vpq〉xk

+ 〈f, xi〉〈tkl, vpq〉q(wij)xk − 〈f, xk〉〈tkl, vpq〉q(wij)xi

−〈f, xk〉〈tkl, vpq〉
2q(wij)xk, f

)

= Eµkj

[
Eαij

, Eµkj
2

]
(z, x, f).

Case(ii): i = k or i 6= p.

If i = k or i 6= p, then, by Equation (2.2.6), we have

[
Eαij

,
[
Eδkl , E

∗
βpq

]]
(z, x, f) = I(z, x, f).

We now deduce the commutator identities from the above lemma.

Corollary 2.2.4. For any i, j, k, l, p, q with 1 ≤ i, k, p ≤ m, 1 ≤ j, l, q ≤ n, i 6= p and

k 6= p and a, b, c, d, e, f ∈ A with abc = def and a2bc = d2ef , the following equation holds.

[
Eaαij

,
[
Ebδkl , E

∗
cβpq

]]
=
[
Edαij

,
[
Eeδkl , E

∗
fβpq

]]
.
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We now compute the expression for the triple commutators which has a mixed com-

mutator.

Lemma 2.2.5. Let α ∈ HomA(Q,P ) and β, γ ∈ HomA(Q,P
∗). Then, for i, j, k, l, p, q with

1 ≤ i, k, p ≤ m, 1 ≤ j, l, q ≤ n and k 6= p, the triple commutator
[
E∗

βij
,
[
Eαkl

, E∗
γpq

]]
is

given by

[
E∗

βij
,
[
Eαkl

, E∗
γpq

]]
=





E∗
νpj

[
E∗

βij
, E∗

νpj
2

]
, if i = p,

I if i = k or i 6= p,

where νpj = −γpqα
∗
klβij.

Proof. For α ∈ HomA(Q,P ), β, γ ∈ HomA(Q,P
∗) and, for i, j, k, l, p, q with 1 ≤ i, k, p ≤ m,

1 ≤ j, l, q ≤ n and k 6= p, we have

[
Eαkl

, E∗
γpq

]
(z, x, f) =

(
I + γpqα

∗
kl − αklγ

∗
pq

)
(z, x, f)

=
(
z, x− 〈x, fp〉〈cpq, wkl〉xk, f + 〈f, xk〉〈cpq, wkl〉fp

)
.

(by Lemma 2.1.5)

[Eαkl
, E∗

γpq
]−1(z, x, f) =

(
I − γpqα

∗
kl + αklγ

∗
pq

)
(z, x, f)

=
(
z, x+ 〈x, fp〉〈cpq, wkl〉xk, f − 〈f, xk〉〈cpq, wkl〉fp

)
.

(by Remark 2.1.8)

Hence we get the following coordinate-free expression.

[
E∗

βij
,
[
Eαkl

, E∗
γpq

]]
(z, x, f) = E∗

βij

[
Eαkl

, E∗
γpq

]
E∗−1

βij

[
Eαkl

, E∗
γpq

]−1

(z, x, f)

= E∗
βij

[
Eαkl

, E∗
γpq

]
E∗−1

βij

((
I − γpqα

∗
kl + αklγ

∗
pq

)
(z, x, f)

)

= E∗
βij

[
Eαkl

, E∗
γpq

] ((
I − γpqα

∗
kl + αklγ

∗
pq − βij + β∗

ij

−
1

2
βijβ

∗
ij + β∗

ijαklγ
∗
pq −

1

2
βijβ

∗
ijαklγ

∗
pq

)
(z, x, f)

)

= E∗
βij

((
I − βij + β∗

ij −
1

2
βijβ

∗
ij + β∗

ijαklγ
∗
pq −

1

2
βijβ

∗
ijαklγ

∗
pq

− γpqα
∗
klβij − αklγ

∗
pqαklγ

∗
pq − γpqα

∗
klγpqα

∗
kl −

1

2
γpqα

∗
klβijβ

∗
ij
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−
1

2
γpqα

∗
klβijβ

∗
ijαklγ

∗
pq

)
(z, x, f)

)

=
((
I + β∗

ijαklγ
∗
pq − γpqα

∗
klβij −

1

2
γpqα

∗
klβijβ

∗
ij

+
1

2
βijβ

∗
ijαklγ

∗
pq −

1

2
γpqα

∗
klβijβ

∗
ijαklγ

∗
pq

)
(z, x, f)

)
. (2.2.8)

Now, by computing using coordinates, we have

[
E∗

βij
,
[
Eαkl

, E∗
γpq

]]
= E∗

βij

[
Eαkl

, E∗
γpq

]
E∗−1

βij

[
Eαkl

, E∗
γpq

]−1

(z, x, f)

= E∗
βij

[
Eαkl

, E∗
γpq

]
E∗−1

βij

(
z, x+ 〈x, fp〉〈cpq, wkl〉xk, f − 〈f, xk〉〈cpq, wkl〉fp

)

= E∗
βij

[
Eαkl

, E∗
γpq

] (
z + 〈fi, x〉vij + 〈x, fp〉〈cpq, wkl〉〈xk, fi〉vij, x

+ 〈x, fp〉〈cpq, wkl〉xk, f − 〈vij, z〉fi − 〈f, xk〉〈cpq, wkl〉fp − 〈x, fi〉q(vij)fi

−〈x, fp〉〈cpq, wkl〉〈xk, fi〉q(vij)fi

)

= E∗
βij

(
z + 〈fi, x〉vij + 〈x, fp〉〈cpq, wkl〉〈xk, fi〉vij, x, f − 〈vij, z〉fi

− 〈x, fi〉q(vij)fi − 〈x, fp〉〈cpq, wkl〉〈xk, fi〉q(vij)fi

− 〈vij, z〉〈cpq, wkl〉〈xk, fi〉fp − 〈x, fi〉〈cpq, wkl〉〈xk, fi〉q(vij)fp

−〈x, fp〉〈cpq, wkl〉
2〈xk, fi〉

2q(vij)fp

)

=
(
z + 〈x, fp〉〈cpq, wkl〉〈xk, fi〉vij, x, f −

{
〈x, fi〉q(vij)

+〈vij, z〉+ 〈x, fp〉〈cpq, wkl〉〈xk, fi〉q(vij)
}
〈cpq, wkl〉〈xk, fi〉fp

+〈x, fp〉〈cpq, wkl〉〈xk, fi〉q(vij)fi

)
. (2.2.9)

The maps νpj in the statement of the lemma, as well as the other maps ν∗pj,
1
2
νpjν

∗
pj and

the transformations E∗
νpj

are given as

νpj(z, x, f) =− γpqα
∗
klβij(z, x, f) =

(
0, 0,−〈vij, z〉〈cpq, wkl〉〈fi, xp〉fk

)
,

ν∗pj(z, x, f) =− β
∗
ijαpqγ

∗
kl(z, x, f) =

(
−〈x, fp〉〈cpq, wkl〉〈fi, xk〉vij, 0, 0

)
,

1

2
νpjν

∗
pj(z, x, f) =

(
0, 0, 〈x, fp〉〈cpq, wkl〉

2〈fi, xk〉
2q(vij)fp

)
,

E∗
νpj

(z, x, f) =
(
I + νpj − ν

∗
pj −

1

2
νpjν

∗
pj

)
(z, x, f)

=
(
z + 〈x, fp〉〈cpq, wkl〉〈xk, fi〉vij, x, f − 〈vij, z〉〈cpq, wkl〉〈xk, fi〉fp
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−〈x, fp〉〈cpq, wkl〉
2〈xk, fi〉

2q(vij)fp

)
.

If i 6= p, then, by Lemma 2.1.9, we have

[
E∗

βij
, E∗

νpj
2

]
(z, x, f) =

(
I +

1

2
νpjβ

∗
ij −

1

2
βijν

∗
pj

)
(z, x, f)

=
(
z, x, f + 〈x, fp〉〈cpq, wkl〉〈xk, fi〉q(vij)fi

− 〈x, fi〉〈cpq, wkl〉〈xk, fi〉q(vij)fp

)

and hence we get

E∗
νpj

[
E∗

βij
, E∗

νpj
2

]
(z, x, f) =

(
I + νpj − ν

∗
pj −

1

2
νpjν

∗
pj +

1

2
νpjβ

∗
ij −

1

2
βijν

∗
pj

)
(z, x, f)

=
(
z + 〈x, fp〉〈cpq, wkl〉〈xk, fi〉vij, x, f −

{
〈x, fi〉q(vij

+ 〈vij, z〉+ 〈x, fp〉〈cpq, wkl〉〈xk, fi〉q(vij)
}
〈cpq, wkl〉

〈xk, fi〉fp + 〈x, fp〉〈cpq, wkl〉〈xk, fi〉q(vij)fi

)
. (2.2.10)

We now consider the following possible conditions on the indices.

Case(i): i = k.

If i = k, then, by Equations (2.2.9), (2.2.8) and (2.2.10), we have

[
E∗

βij
,
[
Eαkl

, E∗
γpq

]]
(z, x, f) =

((
I + β∗

ijαklγ
∗
pq − γpqα

∗
klβij −

1

2
γpqα

∗
klβijβ

∗
ij

+
1

2
βijβ

∗
ijαklγ

∗
pq −

1

2
γpqα

∗
klβijβ

∗
ijαklγ

∗
pq

)
(z, x, f)

)

=
(
z + 〈x, fp〉〈cpq, wkl〉vij, x, f − 〈vij, z〉〈cpq, wkl〉fp

+ 〈x, fp〉〈cpq, wkl〉q(vij)fi − 〈x, fp〉〈cpq, wkl〉
2q(vij)fp

−〈x, fi〉〈cpq, wkl〉q(vij)fp

)

= E∗
νpj

[
E∗

βij
, E∗

νpj
2

]
(z, x, f).

Case(ii): i = p or i 6= k.

If i = k or i 6= p, then, by Equation (2.2.6), we have

[
E∗

βij
,
[
Eαkl

, E∗
γpq

]]
(z, x, f) = I(z, x, f).
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The set of commutator relations we deduce from the above lemma is given in the

corollary below.

Corollary 2.2.6. For any given i, j, k, l, p, q, where 1 ≤ i, k, p ≤ m, 1 ≤ j, l, q ≤ n such

that i 6= k and k 6= p and a, b, c, d, e, f ∈ A,
[
E∗

aβij
,
[
E∗

bγkl
, Ecαpq

]]
=
[
E∗

dβij
,
[
E∗

eγkl
, Efαpq

]]

if abc = def and a2bc = d2ef .

Finally, another triple commutator is computed in the following lemma and the com-

mutator relations which follow from this are stated in the corollary below this lemma.

Lemma 2.2.7. Let α ∈ HomA(Q,P ) and β, γ ∈ HomA(Q,P
∗). Then, for i, j, k, l, p, q with

1 ≤ i, k, p ≤ m, 1 ≤ j, l, q ≤ n and k 6= p, the triple commutator
[
Eαij

,
[
E∗

βkl
, E∗

γpq

]]
is

given by

[
Eαij

,
[
E∗

βkl
, E∗

γpq

]]
=





E∗
ηkj

[
Eαij

, E∗
ηkj
2

]
if i = p,

E∗
ϑpj

[
Eαij

, E∗
ϑpj
2

]
if i = k,

I if i 6= p and i 6= k,

where ηkj = βklγ
∗
pqαij and ϑpj = γpqβ

∗
klαij.

Proof. For α ∈ HomA(Q,P ), β, γ ∈ HomA(Q,P
∗) and for i, j, k, l, p, q with 1 ≤ i, k, p ≤ m,

1 ≤ j, l, q ≤ n and k 6= p, we have

[
E∗

βkl
, E∗

γpq

]
(z, x, f) =

(
I + γpqβ

∗
kl − βklγ

∗
kl

)
(z, x, f)

=
(
z, x, f + 〈x, fk〉〈cpq, vkl〉fp − 〈x, fp〉〈vkl, cpq〉fk

)
.

(by Lemma 2.1.9)
[
E∗

βkl
, E∗

γpq

]−1

(z, x, f) =
[
E∗

γpq
, E∗

βkl

]
(z, x, f)

=
(
I − γpqβ

∗
kl + βklγ

∗
pq

)
(z, x, f)

=
(
z, x, f − 〈x, fk〉〈cpq, vkl〉fp + 〈x, fp〉〈vkl, cpq〉fk

)
.

(by Lemma 2.1.9)
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Hence we get

[
Eαij

,
[
E∗

βkl
, E∗

γpq

]]
(z, x, f) = Eαij

[
E∗

βkl
, E∗

γpq

]
E−1

αij

[
E∗

βkl
, E∗

γpq

]−1

(z, x, f)

= Eαij

[
E∗

βkl
, E∗

γpq

]
E−1

αij

((
I − γpqβ

∗
kl + βklγ

∗
pq

)
(z, x, f)

)

= Eαij

[
E∗

βkl
, E∗

γpq

] ((
I − γpqβ

∗
kl + βklγ

∗
pq − αij + α∗

ij

− α∗
ijγpqβ

∗
kl + α∗

ijβklγ
∗
pq +

1

2
αijα

∗
ijγpqβ

∗
kl −

1

2
αijα

∗
ij

−
1

2
αijα

∗
ijβklγ

∗
pq

)
(z, x, f)

)

= Eαij

((
I − αij + α∗

ij −
1

2
αijα

∗
ij − α

∗
ijγpqβ

∗
kl + α∗

ijβklγ
∗
pq

+
1

2
αijα

∗
ijγpqβ

∗
kl −

1

2
αijα

∗
ijβklγ

∗
pq −

1

2
γpqβ

∗
klαijα

∗
ij

+
1

2
γpqβ

∗
klαijα

∗
ijγpqβ

∗
kl −

1

2
γpqβ

∗
klαijα

∗
ijβklγ

∗
pq + βklγ

∗
pqαij

+
1

2
βklγ

∗
pqαijα

∗
ij −

1

2
βklγ

∗
pqαijα

∗
ijγpqβ

∗
kl − γpqβ

∗
klαij

+
1

2
βklγ

∗
pqαijα

∗
ijβklγ

∗
pq

)
(z, x, f)

)

=
((
I + α∗

ijβklγ
∗
pq − α

∗
ijγpqβ

∗
kl +

1

2
γpqβ

∗
klαijα

∗
ijγpqβ

∗
kl

+
1

2
αijα

∗
ijβklγ

∗
pq −

1

2
γpqβ

∗
klαijα

∗
ijβklγ

∗
pq

−
1

2
αijα

∗
ijγpqβ

∗
kl + βklγ

∗
pqαij −

1

2
γpqβ

∗
klαijα

∗
ij

−
1

2
βklγ

∗
pqαijα

∗
ijγpqβ

∗
kl +

1

2
βklγ

∗
pqαijα

∗
ij

−γpqβ
∗
klαij +

1

2
βklγ

∗
pqαijα

∗
ijβklγ

∗
pq

)
(z, x, f)

)
. (2.2.11)

Computing with coordinates, we get

[
Eαij

,
[
E∗

βkl
, E∗

γpq

]]
(z, x, f) = Eαij

[
E∗

βkl
, E∗

γpq

]
E−1

αij

[
E∗

βkl
, E∗

γpq

]−1

(z, x, f)

= Eαij

[
E∗

βkl
, E∗

γpq

]
E−1

αij

(
z, x, f − 〈x, fk〉〈cpq, vkl〉fp

+〈x, fp〉〈vkl, cpq〉fk

)

= Eαij

[
E∗

βkl
, E∗

γpq

] (
z +

{
〈f, xi〉 − 〈x, fk〉〈cpq, vkl〉〈xi, fp〉

+〈x, fp〉〈cpq, vkl〉〈xi, fk〉
}
wij, x−

{
〈wij, z〉+ 〈f, xi〉q(wij)
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− 〈x, fk〉〈cpq, vkl〉〈xi, fp〉q(wij) + 〈x, fp〉〈cpq, vkl〉〈xi, fk〉

q(wij)
}
xi, f − 〈x, fk〉〈cpq, vkl〉fp + 〈x, fp〉〈vkl, cpq〉fk

)

= Eαij

(
z +

{
〈x, fp〉〈cpq, vkl〉〈xi, fk〉 − 〈x, fk〉〈cpq, vkl〉〈xi, fp〉

+〈f, xi〉
}
wij, x+

{
〈x, fk〉cpq, vkl〉〈xi, fp〉q(wij)− 〈wij, z〉

−〈f, xi〉q(wij)− 〈x, fp〉〈cpq, vkl〉〈xi, fk〉q(wij)
}
xi,

f +
{
〈x, fp〉〈cpq, vkl〉〈xi, fk〉q(wij) + 〈wij, z〉+ 〈f, xi〉q(wij)

−〈x, fk〉〈cpq, vkl〉〈xi, fp〉q(wij)fk

}
〈xi, fp〉〈cpq, vkl〉fk

+
{
〈x, fk〉〈cpq, vkl〉〈xi, fp〉q(wij)− 〈wij, z〉 − 〈f, xi〉q(wij)

−〈x, fp〉〈cpq, vkl〉〈xi, fk〉q(wij)
}
〈xi, fk〉〈cpq, vkl〉fp

)

=
(
z +

{
〈x, fp〉〈xi, fk〉 − 〈x, fk〉〈xi, fp〉

}
〈cpq, vkl〉wij,

x+
{
〈x, fp〉〈xi, fk〉 − 〈x, fk〉〈xi, fp〉

}
〈cpq, vkl〉

q(wij)xi, f +
{
〈wij, z〉 − 〈x, fk〉〈cpq, vkl〉〈xi, fp〉

q(wij) + 〈f, xi〉q(wij)− 〈x, fp〉〈cpq, vkl〉〈xi, fk〉

q(wij)
}
〈xi, fp〉〈cpq, vkl〉fk +

{
〈x, fk〉〈cpq, vkl〉

〈xi, fp〉q(wij)− 〈f, xi〉q(wij)− 〈wij, z〉

−〈x, fp〉〈cpq, vkl〉〈xi, fk〉q(wij)
}
〈xi, fk〉〈cpq, vkl〉fp

)
.

(2.2.12)

The transformations ηkj, η
∗
kj,

1
2
ηkjη

∗
kj and E

∗
ηkj

are given by

ηkj(z, x, f) = βklγ
∗
pqαij(z, x, f) =

(
0, 0, 〈wij, z〉〈cpq, vkl〉〈fp, xi〉fk

)
,

η∗kj(z, x, f) = α∗
ijγpqβ

∗
kl(z, x, f) =

(
〈x, fk〉〈cpq, vkl〉〈fp, xi〉wij, 0, 0

)
,

1

2
ηkjη

∗
kj(z, x, f) =

(
0, 0, 〈x, fk〉〈ckl, wpq〉

2〈fp, xi〉
2q(wij)fk

)
,

E∗
ηkj

(z, x, f) =
(
z − 〈x, fk〉〈cpq, vkl〉〈xi, fp〉wij, x, f + 〈wij, z〉〈cpq, vkl〉〈xi, fp〉fk

−〈x, fk〉〈cpq, vkl〉
2〈xi, fp〉

2q(wij)fk

)
.

39



Chapter 2. Commutator Calculus

If i 6= k, then, by Lemma 2.1.5, we have

[Eαij
, E∗

ηkj
2

](z, x, f) =
(
I +

1

2
ηkjα

∗
ij −

1

2
αijη

∗
kj

)
(z, x, f)

=
(
z, x− 〈x, fk〉〈cpq, vkl〉〈xi, fp〉q(wij)xi,

f + 〈f, xi〉〈cpq, vkl〉〈xi, fp〉q(wij)fk

)

and hence we get

E∗
ηkj

[Eαij
, E∗

ηkj
2

](z, x, f) =
(
I + ηkj − η

∗
kj −

1

2
ηkjη

∗
kj +

1

2
ηkjα

∗
ij −

1

2
αijη

∗
kj

)
(z, x, f)

=
(
z − 〈x, fk〉〈cpq, vkl〉〈xi, fp〉wij, x− 〈x, fk〉〈cpq, vkl〉

〈xi, fp〉q(wij)xi, f +
{
〈wij, z〉+ 〈f, xi〉q(wij)− 〈x, fk〉

〈cpq, vkl〉〈xi, fp〉q(wij)
}
〈cpq, vkl〉〈xi, fp〉fk

)
. (2.2.13)

Similarly, if i 6= p, then we have

E∗
ϑpj

[
Eαij

, E∗
ϑpj
2

]
(z, x, f) =

(
I + ϑpj − ϑ

∗
pj −

1

2
ϑpjϑ

∗
pj −

1

2
αijϑ

∗
pj +

1

2
ϑpjα

∗
ij

)
(z, x, f)

=
(
z + 〈x, fp〉〈cpq, vkl〉〈xi, fk〉wij, x− 〈x, fp〉〈cpq, vkl〉

〈xi, fk〉q(wij)xi, f −
{
〈wij, z〉 − 〈f, xi〉q(wij)− 〈x, fp〉

〈cpq, vkl〉〈xi, fk〉q(wij)
}
〈xi, fk〉〈cpq, vkl〉fp

)
. (2.2.14)

We now consider the following possible conditions on the indices.

Case(i): i = p.

If i = p, then, by Equations (2.2.12), (2.2.11), and (2.2.13), we have

[
Eαij

,
[
E∗

βkl
, E∗

γpq

]]
(z, x, f) =

((
I − α∗

pjγpqβ
∗
kl −

1

2
αpjα

∗
pjγpqβ

∗
kl + βklγ

∗
pqαpj

+
1

2
βklγ

∗
pqαpjα

∗
pj−

1

2
βklγ

∗
pqαpjα

∗
pjγpqβ

∗
kl

)
(z, x, f)

)

=
(
z − 〈x, fk〉〈cpq, vkl〉wpj, x− 〈x, fk〉〈cpq, vkl〉q(wpj)xp,

f + 〈wpj, z〉〈cpq, vkl〉fk + 〈f, xp〉〈cpq, vkl〉q(wpj)fk

−〈x, fk〉〈cpq, vkl〉
2q(wpj)fk

)
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= E∗
ηkj

[
Eαij

, E∗
ηkj
2

]
(z, x, f).

Case(ii): i = k.

If i = k, then, by Equations (2.2.12), (2.2.11), and (2.2.14), we have

[
Eαij

,
[
E∗

βkl
, E∗

γpq

]]
(z, x, f) =

((
I − γpqβ

∗
klαkj + α∗

kjβklγ
∗
pq +

1

2
αkjα

∗
kjβklγ

∗
pq

−
1

2
γpqβ

∗
klαkjα

∗
kj −

1

2
γpqβ

∗
klαkjα

∗
kjβklγ

∗
pq

)
(z, x, f)

)

=
(
z + 〈x, fp〉〈cpq, vkl〉wkj, x+ 〈x, fp〉〈cpq, vkl〉q(wkj)xk,

f −
{
〈wkj, z〉+ 〈f, xk〉q(wkj) + 〈x, fp〉〈cpq, vkl〉q(wkj)

}

〈cpq, vkl〉fp

)
.

Case(iii): i 6= p and i 6= k.

If i 6= p, then, by Equation (2.2.12), we have

[
Eαij

,
[
E∗

βkl
, E∗

γpq

]]
(z, x, f) = I(z, x, f).

Corollary 2.2.8. For any i, j, k, l, p, q with 1 ≤ i, k, p ≤ m, 1 ≤ j, l, q ≤ n, i 6= k and

k 6= p and a, b, c, d, e, f ∈ A with abc = def and a2bc = d2ef , the following equation holds.

[
Eaαij

,
[
E∗

bβkl
, E∗

cγpq

]]
=
[
Edαij

,
[
E∗

eβkl
, E∗

fγpq

]]
.

2.3 Multiple Commutators

In this section, we establish some four-fold commutator formulae. These will be needed

while proving the normality of the elementary orthogonal group. In this section, the com-

putations will be done without using coordinates, since the computation using coordinates

is too involved.

Lemma 2.3.1. Let α ∈ HomA(Q,P ) and β, γ, µ ∈ HomA(Q,P
∗). Then, for i, j, k, l, r, s, p, q

with 1 ≤ i, k, r, p ≤ m, 1 ≤ j, l, s, q ≤ n, i 6= k and r 6= p, the four-fold commutator
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[
[E∗

βij
, E∗

γkl
], [Eαrs

, E∗
µpq

]
]
is given by

[
[E∗

βij
, E∗

γkl
], [Eαrs

, E∗
µpq

]
]
=





[
E∗

µpqα∗
rs
, E∗

βijγ
∗
kl

]
if k = r,

[
E∗

γklβ
∗
ij
, E∗

µpqα∗
rs

]
if i = r,

I otherwise .

Proof. If i 6= k, then, by Lemma 2.1.9, we have

[E∗
βij
, E∗

γkl
](z, x, f) = (I + γklβ

∗
ij − βijγ

∗
kl)(z, x, f).

If r 6= p, then, by Lemma 2.1.5, we have

[Eαrs
, E∗

µpq
](z, x, f) = (I + µpqα

∗
rs − αrsµ

∗
pq)(z, x, f).

Now if i 6= k and r 6= p, then we get

[
[E∗

βij
, E∗

γkl
], [Eαrs

, E∗
µpq

]
]
(z, x, f) = [E∗

βij
, E∗

γkl
][Eαrs

, E∗
µpq

][E∗
βij
, E∗

γkl
]−1[Eαrs

, E∗
µpq

]−1(z, x, f)

= [E∗
βij
, E∗

γkl
][Eαrs

, E∗
µpq

][E∗
βij
, E∗

γkl
]−1 ((I − µpqα

∗
rs

+αrsµ
∗
pq)(z, x, f)

)

= [E∗
βij
, E∗

γkl
][Eαrs

, E∗
µpq

]
(
(I − µpqα

∗
rs + αrsµ

∗
pq − γklβ

∗
ij

+βijγ
∗
kl − γklβ

∗
ijαrsµ

∗
pq + βijγ

∗
klαrsµ

∗
pq)(z, x, f)

)

= [E∗
βij
, E∗

γkl
]
(
(I − γklβ

∗
ij + βijγ

∗
kl − γklβ

∗
ijαrsµ

∗
pq + βijγ

∗
klαrsµ

∗
pq

− µpqα
∗
rsµpqα

∗
rs − µpqα

∗
rsγklβ

∗
ij + µpqα

∗
rsβijγ

∗
kl − αrsµ

∗
pqαrsµ

∗
pq

−µpqα
∗
rsγklβ

∗
ijαrsµ

∗
pq + µpqα

∗
rsβijγ

∗
klαrsµ

∗
pq)(z, x, f)

)

= (I − γklβ
∗
ijαrsµ

∗
pq − µpqα

∗
rsγklβ

∗
ij + βijγ

∗
klαrsµ

∗
pq

+ µpqα
∗
rsβijγ

∗
kl)(z, x, f)

=
[
E∗

µpqα∗
rs
, E∗

βijγ
∗
kl

] [
E∗

γklβ
∗
ij
, E∗

µpqα∗
rs

]
(z, x, f). (2.3.1)

Now if k = r, then Equation (2.3.1) becomes
[
E∗

µpqα∗
rs
, E∗

βijγ
∗
kl

]
(z, x, f) and in particular

[
E∗

µpqα∗
rs
, E∗

βijγ
∗
kl

]
(z, x, f) = I(z, x, f) if i = p,
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and if i = r, then Equation (2.3.1) becomes
[
E∗

γklβ
∗
ij
, E∗

µpqα∗
rs

]
(z, x, f) and in particular

[
E∗

γklβ
∗
ij
, E∗

µpqα∗
rs

]
(z, x, f) = I(z, x, f) if k = p.

Lemma 2.3.2. Let α, δ, ξ ∈ HomA(Q,P ) and β ∈ HomA(Q,P
∗). Then, for i, j, k, l, r, s, p, q

with 1 ≤ i, k, r, p ≤ m, 1 ≤ j, l, s, q ≤ n, i 6= k and s 6= p, the four-fold commutator[
[Eαij

, Eδkl ], [Eξrs , E
∗
βpq

]
]
is given by

[
[Eαij

, Eδkl ], [Eξrs , E
∗
βpq

]
]
=





[
Eδklα

∗
ij
, Eξrsβ∗

pq

]
if i = p,

[
Eαijδ

∗
kl
, Eξrsβ∗

pq

]
if k = p,

I otherwise .

Proof. If i 6= k, then, by Lemma 2.1.3, we have

[Eαij
, Eδkl ](z, x, f) = (I + δklα

∗
ij − αijδ

∗
kl)(z, x, f).

If r 6= p, then, by Lemma 2.1.5, we have

[Eξrs , E
∗
βpq

](z, x, f) = (I + βpqξ
∗
rs − ξrsβ

∗
pq)(z, x, f).

Now if i 6= k and r 6= p, then we get

[
[Eαij

, Eδkl ], [Eξrs , E
∗
βpq

]
]
(z, x, f) = [Eαij

, Eδkl ][Eξrs , E
∗
βpq

][Eαij
, Eδkl ]

−1[Eξrs , E
∗
βpq

]−1(z, x, f)

= [Eαij
, Eδkl ][Eξrs , E

∗
βpq

][Eαij
, Eδkl ]

−1 ((I − βpqξ
∗
rs

ξrsβ
∗
pq)(z, x, f)

)

= [Eαij
, Eδkl ][Eξrs , E

∗
βpq

]
(
(I − βpqξ

∗
rs + ξrsβ

∗
pq − δklα

∗
ij

+αijδ
∗
kl + δklα

∗
ijβpqξrs

∗ − αijδ
∗
klβpqξ

∗
rs)(z, x, f)

)

= [Eαij
, Eδkl ]

(
(I − δklα

∗
ij + αijδ

∗
kl + δklα

∗
ijβpqξrs

∗ − αijδ
∗
klβpqξ

∗
rs

− βpqξ
∗
rsβpqξ

∗
rs − ξrsβ

∗
pqξrsβ

∗
pq + ξrsβ

∗
pqδklα

∗
ij − ξrsβ

∗
pqαijδ

∗
kl

−ξrsβ
∗
pqδklα

∗
ijβpqξ

∗
rs + ξrsβ

∗
pqαijδ

∗
klβpqξ

∗
rs)(z, x, f)

)

= (I + δklα
∗
ijβpqξrs

∗ − αijδ
∗
klβpqξ

∗
rs + ξrsβ

∗
pqδklα

∗
ij
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− ξrsβ
∗
pqαijδ

∗
kl − ξrsβ

∗
pqδklα

∗
ijβpqξ

∗
rs

+ ξrsβ
∗
pqαijδ

∗
klβpqξ

∗
rs)(z, x, f)

=
[
Eαijδ

∗
kl
, Eξrsβ∗

pq

] [
Eδklα

∗
ij
, Eξrsβ∗

pq

]
(z, x, f). (2.3.2)

Now if k = p, then Equation (2.3.2) becomes
[
Eαijδ

∗
kl
, Eξrsβ∗

pq

]
(z, x, f) and in particular

[
Eαijδ

∗
kl
, Eξrsβ∗

pq

]
(z, x, f) = I(z, x, f) if i = r,

and if i = p, then Equation (2.3.2) becomes
[
Eδklα

∗
ij
, Eξrsβ∗

pq

]
(z, x, f) and in particular

[
Eδklα

∗
ij
, Eξrsβ∗

pq

]
(z, x, f) = I(z, x, f) if k = r.

Lemma 2.3.3. Let α, δ ∈ HomA(Q,P ) and β, γ ∈ HomA(Q,P
∗). Then, for any i, j, k, l, r,

s, p, q with 1 ≤ i, k, r, p ≤ m, 1 ≤ j, l, s, q ≤ n, i 6= k and r 6= p, the four-fold commutator[
[Eαij

, E∗
βkl

], [Eδrs , E
∗
γpq

]
]
is given by

[
[Eαij

, E∗
βkl

], [Eδrs , E
∗
γpq

]
]
=





[
Eαijβ

∗
kl
, E∗

γpqδ∗rs

]−1

if k = r and i 6= p,

[
Eδrsγ∗

pq
, E∗

βklα
∗
ij

]
if i = p and k 6= r,

I if k 6= r and i 6= p.

Proof. If i 6= k, then, by Lemma 2.1.5, we have

[Eαij
, E∗

βkl
](z, x, f) = (I + βklα

∗
ij − αijβ

∗
kl)(z, x, f).

If r 6= p, then, by Lemma 2.1.5, we have

[Eδrs , E
∗
γpq

](z, x, f) = (I + γpqδ
∗
rs − δrsγ

∗
pq)(z, x, f).

Now if i 6= k and r 6= p, then we get

[
[Eαij

, E∗
βkl

], [Eδrs , E
∗
γpq

]
]
(z, x, f) = [Eαij

, E∗
βkl

][Eδrs , E
∗
γpq

][Eαij
, E∗

βkl
]−1[Eδrs , E

∗
γpq

]−1(z, x, f)

= [Eαij
, E∗

βkl
][Eδrs , E

∗
γpq

][Eαij
, E∗

βkl
]−1 ((I − γpqδ

∗
rs

+δrsγ
∗
pq)(z, x, f)

)
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= [Eαij
, E∗

βkl
][Eδrs , E

∗
γpq

]
(
(I − γpqδ

∗
rs + δrsγ

∗
pq − βklα

∗
ij

+αijβ
∗
kl + αijβ

∗
klδrsγ

∗
pq + βklα

∗
ijγpqδ

∗
rs)(z, x, f)

)

= [Eαij
, E∗

βkl
]
(
(I − βklα

∗
ij + αijβ

∗
kl + αijβ

∗
klδrsγ

∗
pq + βklα

∗
ijγpqδ

∗
rs

− γpqδ
∗
rsβklα

∗
ij − γpqδ

∗
rsγpqδ

∗
rs − δrsγ

∗
pqδrsγ

∗
pq − δrsγ

∗
pqαijβ

∗
kl

+ γpqδ
∗
rsβklα

∗
ijγpqδ

∗
rs −δrsγ

∗
pqαijβ

∗
klδrsγ

∗
pq)(z, x, f)

)

= (I + βklα
∗
ijγpqδ

∗
rs + αijβ

∗
klδrsγ

∗
pq − γpqδ

∗
rsβklα

∗
ij − δrsγ

∗
pqαijβ

∗
kl

+ γpqδ
∗
rsβklα

∗
ijγpqδ

∗
rs − δrsγ

∗
pqαijβ

∗
klδrsγ

∗
pq − βklα

∗
ijβklα

∗
ij

+ βklα
∗
ijβklα

∗
ijγpqδ

∗
rs − αijβ

∗
klαijβ

∗
kl − βklα

∗
ijγpqδ

∗
rsβklα

∗
ij

− αijβ
∗
klαijβ

∗
klδrsγ

∗
pq + βklα

∗
ijγpqδ

∗
rsβklα

∗
ijγpqδ

∗
rs

+ αijβ
∗
klδrsγ

∗
pqαijβ

∗
kl + αijβ

∗
klδrsγ

∗
pqαijβ

∗
klδrsγ

∗
pq)(z, x, f)

= (I + βklα
∗
ijγpqδ

∗
rs + αijβ

∗
klδrsγ

∗
pq − γpqδ

∗
rsβklα

∗
ij

+ αijβ
∗
klδrsγ

∗
pqαijβ

∗
klδrsγ

∗
pq − δrsγ

∗
pqαijβ

∗
kl

− δrsγ
∗
pqαijβ

∗
klδrsγ

∗
pq − βklα

∗
ijγpqδ

∗
rsβklα

∗
ij

+ γpqδ
∗
rsβklα

∗
ijγpqδ

∗
rs + αijβ

∗
klδrsγ

∗
pqαijβ

∗
kl

+ βklα
∗
ijγpqδ

∗
rsβklα

∗
ijγpqδ

∗
rs)(z, x, f). (2.3.3)

Now if k = r and i 6= p, then, by Equation (2.3.3), we have
[
[Eαij

, E∗
βkl

], [Eδrs , E
∗
γpq

]
]
(z, x, f) =

[
Eαijβ

∗
kl
, E∗

γpqδ∗rs

]−1

(z, x, f)

and if i = p and k 6= r, then, by Equation (2.3.3), we have
[
[Eαij

, E∗
βkl

], [Eδrs , E
∗
γpq

]
]
(z, x, f) =

[
Eδrsγ∗

pq
, E∗

βklα
∗
ij

]
(z, x, f).

Now if i 6= p and k 6= r, then, by Equation (2.3.3), we get
[
[Eαij

, E∗
βkl

], [Eδrs , E
∗
γpq

]
]
(z, x, f) = I(z, x, f).

Lemma 2.3.4. Let α, δ, ξ, µ ∈ HomA(Q,P ). Then, for i, j, k, l, r, s, p, q with 1 ≤ i, k, r, p ≤ m,

1 ≤ j, l, s, q ≤ n, i 6= k and r 6= p, the four-fold commutator
[
[Eαij

, Eδkl ], [Eξrs , Eµpq
]
]
is

given by
[
[Eαij

, Eδkl ], [Eξrs , Eµpq
]
]
= I.
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Proof. If i 6= k, then, by Lemma 2.1.3, we have

[Eαij
, Eδkl ](z, x, f) = (I + δklα

∗
ij − αijδ

∗
kl)(z, x, f).

If r 6= p, then, by Lemma 2.1.3, we have

[Eξrs , Eµpq
](z, x, f) = (I + µpqξ

∗
rs − ξrsµ

∗
pq)(z, x, f).

Now if i 6= k and r 6= p, then we get

[
[Eαij

, Eδkl ], [Eξrs , Eµpq
]
]
(z, x, f) = [Eαij

, Eδkl ][Eξrs , Eµpq
][Eαij

, Eδkl ]
−1[Eξrs , Eµpq

]−1(z, x, f)

= [Eαij
, Eδkl ][Eξrs , Eµpq

][Eαij
, Eδkl ]

−1
((
I − µpqξ

∗
rs

+ ξrsµ
∗
pq

)
(z, x, f)

)

= [Eαij
, Eδkl ][Eξrs , Eµpq

]
((
I − µpqξ

∗
rs + ξrsµ

∗
pq + δklα

∗
ij

−αijδ
∗
kl

)
(z, x, f)

)

= [Eαij
, Eδkl ]

((
I + δklα

∗
ij − αijδ

∗
kl

)
(z, x, f)

)

= I(z, x, f).

Lemma 2.3.5. Let β, γ, η, ν ∈ HomA(Q,P ). Then, for i, j, k, l, r, s, p, q with 1 ≤ i, k, r, p ≤ m,

1 ≤ j, l, s, q ≤ n, i 6= k and r 6= p, the four-fold commutator
[
[E∗

βij
, E∗

γkl
], [E∗

ηrs
, E∗

νpq
]
]
is

given by [
[E∗

βij
, E∗

γkl
], [E∗

ηrs
, E∗

νpq
]
]
= I.

Proof. If i 6= k, then, by Lemma 2.1.9, we have

[E∗
βij
, E∗

γkl
](z, x, f) = (I + γklβ

∗
ij − βijγ

∗
kl)(z, x, f).

If r 6= p, then, by Lemma 2.1.9, we have

[E∗
ηrs
, E∗

νpq
](z, x, f) = (I + νpqη

∗
rs − ηrsν

∗
pq)(z, x, f).

Now if i 6= k and r 6= p, then we get

[
[E∗

βij
, E∗

γkl
], [E∗

ηrs
, E∗

νpq
]]
]
(z, x, f) = [E∗

βij
, E∗

γkl
][E∗

ηrs
, E∗

νpq
][E∗

βij
, E∗

γkl
]−1[E∗

ηrs
, E∗

νpq
]−1(z, x, f)
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= [E∗
βij
, E∗

γkl
][E∗

ηrs
, E∗

νpq
][E∗

βij
, E∗

γkl
]−1
((
I − νpqη

∗
rs

+ηrsν
∗
pq

)
(z, x, f)

)

= [E∗
βij
, E∗

γkl
][E∗

ηrs
, E∗

νpq
]
((
I − νpqη

∗
rs − ηrsν

∗
pq − γklβ

∗
ij

+βijγ
∗
kl

)
(z, x, f)

)

= [E∗
βij
, E∗

γkl
]
((
I − γklβ

∗
ij + βijγ

∗
kl

)
(z, x, f)

)

= I(z, x, f).

Lemma 2.3.6. Let α, δ ∈ HomA(Q,P ) and β, γ ∈ HomA(Q,P
∗). Then, for any i, j, k, l, r,

s, p, q with 1 ≤ i, k, r, p ≤ m, 1 ≤ j, l, s, q ≤ n, i 6= k and r 6= p, the four-fold commutator[
[Eαij

, Eδkl ], [E
∗
βrs
, E∗

γpq
]
]
is given by

[
[Eαij

, Eδkl ], [E
∗
βrs
, E∗

γpq
]
]
=





[
Eαijβ

∗
kl
, E∗

γpqδ∗rs

]−1

if k = r and i 6= p,

[
Eδrsγ∗

pq
, E∗

βklα
∗
ij

]
if i = p and k 6= r,

I if k 6= r and i 6= p.

Proof. If i 6= k, then, by Lemma 2.1.3, we have

[Eαij
, Eδkl ](z, x, f) = (I + δklα

∗
ij − αijδ

∗
kl)(z, x, f).

If r 6= p, then, by Lemma 2.1.9, we have

[E∗
βrs
, E∗

γpq
](z, x, f) = (I + γpqβ

∗
rs − βrsγ

∗
pq)(z, x, f).

Now if i 6= k and r 6= p, then, by the coordinate-free method, we get

[
[Eαij

, Eδkl ], [E
∗
βrs
, E∗

γpq
]
]
(z, x, f) = [Eαij

, Eδkl ][E
∗
βrs
, E∗

γpq
][Eαij

, Eδkl ]
−1[E∗

βrs
, E∗

γpq
]−1(z, x, f)

= [Eαij
, Eδkl ][E

∗
βrs
, E∗

γpq
][Eαij

, Eδkl ]
−1
((
I − γpqβ

∗
rs

+βrsγ
∗
pq

)
(z, x, f)

)

= [Eαij
, Eδkl ][E

∗
βrs
, E∗

γpq
]
((
I − γpqβ

∗
rs + βrsγ

∗
pq − δklα

∗
ij

+αijδ
∗
kl + δklα

∗
ijγpqβ

∗
rs − δklα

∗
ijβrsγ

∗
pq − αijδ

∗
klγpqβ

∗
rs
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+αijδ
∗
klβrsγ

∗
pq

)
(z, x, f)

)

= [Eαij
, Eδkl ]

((
I − δklα

∗
ij + αijδ

∗
kl + δklα

∗
ijγpqβ

∗
rs

− δklα
∗
ijβrsγ

∗
pq − αijδ

∗
klγpqβ

∗
rs + αijδ

∗
klβrsγ

∗
pq

− γpqβ
∗
rsδklα

∗
ij + γpqβ

∗
rsαijδ

∗
kl + βrsγ

∗
pqδklα

∗
ij

− βrsγ
∗
pqαijδ

∗
kl + γpqβ

∗
rsδklα

∗
ijγpqβ

∗
rs

− γpqβ
∗
rsδklα

∗
ijβrsγ

∗
pq − γpqβ

∗
rsαijδ

∗
klγpqβ

∗
rs

+ γpqβ
∗
rsαijδ

∗
klβrsγ

∗
pq − βrsγ

∗
pqδklα

∗
ijγpqβ

∗
rs

+ βrsγ
∗
pqδklα

∗
ijβrsγ

∗
pq + βrsγ

∗
pqαijδ

∗
klγpqβ

∗
rs

−βrsγ
∗
pqαijδ

∗
klβrsγ

∗
pq

)
(z, x, f)

)

=
(
I + δklα

∗
ijγpqβ

∗
rs − δklα

∗
ijβrsγ

∗
pq − αijδ

∗
klγpqβ

∗
rs

+ αijδ
∗
klβrsγ

∗
pq − γpqβ

∗
rsδklα

∗
ij + γpqβ

∗
rsαijδ

∗
kl

+ βrsγ
∗
pqδklα

∗
ij − βrsγ

∗
pqαijδ

∗
kl − βrsγ

∗
pqαijδ

∗
klβrsγ

∗
pq

+ γpqβ
∗
rsδklα

∗
ijγpqβ

∗
rs − γpqβ

∗
rsδklα

∗
ijβrsγ

∗
pq

− γpqβ
∗
rsαijδ

∗
klγpqβ

∗
rs + γpqβ

∗
rsαijδ

∗
klβrsγ

∗
pq

− βrsγ
∗
pqδklα

∗
ijγpqβ

∗
rs + βrsγ

∗
pqδklα

∗
ijβrsγ

∗
pq

+ βrsγ
∗
pqαijδ

∗
klγpqβ

∗
rs − δklα

∗
ijγpqβ

∗
rsδklα

∗
ij

+ δklα
∗
ijγpqβ

∗
rsαijδ

∗
kl + δklα

∗
ijβrsγ

∗
pqδklα

∗
ij

− δklα
∗
ijβrsγ

∗
pqαijδ

∗
kl + αijδ

∗
klβrsγ

∗
pqαijδ

∗
kl

− αijδ
∗
klγpqβ

∗
rsαijδ

∗
kl − αijδ

∗
klβrsγ

∗
pqδklα

∗
ij

+ αijδ
∗
klγpqβ

∗
rsδklα

∗
ij + δklα

∗
ijβrsγ

∗
pqαijδ

∗
klγpqβ

∗
rs

− δklα
∗
ijβrsγ

∗
pqαijδ

∗
klβrsγ

∗
pq + αijδ

∗
klβrsγ

∗
pqαijδ

∗
klβrsγ

∗
pq

+ δklα
∗
ijγpqβ

∗
rsδklα

∗
ijγpqβ

∗
rs − δklα

∗
ijγpqβ

∗
rsδklα

∗
ijβrsγ

∗
pq

− δklα
∗
ijγpqβ

∗
rsαijδ

∗
klγpqβ

∗
rs + δklα

∗
ijγpqβ

∗
rsαijδ

∗
klβrsγ

∗
pq

− δklα
∗
ijβrsγ

∗
pqδklα

∗
ijγpqβ

∗
rs + δklα

∗
ijβrsγ

∗
pqδklα

∗
ijβrsγ

∗
pq

− αijδ
∗
klγpqβ

∗
rsδklα

∗
ijγpqβ

∗
rs + αijδ

∗
klγpqβ

∗
rsδklα

∗
ijβrsγ

∗
pq
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+ αijδ
∗
klγpqβ

∗
rsαijδ

∗
klγpqβ

∗
rs − αijδ

∗
klγpqβ

∗
rsαijδ

∗
klβrsγ

∗
pq

+ αijδ
∗
klβrsγ

∗
pqδklα

∗
ijγpqβ

∗
rs − αijδ

∗
klβrsγ

∗
pqδklα

∗
ijβrsγ

∗
pq

− αijδ
∗
klβrsγ

∗
pqαijδ

∗
klγpqβ

∗
rs)(z, x, f). (2.3.4)

If i = p or k = r or i 6= r and k 6= p, then the Equation (2.3.4) becomes

[
[Eαij

, Eδkl ], [E
∗
βrs
, E∗

γpq
]
]
(z, x, f) = I + δklα

∗
ijγpqβ

∗
rs + αijδ

∗
klβrsγ

∗
pq − γpqβ

∗
rsδklα

∗
ij

− βrsγ
∗
pqαijδ

∗
kl − βrsγ

∗
pqαijδ

∗
klβrsγ

∗
pq

+ γpqβ
∗
rsδklα

∗
ijγpqβ

∗
rs − δklα

∗
ijγpqβ

∗
rsδklα

∗
ij

+ αijδ
∗
klβrsγ

∗
pqαijδ

∗
kl + αijδ

∗
klβrsγ

∗
pqαijδ

∗
klβrsγ

∗
pq

+ δklα
∗
ijγpqβ

∗
rsδklα

∗
ijγpqβ

∗
rs + αijδ

∗
klβrsγ

∗
pqδklα

∗
ijγpqβ

∗
rs.

(2.3.5)

If (i) i = p and k 6= r or (ii) i 6= r, k 6= p and k 6= r, then the Equation (2.3.5) reduces to

I + δklα
∗
ijγpqβ

∗
rs − βrsγ

∗
pqαijδ

∗
kl =

[
Eδklα

∗
ij
, E∗

βrsγ∗
pq

]−1

.

If (i) k = r and i 6= p or (ii) i 6= r, k 6= p and i 6= p, then the Equation (2.3.5) reduces to

I + αijδ
∗
klβrsγ

∗
pq − γpqβ

∗
rsδklα

∗
ij =

[
Eαijδ

∗
kl
, E∗

γpqβ∗
rs

]−1

.

If i = r or k = p or if i 6= p and k 6= r , then the Equation (2.3.4) becomes

[
[Eαij

, Eδkl ], [E
∗
βrs
, E∗

γpq
]
]
(z, x, f) = I − δklα

∗
ijβrsγ

∗
pq − αijδ

∗
klγpqβ

∗
rs + γpqβ

∗
rsαijδ

∗
kl

+ βrsγ
∗
pqδklα

∗
ij − γpqβ

∗
rsαijδ

∗
klγpqβ

∗
rs

+ βrsγ
∗
pqδklα

∗
ijβrsγ

∗
pq + δklα

∗
ijβrsγ

∗
pqδklα

∗
ij

− αijδ
∗
klγpqβ

∗
rsαijδ

∗
kl + δklα

∗
ijβrsγ

∗
pqαijδ

∗
klγpqβ

∗
rs

+ δklα
∗
ijβrsγ

∗
pqδklα

∗
ijβrsγ

∗
pq + αijδ

∗
klγpqβ

∗
rsαijδ

∗
klγpqβ

∗
rs.

(2.3.6)

If (i) i = r and k 6= p or (ii) i 6= p, k 6= r and k 6= p, then the Equation (2.3.6) reduces

to

I − δklα
∗
ijβrsγ

∗
pq + γpqβ

∗
rsαijδ

∗
kl =

[
Eδklα

∗
ij
, E∗

γpqβ∗
rs

]
.
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If (i) k = p and i 6= r or (ii) i 6= p, k 6= r and i 6= r, then the Equation (2.3.6) reduces to

I − αijδ
∗
klγpqβ

∗
rs + βrsγ

∗
pqδklα

∗
ij =

[
Eαijδ

∗
kl
, E∗

βrsγ∗
pq

]
.
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3
Local-Global Principle for Roy’s Orthogonal Group

J.-P. Serre, in his 1955 paper “Faisceaux algébriques cohérents”, conjectured that a finitely

generated projective module over a polynomial ring in n variables over a field is free. In

1976, this was proved independently by D. Quillen (see [43]) and A.A. Suslin (see [56]).

Soon after, in [57], A.A. Suslin proved the K1-theoretic analogue of this conjecture, which

says that if k is a field and r ≥ 3, then SLr(k[X1, . . . , Xn]) is generated by elementary

matrices. An exposition of this can be found in [27]. Later, A.A. Suslin and V.I. Kopĕıko

established an analogue of the above theorem for the symplectic and the orthogonal groups

(see [35, 58]). They also proved the normality of the elementary subgroup in the linear,

symplectic and orthogonal cases.

D. Quillen’s famous local-global principle says that a finitely presented module over a

polynomial ring R[X] over a commutative ring R is extended from R if and only if the

localized module over Rm[X] is extended from Rm for every maximal ideal m of R. He

raised an analogous question for quadratic modules.

In [10], A. Bak et al. gave a uniform proof of local-global principle for classical groups

(linear, symplectic and orthogonal) over a commutative ring with identity, and relates nor-

mality of elementary group to local-global principle. Local-global principle for transvec-

tions of a projective module with a unimodular element is proved in [18]. Also, local-global

principle for general quadratic group and general Hermitian group are done in [17].

In this chapter, we use the commutator relations which we proved in Chapter 2 to prove
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Chapter 3. Local-Global Principle

a local-global principle for the group of Dickson–Siegel–Eichler–Roy (DSER) elementary

orthogonal transformations. These results are used in Chapter 4 to prove certain extend-

ability results on quadratic modules. Also, we can realize from the yoga of commutators

that some features of Roy’s group mimic Tang’s well-known Hermitian group defined in

[60], as well as Bass’s unitary transvection group defined in [16].

Most of the results in this chapter are from [5].

3.1 Splitting Property

In this section, we state a splitting property and extend Lemma 1.4 of [55] regarding Roy’s

transformations.

Notation 3.1.1. E(α) denotes either Eα or E∗
α, where α ∈ HomA(Q,P ) or HomA(Q,P

∗)

respectively.

Combining Lemma 1.2 and Lemma 1.3 of [55], we have the following lemma.

Lemma 3.1.2 (Splitting Property). For α1, α2 ∈ HomA(Q,P ) or HomA(Q,P
∗) , we have

E (α1 + α2) = E
(α1

2

)
E (α2)E

(α1

2

)
= E

(α2

2

)
E (α1)E

(α2

2

)
.

When P is a freeA-module of rankm, we write OA (Q⊥H(A)m) in place of OA (Q⊥H(P )).

Let ηi : A→ Am be the inclusion map into the ith component. Then ηi induces an inclusion

ηi : OA (Q⊥H(A))→ OA (Q⊥H(A)m) which takes EOA (Q⊥H(A)) into EOA (Q⊥H(A)m).

For α ∈ HomA(Q,A), let Ei(α) ∈ EOA (Q⊥H(A)m) be the image of E(α) under ηi .

Lemma 3.1.3 ([55, Lemma 1.4]). The group EOA (Q⊥H(A)m) is generated by Ei(α)

(1 ≤ i ≤ m), where α ∈ HomA(Q,A).

Lemma 3.1.4. Following the same notation as above, the group EOA (Q⊥H(A)m) is

generated by E(αij) (1 ≤ i ≤ m and 1 ≤ j ≤ n) with α ∈ HomA(Q,P ) or HomA (Q,P ∗).

Proof. For α ∈ HomA(Q,P ) or HomA(Q,P
∗), we have α =

∑m

i=1

∑n

j=1 αij from the previ-

ous section. By repeated application of the splitting property, we have

E (α) =E
(α11

2

)
E
(α21

2

)
· · ·E

(αm1

2

)
E
(α12

2

)
· · ·E

(αm2

2

)
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· · ·E
(α(m−1)n

2

)
E (αmn)E

(α(m−1)n

2

)
· · ·E

(α11

2

)
.

This proves the lemma.

3.2 Comparison of Roy’s Elementary Orthogonal Group with

Other Groups

The orthogonal group ofQ⊥H(P ) is denoted by OA (Q⊥H(P )), whereQ and P are free A-

modules of finite rank and the elementary orthogonal group is denoted by EOA (Q⊥H(P )).

Here, we compare Roy’s elementary transformations with the so-called Eichler transforma-

tions and also with the unitary transvections.

3.2.1 Roy’s Transformations as Eichler-Siegel-Dickson Transformations

In this section, we view Roy’s group of elementary orthogonal transformations in terms of

Eichler-Siegel-Dickson transformations. The latter are defined as follows:

Definition 3.2.1 ([28, Chapter 5]). Let (M,B, q) be a non-degenerate quadratic module

over A and let OA(M) be its orthogonal group. Let u and v be in M with u isotropic and

B(u, v) = 0. For r = q(v), define the ESD transformation Σu,v,r ∈ End(M) by

Σu,v,r(x) = x+ uB(v, x)− vB(u, x)− urB(u, x).

One can easily verify the following properties:

(a) Σu,v,q(v) ∈ OA(M),

(b) Σu,v,q(v)Σu,w,q(w) = Σu,v+w,q(v)+q(w)+h(v,w),

(c) Σ−1
u,v,q(v) = Σu,−v,q(v),

(d) σΣu,v,q(v)σ
−1 = Σσu,σv,q(v) for σ ∈ OA(M).

(e) Σ0,0,0 = I.

We may regard the elementary orthogonal transformations Eαij
and E∗

βij
as ESD trans-

formations. More precisely, the orthogonal transformation Eαij
of Q ⊥ H(P ) given by

Eαij
(z, x, f) = (z − 〈f, xi〉wij, x + 〈wij, z〉xi − 〈f, xi〉q(wij)xi, f) can be written as
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Σxi,wij ,q(wij)(z, x, f). For,

Σxi,wij ,q(wij)(z, x, f) =(z, x, f) + (0, xi, 0)〈(wij, 0, 0), (z, x, f)〉 − (wij, 0, 0)

〈(0, xi, 0), (z, x, f)〉 − (0, xi, 0)q(wij)〈(0, xi, 0), (z, x, f)〉

=(z − 〈f, xi〉wij, x+ 〈wij, z〉xi − 〈f, xi〉q(wij)xi, f).

Similarly, the elementary orthogonal transformation E∗
βij

of Q⊥H(P ) given by

E∗
βij
(z, x, f) = (z − 〈fi, x〉vij, x, f + 〈vij, z〉fi − 〈x, fi〉q(vij)fi ) can be written as the ESD

transformation Σfi,vij ,q(vij)(z, x, f).

These elementary orthogonal transformations also satisfy the properties listed above.

From this, we can conclude that Roy’s group of elementary transformations EOA (Q⊥H(A)m)

is a subgroup of the group of ESD transformations. The reverse containment of these groups

will be addressed in the upcoming article [6].

3.2.2 Comparison between Roy’s Elementary Orthogonal Group and Unitary

Transvection Group

In this section, we will see that Roy’s transformations can also be viewed as unitary

transvections [16, Section 5] of certain types of quadratic modules over a unitary ring

(A, λ,Λ). See [16, Section 4] for further details about unitary rings.

Definition 3.2.2 ([16, Section 5]). Let M = V ⊥H(P ). If x = (v, p, q) ∈ M , we have

f(x, x) = f(v, v)+ 〈q, p〉P . Suppose P has a unimodular element p0. i.e., there is a q0 ∈ P
∗

such that 〈q0, p0〉P = 1. For any elements p0 ∈ P,w0 ∈ V and a0 ∈ A with a0 ≡ f(w0, w0)

mod Λ, assume that the following conditions hold.

f(p0, p0) ∈ Λ, 〈w0, p0〉 = 0, f(w0, w0) ≡ a0 mod Λ.

If x = (v, p, q), then σp0,a0,w0
is defined as

σp0,a0,w0
(x) = x+ p0〈w0, x〉 − w0λ〈p0, x〉 − p0λa0〈p0, x〉.

Now take Λ = 0, λ = 1, f(w0, w0) = a0 and 〈w0, w0〉 = 2f(w0, w0) = 2a0. Then we have

Eαij
(z, x, f) = σ

xi,
〈wij,wij〉

2
,wij

(z, x, f),
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E∗
βij
(z, f, x) = σ

fi,
〈vij ,vij〉

2
,vij

(z, f, x)

for z ∈ V, x ∈ P, f ∈ P ∗. In this way, Roy’s group could also be viewed as unitary

transvection group.

3.2.3 Comparison between Roy’s and Petrov’s groups

In [39], V. Petrov introduced a new classical-like group called odd unitary group over odd

form rings. This group generalizes and unifies all known classical groups such as quadratic

groups, Hermitian groups, classical Chevalley groups. In Section 6 of his paper, V. Petrov

defined an elementary subgroup EU2l(R,L) of an odd hyperbolic unitary group U2l(R,L).

We recall Petrov’s definition for the odd unitary group.

Let R be a ring with pseudo-involution and V be a right R-module with an anti-

Hermitian form B. Let H denote the Heisenberg group of the form B. The subgroups Lmin

and Lmax of H are defined as follows:

Lmin = {(0, a+ a)|a ∈ R},

Lmax = {ξ ∈ H| tr(ξ) = 0}.

An odd form parameter L is a subgroup of H that lies between Lmin and Lmax and is

stable under the action of R. The pair (R,L) is called an odd form ring and the pair (V, q)

is called an odd quadratic space, where q = (B,L) is an odd quadratic form. We denote B

by (·, ·)q. The even part of the form parameter is denoted by Lev. The pair (V, q) is called

an odd quadratic space.

Let Tuv(a) be the Eichler-Siegel-Dickson transvections defined in an odd quadratic space

as follows:

Let u, v be vectors of an odd quadratic space V and a be an element of R such that

(u, v)q = 0, (u, 0) ∈ L, and (v, a) ∈ L. Then

Tuv(a)(w) = w + u1
−1
((v, w)q + a(u, w)q) + v(u, w)q for w ∈ V. (3.2.1)

Suppose V0 is an odd quadratic space with an odd quadratic form q0 = (B0,L). Then

the orthogonal sum V = H l ⊥ V0 is called an odd hyperbolic unitary space of rank l
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corresponding to the odd form parameter L. The unitary group U(V, q) in this case is

called the odd hyperbolic unitary group and is denoted by U2l(R,L). Now, the elementary

hyperbolic unitary group EU2l(R,L) is given to be the group generated by

Tij(a) = Tej ,−eiaεj(0), j 6= ±i, a ∈ R, (3.2.2)

Ti(u, a) = Tei,uε−i
(−ε−i1

−1
aε−i), (u, a) ∈ L, (3.2.3)

Ti(0, a), a ∈ Lev, (3.2.4)

where i, j = 1, · · · , l,−l, · · · ,−1 and εi = −1.

Now, if we take the involution to be a → −a and for l = m, R = A, where A is a

commutative ring, V0 = Q and

L = Lmax = {(u, a) : 2a− B(u, u) = 0},

then we get Roy’s transformations as elements in EU2m(A,L). Since Roy’s elementary

transformations are of the type Teiv(a) or Tfiw(b), where (ei, v)q = 0 = (fi, v)q and a, b ∈ A

such that (v, a), (w, b) ∈ L. i.e., v and w are such that q(v) = B(v,v)
2

= a and q(w) =

B(w,w)
2

= b.

Precisely, we can write Roy’s elementary transformations as follows:

Eαij
(z, x, f) = (z, x, f) + ei((wij, (z, x, f))q + q(wij)(ei, (z, x, f))q) + wij(ei, (z, x, f))q

= Teiwij
(q(wij))(z, x, f).

E∗
βij
(z, x, f) = (z, x, f) + fi((vij, (z, x, f))q + q(vij)(fi, (z, x, f))q) + vij(fi, (z, x, f))q

= Tfivij(q(vij))(z, x, f).

We now recall the following results from [39].

Lemma 3.2.3 ([39, Lemma 2]). Let v be a vector of V such that (ei, v)q = (e−i, v)q = 0,

and a be an element of R such that (v, a) ∈ L. Then Teiv(a) belongs to EU2l(R,L).

Proposition 3.2.4 ([39, Proposition 1]). The group EU2l(R,L) coincides with the group

generated by all the elements of the form Te±1v(a), where (e1, v)q = (e−1, v)q = 0 and

(v, a) ∈ L.
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Since (wij, q(wij)), (vij, q(vij)) ∈ L and (ei, wij)q = (fi, wij)q = (ei, vij)q = (fi, vij)q = 0,

by Lemma 3.2.3, we can conclude that Eαij
and E∗

βij
belong to EU2m(A,L). Thus

EOA (Q⊥H(A)m) ⊆ EU2m(A,L).

Now, by Proposition 3.2.4, we have

EU2m(A,L) = 〈Te±1v(a)|(v, a) ∈ L〉

= 〈Eα1
, E∗

β1
for α ∈ HomA(Q,P ), β ∈ HomA(Q,P

∗)〉

= 〈Eα1j
, E∗

β1j
for 1 ≤ j ≤ n, and for α ∈ HomA(Q,P ), β ∈ HomA(Q,P

∗)〉.

Since 〈Eα1j
, E∗

β1j
for 1 ≤ j ≤ n and for α ∈ HomA(Q,P ), β ∈ HomA(Q,P

∗)〉

⊆ 〈Eαij
, E∗

βij
for 1 ≤ i ≤ m, 1 ≤ j ≤ n and for α ∈ HomA(Q,P ), β ∈ HomA(Q,P

∗)〉,

we have

EU2m(A,L) = EOA(Q⊥H(A)m).

Remark 3.2.5. Bak’s hyperbolic general quadratic group is a special case of Petrov’s odd

unitary group. It is obtained by taking V0 = 0 and L = Lev in odd hyperbolic unitary

group V = H l ⊥ V0. Bak’s group can not be compared with Roy’s elementary group since,

for defining Roy’s elementary transformations, one need V0 6= 0.

Let n ≥ r. Then, for (0, a1), · · · , (0, ar) ∈ Lmax , the general Hermitian group

GH(R, a1, · · · , ar) of Bak and Tang may be regarded as a special case of U2(l−r)(R,Lmax )

by taking V0 = 〈f1, · · · , fr, f−r, · · · , f−1〉 with anti-Hermitian form B0 given by

B0

(
∑

i

fibi,
∑

j

fjcj

)
=

r∑

j=1

bj1
−1
ajcj +

∑

i

biε−ic−i. (3.2.5)

Thus in particular, if we take Q to be of rank 2r and a1 = · · · = ar = 0, R = A; then we

get OA (Q⊥H(A)m) = GH(A, 0, · · · , 0) = OA(H(A)r+m) which is the classical orthogonal

group. But in general case, we can see that the elementary generators and the commutator

relations among them mimics that of the general Hermitian group. At this point, we do

not explicitly compare the elementary generators of the DSER group with that of the

elementary Hermitian group.
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3.3 EOA (Q⊥H(A)m) is perfect

In this section, we observe that the elementary orthogonal group EOA(Q ⊥ H(A)m) is

perfect.

Theorem 3.3.1. If m ≥ 2, then EOA (Q⊥H(A)m) is perfect.

Proof. To prove [EOA (Q⊥H(A)m) ,EOA (Q⊥H(A)m)] = EOA (Q⊥H(A)m), we need to

prove that any element in EOA (Q⊥H(A)m) can be written as a commutator. This follows

from the commutator relation proved in Chapter 2.

Since EOA (Q⊥H(A)m) is generated by elementary transformations of the type Eαij

and E∗
βij

by Lemma 3.1.4, it is enough to show that these transformations can be writ-

ten as commutators of elements of EOA (Q⊥H(A)m). By triple commutator relations in

Section 2.2 of Chapter 2, we can write the transformations Eαij
and E∗

βij
as products of

commutators of elements of the group EOA (Q⊥H(A)m). Thus the elements Eαij
and

E∗
βij

belong to the commutator subgroup [ EOA (Q⊥H(A)m) ,EOA (Q⊥H(A)m) ] . Hence

EOA (Q⊥H(A)m) is perfect.

Remark 3.3.2. The condition m ≥ 2 in the above theorem is necessary in order to have

non-trivial commutator relations.

3.4 Local-Global Principle for Roy’s Elementary Orthogonal

Group

In this section, we establish that EOA[X](M [X]), where M = Q⊥H(P ) such that Q and

P are free modules of rank n and m respectively, satisfies a local-global principle.

Theorem 3.4.1 (Local-Global Principle). Let θ(X) ∈ OA[X](M [X]). If, for all maxi-

mal ideals m of A, θ(X)m ∈ OAm
(Mm)·EOAm[X](Mm[X]) , then θ(X) ∈ OA(M)·EOA[X](M [X]).

Before beginning the proof, it is worthwhile to observe:
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Remark 3.4.2. Replacing θ(X) by θ(0)−1θ(X), we may assume that θ(0) = 1. Further, for

θ(X) ∈ OA(M)EOA[X](M [X]) and θ(0) = I implies that θ(X) ∈ EOA[X](M [X]). Indeed, if

θ(X) = γε(X) with γ ∈ OA(M) and ε(X) ∈ EOA[X](M [X]), then γ = θ(0)ε(0)−1 = ε(0)−1.

In view of this remark, we can rewrite Theorem 3.4.1 as follows:

Theorem 3.4.3 (Local-Global Principle). Let θ(X)∈OA[X](M [X]) be such that θ(0) = I.

If θ(X)m ∈ EOAm[X](Mm[X]) for all maximal ideals m of A, then θ(X) ∈ EOA[X](M [X]).

We begin with some lemmas of which the first one is an elementary observation in

group theory.

Lemma 3.4.4. Let G be a group and ai, bi ∈ G for i = 1, ..., n. Then

∏n

i=1 aibi =
∏n

i=1 ribir
−1
i

∏n

i=1 ai,

where ri =
∏i

j=1 aj.

Lemma 3.4.5. The group EOA[X](M [X]) is generated by elements of the form

γE (Xαij(X)) γ−1, where γ ∈ EOA(M) and αij(X) ∈ HomA(Q[X], P [X]) or

HomA(Q[X], P ∗[X]).

Proof. Let θ(X) be an element of EOA[X](M [X]) such that θ(0) = I. Then

θ(X) =
∏r

k=1E (αikjk(X)) =
∏r

k=1E (αikjk(0) +Xα′
ikjk(X))

=
∏r

k=1E
(

αikjk
(0)

2

)
E (Xα′

ikjk(X))E
(

αikjk
(0)

2

)
(by Splitting property)

=
∏r+1

k=1 akbk,

where a1 = E
(

αi1j1
(0)

2

)
, bk = E (Xα′

ikjk(X)) for k = 1, ..., r,

ak = E
(

αik−1jk−1
(0)

2

)
E
(

αikjk
(0)

2

)
for k = 2, ..., r,

ar+1 = E
(

αirjr (0)

2

)
, br+1 = 1.

By Lemma 3.4.4, we have

θ(X) =
∏r+1

k=1 γkE (Xα′
ikjk(X)) γk

−1
∏r+1

k=1 ak,
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where γk =
∏k

j=1 aj ∈ EOA(M) and
∏r+1

k=1 ak =
∏r

k=1E(αikjk(0)) = θ(0) = I.

Therefore

θ(X) =
∏r+1

k=1 γkE (Xα′
ikjk(X)) γk

−1.

Lemma 3.4.6. Let α, δ ∈ Hom(Q,P ), β, γ ∈ Hom(Q,P ∗) and s be a non-nilpotent el-

ement of A. Fix r ∈ N. Let i, k, pt ∈ {1, 2, ...,m} and j, l, qt ∈ {1, 2, ..., n} for every

t ∈ N. Then for sufficiently large integer N , there exists a product decomposition for

E
(

a
sr
Wij

)
E
(
sNxYkl

)
E
(
− a

sr
Wij

)
in EOAs

(Ms) given by

E
( a
sr
Wij

)
E
(
sNxYkl

)
E
(
−
a

sr
Wij

)
=

ν∏

t=1

E
(
sNtxtZptqt

)
,

where W,Y, Z ∈ {α, β, γ, δ}, a, x ∈ A and xt ∈ A, Nt ∈ N for t ∈ N are chosen suitably.

Proof. To prove the lemma it is enough to consider the following cases.

Case 1: (W,Y ) ∈ {(α, α), (α, δ), (β, β), (β, γ)}.

E
(

a
sr
Wij

)
E
(
sNxYkl

)
E
(

a
sr
Wij

)−1
=
∏ν

t=1E
(
sNtxtZptqt

)
.

Subcase (a): i 6= k.

E
( a
sr
Wij

)
E
(
sNxYkl

)
E
( a
sr
Wij

)−1

=
[
E
( a
sr
Wij

)
, E
(
sNxYkl

)]
E
(
sNxYkl

)

= [E (aspWij) , E (sqxYkl)]E
(
sNxYkl

)

(by Corollary 2.1.4 and Corollary 2.1.10)

=
∏ν

t=1E
(
sNtxtZptqt

)
for Nt > 0.

This equation holds for any positive integers p, q with p+ q = N − r.

Subcase (b): i = k.

E
( a
sr
Wij

)
E
(
sNxYkl

)
E
( a
sr
Wij

)−1

=
[
E
( a
sr
Wij

)
, E
(
sNxYkl

)]
E
(
sNxYkl

)

= E
(
sNxYkl

)
.

(by Lemma 2.1.3 and by Lemma 2.1.9)

Case 2: (W,Y ) ∈ {(α, β), (β, α)}.

E
( a
sr
Wij

)
E
(
sNxYkl

)
E
( a
sr
Wij

)−1

=
∏ν

t=1E
(
sNtxtZptqt

)
.

60



3.4. Local-Global Principle for Roy’s Elementary Orthogonal Group

Subcase (a): i 6= k.

For instance,

E
( a
sr
αij

)
E
(
sNxβkl

)
E
( a
sr
αij

)−1

= E a
sr

αij
E∗

sNxβkl
E−1

a
sr

αij

=
[
E a

sr
αij
, E∗

sNxβkl

]
E∗

sNxβkl

=
[
Easpαij

, E∗
sqxβkl

]
E∗

sNxβkl
(by Corollary 2.1.7)

=
∏ν

t=1E(s
NtxtZptqt) for Nt > 0 and ν ≤ 5.

Subcase (b): i = k.

For instance,

E
( a
sr
αij

)
E
(
sNxβil

)
E
( a
sr
αij

)−1

= E a
sr

αij
E∗

sNxβil
E−1

a
sr

αij
. (3.4.1)

Set N = N1 + N2 + N3 such that N1 ≥ r + 2 and N2 + N3 ≥ 2r + 4. Now, by replac-

ing E∗
sNxβil

with
[
EsN1αkl

,
[
EsN2xβ∗

il
, EsN3γ∗

pq

]] [
E

sNx
β∗
il
2

, EsN1αkl

]
in equation (3.4.1), and by

using Lemma 2.2.7, we have

E a
sr

αij
E∗

sNxβil
E−1

a
sr

αij
= E a

sr
αij

[
EsN1αkl

,
[
EsN2xβ∗

il
, EsN3γ∗

pq

]] [
E

sNx
β∗
il
2

, EsN1αkl

]
E−1

a
sr

αij
.

Then we will see that the following are in the required product form.

(a) E a
sr

αij
EsN1αkl

E−1
a
sr

αij
,

(b) E a
sr

αij

[
EsN2xβ∗

il
, EsN3γ∗

pq

]
E−1

a
sr

αij
,

(c) E a
sr

αij

[
E

sNx
β∗
il
2

, EsN1αkl

]
E−1

a
sr

αij
.

For, (a) E a
sr

αij
EsN1αkl

E−1
a
sr

αij
=
[
E a

sr
αij
, EsN1αkl

]
EsN1αkl

=
[
Easp

′
αij
, Esq

′
αkl

]
EsN1αkl

(by Corollary 2.2.8(i))

=
∏ν

t=1E
(
sNtxtZptqt

)
for Nt > 0 and ν ≤ 5.

This equation holds for any positive integers p′, q′ with p′ + q′ = N1 − r.

(b) E a
sr

αij

[
EsN2xβ∗

il
, EsN3γ∗

pq

]
E−1

a
sr

αij
=
[
E a

sr
αij

[
EsN2xβ∗

il
, EsN3γ∗

pq

]] [
EsN2xβ∗

il
, EsN3γ∗

pq

]

=
[
Esp

′′
αij
,
[
Esq

′′
xβ∗

il
, Esr

′′
γ∗
pq

]] [
EsN2xβ∗

il
, EsN3γ∗

pq

]
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(by Corollary 2.2.8)

=
∏ν

t=1E
(
sNtxtZptqt

)
for Nt > 0 and ν ≤ 14.

This equation holds for any positive integers p′′, q′′ and r′′ with 2p′′+q′′+r′′ = N2+N3−2r.

(c) E a
sr

αij

[
E

sNx
β∗
il
2

, EsN1αkl

]
E−1

a
sr

αij
=

[
E a

sr
αij
,

[
E

sNx
β∗
il
2

, EsN1αkl

]] [
E

sNx
β∗
il
2

, EsN1αkl

]

=

[
Esp

′′′
αij
,

[
E

sq
′′′
x
β∗
il
2

, Esr
′′′
αkl

]] [
E

sNx
β∗
il
2

, EsN1αkl

]

(by Corollary 2.2.4)

=
ν∏

t=1

E
(
sNtxtZptqt

)
for Nt > 0 and ν ≤ 14.

This equation holds for any positive integers p′′′, q′′′ and r′′′ with 2p′′′+q′′′+r′′′ = N1+N−2r.

Hence equation (3.4.1) is of the form
∏ν

t=1E(s
NtxtZptqt) for Nt > 0 and ν ≤ 52.

Lemma 3.4.7 (Dilation Lemma). Let s be a non-nilpotent element of A and letM=Q⊥

H(P ). Let θ(X) ∈ OA[X](M [X]) with θ(0) = I. Let Y, Z ∈ HomA(Q,P ) or HomA(Q,P
∗).

If θs(X) = (θ(X))s ∈ EOAs[X] (Ms[X]), then, for N ≫ 0 and for all b ∈ (s)NA, we have

θ(bX) ∈ EOA[X] (M [X]).

Proof. Let θs(X) ∈ EOAs[X] (Ms[X]). Then θs(X) =
∏r

k=1E (αikjk(X)), where

αikjk(X) ∈ HomA(Qs[X], Ps[X]) or HomA(Qs[X], P ∗
s [X]) for all k ∈ N, ik ∈ {1, 2, ...,m}

and jk ∈ {1, 2, ..., n}.

Let αikjk(X) = αikjk(0) +Xα′
ikjk

(X). By the splitting property, we can write

E (αikjk(X)) = E

(
αikjk(0)

2

)
E
(
Xα′

ikjk
(X)

)
E

(
αikjk(0)

2

)
.

Then

θs(X) =
∏r+1

k=1E
(

αikjk
(0)

2

)
E
(
Xα′

ikjk
(X)

)
E
(

αikjk
(0)

2

)
.

By Lemma 3.4.5, one has

θs(X) =
∏r+1

k=1 γkE
(
Xα′

ikjk
(X)

)
γ−1
k ,
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where γk =
∏k

j=1 aj with a1 = E
(

αi1j1
(0)

2

)
,

ar+1 = E
(

αirjr (0)

2

)
,

ak = E
(

αik−1jk−1
(0)

2

)
E
(

αikjk
(0)

2

)
for k = 2, ..., r.

Hence we can write

θs(s
NX) =

∏r+1
k=1 γkE

(
sNXα′

ikjk
(sNX)

)
γ−1
k for N ≫ 0.

Claim : If ξ =
∏k

j=1E (cj) , cj ∈ Ms, then, for ξE
(
sNxZij

)
ξ−1, we have a product

decomposition given by

ξE
(
sNxZij

)
ξ−1 =

∏λk

t=1E
(
sNtxtZitjt

)
(3.4.2)

with Nt →∞ for N ≫ 0, xt ∈ A.

Proof of the Claim. We do this by induction on k.

Let ξ = ξ1ξ2 . . . ξk, where ξi = E (ci). When k = 1, by Lemma 3.4.6, we have a product

decomposition

ξ1E
(
sNxZij

)
ξ−1
1 =

∏λ1

t=1E
(
sNtxtZitjt

)

with Nt →∞ for N ≫ 0. Now assume that the result is true for k − 1. i.e., we have

ξ1ξ2 . . . ξk−1E
(
sNxZij

)
(ξ1ξ2 . . . ξk−1)

−1 =
∏λk−1

t=1 E
(
sNtxtZitjt

)

with Nt →∞ for N ≫ 0. Now, by Lemma 3.4.6, we can write

ξkE
(
sNxZij

)
ξ−1
k =

∏λk−1

t=1 E
(
sNtxtZitjt

)
= µ1µ2 . . . µλ (say).

Hence we have

(ξ1ξ2 . . . ξk−1ξk)E
(
sNxZij

)
(ξ1ξ2 . . . ξk−1)

−1

= (ξ1ξ2 . . . ξk−1)µ1µ2 . . . µλ (ξ1ξ2 . . . ξk−1)
−1

= (ξ1ξ2 . . . ξk−1)µ1(ξ1ξ2 . . . ξk−1)
−1(ξ1ξ2 . . . ξk−1)

µ2(ξ1ξ2 . . . ξk−1)
−1 . . . (ξ1ξ2 . . . ξk−1)µλ (ξ1ξ2 . . . ξk−1)

−1 .
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Now, by applying induction to each of the expressions ξ1ξ2 . . . ξk−1µl (ξ1ξ2 . . . ξk−1)
−1 as l

varies from 1 to λ, we have a product decomposition as in equation (3.4.2). Therefore we

can write

θs
(
sNX

)
=
∏r+1

k=1

∏λk

t=1E
(
sNtxtZitjt

)
for N large enough.

The terms sNtxt for 1 ≤ t ≤ λk is contained in M [X] as required. Hence

θ(bX) =
∏r+1

k=1

∏λk

t=1E
(
sNtxtZitjt

)
∈ EOA[X] (M [X])

for all b ∈ (s)NA.

Proof of Theorem 3.4.3. Let m be a maximal ideal of A. Choose an element sm from A\m

such that

θ(X)sm ∈ EOAsm [X](Msm [X]).

Define

κ(X, Y ) = θ(X + Y )θ(Y )−1.

Clearly κ(X, Y )sm ∈ EOAsm [X,Y ](Msm [X]) and κ(0, Y ) = I.

Now by applying Dilation Lemma with A[Y ] as the base ring, we get

κ(bmX, Y ) ∈ EOA[X,Y ] (M [X, Y ]) ,

where bm ∈ (sNm ) for some N ≫ 0.

Since A is the ideal generated by {sm}m∈Max A, there exist maximal ideals m1, . . . ,mr

and elements smi
∈ A \mi such that A =

∑r

i=1(smi
). Therefore

A =
r∑

i=1

(sNi
mi
)

for any Ni > 0. Hence for bmi
∈ (sNi

mi
) with Ni ≫ 0, we have

∑r

i=1 bmi
= 1.

Observe that κ(bmi
X, Y ) ∈ EOA[X,Y ](M [X, Y ]) for 1 ≤ i ≤ r .

θ(X) =θ(
∑r

i=1 bmi
X) θ (

∑r

i=2 bmi
X)

−1
θ (
∑r

i=2 bmi
X) θ (

∑r

i=3 bmi
X)

−1
· · ·

θ
(
bmr−1

X + bmr
X
)
θ (bmr

X)−1 θ (bmr
X)

=
∏r−1

i=1 κ(bmi
X, Ti)κ(bmr

X, 0),

where Ti =
∑r

k=i+1 bmk
X. Hence θ(X) ∈ EOA[X](M [X]) .
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3.5 A Local-Global Principle for EO(Q⊥H(A)m) ·O(H(A)m)

In this section, we prove a local-global principle for the set EOA(Q⊥H(A)m) ·O(H(A)m),

where Q is a free A-module of rank n. We also assume that the generalized dimension of

A is at least d.

Theorem 3.5.1 ([45, Theorem 2.5]). Let A be a ring of generalized dimension ≥ d. Let

(Q, q) be a diagonalizable quadratic A-space. Consider the quadratic A-space Q⊥H(P ),

where rank (P ) > d. Then

OA (Q⊥H(P )) = EOA(Q⊥H(P )) ·OA(H(P ))

= {εβ | ε ∈ EOA(Q⊥H(P )), β ∈ OA(H(P ))}

= {βε | ε ∈ EOA(Q⊥H(P )), β ∈ OA(H(P ))}

= OA(H(P )) · EOA(Q⊥H(P )).

We now prove the Dilation lemma for EOA(Q⊥H(A)m) ·O(H(A)m).

Lemma 3.5.2 (Dilation Lemma). Let s be a non-nilpotent element of A and let m > d.

Let θ(X) ∈ OA[X](Q ⊗ A[X]⊥H(A[X])m) · OA[X](H(A[X])m) with θ(0) = I. If θs(X) =

(θ(X))s ∈ EOAs[X](Q⊗As[X]⊥H(As[X])m) ·OAs[X](H(As[X])m), then, for d≫ 0 and for

all b ∈ (s)dA, we have θ(bX) ∈ EOA[X](Q⊗ A[X]⊥H(A[X])m) ·OA[X](H(A[X])m).

Proof. If θs(X) = ε(X)β(X), where ε(X) ∈ EOAs[X](Q⊗ As[X] ⊥ H(As[X])m) and

β(X) ∈ OAs[X](H(As[X])m), then θ(0) = I = ε(0)β(0); whence

θs(X) = {ε(X)ε(0)−1}{β(0)−1β(X)}.

In other words, we may assume at the onset that ε(0) = I and β(0) = I. The rest of the

proof follows from Lemma 3.4.7.

We now prove the local-global principle for EOA(Q⊥H(A)m) ·O(H(A)m).

Theorem 3.5.3 (Local-Global Principle). Let (Q, q) be a diagonalizable quadratic A-

space. Let m > d and let θ(X) ∈ OA[X](Q⊗ A[X]⊥H(A[X])m) be such that θ(0) = I.
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Chapter 3. Local-Global Principle

Suppose that, for every m ∈ Max (A), we have αm = βmγm, where

βm ∈ EOAm[X] ((Q⊗ Am[X]) ⊥ H(Am[X])m) and γm ∈ OAm[X](H(Am[X])m) with β(0)= I,

γ(0) = I. Then α = βγ with β ∈ EOA[X]((Q⊗A[X])⊥H(A[X])m), γ ∈ OA[X](H(A[X])m).

Proof. The proof follows in similar lines as Theorem 3.4.3 except for the following. Let m

be a maximal ideal of A. Choose an element sm from A \m such that

θ(X)sm ∈ EOAsm [X] (Q⊗ Asm [X] ⊥ H(Asm [X])m)OAsm [X](H(Asm [X])m).

Define

κ(X, Y ) = θ(X + Y )smθ(Y )−1
sm
.

Then

κ(X, Y ) = ε1η1η2ε2 = ε1η3ε2 (3.5.1)

for ε1, ε2 ∈ EOAsm [X,Y ](Q⊗ A[X, Y ]⊥hm), η1, η2 ∈ OAsm [X,Y ](h
m) and η3 = η1η2. Since

EOAsm [X,Y ](Q⊗A[X, Y ]⊥hm)·OAsm [X,Y ](h
m) = OAsm [X,Y ](h

m)·EOAsm [X,Y ](Q⊗A[X, Y ]⊥hm),

by Theorem 3.5.1, we can write equation (3.5.1) as

κ(X, Y ) = ε1ε
′
2η

′
3

for some ε′2 ∈ EOAsm [X,Y ](Q⊗ A[X, Y ]⊥hm) and η′3 ∈ OAsm [X,Y ](h
m). That is,

κ(X, Y ) ∈ EOAsm [X,Y ](Q⊗ Asm [X, Y ]⊥hm) ·OAsm [X,Y ](h
m) and κ(0, Y ) = I.

Therefore, by applying Lemma 3.5.2 with base ring A[Y ],

κ(bmX, Y ) ∈ EOA[X,Y ](Q⊗ A[X, Y ]⊥hm) ·OA[X,Y ](h
m),

where bm ∈ (sNm ) for any sufficiently large N .

3.6 Action Version of Local-Global Principle

In this section, we prove an “action version” of Quillen’s local-global principle. We begin

by recalling some known results in this direction. In a letter to H. Bass, L.N. Vaserstein

proved the following action version of Quillen’s well-known local-global principle.
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Theorem 3.6.1 ([36, Chapter III, Theorem 2.5]). Let n ≥ 3 and ν (X) ∈ Umn (A[X]). If

ν (X) ∈ GLn (Am[X]), for all maximal ideals m of A, then ν (X) ∈ ν (0)GLn (A[X]).

A result similar to the one above was proved for the elementary linear group by R.A.

Rao which is the following.

Theorem 3.6.2 ([46, Theorem 2.3]). Let ν (X) ∈ Umn (A[X]) , n ≥ 3. Suppose, for all

maximal ideals m in A, ν (X) ∈ ν (0) En (Am[X]). Then ν (X) ∈ ν (0) En (A[X]).

Similar results are also proved in [8, 10, 21]. More generalized results of the action

version of local-global principle for Chevalley groups are established in [7, 54].

In [48], A. Roy proved the following result.

Theorem 3.6.3. Let A be a commutative Noetherian ring and d = dim Max A <∞. Let

P be a finitely generated projective A-module of rank ≥ d+1, and Q a quadratic A-space.

Let a be an ideal of A and w ∈ Q ⊥H(P ) such that Aq(w) + a = A. Then there exist

A-linear maps α1, · · · , αn : Q→ P such that

o(P-component of Eαn
◦ · · · ◦ Eα1

(w)) + a = A

Then R. Parimala extended this result for generalised dimension.

Theorem 3.6.4 ([38, Theorem 3.1]). Let A be a commutative ring and d be a generalised

dimension function on SpecA. Let (Q0, q0) be a quadratic A-space and let Q=Q0⊥H(P ),

where P is a finitely generated projective A-module of rank ≥ d (A) + 1. Let w = (z, x, f)

be an element in Q0 ⊥H(P ) such that q (w) = q0 (z) + f (x) is a unit in A. Then there

exists η = Eα1
◦ Eα2

◦ · · · ◦ Eαn
∈ EOA (Q0⊥H(P )) such that η (z, x, f) = (z′, x′, f ′) with

x′ unimodular in P .

The above result states that elements of unit norm in a quadratic space of sufficiently

large Witt index can be brought into general position by elementary orthogonal trans-

formations. This can be considered as a quadratic analogue of a stability theorem of

Eisenbud-Evans [25, Theorem A (ii)b].

R.A. Rao, in his Ph.D. thesis (1984), raised the following question.
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Chapter 3. Local-Global Principle

Question 3.6.5. Is there a “local- global” principle for the action of the elementary

group EOA[T ] (Q⊗ A[T ]⊥H(A[T ])n) on non-singular elements? Explicitly, let (Q, q) be

a quadratic A-space and let w be a non-singular element in (Q⊥ H(A)n)⊗A[T ]. Assume

that, for all m∈Max (A), there exists an element σm ∈ EOAm[T ] (Q⊗ Am[T ]⊥H(Am[T ])
n)

such that σmw = w (0) EOA[T ] (Q⊗ A[T ]⊥H(A[T ])n). Does there exist an element σ in

EOA[T ] (Q⊗ A[T ]⊥H(A[T ])n) with σw = w (0)?

In this chapter, we give an affirmative answer to this question.

Let Q and P be free A-modules of rank n and m respectively. In the remaining part of

this section, d denotes a generalized dimension function on SpecA.

The main theorem of this section is:

Theorem 3.6.6. Let (Q, q) be a quadratic A-space and let M = Q ⊥ H(A)m, where

m is at least d(A) + 1. Let w ∈ (Q⊥H(A)m)⊗ A[T ] be non-singular. Suppose, for all

m ∈ Max (A), there exists an element σm in EOAm[T ] ((Q⊥H(A)m)⊗ Am[T ]) such that

σmw = w (0) EOA[T ] ((Q⊥H(A)m)⊗ A[T ]) . Then there exists an element σ in the elemen-

tary group EOA[T ] (Q⊗ A[T ], H(A[T ])m) with σw = w(0).

We begin with a lemma which uses a standard argument of L.N. Vaserstein (see [36,

Chapter III, Proposition 2.3]).

Lemma 3.6.7. Let S be a multiplicatively closed set in A and let n + 2m ≥ 6. Let

w(X) ∈ Umn+2m(A[X]) and let w(X) ∈ w(0) EO ((Q⊥H(A)m)⊗ A[X]). Then there is

an element s in S such that, for any a in A,

w (X + asT ) ∈ w(X) EO((Q⊥H(A)m)⊗ A[X, T ]).

Proof. Let ϑ(X) ∈ EO((Q⊥H(A)m)⊗ AS[X]) such that w(X)ϑ(X) = w(0). Let

θ(X, T ) = ϑ(X + T )ϑ(X)−1 ∈ EO((Q⊥H(A)m)⊗ AS[X, T ]).

Then

w(X + T )θ(X, T ) = w(X + T )ϑ(X + T )ϑ(X)−1
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= w(0)ϑ(X)−1

= w(X) ∈ AS[X, T ]
n+2m.

Since θ(X, 0) = I, we can find θ∗(X, T ) ∈ EO((Q⊥H(A)m)⊗A[X, T ]) which localizes

to θ(X, sT ) for some s ∈ S with θ∗(X, 0) = I (by applying Dilation Lemma to the base

ring A[X] ). Then in A[X, T ]n, we have

w(X + sT )θ∗(X, T )− w(X) = Tv(X, T )

for some v(X, T ) which localizes to 0. Thus, for some s∗ ∈ S and for all a ∈ A, we get

w(X + ass∗T )θ∗(X, as∗T )− w(X) = Tas∗v(X, as∗T ) = 0.

Proof of Theorem 3.6.6. Let w be a non-singular element in (Q⊥H(A)m) ⊗ A[T ]. By

Theorem 3.6.4, there exists an element η ∈ EO (Q,H(A)m) such that η (w) has its P -

component unimodular in P . This implies that the order ideal

o (P - component (η (w))) = A.

which in turn implies that o (η (w)) = A. Hence η (w) is unimodular in Q⊥H(A)m.

Let n + 2m ≥ 6. Let w(X) ∈ Umn+2m(A[X]). If, for all maximal ideals m of A,

w(X)m ∈ w(0)m EO(Q ⊥H(A)m ⊗ Am[X]). Using Lemma 3.6.7 it follows that, for each

maximal ideal m of A, there exists sk ∈ A\m such that, for all a ∈ A,

w(X + askT ) ∈ w(X) EO(Q⊥H(A)m ⊗ A[X, T ]). (3.6.1)

We note that the ideal generated by s′ks is the whole ring A. Therefore there exist elements

sk1 , · · · , skr in A\m such that a1sk1 + · · · + arskr = 1, where ai ∈ A for 1 ≤ i ≤ r. In

equation (3.6.1), replacing X by a2sk2X + · · ·+ arskrX and askT by a1sk1X, we get

w(X) = w(a1sk1X + a2sk2X + · · ·+ arskrX)

∈ w(a2sk2X + · · ·+ arskrX) EO((Q⊥H(A)m)⊗ A[X]).
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Again in equation (3.6.1), replacing X by a3sk3X + · · ·+ arskrX and askT by a2sk2X, we

get

w(a2sk2X + · · ·+ arskrX) ∈ w(a3sk3X + · · ·+ arskrX) EO((Q⊥H(A)m)⊗ A[X]).

Continuing in this way, we have

w(arskrX + 0) ∈ w(0)EO((Q⊥H(A)m)⊗ A[X]).

Combining all of these, we get

w(X) ∈ w(0)EO((Q⊥H(A)m)⊗ A[X])

and hence the result is proved.
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4
Extendability of Quadratic Modules over a

Polynomial Extension of an Equicharacteristic

Regular Local Ring

In this chapter, we obtain an extendability theorem for quadratic modules over polynomial

rings. If A is an equicharacteristic regular local ring of dimension d, we prove that a

quadratic A[T ]-module Q for which the Witt index of Q/TQ is at least d, is extended from

A. This improves a theorem of R.A. Rao which proves the above theorem when A is a local

ring at a smooth point of an affine variety over an infinite field. To establish our result,

we use a local-global principle for Roy’s elementary orthogonal group that was proved in

Chapter 3.

The results in this chapter are contained in [5].

4.1 Some Known Results

Let A be a commutative Noetherian ring in which 2 is invertible and let B be the polynomial

A-algebra A[X1, . . . , Xn] in n indeterminates. Let Q = (Q, q) be a quadratic space over B

and let Q0 = (Q0, q0) be the reduction of Q modulo the ideal of B generated by X1, . . . , Xn.

In [58], A.A. Suslin and V.I. Kopĕıko proved that if Q is stably extended from A and if,

for every maximal ideal m of A, the Witt index of Am ⊗A (Q0, q0) is larger than the Krull

dimension of A, then (Q, q) is extended from A. In [19], I. Bertuccioni gave a short proof

of this and another proof is in the Ph.D. thesis of R.A. Rao. In that thesis (see [44, 45]),
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Chapter 4. Extendability of Quadratic Modules

it was shown that one can improve this result to quadratic spaces with Witt index at least

d, when A is a local ring at a non-singular point of an affine variety of dimension d over an

infinite field. Moreover, a question was posed at the end of the thesis whether extendability

can be shown for quadratic spaces with Witt index at least d over polynomial extensions

of any equicharacteristic regular local ring of dimension d. In the next section, we answer

this question affirmatively.

As before, we consider the orthogonal group of Q⊥H(P ), denoted by OA(Q⊥H(P )),

where Q and P are free A-modules of finite rank. Also, recall that Roy’s elementary

group EOA(Q ⊥ H(P )) is the subgroup of OA(Q ⊥ H(P )) generated by Eα and E∗
β, as

α ∈ HomA(Q,P ) and β ∈ HomA(Q,P
∗) vary.

The following cancellation theorem for quadratic spaces over semilocal rings was proved

by A. Roy.

Theorem 4.1.1 ([48, Theorem 8.1]). Let A be a semilocal ring and let R,R1 and R2 be

quadratic spaces over A such that R⊥R1
∼= R⊥R2. Then R1

∼= R2.

We now recall the following theorem of A.A. Suslin and V.I. Kopĕıko.

Theorem 4.1.2 ([58, Theorem 7.13]). Let R be a commutative ring in which 2 is invertible.

Any stably extended quadratic R[T1, · · · , Tn]-space Q with Witt index of Q/(T1, · · · , Tn)Q

at least max (2, dimR + 1), is extended from R.

In his Ph.D. thesis, R.A. Rao improved the above theorem when R is a regular ring as

follows:

Theorem 4.1.3 (Extendability in the complete case). If R is a complete unramified regular

local ring and Q is a quadratic R[T1, · · · , Tn]-space with Witt index of Q/(T1, · · · , Tn)Q at

least 1, then Q is extended from R.

Definition 4.1.4. Let k be a field. A ring R is said to be of essentially finite type over k

if R = S−1C, where C is a finitely generated k-algebra and S is a multiplicatively closed

subset of C.
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We say R is a regular k-spot if R is the localisation of a finitely generated k-algebra C

at a regular prime p ∈ Spec(C).

R.A. Rao, in his Ph.D. thesis, proved the following proposition.

Proposition 4.1.5 ([44, Proposition 1.3]). Let R be a regular k-spot. Let Q be a quadratic

R[T1, · · · , Tn]-space. Assume

(i) Witt index (Q) > 1, where “bar” denotes “modulo (T1, · · · , Tn)”.

(ii) Q is extended from k.

Then Q is extended from R. In particular, if Q is hyperbolic, then Q itself is hyperbolic.

He also proved the following theorems.

Theorem 4.1.6 ([44, Theorem 1.1]). Let A be a complete equicharacteristic regular local

ring. Then every quadratic space Q over A[T1, · · · , Tn] with Witt index (Q) > 1, where

“bar” denotes “modulo (T1, · · · , Tn)”, is extended from A.

Theorem 4.1.7 ([45, Theorem 3.3]). Let B = R[X], where R has dimension d. Let Q be

a quadratic R[X]-space with hyperbolic rank ≥ d+ 1. Then Q is cancellative.

In the following proposition, the symbol [a, b] denotes the quadratic space with quadratic

form having its value matrix 
a 1

1 b


 .

Proposition 4.1.8 ([9, Proposition 3.4]). Let A be a semilocal ring and (E, q) be a free

quadratic space over A. Then E has an orthogonal decomposition

E = [a1, b1] ⊥ . . . ⊥ [an, bn] or

E = [a1, b1] ⊥ . . . ⊥ [an, bn] ⊥ [c]

with ai, bi ∈ A and c, 1 − 4aibi ∈ A
∗(1 ≤ i ≤ n) according as dimE = 2n or 2n + 1. If

2 ∈ A∗, then E has an orthogonal basis. i.e.,

E = [c1] ⊥ . . . ⊥ [cm]
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Chapter 4. Extendability of Quadratic Modules

with ci ∈ A
∗ for 1 ≤ i ≤ m.

The next theorem is a famous result due to M. Karoubi.

Theorem 4.1.9 ([36, Chapter VII, Theorem 2.1]). Let R be a commutative ring in which

2 is invertible, and let (P,B) be an inner product space over R[T1, · · · , Td]. If P is stably

extended from R, then (P,B) is also stably extended from R.

We now recall the famous Cohen’s structure theorem.

Theorem 4.1.10 ([22, Theorem 15]). A commutative regular local ring (R,m) of Krull

dimension d is isomorphic to a formal power series ring k[[X]] over a field if and only if

R is equicharacteristic and is complete with respect to its m-adic topology.

4.2 Extendability of Quadratic Modules

In this section, the principal result [Theorem 4.2.2] on the extendability of quadratic A[T ]-

spaces of Witt index ≥ d over an equicharacteristic regular local ring of dimension d is

deduced from the local-global principle which we proved in Chapter 3.

The analysis of the equicharacteristic regular local ring is done by a patching argument,

akin to the one developed by A. Roy in his article [49]. This argument reduces the problem

to the case of a complete equicharacteristic regular ring; which is a power series ring over

a field, provided one can patch the information. We show that the patching process is

possible because of the local-global principle established for Roy’s elementary group in

Chapter 3.

We begin with the following crucial observation.

Lemma 4.2.1 ([42]). Let A be a regular local ring containing a field. Let (Q, q)⊥H(A) be

a quadratic A[T ]-space. If (Q/TQ)⊥H(A) is hyperbolic, then (Q, q)⊥H(A) is hyperbolic.

Proof. In [42], D. Popescu showed that if A is a geometrically regular local ring (over a

field k), or when the characteristic of the residue field is a regular parameter in A, then it

is a filtered inductive limit of regular local rings essentially of finite type over the integers

(or over k).
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4.2. Extendability of Quadratic Modules

In view of this, we may regard (Q, q)⊥H(A) to be a quadratic B[T ]-space over some

regular local ring B essentially of finite type over k with (Q/TQ, q/(T ))⊥H(A) hyperbolic.

In view of Proposition 4.1.5, (Q, q)⊥H(A) is hyperbolic over B[T ], whence over A[T ].

We now prove the extendability theorem.

Theorem 4.2.2. Let (A,m) be an equicharacteristic regular local ring of dimension d and

2 ∈ A∗. Then every quadratic A[T ]-space (Q, q)⊥H(A)n with n ≥ d is extended from A.

Proof. Let {π1, π2, . . . , πd} be a regular system of parameters generating the maximal ideal

m of A.

Let Al denote the (π1, . . . , πl)-adic completion of A. We observe that Ad is isomorphic

to the power series ring k[[X1, . . . , Xd]] by Theorem 4.1.10, where k is the residue field

A/m of A. We also observe that Al is the (πl)-adic completion of Al−1.

We now recall the following A. Roy’s garland of patching diagrams in [49].

A[T ] A
d[T ]

A
1[T ] A

d−1[T ]

A
2[T ] A

d−2[T ]

A
l[T ] A

l+1[T ]

Aπ1
[T ] A

d
πd

[T ]

A
1
π1
[T ]

A
1
π2
[T ] A

d−1
πd−2

[T ]

A
d−1
πd

[T ]

A
2
π2
[T ] A

d−2
πd−2

[T ]

A
l
πl+1

[T ] A
l+1
πl+1

[T ]

We now focus on the following patching square Pl(A)[T ].

Al[T ] Al+1[T ]

(Al)πl+1
[T ] (Al+1)πl+1

[T ]

For all l, this is a cartesian square as rings. Moreover, by [37], it is also a cartesian

square of quadratic spaces. This will enable us to analyze the quadratic A-space.
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Chapter 4. Extendability of Quadratic Modules

We prove the result by induction on d − l, starting with l = 0. In this case A is a

complete equicharacteristic regular local ring, whence a power series ring over its residue

field. We now appeal to Theorem 4.1.6.

Now assume the result for d − l = m. For d − (l + 1) = m − 1, consider the patching

square Pm−1(A)[T ].

We fix some notations as follows:

For a regular parameter π of A, let Ql = Q⊗Al[T ], Q0 = Q, Ql
π = Q⊗Al

π[T ] and for

a quadratic A-space Q1, we denote Q1 ⊗ A
l by Q1

l.

Let (Q⊥H(A)n)/(T ) = Q1⊥H(A)n, where Q1 is the quadratic A-space Q/(T ). Since

Am−1 is local, by Proposition 4.1.8, Q1
m−1 is diagonalizable. Since Am−1 is regular, by

Theorem 4.1.9, (Q⊥H(A)n)m−1 is stably extended from Am−1. Let

(Q⊥H(A)n)m−1⊥H(A)r
≃
−→ Am−1[T ]⊗

(
Q1

m−1⊥H(A)n+r
)

for n ≥ d.

Then

(
(Q⊥H(A)n)m−1⊥H(A)r

)
πm

≃
−→

((
Am−1

)
πm

[T ]⊗
((
Q1

m−1
)
πm
⊥H(A)n+r

))
for n ≥ d.

By Theorem 4.1.7, we get the isomorphism

(
(Q⊥H(A)n)m−1)

πm

σ
−→

((
Am−1

)
πm

[T ]⊗
((
Q1

m−1
)
πm
⊥H(A)n

))
.

Using the extendability for quadratic spaces over Am[T ] via induction hypothesis, we have

τ : (Q⊥H(A)n)m
≃
−→ Am[T ]⊗ (Q1

m⊥H(A)n).

Now, by identifying the quadratic spaces
((

(Q⊥H(A)n)m−1)
πm

⊗
(Am−1)πm [T ] (A

m
πm

[T ])
)

and
(
(Q⊥H(A)n)m−1⊗

Am−1[T ]A
m[T ]

)
πm

with
(
(Q⊥H(A)n)m−1⊗

Am−1[T ]

(
(Am)πm

[T ]
))

,

via the patching technique for quadratic spaces from [37], we have maps σ̃, τ̃ corresponding

to σ, τ and

σ̃τ̃−1 ∈ O(Am)πm [T ]

(
((Q1⊥H(A)n)m)πm

)
.

Since ((Am)πm
)m is local,

(
(Q1)

m

πm

)
m
is diagonalizable and hence, by Theorem 3.5.1,
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O
((

(Q1
m)πm

)
m
⊥H(A)n

)
= EO

((
(Q1

m)πm

)
m
⊥H(A)n

)
·O(H(A)n) .

Therefore we can write
(
σ̃τ̃−1

)
m
= αmβm,

where αm ∈ EO((Am)πm )
m
[T ]

((
(Q1

m)πm

)
m
⊥H(A)n

)
for some α ∈ O(Am)πm [T ]

((
(Q1

m)πm

)
⊥H(A)n

)

with α(0) = I and βm ∈ O((Am)πm )
m
[T ] (H(A)n) for some β ∈ O(Am)πm [T ] (H(A)n) with

β(0) = I, via the same argument as in Lemma 3.5.2.

Then, by Theorem 3.5.3, we have

σ̃τ̃−1 = αβ

with α ∈ O
((
(Q1

m)πm

)
⊥H(A)n

)
, α(0) = I, β ∈ O(Am)πm [T ] (H(A)n) and β(0) = I. Now

via the ‘deep splitting’ technique introduced in [44] which we have described in Chapter 1,

we can write σ̃τ̃−1 = β ∈ O(H(A)n).

We now have

(Q⊥H(A)n)m−1 ≃
((

(Q⊥H(A)n)m−1)
πm
, I, (Q⊥H(A)n)m

)

≃
((
Am−1

)
πm

[T ]⊗
((
Q1

m−1
)
πm
⊥H(A)n

)
, αβ, Am[T ]⊗ (Q1

m⊥H(A)n)
)

≃
(
Q1

m−1
πm

[T ]⊥H(A)n, β, Q1
m[T ]⊥H(A)n

)

≃ Q1
m−1[T ]⊥(H(A)n, β,H(A)n) = Q1

m−1[T ]⊥Q2,

where Q2 is the quadratic Am−1[T ]-space defined by the patching technique. Now

Q1
m−1[T ]⊥Q2⊥H(A)r ≃ Qm−1⊥H(A)r ≃ Q1

m−1[T ]⊥H(A)n+r.

By cancellation of quadratic spaces over local rings (see Theorem 4.1.1), we have

Q2⊥H(A) ≃ H(A)n+1. Since β(0) = I, Q2/(T ) ≃ H(A)n. Thus, by Lemma 4.2.1, Q2

is extended from Am−1, whence so is (Q⊥H(A)n)m−1. Hence the result is true for l + 1.

Then the theorem follows by induction.
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5
Normality and Injective Stability

In 1960’s, H. Bass initiated the study of the normal subgroup structure of linear groups.

He introduced a new notion of dimension of rings, called stable rank, and proved that the

principal structure theorems hold for groups whose degrees are large with respect to the

stable rank. Later, J.S. Wilson, I.Z. Golubchik and A.A. Suslin made many other important

contributions in this direction. In 1977, A.A. Suslin proved that over any commutative

ring A, the group En(A) is normal in GLn(A) when n ≥ 3.

The normal subgroup structure of symplectic and classical unitary groups over rings

were studied by V.I. Kopĕıko in [35], G. Taddei in [59] and by Suslin-Kopĕıko in [58].

Similar results were obtained for general quadratic groups by A. Bak, V. Petrov, and G.

Tang in [14], for general Hermitian groups by G. Tang in [60] and A. Bak and G. Tang in

[13], and for odd unitary groups by V. Petrov in [39] and W. Yu in [64].

The stability problem forK1 of quadratic forms was studied in 1960’s and in early 1970’s

by H. Bass, A. Bak, A. Roy, M. Kolster and L.N. Vaserstein. The stability theorems relate

unitary groups and their elementary subgroups in different ranges. The stability results for

quadratic K1 are due to A. Bak, V. Petrov and G. Tang (see [14]), and for Hermitian K1

are due to A. Bak and G. Tang (see [13]). Recently, in [64], W. Yu proved the K1-stability

for odd unitary groups which were introduced by V. Petrov. Stronger results for spaces

over semilocal rings are due to A. Roy and M. Knebusch for quadratic spaces (see [32,48])

and H. Reiter for Hermitian spaces (see [47]). In [52], S. Sinchuk proved injective stability
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for unitary K1 under stable range condition. We adapt the method used by him for proving

injective stability.

In this chapter, we establish normality results for DSER group and stability results for

DSER group under Bak’s Λ-stable range condition. We also prove the injective stability

for K1 of the orthogonal group under stable range condition. A useful tool in the proof is a

decomposition theorem for the elementary subgroup that we will establish on the way. For

proving stability, we adapt the method used in [13,14,52]. We also need some commutator

relations which are proved in Chapter 2.

Let A be a commutative ring with identity in which 2 is invertible. Let Eαij
and E∗

βij

be defined as in Chapter 1. Also, let OA(Q⊥H(P )) and EOA(Q⊥H(P )) be as defined in

Chapter 1. Throughout this chapter, we assume that Q and P are free A-modules of rank

n and m respectively.

Most of the results in this chapter are from [3].

5.1 Main Theorems

In this chapter, we prove the following normality theorems.

(i) OA(Q ⊥ H(A)m−1) normalizes EOA(Q ⊥ H(A)m). In particular, EOA is a normal

subgroup of OA.

(ii) If m ≥ dimMax (A) + 2, then OA(Q⊥H(A)m) normalizes EOA(Q⊥H(A)m).

(iii) If m > l, then OA(Q⊥H(A)m) normalizes EOA(Q⊥H(A)m) provided A satisfies the

stable range condition 0-SAl.

Using normality theorem and a decomposition theorem, we establish the following sta-

bility theorem for KO1.

Suppose A satisfies the stable range condition 0-SAl. Then, for all m ≥ l + 1, the coset

space KO1,m(Q⊥H(A)m) is a group. Further, the canonical map

KO1,r(Q⊥H(A)r) −→ KO1,m(Q⊥H(A)m)

is surjective for l ≤ r < m, and when m ≥ l + 2, the canonical homomorphism

KO1,m−1(Q⊥H(A)m−1) −→ KO1,m(Q⊥H(A)m)
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is an isomorphism.

Using the decomposition theorem, we prove the following injective stability theorem

for KO1 under the usual stable range condition.

Let A be a commutative ring of stable rank l in which 2 is invertible and let m ≥ l + 2.

Then the canonical map

KO1,m−1(Q⊥H(A)m−1) −→ KO1,m(Q⊥H(A)m)

is injective.

A key tool used in the proofs of the above theorems is a decomposition theorem for the

elementary orthogonal group EOA(Q⊥H(A)m). This decomposition involves the following

subgroups.

Cm =
〈
[Eαmj

, E∗
βik

], [Eαij
, Eδmk

], Eαmj
: 1 ≤ i < m, 1 ≤ j, k ≤ n

〉
,

Fm =
{
ηη1 : η ∈ EOA(Q⊥H(A)m−1) and η1 ∈ Cm

}
,

Gm =
〈
Eαjk

, [Eαir
, E∗

βjk
], [Eαir

, Eδjk ] : 1 ≤ i, j ≤ m, 1 ≤ r, k ≤ n
〉
,

G−
m =

〈
E∗

βjk
, [E∗

βjk
, Eαir

], [E∗
βir
, E∗

γjk
] : 1 ≤ i, j ≤ m, 1 ≤ r, k ≤ n

〉
,

Lm = Gm ∩G
−
m =

〈
[Eαir

, E∗
βjk

] : 1 ≤ i, j ≤ m, 1 ≤ r, k ≤ n
〉
,

Um =
〈
Eαir

, [Eαir
, Eδjk ] : 1 ≤ i, j ≤ m, 1 ≤ r, k ≤ n

〉
,

U−
m =

〈
E∗

βir
, [E∗

βir
, E∗

γjk
] : 1 ≤ i, j ≤ m, 1 ≤ r, k ≤ n

〉
,

Y + =
〈
Eαmk

, Eαm−1,k
, [Eαm−1,k

, Eδm,j
] : 1 ≤ j, k ≤ n

〉
≤ Um,

Y − =
〈
E∗

βmk
, E∗

βm−1,k
, [E∗

βm−1,k
, E∗

γm,j
] : 1 ≤ j, k ≤ n

〉
≤ U−

m,

V + =
〈
[Eαik

, E∗
βmj

], [Eαik
, E∗

βm−1,j
] : 1 ≤ i ≤ m− 2, 1 ≤ j, k ≤ n

〉
,

V − =
〈
[Eαmk

, E∗
βij
], [Eαm−1,k

, E∗
βij
] : 1 ≤ i ≤ m− 2, 1 ≤ j, k ≤ n

〉
,

U+ = Um ⋊ V +, U− = U−
m ⋊ V −, Gm = Um ⋊ Lm.

Definition 5.1.1. Let θ ∈ EOA(Q ⊥ H(A)m), where Q has rank n. An GmU
−
mFm-

decomposition of θ is a product decomposition θ = ηξµ, where η ∈ Gm, ξ ∈ U−
m and

µ ∈ Fm.
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The decomposition theorem for EOA(Q⊥H(A)m) that we prove in this chapter is:

Let A satisfies the stable range condition SAl and let m ≥ l + 2. Then every element of

EOA(Q⊥H(A)m) has a GmU
−
mFm-decomposition.

5.2 Roy’s Elementary Group is Normalized by a Smaller

Orthogonal Group

In this section, we prove that the orthogonal group OA(Q ⊥ H(A)m−1) normalizes the

elementary orthogonal group EOA(Q⊥H(A)m).

Now, by 3.1.4, each Eα, E
∗
β for α ∈ HomA(Q,P ) and β ∈ HomA(Q,P

∗) can be written

as a product of Eαij
, E∗

βij
, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Hence we can consider EOA(Q⊥H(P ))

as the group generated by Eαij
’s and E∗

βij
’s for α ∈ Hom(Q,P ) and β ∈ HomA(Q,P

∗).

Now, by the commutator relations which we proved in Chapter 2, we note the following

useful interpretation.

Lemma 5.2.1. The elementary orthogonal group EOA(Q ⊥ H(A)m) is generated by the

elements of the type Eαij
, E∗

βkl
,
[
Eαij

, Eδkl

]
,
[
Eαij

, E∗
βkl

]
,
[
E∗

γij
, E∗

βkl

]
for α ∈ HomA(Q,P ),

β ∈ HomA(Q,P
∗) and for i, j, k, l with 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n and i 6= k.

Towards the proof of the normality theorem, we first recall some of the commutator

relations that we proved in Chapter 2 (Lemma 2.2.5, 2.2.1, 2.3.1, 2.3.2, 2.3.3).

Lemma 5.2.2. Let α, δ, ξ ∈ HomA(Q,P ) and β, γ, µ ∈ HomA(Q,P
∗). Then, for any given

i, j, k, l such that 1 ≤ i, j, t ≤ m and 1 ≤ k, l, r, s ≤ n, we have the following commutator

relations.

(i)
[
E∗

βik
,
[
Eαir

, E∗
γjl

]]
= E∗

ηjk

[
E∗

νjk
, E∗

ζik

]
, where ηjk = −γjlαirβ

∗
ik, νjk = −

1
2
γjlαirβ

∗
ik,

ζik = −βik and i 6= j.

(ii)
[
E∗

βik
,
[
Eαir

, Eδjl

]]
= Eλjk

[
Eξjk , E

∗
ζik

]
, where λjk = δjlα

∗
irβik, ξjk =

1
2
δjlα

∗
irβik,

ζik = βik and i 6= j.

(iii)
[[
E∗

βir
, E∗

γjl

]
,
[
Eαjs

, E∗
µtk

]]
=
[
E∗

ζil
, E∗

νts

]
, where ζil = −βirγjl

∗, νts = µtkαjs
∗ and for

i, j, t distinct.
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(iv)
[[
Eαir

, Eδjl

]
,
[
Eξtk , E

∗
βjs

]]
= [Eλil

, Eηts ], where λil = αirδjl
∗, ηts = ξtkβjs

∗ and for

i, j, t distinct.

(v)
[[
Eαir

, E∗
βjl

]
,
[
Eδjs , E

∗
γtk

]]
=
[
Eηil , E

∗
µts

]
, where ηil = −αirβjl

∗, µts = γtkδjs
∗ and for

i, j, t distinct.

In particular, we have the following commutator relations.

(i) E∗
µkj

=
[
E∗

βmj
,
[
Eαmr

, E∗
γkl

]] [
E∗

νkj
, E∗

ζmj

]−1

,

(ii) Eλkj
=
[
E∗

βmj
, [Eαmr

, Eδkl ]
] [
Eξkj , E

∗
ζmj

]−1

,

(iii)
[
E∗

ζil
, E∗

νks

]
=
[[
E∗

βir
, E∗

γml

]
,
[
Eαms

, E∗
µkt

]]
,

(iv) [Eλil
, Eηks ] =

[
[Eαir

, Eδml
] ,
[
Eξkt , E

∗
βjs

]]
,

(v)
[
Eηil , E

∗
µks

]
=
[[
Eαir

, E∗
βml

]
,
[
Eδms

, E∗
γkt

]]
.

Lemma 5.2.3. The elementary orthogonal group EOA(Q⊥H(A)m) is generated by those

elementary generators having m as one of the subscripts.

Proof. The commutator relations in Lemma 5.2.2 show that the group EOA(Q⊥H(A)m)

is generated by the elements of type Eαmj
, E∗

βmk
, [Eαij

, E∗
βmk

] , [Eαmj
, E∗

βik
], [Eαmj

, Eδil ] and

[E∗
βij
, E∗

γmk
] when Q.

As a consequence of Lemma 5.2.3, it follows that the groups U−
m and Cm generate the

elementary group EOA(Q⊥H(A)m).

We now state the main normality result of this section.

Theorem 5.2.4. OA(Q⊥H(A)m−1) normalizes EOA(Q⊥H(A)m).

Proof. For proving this, it is sufficient to prove that U−
m and Cm are normalized by

OA(Q⊥H(A)m−1), and we do this by direct matrix calculation.

We consider the matrix representation of elements of OA(Q⊥H(A)m).

Let T =




a b c

d e f

g h j


 ∈ OA(Q⊥H(A)m). Then

T tΨT = Ψ, (5.2.1)
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where Ψ = ϕ ⊥


 0 Im

Im 0


 is the matrix of the bilinear form associated to the quadratic

form on Q ⊥ H(A)m. Here, ϕ denotes the matrix corresponding to the nondegenerate

bilinear form on Q and


 0 Im

Im 0


 is the matrix of the bilinear form on the hyperbolic

space. This equation is equivalent to the following set of equations.

atϕa+ gtd+ dtg = ϕ btϕa+ htd+ etg = 0 ctϕa+ jtd+ f tg = 0

atϕb+ gte+ dth = 0 btϕb+ hte+ eth = 0 ctϕb+ jte+ f th = Im

atϕc+ gtf + dtj = 0 btϕc+ htf + etj = Im ctϕc+ jtf + f tj = 0

These equations are equivalent to the equation

T−1 =




ϕ−1atϕ ϕ−1gt ϕ−1dt

ctϕ jt f t

btϕ ht et


 .

The stabilization homomorphism OA(Q⊥H(A)(m−1))→ OA(Q⊥H(A)m) is given by




a′ b′ c′

d′ e′ f ′

g′ h′ j′


 7→




a′ b′ 0 c′ 0

d′ e′ 0 f ′ 0

0 0 1 0 0

g′ h′ 0 j′ 0

0 0 0 0 1




=




a b c

d e f

g h j


 = T. (5.2.2)

We now consider the generators for the subgroups U−
m and Cm of EOA(Q⊥H(A)m) and

prove that they are normalized by an element in OA(Q⊥H(A)m−1).

Consider T ∈ OA(Q⊥H(A)m−1) as an element in OA(Q⊥H(A)m) by the stabilization

homomorphism. Then we conjugate the elementary generators of EOA(Q⊥H(A)m) and

write the conjugated element as a product of elementary generators. Corresponding to the

elementary generator Eαmj
, we have

T−1Eαmj
T =




In 0 −φ−1atαmj
tj

jtαmja Im + jtαmjb jtαmjc− ctαmj
tj− 1

2
jtαmjαmj

∗j

0 0 Im − btαmj
tj



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=




In 0 0

0 Im
1
2
jtαmjcb

tαmj
tj− 1

2
jtαmjbc

tαmj
tj

0 0 Im







In 0 0

0 Im jtαmjc− ctαmj
tj

0 0 Im







In 0 0

0 Im + jtαmjb 0

0 0 Im − btαmj
tj







In 0 −φ−1atαmj
tj

jtαmja Im −1
2
jtαmjaφ

−1atαmj
tj

0 0 Im




= [Ejtαmjbctφ, E jtαmj
2

][Ectφ, Ejtαmj
][E∗

btφ, Ejtαmj
]Ejtαmja.

Corresponding to the elementary generator E∗
βmj

, we have

T−1E∗
βmj

T =




In −φ−1atβt
mje 0

0 Im − ctβt
mje 0

etβmja etβmjb− btβt
mje−

1
2
etβmjβ

∗
mje Im + etβmjc




=




In 0 0

0 Im 0

0 1
2
etβmjcb

tβmj
te− 1

2
etβmjbc

tβt
mje Im







In 0 0

0 Im 0

0 etβmjb− btβt
mje Im







In 0 0

0 Im − ctβt
mje 0

0 0 Im + etβmjc







In −φ−1atβt
mje 0

0 Im 0

etβmja −1
2
etβmjβ

∗
mje Im




=

[
E∗

etβmjcbtφ, E
∗
etβmj

2

] [
E∗

btφ, E
∗
etβmj

] [
Ectφ, E

∗
etβmj

]
E(etβmja).
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Corresponding to the elementary generator [Eαmj
, E∗

βkl
], we have

T−1[Eαmj
, E∗

βkl
]T =




In 0 φ−1(dtβklα
∗
mjj)

t

−jtαmjφ
−1βt

kld Im − jtαmjβ
∗
kle f tβklφ

−1αt
mjj− jtαmjφ

−1βt
klf

0 0 Im + etβklα
∗
mjj




=




In 0 0

0 Im jtαmjφ
−1βkl

t
(

fet−ef t

2

)
βklφ

1αt
mjj

0 0 Im







In 0 0

0 Im f tβklφ
−1αt

mjj− jtαmjφ
−1βt

klf

0 0 Im







In 0 0

0 Im − jtαmjβ
∗
kle 0

0 0 Im + etβklα
∗
mjj







In 0 φ−1(dtβklα
∗
mjj)

t

−jtαmjφ
−1βt

kld Im −1
2
jtαmjφ

−1βt
kldφ

−1(dtβklα
∗
mjj)

t

0 0 Im




=

[
E

(
jtαmj

2
)
, E(jtαmjφ−1βkl

tfetβkl)

] [
E(jtαmj), E(f tβkl)

]

[
E(jtαmj), E

∗
(etβkl)

]
E−(jtαmjφ−1βt

kl
d).

Corresponding to the elementary generator [Eαij
, E∗

βmk
], we have

T−1[Eαij
, E∗

βmk
]T =




In −φ−1(etβmkα
∗
ijg)

t 0

0 Im − jtαijβ
∗
mke 0

etβmkα
∗
ijg etβmkα

∗
ijh− htαijβ

∗
mke Im + etβmkα

∗
ijj



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=




In 0 0

0 Im 0

0 1
2
etβmkφ

−1αt
ijhj

tαijφ
−1βt

mke−
1
2
etβmkφ

−1αt
ijjh

tαijφ
−1βt

mke Im







In 0 0

0 Im 0

0 etβmkα
∗
ijh− htαijβ

∗
mke Im







In 0 0

0 Im − jtαijβ
∗
mke 0

0 0 Im + etβmkα
∗
ijj







In −φ−1(etβmkα
∗
ijg)

t 0

0 Im 0

etβmkα
∗
ijg −1

2
etβmkα

∗
ijgφ

−1(etβmkα
∗
ijg)

t Im




=

[
E∗

(etβmkφ−1αt
ijjh

tαij)
, E∗

(
etβmk

2
)

] [
E∗

(htαij)
, E∗

(etβmk)

]

[
E(jtαij), E

∗
(etβmk)

]
E∗

(etβmkφ−1αt
ijg)

.

Corresponding to the elementary generator [Eαmk
, Eδjl ], we have

T−1[Eαmk
, Eδjl ]T =




In 0 φ−1gtδjlα
∗
mkj

−jtαmkδ
∗
jlg Im − jtαmkδ

∗
jlh jt(δjlα

∗
mk − αmkδ

∗
jl)j

0 0 Im + htδjlα
∗
mkj




=




In 0 0

0 Im
1
2
jtαmkδ

∗
jlhj

tδjlα
∗
mkj−

1
2
jtαmkδ

∗
jljh

tδjlα
∗
mkj

0 0 Im







In 0 0

0 Im − jtαmkδ
∗
jlh 0

0 0 Im + htδjlα
∗
mkj







In 0 0

0 Im jt(δjlα
∗
mk − αmkδ

∗
jl)j

0 0 Im



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


In 0 φ−1gtδjlα
∗
mkj

−jtαmkδ
∗
jlg Im −1

2
jtαmkδ

∗
jlgφ

−1gtδjlα
∗
mkj

0 0 Im




=
[
E( 1

2
jtαmk)

, E(jtαmkδ
∗
jl
hjtδjl)

] [
E(jtαmk), E

∗
(htδjl)

] [
E(αmk), E(jtδjl)

]
E(−jtαmkδ

∗
jl
g).

Corresponding to the elementary generator [E∗
βmk

, E∗
γjl
], we have

T−1[E∗
βmk

, E∗
γjl
]T =




In φ−1dtγjlφ
−1βt

mke 0

0 Im + f tγjlφ
−1βmk

te 0

−etβmkφ
−1γtjld et(γjlβ

∗
mk − βmkγ

∗
jl)e Im − etβmjφ

−1γtjlf




=




In 0 0

0 Im 0

0 etβmkγjl
∗(ef

t−fet

2
)γjlβmk

∗e Im







In 0 0

0 Im 0

0 et(γjlβ
∗
mk − βmkγ

∗
jl)e Im − etβmjφ

−1γtjlf







In 0 0

0 Im + f tγjlφ
−1βmk

te 0

0 0 Im − etβmjφ
−1γtjlf







In φ−1dtγjlφ
−1βt

mke 0

0 Im 0

−etβmkφ
−1γtjld

1
2
etβmkφ

−1γtjldφ
−1dtγjlφ

−1βt
mke Im




= [E∗

(
etβmk

2
)
, E∗

(etβmkγ
∗
jl
ef tγjl)

][E∗
(etβmk)

, E∗
(etγjl)

]

[E∗
(etβmk)

, E(f tγjl)]E(−etβmkγ
∗
jl
d).
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These equations prove that Cm and U−
m are normalized by OA(Q⊥H(A)m−1). Hence the

theorem follows.

We can immediately deduce the following stability result.

Corollary 5.2.5. EOA is a normal subgroup of OA.

5.3 Normality of Roy’s Elementary Group under a Condition

on Hyperbolic Rank

In this section, we prove that the elementary orthogonal group EOA(Q⊥H(A)m) is normal

in the orthogonal group OA(Q⊥H(A)m) under a condition on the hyperbolic rank. First,

we prove the normality when the hyperbolic rank at least d+ 2, where d = dimMax (A) .

In the following theorem, let q denote the quadratic form on Q.

Theorem 5.3.1 ([48, Corollary 6.4]). Let A be a Noetherian ring with dimMax (A)=d<∞.

Let P be a finitely generated projective A-module of rank ≥ d + 1 and Q be a quadratic

A-space. If Q contains a non-singular element w, then the orthogonal transformations of

Q⊥H(P ) act transitively on the elements of norm q(w).

Remark 5.3.2 ([48, Remark 5.6]). Let w be an element of Q⊥H(P ) with its P -component

unimodular. Then there exists an orthogonal transformation E∗
β which maps w into H(P ).

For, let w be written as (z, x, f) with z ∈ Q, x ∈ P, and f ∈ P ∗. Since x is unimodular,

there exists an A-linear map β′ : P → Q satisfying β′(x) = z. Let β : Q → P ∗ be an

A-linear map such that β∗ = β′. Then

E∗
β(z, x, f) =

(
z − β∗(x), x, f + β(z)−

1

2
ββ∗(x)

)

=

(
0, x, f + β(z)−

1

2
ββ∗(x)

)
.

Theorem 5.3.3 ([48, Theorem 7.1]). Let Q be a quadratic A-space of hyperbolic rank

larger than d+ 2. Then the orthogonal transformations of Q act transitively on

(i) the non-singular elements of Q of a given norm and
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(ii) the set of hyperbolic planes in Q.

Theorem 5.3.4 ([48, Theorem 8.1′]). Let A be a semilocal ring and let Q be a quadratic

space over A of rank at least 1. Then the orthogonal transformations of Q act transitively

on the non-singular elements of Q of a given norm.

We now prove the following normality result.

Theorem 5.3.5. The elementary orthogonal group EOA(Q ⊥ H(A)m) is normal in the

orthogonal group OA(Q⊥H(A)m) when m is at least d+ 2, where d = dimMax (A) .

Proof. By Theorem 5.3.3, it follows that the group EOA(Q ⊥ H(A)m) acts transitively

on hyperbolic pairs. In the case of semilocal rings, by Theorem 5.3.4, the same holds for

m ≥ 1 .

For, if α ∈ OA(Q⊥H(A)m) and (e1, f1) is a hyperbolic pair, then, by Theorem 5.3.1,

(αe1, αf1) and (e1, f1) are in the same orbit of EOA(Q⊥H(A)m) . Let e be a map which

takes one orbit to the other. Therefore eα fixes (e1, f1) and hence eα ∈ OA(Q⊥H(A)m−1),

whence so does (eα)−1. Now, by Lemma 5.2.4, it follows that (eα)−1 normalizes the group

EOA(Q⊥H(A)m). But then α−1 normalizes the group EOA(Q⊥H(A)m).

5.4 A Decomposition Theorem

In this section, we prove a decomposition of Roy’s elementary group under the stable range

condition. Assume that A satisfies the stable range condition SAl.

We start with the following lemma.

Lemma 5.4.1. The elementary orthogonal group EOA(Q⊥H(A)m) is generated by Gm

and Y −.

Proof. It follows from the commutator relations

[E∗
βir
, E∗

γmj
] =

[
[E∗

ηml
, E∗

γm−1,k
], [Eαm−1,s

, E∗
θiq
]
]
for 1 ≤ i ≤ m− 1, 1 ≤ r, j, k, l, s, q ≤ n,

[E∗
βir
, E∗

γjs
] =

[
[E∗

ηjl
, E∗

γmt
], [Eαmk

, E∗
θiq
]
]
for 1 ≤ i, j ≤ m− 1, i 6= j, 1 ≤ r, s, l, t, k, q ≤ n,
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E∗
ηkj

=
[
Eαij

, [E∗
βkl
, E∗

γir
]
]
[Eαij

, E∗
ηkj
2

]−1 for 1 ≤ i, k ≤ m, i 6= k, 1 ≤ j, l, r ≤ n,

that the subgroup generated by Gm and Y − contains all the generators of the elementary

orthogonal group EOA(Q⊥H(A)m).

Lemma 5.4.2. Let the subgroups U+, U−, Y + and Y − are as defined in Section 5.1. Then

we have the following inclusions involving these subgroups:

(i) Y −U+ ⊆ U+Y −Y +,

(ii) Y +U− ⊆ U−Y +Y −,

(iii) Y −U+U− ⊆ U+U−Y +Y −.

Proof. (i) Let σ ∈ U+. Then σ = ηµ, where η lies in the subgroup generated by [Eαik
, E∗

βjl
],

where 1 ≤ i ≤ m − 2, 1 ≤ j ≤ m and 1 ≤ k, l ≤ n and µ ∈ Y +. Then from the

commutator relations, it follows that for any ξ ∈ Y −, the element ξηξ−1 lies in U+.

Thus ξσ = ξηξ−1 · ξ · µ ∈ U+Y −Y +.

(ii) Similar proof as (i).

(iii) Follows from (i) and (ii).

We denote by S the set consisting of elements σ ∈ Lm such that the matrix correspond-

ing to σ has the (n+m− 1, n+m)th and (n+m,n+m)th entries zero.

The following lemma is a crucial one since it depends on the stability conditions. The

rest of the proof of the decomposition theorem is independent of the stable range condition.

Lemma 5.4.3. Let m ≥ l+2. Then, for every σ ∈ Lm, there exist elements ϕσ ∈ V
+, ψσ ∈

V − such that ψσϕσσ ∈ S.

Proof. Let σ ∈ Lm and let v be the (n +m)th column of the matrix corresponding to σ.

From the definition of stable rank, it follows that there exists a matrix γ ∈M(m− 2, 2, A)

such that
(
0 Im−2 γ 0

)
v ∈ Am−2 is unimodular. Hence we get an element ϕσ ∈ V

+
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such that the first n+m− 2 coordinates of v′ = ϕσv form a unimodular column, where

ϕσ =




In 0 0

0


Im−2 γ

0 I2


 0

0 0


Im−2 0

−γt I2







.

Now, there exists another matrix κ ∈ M(2,m − 2, A) and ψσ ∈ V
− such that v′′ = ψσv

′

has the coordinates v′′n+m−1 = v′′n+m = 0, where

ψσ =




In 0 0

0


Im−2 0

κ I2


 0

0 0


Im−2 −κ

t

0 I2







.

Hence ψσϕσσ ∈ S.

Corollary 5.4.4. Let m ≥ l + 2. Then we have the following inclusion

UmU
−
mLm ⊆ U+U−S.

Proof. Let σ ∈ Lm. Then, by Lemma 5.4.3, there exists ϕσ ∈ V
+. Since ϕσ normalizes

U−
m, we have

UmU
−
mσ = (Umϕ

−1
σ )(ϕσU

−
mϕ

−1
σ · ψ

−1
σ )(ψσ · ϕσσ) ⊆ U+U−S.

Lemma 5.4.5. Let m ≥ 2. Then we have the following inclusion

Y −U+U−S ⊆ U+U−LmFm.

Proof. Let θ ∈ S and τ ∈ (Y −)θ. Then τ is of the form τ =




In 0 0

0 Im 0

0 γ Im


 for some skew-

symmetric matrix γ. Now it follows from the definition of S that the (n+m)th column of
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θ remains unchanged if we multiply θ on the left by an element of Y −. Hence the (n+m)th

column of θ coincides with that of the identity matrix and the mth column of γ is zero.

Since γ is a skew-symmetric matrix, we get that the mth row of γ is also zero. We now get

τ ∈ U−
m ∩ Fm ⊆ Fm.

Now, by Corollary 5.4.4 and Lemma 5.4.5, we have the following inclusions.

Y −U+U−θ ⊆ U+U−Y +Y −θ ⊆ U+U−θ(Y +)θ(Y −)θ ⊆ U+U−LmFm.

We now have enough machinery to prove the following decomposition theorem.

Theorem 5.4.6 (Decomposition Theorem). Let m ≥ l + 2. Then every element of

EOA(Q⊥H(A)m) has a GmU
−
mFm-decomposition.

Proof. Since Lm normalizes both Um and U−
m, we have

GmU
−
mFm = UmLmU

−
mFm = UmU

−
mLmFm.

To prove GmU
−
mFm = EOA(Q ⊥ H(A)m), it is enough to prove that GmU

−
mFm is stable

under left multiplication by the generators of EOA(Q⊥H(A)m). Now, by Lemma 5.4.1, it

is enough to show that Y −GmU
−
mFm ⊆ GmU

−
mFm. We now get

Y −GmU
−
mFm = Y −UmU

−
mLmFm ⊆ Y −U+U−SFm ⊆ U+U−LmFm ⊆ GmU

−
mFm.

5.5 Normality under Λ-Stable Range

In this section, we prove the normality under the assumption that A satisfies the 0-stable

range condition 0-SAl. i.e., A satisfies the stable range condition SAl and for every unimod-

ular vector (a1, . . . al+1, b1, . . . bl+1)
t ∈ A2l+2, there exists an (l+1)×(l+1) skew-symmetric

matrix β such that (a1, . . . al+1)
t + β(b1, . . . bl+1)

t ∈ Al+1 is unimodular.

Lemma 5.5.1. Let m ≥ l + 1. Then, for any σ ∈ OA(Q⊥H(A)m), there is an element

̺ ∈ Gm such that σ̺ has 1 in its (n+m,n+m)th position.
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We shall use the following theorem of L.N. Vaserstein in the proof of Lemma 5.1. For

completeness, we include its proof.

Theorem 5.5.2 (L.N. Vaserstein, [61, Theorem 1] ). Let R be an associative ring of

finite stable rank l. Then, for any natural number n > l and any unimodular row (bi)1≤i≤n

, there exist ci ∈ R such that (bi + cibn)1≤i≤n−1 is R- unimodular and ci = 0 when i > l.

Proof. Let n > l. Since the stable range condition SAl holds, we have
∑n

i=1 aibi = 1 for

some ai ∈ R. Now let b′i = bi (1 ≤ i ≤ l) and b′l+1 =
∑n

i=l+1 aibi ∈ R. Then the vector

b′ = (b′i)1≤i≤l+1 is R-unimodular and by the stable range condition, there exist c′i ∈ R

(1 ≤ i ≤ l) such that
∑l

i=1Rb
′′
i = R, where b′′i = b′i + c′ib

′
l+1 = bi + c′i

∑n

j=l+1 ajbj. We

set Bi,j = c′iaj (1 ≤ i ≤ l < j ≤ n − 1), ci = c′ian (1 ≤ i ≤ l) and ci = 0 when i > l.

Then b′′i = bi + cibn +
∑n−1

j=l+1Bi,jbj (1 ≤ i ≤ l). We also set b′′i = bi when l < i < n

and B = In−1 +
∑l

i=1

∑n−1
j=l+1Bi,jei,j ∈ GLn−1(R), where Bi,jei,j is the matrix with Bi,j in

position i, j and with zeros elsewhere. Since the vector b′′ = (b′′i )1≤i≤n−1 is R-unimodular,

the vector B−1b′′ = (bi + cibn)1≤i≤n−1 is also unimodular.

Proof of Lemma 5.5.1. Let σ be the 3 × 3 block matrix corresponding to the orthogonal

transformation σ ∈ OA(Q⊥H(A)m) given by

σ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 ,

where σ11 is an n× n matrix, σ12, σ13 are n×m matrices, σ21, σ31 are m× n matrices and

σ22, σ23, σ32, σ33 are m × m matrices. Since σ−1 ∈ OA(Q⊥H(A)m), it also has a similar

matrix description. Now (σ21, σ22, σ23) is a unimodular vector in Mn(A)× (Mm(A))
2. Let

v = (u, v2, v3) be the bottom row of (σ21, σ22, σ23). It is unimodular in An+2m. Then there

exists a vector v′ ∈ An+2m such that 〈v, v′〉 = 1.

The unimodular vector (u, v2, v3) can be written as
(
u, {〈fi, v〉}1≤i≤m, {〈ei, v〉}1≤i≤m

)
.

Then, by unimodularity condition, we have
m∑

i=1

〈fi, v〉〈v
′, ei〉+

m∑

i=1

〈ei, v〉〈v
′, fi〉+ 〈v

′, u〉 = 1
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which implies that
m∑

i=1

A〈fi, v〉+
m∑

i=1

A〈ei, v〉+ A〈v′, u〉 = A.

i.e.,
(
{〈ei, v〉}1≤i≤m, {〈fi, v〉}1≤i≤m, 〈v

′, u〉
)
is unimodular in A2m+1.

Sincem ≥ l+1 and A has stable rank l, by Theorem 5.5.2, there exist ci ∈ A (1 ≤ i ≤ m)

such that
m∑

i=1

A〈fi, v〉+ A

(
m∑

i=1

〈ei, v〉+ ci〈v
′, u〉

)
= A. (5.5.1)

Now set v′′ = v′ −
∑m

i=1(〈fi, v
′〉ei + 〈ei, v

′〉fi). Then 〈fi, v
′′〉 = 0, 〈ei, v

′′〉 = 0, 〈v′′, u〉 =

〈v′, u〉. Now take µ1 =
∏m

i=1E
∗
βi
=
∏m

i=1 Tfi,civ′′ ∈ Gm and denote µ1(v) by (u′, v′2, v
′
3).

E∗
βi
(v) = v + βi(v)− β

∗
i (v)−

1

2
βiβ

∗
i (v)

= v − 〈v, fi〉civ
′′ + 〈civ

′′, u〉fi − q(civ
′′)〈v2, fi〉fi.

Set ai = 〈fi, v〉, and bi = 〈ei, v〉. Then a
′
i = 〈fi, E

∗
βi
(v)〉 = 〈fi, v〉 = ai and b

′
i = 〈ei, E

∗
βi
(v)〉 =

〈ei, v〉 + ci〈u, v
′′〉 − q(civ

′′)〈v, fi〉 = 〈ei, v〉 + ci〈v
′, u〉 − c2i q(v

′′)〈v, fi〉 = bi + ci〈v
′, u〉 +

riai for ri ∈ A. Hence, by equation 5.5.1, we get

m∑

i=1

Aa′i + Ab′i =
m∑

i=1

(
A〈fi, E

∗
βi
(v)〉+ A〈ei, E

∗
βi
(v)〉

)
= A.

Thus, by multiplying σ with µ1 =
∏m

i=1E
∗
βi

=
∏m

i=1 Tfi,civ′′ , we can assume that (v′2, v
′
3) is

unimodular in A2m.

Since A satisfies the 0-stable range condition 0-SAl and m ≥ l + 1, there exists a

skew-symmetric matrix γ ∈Mm(A) such that v′2 + v′3γ is unimodular in Am. Now set

µ2 =




I 0 0

0 I 0

0 γ I


 =

∏

1≤i,k≤m

∏

1≤j,l≤n

[
E∗

βij
, E∗

ηkl

]
∈ Gm,

where I denotes the identity matrix and 0 denotes the zero matrix of the corresponding

block size.

Since A satisfies stable range condition SAl and m ≥ l + 1, there is a product ǫ of

elementary matrices such that (v′2 + v′3γ)ǫ = (0, . . . , 0, 1).
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Set

µ3 =




I 0 0

0 ε 0

0 0 εt
−1


 =

∏

1≤i,k≤m

∏

1≤j,l≤n

[
Eαij

, E∗
βkl

]
∈ Gm.

Then σµ1µ2µ3 has (n + m)th row (u′, 0, . . . , 0, 1, v′3ε
t−1

). This completes the proof of the

lemma.

Theorem 5.5.3. Let A be a commutative ring in which 2 is invertible. Suppose A satisfies

the stable range condition 0-SAl. Then, for all m > l, the elementary group EOA(Q ⊥

H(A)m) is normal in OA(Q⊥H(A)m).

Proof. Let η ∈ EOA(Q ⊥ H(A)m), where rank (Q) = n. By Lemma 5.5.1, there is an

element ̺1 in Gm ⊆ EOA(Q⊥H(A)m) such that the (n+m,n+m)th coefficient of η̺1 is 1.

Then there is a matrix ̺2 =
∏m−1

i=1

∏
1≤j,k≤n[Eαmj

, E∗
βik

] such that η̺1̺2 has 0 in the first n+

m−1 entries of its (n+m)th row and 1 in the (n+m)th entry of this row. It follows that there

is a matrix ̺3 =
(∏m−1

i=1

∏
1≤r,k≤n[E

∗
βir
, E∗

γmk
]
)(∏m−1

i=1

∏
1≤r,k≤n[Eαir

, E∗
βmk

]
)(∏n

j=1E
∗
γmj

)

such that ̺3η̺1̺2 has the same mth row as η̺1̺2 and the same mth column as the (n +

2m)× (n+ 2m) identity matrix. For any matrix

σ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 ∈ OA(Q⊥H(A)m),

it follows from equation (5.2.1) that the (n+2m,n+2m)th coefficient of ̺3η̺1̺2 is 1. Then

there is a matrix

̺4 =

(
m−1∏

i=1

∏

1≤r,k≤n

[Eαmk
, E∗

βir
]

)(
m−1∏

i=1

∏

1≤r,k≤n

[E∗
βir
, E∗

γmk
]

)(
m−1∏

i=1

∏

1≤r,k≤n

[Eαir
, Eδmk

]

)(
n∏

j=1

Eζmj

)

such that ̺4̺3η̺1̺2 has the same (n + m)th row and (n + m)th column as ̺3η̺1̺2 and

the same (n + 2m)th column as the (n + 2m,n + 2m) identity matrix. Now, it follows

that ̺4̺3η̺1̺2 has the same (n + 2m)th row as the (n + 2m,n + 2m) identity matrix.

Thus, by the stabilization homomorphism, we have ̺4̺3η̺1̺2 ∈ OA(Q⊥H(A)m−1), where
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rank (Q) = n. Let ρ = ̺4̺3η̺1̺2. By Proposition 5.2.4, it follows that ρ normalizes

EOA(Q ⊥ H(A)m), where rank (Q) = n. Since η = ̺−1
3 ̺−1

4 ρ̺−1
2 ̺−1

1 , it follows that η

normalizes EOA(Q⊥H(A)m). Thus EOA(Q⊥H(A)m) is normal in OA(Q⊥H(A)m).

5.6 Stability of K1

In this section, we prove the following stability theorem using the normality theorem of

the previous section and the decomposition theorem under the 0-stable range condition

and injective stability of K1 of OA(Q⊥H(A)m) under the usual stable range condition.

Theorem 5.6.1. Let A be a commutative ring of 0-stable rank l in which 2 is invertible.

Then, for all m ≥ l + 1, the coset space KO1,m(Q ⊥ H(A)m) is a group. Further, the

canonical map

KO1,r(Q⊥H(A)r) −→ KO1,m(Q⊥H(A)m)

is surjective for l ≤ r < m, and when m ≥ l + 2, the canonical homomorphism

KO1,m−1(Q⊥H(A)m−1) −→ KO1,m(Q⊥H(A)m)

is an isomorphism.

Proof. By Theorem 5.5.3, we get that KO1,m(Q⊥H(A)m) is a group and the map

KO1,m−1(Q⊥H(A)m−1) −→ KO1,m(Q⊥H(A)m)

is surjective. By induction on m− l, we obtain that the map

KO1,r(Q⊥H(A)r) −→ KO1,m(Q⊥H(A)m)

is surjective for l ≤ r < m.

To prove the final assertion, let σ ∈ OA(Q⊥H(A)m−1)∩EOA(Q⊥H(A)m). Let ηξµ be

an F(m)U
−

(m)G(m)-decomposition of σ. Since the (n +m)th row of η coincides with that of

the (n+2m)× (n+2m) identity matrix, it follows that the (n+m)th row of ηξµ coincides
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with the (n + m)th row of ξµ. Thus the (n + m)th row of ξµ coincides with that of the

(n+ 2m)× (n+ 2m) identity matrix. We can write the matrix µ as

µ =




I γ 0

0 ε 0

ϑ ψ εt
−1


 ,

where I is an n×n identity matrix, γ is an n×m matrix, ε is an m×m invertible matrix,

ϑ and ψ are matrices of size m× n and m×m respectively.

If (u, v, w) denotes the (n+m)th row of ξ, then the (n+m)th row of ξµ is

(
u, v, w

)



I γ 0

0 ε 0

ϑ ψ εt
−1


 =

(
u+ wϑ, uγ + vε+ wψ, w(εt)−1

)
.

Since the (n+m)th row of ξµ is same as that of the (n+ 2m)× (n+ 2m) identity matrix,

we get w(εt)−1 = 0. Now, by the invertibility of (εt)−1, we get w = 0. This implies that

u = 0. Thus ξ ∈ Gm.

Now write η = η1µ1, where η1 ∈ EOA(Q⊥H(A)m−1) and µ1 ∈ Cm ⊆ Gm.

Then σ = η1µ1ξµ and µ1ξµ ∈ Gm ∩ OA(Q⊥H(A)m−1). Now it suffices to show that

µ1ξµ lies in EOA(Q⊥H(A)m−1). In fact, we show that µ1ξµ ∈ Gm−1.

Write

µ1ξµ =




I γ 0

0 ε 0

ϑ δ εt
−1


 .

Since µ1ξµ ∈ OA(Q⊥H(A)m−1), it follows that γ and δ have their last column 0 and ϑ, δ

have their last row 0. Also, it follows that ε ∈ GLm−1(A). From the definition of Gm, we

see that ε is an m×m matrix of the form

ε =


ε

′ 0

0 1


 ∈ Em(A).

Thus ε′ ∈ Em(A)∩GLm−1(A). Since A satisfies the stable range condition, by the stability

for K1 of the general linear group [15, Chapter V, Theorem 4.2], we get ε′ ∈ Em−1(A).

98



5.6. Stability of K1

Thus µ1ξµ lies in Gm. Hence the canonical homomorphism

KO1,m−1(Q⊥H(A)m−1) −→ KO1,m(Q⊥H(A)m)

is an isomorphism.

Now, we prove the injective stability for K1 of the orthogonal group OA(Q⊥H(A)m)

under the usual stable range condition.

Theorem 5.6.2. Let A be a commutative ring of stable rank l in which 2 is invertible and

let m ≥ l + 2. Then the canonical map

KO1,m−1(Q⊥H(A)m−1) −→ KO1,m(Q⊥H(A)m)

is injective.

Proof. Let σ be an element of OA(Q⊥H(A)m−1) ∩ EOA(Q⊥H(A)m). Then, by Theo-

rem 5.4.6, σ can be written as a product τνµ, where

τ =




In 0 t13

t21 t22 t23

0 0 t33


 ∈ Gm, ν =




In u12 0

0 Im 0

u31 u32 Im


 ∈ U

−
m, µ ∈ Fm.

Since the (n+m)th column of µ coincides with that of identity matrix, we get

t33(u32)i1 = 0 for i = 1, . . . ,m.

Since t33 is invertible, we get

(u32)i1 = 0 for i = 1, . . . ,m.

Hence µ ∈ Fm. Thus we can assume that σ = τµ and τ, µ ∈ OA(Q⊥H(A)m−1).

Now proceeding as in Theorem 5.6.1, we get that t22 =


t

′
22 0

0 1


 ∈ Em(A). Thus

t′22 ∈ Em(A) ∩ GLm−1(A). Since m ≥ s-rank A + 2, the injective stability theorem for
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K1 of the general linear group [15, Chapter V, Theorem 4.2], we have t′22 ∈ Em−1(A) and

hence σ ∈ EOA(Q⊥H(A)m−1). Thus the canonical map

KO1,m−1(Q⊥H(A)m−1) −→ KO1,m(Q⊥H(A)m)

is injective.
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