K-Theory of Quadratic Modules:
A Study of Roy’s Elementary Orthogonal Group

AMBILY A. A.

STATISTICAL

Z>=-0Z-—
G
Mo Co=m D Z =

Ly}

R daam 2938
[ UNITY IN DIVERSITY |

Indian Statistical Institute






K-Theory of Quadratic Modules:
A Study of Roy’s Elementary Orthogonal Group

Thesis submitted to the Indian Statistical Institute
in partial fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy

in Mathematics

by

AMBILY A. A.
STAT-MATH UNIT
INDIAN STATISTICAL INSTITUTE

BANGALORE-560 059

STATISTICAL

Z>» -0 Z—
"y
Mo C= 1 Z =

{

T dam cdan

[ UNITY IN DIVERSITY |

Indian Statistical Institute

December 2013






Dedicated

to

My Parents and Teachers






Acknowledgements

I would like to express my sincere gratefulness to those, whose stimulation, cooperation
and support made me successfully complete this thesis.

[ am greatly indebted to my supervisor Prof. B. Sury for his sincere guidance and
kind encouragement throughout the period of my research and for the academic freedom
I enjoyed during my work with him. I am grateful to Prof. Ravi A. Rao, TIFR Mumbai
for initiating me into this area of research and for his keen guidance and non-terminating
inspiration. This thesis would not have been materialized without their guidance and
encouragements.

I thank the referees for providing constructive comments and help in improving the
contents of this thesis.

I express my gratitude to the Indian Statistical Institute for providing me with a schol-
arship and its Bangalore centre for providing many facilities to pursue my research work
in the institute. I owe my deepest gratitude to my instructors at ISI Bangalore for guiding
me during my initial years of Ph. D.

Many thanks to each of my paper co-authors S. D. Adhikari, B.Sury and Ravi A. Rao
through my Ph. D. period. I express my sincere gratitude to Prof. G. Tang, UCAS, Beijing
for allowing me to visit him and spending time for discussing with me. I would like to
thank Dr. Rabeya Basu for useful discussions and encouragement. I am thankful to Dr. Viji
Thomas for his advices and encouragement during my Ph. D.

I would like to express my thanks to TIFR, Mumbai for extending hospitality and
providing me their facilities during my frequent visits.

I thank my friends for their support and encouragement. I acknowledge Kannappan



for solving my technical difficulties in LaTeX. I thank all my friends who supported me in
my difficult times.

I would also like to express my feeling of gratitude towards all my teachers.

Last but far from the least, I would like to thank my parents and sister for their constant
support and affection.

Above all T thank God, who has sustained me through these, the best and toughest

years of my life.

Bangalore, Ambily A.A.
December 02, 2013.



Abstract

This thesis discusses the K-theory of quadratic modules by studying Roy’s elementary
orthogonal group of the quadratic space Q L H(P) over a commutative ring A. We estab-
lish a set of commutator relations among the elementary generators of Roy’s elementary
orthogonal group and use this to prove Quillen’s local-global principle for this elementary
group. We also obtain a result on extendability of quadratic modules. We establish nor-
mality of the elementary orthogonal group under certain conditions and prove stability
results for the K; group of this orthogonal group. We also prove that Roy’s elementary
orthogonal group and Petrov’s odd hyperbolic unitary group coincides when the quadratic

modules () and P are free.






1

3

Contents

Introduction

1.1 Roy’s Orthogonal Group . . . . . . . . . .. .. ... ... .. ... ....
1.1.1 A Brief Historical Review . . . . .. ... ... ... ... .....
1.1.2  Preliminaries . . . . . . . . . ..
1.1.3 Elementary Generators in the Free Case . . . . . . . ... ... ..

1.2 Some more Definitions . . . . . .. ..o

1.3 Chapter-wise Summary . . . . . . . . . . . ...

Commutator Calculus in Roy’s Elementary Orthogonal Group

2.1 Commutators of Elementary Transformations . . . . .. .. ... .. ...
2.2 Triple Commutators . . . . . . . . . . ... . ...

2.3 Multiple Commutators . . . . . . . . . ... .

Local-Global Principle for Roy’s Orthogonal Group
3.1 Splitting Property . . . . . . . ...
3.2 Comparison of Roy’s Elementary Orthogonal Group with Other Groups . .
3.2.1 Roy’s Transformations as Eichler-Siegel-Dickson Transformations
3.2.2 Comparison between Roy’s Elementary Orthogonal Group and Uni-
tary Transvection Group . . . . . . . . . . .. .. ...
3.2.3 Comparison between Roy’s and Petrov’s groups . . . . . . .. ...
33 EOA(QLH(A)™)isperfect . . ... . . . .. ... ..
3.4 Local-Global Principle for Roy’s Elementary Orthogonal Group . . . . . .
3.5 A Local-Global Principle for EO(Q L H(A)™)-O(H(A)™). . . . ... ...
3.6 Action Version of Local-Global Principle . . . . . ... ... .. ... ...

co ot W w =

17
18
25
41

51
52
93
53



ii CONTENTS

4 Extendability of Quadratic Modules over a Polynomial Extension of an

Equicharacteristic Regular Local Ring 71
4.1 Some Known Results . . . . . .. ... ... ... .. . 71
4.2 Extendability of Quadratic Modules . . . . . . ... ... ... ... 74
5 Normality and Injective Stability 79
5.1 Main Theorems . . . . . . . . . . . . . . 80
5.2 Roy’s Elementary Group is Normalized by a Smaller Orthogonal Group . . 82

5.3 Normality of Roy’s Elementary Group under a Condition on Hyperbolic Rank 89

5.4 A Decomposition Theorem . . . . . . . . .. ... ... ... ... .. ... 90
5.5 Normality under A-Stable Range . . . . . . ... ... ... .. ...... 93
5.6 Stability of Ky . . . ... 97
Publications 101

Bibliography 103



CHAPTER

Introduction

In its most familiar versions, algebraic K-theory consists of the study of groups of classes of
algebraic objects. It focuses on a sequence of abelian groups K,,(A) associated to each ring
A which encode deep arithmetic information about the ring. The first of these is Ky(A),
the Grothendieck group which generalizes the construction of the ideal class group of a
ring, using projective modules. It is used to create a dimension for R-modules that lack a
basis. The group K; was defined by H. Bass, Ky by J. Milnor and, subsequently, higher
K-functors by D. Quillen and others. The group K;(A) generalizes the group of units of a

ring. The group K3(A) measures the fine details of row-reduction of matrices over A.

In 1976, D. Quillen and A.A. Suslin independently proved the famous local-global prin-
ciple to settle the question of J.-P. Serre as to whether projective modules over a polynomial
extension of a field are free. This principle demonstrates that a finitely presented module
over a polynomial ring R[X] is extended from R if and only if it is locally extended from Ry,
for every maximal ideal m of the commutative ring R. Later, J.-P. Serre related these ques-
tions with the question of efficient generation of ideals in polynomial rings. Over the years,
several new cases and versions of the local-global principle have been established. Related
to these is the dilation principle which says the following: Suppose a(X) € GL(n, R[X]) is
such that «(0) = I and a(X) € E(n, Rs[X]) for some non-nilpotent element s € R. Then
there exists some §(X) € E(n, R[X]) such that 5(0) = I and 5,(X) = a(bX) € E(n, R[X]),

where b € s'R, for some [ > 0.
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Localization is one of the most powerful tools in the study of structure of quadratic
modules and more generally, of algebraic groups over rings. It helps to reduce many
important problems over arbitrary commutative rings to similar problems for semilocal
rings. There are two well-known versions of localization: localization and patching as
proposed by D. Quillen in [43] and A.A. Suslin in [57], and localization-completion as
proposed by A. Bak in [12].

A. Roy studied a generalization of quadratic forms and their similarity groups over
projective modules in his Ph. D. thesis. In this work, we study these quadratic modules
and the corresponding orthogonal groups and establish extendability results. Towards that,
we establish a dilation principle and a local-global principle. We use these to deduce the
action version of local-global principle. We also prove normality of the Roy’s elementary
orthogonal group in the corresponding orthogonal group and a stability theorem for the
corresponding quotient group K. The analysis of these quadratic modules involves finding
suitable commutator formulae among the elementary generators of Roy’s orthogonal group.
The commutator relations turn out to be rather technical and we obtain these relations
by relating the elementary generators of Roy’s group to a different group studied by G.
Tang. We then verify them directly by hand, though a knowledge of the software GAP
(see [26]) helped in discovering their form in very small dimensions. We obtain several
such commutator formulae and apply them to the proofs of the above mentioned results.

To describe the results more precisely, let A be a commutative Noetherian ring in which
2 is invertible and let B be the polynomial A-algebra A[X7,...,X,] in n indeterminates.
Let @ = (Q, q) be a quadratic space over B and let Qg = (Qo, qo) be the reduction of @)
modulo the ideal of B generated by Xi,...,X,. In [58], A.A. Suslin and V.I. Kopeiko
proved that if @) is stably extended from A and for every maximal ideal m of A, the Witt
index of Ay ®4 (Qo, qo) is larger than the Krull dimension of A, then (Q,q) is extended
from A. In the doctoral thesis of R.A. Rao (see [44,45]), it was shown that one can
improve this result to Witt index at least d, when A is a local ring at a non-singular point
of an affine variety of dimension d over an infinite field. Moreover, a question posed at

the end of the thesis asks whether extendability can be shown for quadratic spaces with
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Witt index at least d over polynomial extensions of any equicharacteristic regular local ring
of dimension d. In this thesis, we give an affirmative answer to this question. The analysis
of the equicharacteristic regular local ring is done by a patching argument, akin to the one
developed by A. Roy in his paper [49]. This argument reduces the problem to the case of a
complete equicharacteristic regular ring; which is a power series ring over a field, provided

one can patch the information.

We show that the patching process is possible by establishing a local-global principle for
the elementary orthogonal group of a quadratic space with a hyperbolic summand. For this,
we follow the broad outline of A.A. Suslin’s method in [57] which leads to a K analogue
of D. Quillen’s local-global principle in [43]. Instead of using Suslin’s ‘theory of generic
elementary forms’, we follow the more ‘hands-on’ approach via the yoga of commutators.
For this, we first find an appropriate generating set for Roy’s group using a lemma of

V. Suresh in [55].

1.1 Roy’s Orthogonal Group

1.1.1 A Brief Historical Review

A. Roy defined elementary orthogonal transformations in [48] for quadratic spaces with a
hyperbolic summand over a commutative ring in which 2 is invertible. These transforma-
tions (over fields) are classically known as Siegel transformations or Eichler transformations
in the literature. These transformations (in matrix form) of quadratic spaces (V,q) over
finite fields was defined by L.E. Dickson in p.126, p.135 of [23]|, which is an unaltered

republication of the first edition (Teubner, Leipzig, 1901).

Later in [24], J. Dieudonné extended Dickson’s results to infinite fields. These orthog-
onal transformations (in matrix form) over general fields, also appeared in the paper [50]
of C.L. Siegel with an alternate interpretation in [51]. There he used it to define the
mass for the representation of 0 by an indefinite quadratic form. M. Eichler studied these
transformations of @) L H(k), where H (k) is the hyperbolic plane, in his study of the or-

thogonal group over fields & and made the first systematic use of them in his famous book
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“Quadratische Formen und Orthogonale Gruppen”, first published in 1952, and reprinted
in 1974 (Eichler credits Siegel’s 1935 paper for introducing these transformations in the
notes in §3, p.212 of his book, and also refers to the paper [51] of Siegel in p.218).

A. Roy studied C.T.C. Wall’s paper [63], who relied on Eichler’s book and rewrote the
transformations of Eichler appearing in Wall’s paper. In his doctoral thesis (1967), A. Roy
generalizes these transformations to any commutative ring R in which 2 is invertible. We
shall call these the DSER (Dickson-Siegel-Eichler-Roy) elementary orthogonal transfor-
mations or just Roy’s elementary orthogonal transformation group. A. Bak was aware of
Roy’s transformations which he mentions in the introduction of his doctoral thesis. A. Bak
and L.N. Vaserstein independently defined transformations over A-rings in their respective
doctoral theses which reminds us of Roy’s transformations. However, the groups generated
by these are not always comparable to the one generated by Roy’s transformations.

In [39], V. Petrov introduced a new classical-like group called odd unitary group over

odd form rings. This group generalizes and unifies all known classical groups such as the
quadratic groups of A. Bak (see [11,28]), Hermitian groups (see [11,33]), classical Chevalley
groups, and the group Us,i1(R) of E. Abe (see [1]). V. Petrov established normality of
the elementary subgroup of odd unitary group and surjective stability for odd unitary Kj.
In [39], Petrov describes the elementary subgroup of an odd hyperbolic unitary group.
We shall compare this group over commutative ring with Roy’s group in Section 3.2 of
Chapter 3.
We will see that Roy’s elementary group coincides with Petrov’s odd hyperbolic unitary
group over commutative rings! Indeed, we first verified that the former is contained in the
latter but realized later that the groups are the same. In other words, one may think of
our study of Roy’s group as a concrete realization of Petrov’s group. We can now ask the
question: Is the ESD group the correct generalization of Roy’s group to form rings which
is the concrete realization of Petrov’s group?

Let G be an isotropic reductive algebraic group over a commutative ring R. In [40],
V. Petrov and A. Stavrova introduced the notion of an elementary subgroup E(R) of the
group of points G(R). Let P be a parabolic subgroup of the reductive group G over R, and
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let Up be its unipotent radical. There is a unique parabolic subgroup P~ in G that is oppo-
site to P with respect to Lp. Then they define the elementary subgroup Ep(R) correspond-
ing to P as the subgroup of G(R) generated as an abstract group by Up(R) and Up-(R).
In [40, §7, Example 2], they state that the elementary subgroup Ep(R) of O (V, Q), where
V' is a projective module of rank 2n endowed with a nondegenerate quadratic form @),
coincides with the group generated by the so-called Eichler-Siegel-Dickson transvections.
Here O (V, Q) denote the kernel of the Dickson map (see [33]) from the orthogonal group
O(V,Q). As Roy’s elementary transformations can be realized as Eichler-Siegel-Dickson
transvections, Roy’s elementary group is contained in the above mentioned elementary
group.

However, we do not yet know if Roy’s group coincides with the group generated by ESD

transvections or not.

1.1.2 Preliminaries

Let A be a commutative ring in which 2 is invertible. A quadratic A-module is a pair
(M, q), where M is an A-module and ¢ is a quadratic form on M. Let M* denote the dual
of the module M. Let B, be the symmetric bilinear form associated to ¢ on M, which is
given by By(z,y) = q(v +y) — q(x) — q(y) and the induced map dp, : M — M* is given
by dp,(x) = By(x, —) for x € M. We say that (M, q) is a non-singular quadratic space or
q is a non-singular quadratic form if dp, is an isomorphism. A quadratic space over A is
a pair (M, q), where M is a finitely generated projective A-module and ¢ : M — A is a
non-singular quadratic form. Given two quadratic A-modules (M, q;) and (Ma, ¢2), their
orthogonal sum (M, q) is defined by taking M = M; & My and q((z1,22)) = q1(21) + ¢2(2)
for x1 € My, 29 € My. Denote (M, q) by (M1, q1) L (Ms,q2) and ¢ by ¢ L gs.

Let P be a finitely generated projective A-module. The module P & P* has a natural
quadratic form given by p((z, f)) = f(x) for x € P and f € P*. The corresponding bilinear
form B, is given by

By((21, f1), (22, f2)) = fi(w2) + fa(21)

for x1,29 € P and fy, fo € P*.




Chapter 1. Introduction

Definition 1.1.1. The quadratic space (P @ P*, p), denoted by H(P), is called the hyper-
bolic space of P. A quadratic space M is said to be hyperbolic, if it is isometric to H(P)
for some finitely generated projective module P. The quadratic space H(A) is called a
hyperbolic plane. The orthogonal sum H(A) L H(A)L--- 1L H(A) of n hyperbolic planes is
denoted by H(A)™.

Definition 1.1.2. Let ) be a quadratic space.
(a) @ is said to have Witt index > n if Q = QoL H(P), where rank (P) > n.
(b) Q is said to have hyperbolic rank > n if Q L H(A)* with k > n.
(c) @ is said to be cancellative if, for any quadratic A-spaces @)1, Q2 with
QLQ2 = Q1LQs, then @ = Q1.

FQLH(A) = Q LH(A) implies Q = @, then @ is cancellative.
Let @@ be a quadratic A-space and P be a finitely generated projective A-module. Let
M = @Q L H(P). This is a quadratic space with the quadratic form ¢ L p. The associated

bilinear form on M, denoted by (-,-), is given by
((a,z),(b,y)) = By(a,b) + By(z,y) for all a,b € Q and z,y € H(P),

where B, and B, are the bilinear forms on () and P respectively.
Let M = M(B,q) be a quadratic module over A with quadratic form ¢ and associated

symmetric bilinear form B. Then the orthogonal group of M is defined as follows:
Oa(M) ={o € Aut4(M) | q(o(x)) = q(x) for all x € M}, (1.1.1)

where Aut (M) be the group of all A-linear automorphisms of M.

For A-linear maps o : Q — P and 8 : Q — P*, the dual maps o : P* — Q* and
pt: P* ~ P — @Q* are defined as a'(p) = ¢ o a and B'(p*) = ¢* o 8 for p € P* and
p* e P,

We now recall from [48] that the A-linear maps o* : P* — @ and 5* : P — @ are defined

by a* = d;; ool and % = d]_gi o Bt oe, where ¢ is the natural isomorphism P — P**. These

6
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maps are characterized by the relations

(foa)(z) =B, (a*(f),z) for fe P",z€Q (1.1.2)
and (8(2))(z) = B, (8" (x),2) for z € P,z € Q. (1.1.3)

In [48], A. Roy defined the “elementary’ transformations F, and Ej of Q L H(P) as

Ea(z) =z+a(z) Ej(z) =z+0(2)
Eo(z) == Ej(x) =—p"(x)+ 2 — 386" (x)
Eo(f) =—a*(f) —za0*(f)+f | E5(f) =f

for z € Q,x € P and f € P*. In the same article, he also observed that these transforma-
tions are orthogonal with respect to the above quadratic form ¢ L p.
The orthogonal group of @ L H(P) is denoted by O4(Q L H(P)), where @ and P are

finitely generated projective A-modules.

Definition 1.1.3. EO4(Q L H(P)) is defined to be the subgroup of O4(Q L H(P))
generated by E, and Ej, where a € Hom(Q, P) and 8 € Homa(Q, P*). We call this group
Roy’s elementary orthogonal group and these transformations Roy’s elementary orthogonal

transformations.

Definition 1.1.4. For a ring R, an R[Ty,--- ,T,]-module M is extended from R if there
exists an R-module My such that M = R[Ty,--- | T,] ®g Mp.
More generally, if ¢ : B — C'is a homomorphism of rings and () is a quadratic C-space,

then we say that @) extends from B if there is a quadratic B-space )y with Q) = Qo ®p C.

In [43], D. Quillen gave the following remarkable local-global criterion for a module M
to be extended.

Theorem 1.1.5 (Quillen’s Patching Theorem). Let A be a commutative ring. Assume M
is a finitely presented module over A[T] and that My, is an extended An|T]-module for each

maximal ideal m of A. Then M is extended.
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1.1.3 Elementary Generators in the Free Case

In this section, we assume that P and @ are free A-modules of rank m and n respectively.
Then P and P* can be identified with A™ and () can be identified with A™. Let {z; : 1 <
i <n} be a basis for @, {g; : 1 <i <n} be a basis for Q*, {z; : 1 <i < m} be a basis for
P and {f; : 1 <i < m} be a basis for P*.

For a free A-module A" of rank r, we have the projection maps p; : A~ — A for
1 < i < r, which are the projections onto the " component and the inclusion maps
n; : A — A" for 1 < i < r which are the inclusions into the i** component.

For o € Homy(Q, P) and for 1 <i <m and 1 < j < n, let oy, ;; € Homyu(Q, P) be

the maps given by
a;:==mn;0p;oa and quj:=1n;0p; 0aomn;op;.

Clearly a = X%, a; = X2 3% o Then of, of; € Homs(P*, Q) are the maps given by

o = ()" =a"onop; and aqf; = (a;)" =n0p;0aon;op;.

Also, o =3 a7 =3 30 af;.

We can also see that these definitions of o} and «j; coincide with those obtained by
using a* = qufl o € Homu(P*,Q) for o; and ;.

Now we shall describe how the linear transformations F,,; and Ej are defined in terms
of the bases given above.

Let z = X" (diz € Q for some d; € A. Then, for 1 <k <mand 1< <n,

alz) = XpLbyzg for some by € A,
a(z) = XL YL dibyy,
Oék(Z) = Z?:ldlbklﬂik and Oékl(Z) = dlbkla:k.

For 1 <k <m, let wy = o*(fx). If f =X crfr for some ¢ € A, then ¢, = (f, zx) and

so o*(f) = X7 (f, xp)wi. If w = X7 2 for some y; € A, then wy = y12 € Q.
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For 1 <i,k <mand 1 <j <n, the maps o and oj;’s are given by

af (fu) = o (fr) =
0 if k£ 0 if k#£i
Let 8 € Homyu(Q, P*). Set f*(x;) = v; for some v; € (). Let v;; denote the element
nj o p;(v;). Now, by defining the maps 3;, 8;;, 57, B;; similarly and extending these to the
whole of Q L H(P), we will get the maps as follows:

ForzeQ,zeP, feP 1<i<mandl1<j<n;

aij(z, 2, f) = (0, (wi, 2)23,0), Bij(z,2, f) = (0,0, (vij, 2) fi)
ai(z,x, f) = (0, (wi, 2);,0), iz, ) = (0,0, (vi, 2) fi) ,
a(z,z, f) = (0, X% (w, 2)2,0),  Blzx, f)  =(0,0,5L(vi, 2) fi)
ajj(z, @, f) = ((f, 2i)wi;, 0,0) Bz, f) = ({2, fi)vij, 0,0),
a;(zx,f) = ({f,2i)w;,0,0), Bi(zx f) =z, fi)vi,0,0),

a*(z,x,f) = (2;11<f7 xi>wi7070)7 5*<Z,Z‘,f) = (E;n:l<xa f2>v17070)

With these notations, the orthogonal transformation £,,; of Q L H(P) for a € Homx(Q, P)

is given by the equation

By, (2,2, f) :(I — o+ i — %aija;) (z,z, f)
:<z — (f,zi)wij, © + (wij, 2)x; — (f, 2:)q(wij)x;, f).
The orthogonal transformation £ of @ L H(P) for 8 € Homa(Q, P*) is given by
B} (2,2, f) =<I — B+ Bij — %Bij,BQ‘J»)(z,x,f)
=(= = o dhv, 2 f+ (g2 fi = @ falwi)fi ).

The inverses of the orthogonal transformations F,,; and EE“ are given by the following:

For1<:<mand 1<) <n,

Bt (za f) = (2 4 (Fawiy, o = (wy, )i = (fxi)q(wy)as, f ),
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;) o ) = (24 oo, o, f = (.2 fi = (. fa(w) ).

Since @ and P are free modules, the elements of O4(Q L H(P)) can be represented as
matrices over A by choosing a basis for Q and P. i.e., we can identify O4(Q L H(P)) as a
subgroup of GL, 2, (A) and we shall denote it by O4(Q L H(A)™).

If Q and P are free A-modules of rank n and m respectively, then we have the elementary
transformations of the type E,,; and EEU for 1 <i<m, 1< 5 <n. We shall use these
generators and the relations among them to prove our results. We shall denote the group
EO4(Q L H(P)) by EOA(Q L H(A)™)

The following lemma gives a characterization of an element in the orthogonal group.

a b c

Lemma 1.1.6. An (n+2m)x (n+2m) matrizT = | d e f | belongsto Os(QLH(A)™)

g hj
if and only if either of the following two equations hold:

o 0 O
(i) TWT =, forv =10 0 I, |, where ¢ is the matriz associated to the bilinear
0 I, O
form B, and ) is the matrixz of the hyperbolic form on H(A)™
¢1At¢ ¢1Ht -1t A B C
(11> Ct¢ Kt Gt \D F G - I(n+2m)><(n+2m) .
Bt¢ Jt Ft H J K
0 I,
Proof. Let vy = L , where ¢ is the matrix associated to the bilinear form B, on
I, 0
0 I , . :
Q and be the matrix of the hyperbolic form B, on H(A)™. By equation (1.1.1),
I, 0

10
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it follows that "€ OA(Q L H(A)™) if and only if T*T = 1. That is,

adg ¢ 0 0 a b c ¢ 0 0
b e h 0 0 I, de f|=10 0 I,
c f j 0 L, O g h j 0 I, O
This equation is equivalent to the following set of equations:
a‘pa + glc + c'g = o, bfpa + hic + e'g = 0, clpa+jlc+flg = 0,
a'pb + g'e + c'h = 0, b‘yb + h'e + e'h = 0, c'ob +jle+f'h = I,
a'pc+g'f +c'j=0, b'ec + h'f + e'j = I,,, c'oc +j'f +f'j=0.

These equations are equivalent to the equation
o laly olgt old!
T7'T = I(nt2m)x (n+2m), Where T = cly jt ft . ]
bl h! el
This characterization helps us to prove normality. Also, we shall use the natural em-
bedding O4(Q L H(A)™) — O4(Q L H(A)™*!) of groups for proving normality. Using
this, define the stable orthogonal group and the stable elementary orthogonal group as

follows:
Oa= lim Ox(QLH(A)™) and

m—0o0

m—r00
Define KOy, (Q LH(A)™) = 04 (QLH(A)™) /EO4 (Q L H(A)™), which is a coset space.
The natural embedding O 4 (Q L H(A)™) — O, (Q L H(A)™!) induces the stabilization
map on the corresponding coset spaces.
1.2 Some more Definitions

In this section, we first recall the notion of generalized dimension function from [41]. Let
P C Spec A be a set of primes, N be the set of natural numbers and d : P — NU {0} be a
function. For primes p, q of P, define a partial order < on P as p < q if and only if p C q
and d(p) > d(q).

11



Chapter 1. Introduction

Definition 1.2.1. A function d : P — N U {0} is a generalized dimension function if, for
any ideal I of A, V(I) NP has only a finite number of minimal elements with respect to

the partial ordering <.

Definition 1.2.2. We say that (P, B) is an inner product space (IPS) over a commutative
ring R if P € P(R) (i.e., P is a finitely generated projective R-module) and B: PxP — R

is a symmetric bilinear form, satisfying the following “nonsingularity” condition:

For any f € P* = Hompg(P, R), there exists a unique m € P such that f = B(—,m).
(1.2.1)

Definition 1.2.3. Let f : R — R’ be a homomorphism of commutative rings. We say that
an IPS (P, B') over R’ is extended from the IPS (P, B) over R if we can write P/ = R'®g P
and B’ is given by

B'(r] @ my,ry @ mg) = rirh. f(B(my,ms)) (r; € R',m; € P).

An IPS (P}, BY) over R’ is stably extended from R if there exist IPS’s (Py, BY), (P5, BY)
extended from R such that

(P, By) L (P, By) = (P3, By).
See [36, Chapter VII] for more details on inner product spaces.

Definition 1.2.4. Let A be an associative ring with identity. A vector (aq,...,a,) with

coefficients a; € A is called right unimodular if there are elements by, ...,b, € A such that

a1b1+...+anbn:1.

Definition 1.2.5. The ring A is said to satisfy Bass’s stable range condition SA; in
the formulation of L.N. Vaserstein if, whenever (ay,...a;y1) is a unimodular vector, there

exist elements by, ...,b € A such that (a; + a;41b1, ..., a; + a;41b;) is unimodular.

It follows easily that SA; = SA; for any k > [.

12
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Definition 1.2.6. The stable rank of A, s-rank (A) is defined to be the smallest positive
integer k such that A satisfies SA;. If no such [ exists, then the stable rank of A can be

taken to be infinite. If A is a local ring, s-rank (A) = 1.

Definition 1.2.7. If V is an A-module and v € V', the order ideal of v is defined by
O(v) = {a(v)|a € Homu(V, A)}.

Let R be a ring with 1 and pseudoinvolution ¢ : R — R,a + a. Let A be a form

parameter in the sense of Bak.

Definition 1.2.8. The ring R is said to satisfy the A-stable rank condition A-SA; if
SA; <1 and for every unimodular vector (ai,...a;1,b1,...b1)" € R¥+2 there exists an
<l+1) X (l—|-1) matrix ﬂ WlthB = TﬁT and Tﬁm S A, such that (al, . al+1)t+6(b1, A bl+1)t S

R is unimodular.

In this thesis, we shall be dealing with the case A = 0. i.e., when the ring is commuta-

tive.
Let Hy, H, ..., H, be subsets of a group G. Then HyH,-...- H; denote their Minkowski
product HiHy ... - H. = {hihs-...- h.|h; € H;}.

Definition 1.2.9 (Patching Technique). Let Quad (R) denote the category of all quadratic
R-spaces. Given that ¢ : B — A is analytically isomorphic along a non-zero divisor s in

B, we can state that the corresponding square

Quad (B) — Quad (By)

J J

Quad (A) — Quad (Ay)

is cartesian.

Given @1 € Quad (By), Q2 € Quad (A), we denote their fibre product over an iso-
morphism o : Q; ® A, — (Q2)s of quadratic As-spaces, by either @)1 ®, Q2 or by a triple
(Q1,0,Q2).

13



Chapter 1. Introduction

Let Q = (Q1,0,Q2) be a quadratic B-space for some 0 € 04, (Q ® As). An element
£ € 04,(Q® Ay) is defined to be a deeply split orthogonal transformation if, for sufficiently
large integer N, one can split € as a product € = (1)s(e2 ® 1) with &; € O(Q;) for ¢ = 1,2

and g5 = I mod (s).

Definition 1.2.10. Let A be a local ring with maximal ideal m. We call A an equichar-

acteristic local ring if A has the same characteristic as its residue field A/m.

Definition 1.2.11. Let A be a local ring with maximal ideal m. A is said to be complete

with respect to its m-adic topology if the natural map from A to 1&1 A/m"is an isomorphism.

Definition 1.2.12. A regular local ring is said to be unramified if the characteristic of the

residue field is p # 0 and p is in m, then p is not in m?.

Notation 1.2.13. Let G be a group. For any z,y € G, the commutator of x and y is denoted

by [z,y] = zyz~ly .
1.3 Chapter-wise Summary

In Chapter 2, we state and give the explicit proofs of several commutator relations among
the elementary generators for the elementary orthogonal group EO4 (Q L H(P)), where A
is a commutative ring, @ is a non-singular quadratic A-space of rank n and H(P) is the
hyperbolic space of a finitely generated projective module P of rank m with the natural
quadratic form on it. We prove the commutator relations where () and P are free modules.
These proofs constitute the second chapter of this thesis and, are part of the preprint
named “Yoga of Commutators in Roy’s Elementary Orthogonal Group”.

With the aid of these commutator relations, we establish a “local-global principle” of
D. Quillen for the Dickson-Siegel-Eichler-Roy (DSER) elementary orthogonal transfor-
mations and a dilation principle. In this chapter, we also deduce an action version of the
local-global principle. These results will appear in Chapter 3 and are used in Chapter 4
to prove certain extendability results on quadratic modules. As an interesting by-product,
we realize from the yoga of commutators that the DSER group mimics G. Tang’s Hermi-

tian group (see [60]) in some features, and also the unitary transvection group of H. Bass
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1.3. Chapter-wise Summary

defined in [16] in some ways. We prove that the DSER group is contained in the ESD
group. We also compare the DSER group with Petrov’s odd hyperbolic unitary group
and show that they coincide when the projective A-modules @ and P are free and A is
a commutative ring in which 2 is invertible. In particular, the proofs of the local-global
principle, normality and stability that we give for Roy’s group yield proofs for the group of
Petrov over a commutative ring when the projective modules Q) and P are free.

In Chapter 4, we prove that a quadratic A[T]-module ¢ with Witt index (Q/TQ) at
least d, where d is the dimension of the equicharacteristic regular local ring A, is extended
from A. This improves a theorem of R.A. Rao who proved it when A is the local ring at a
smooth point of an affine variety over an infinite field. These results are part of an article
titled “FEztendability of quadratic modules over a polynomial extension of an equicharac-
teristic regular local ring” (see [5]). To establish this result, we apply the “local-global
principle” established for the Dickson—Siegel-Eichler—Roy (DSER) elementary orthogonal
transformations in Chapter 3.

In Chapter 5, once again we use the commutator relations of Chapter 2 to establish
the we establish normality results for DSER group and stability results for DSER group
under Bak’s A-stable range condition. In particular, we establish normality when m >
dim Max (A) + 2 and also when m > [ provided A satisfies the stable range condition 0-
SA;. This shows that the corresponding coset space K; is a group. We prove the surjective
and injective stability of K; under the O-stable range condition. We also prove the injective
stability for K of the orthogonal group under stable range condition. A useful tool in the
proof is a decomposition theorem for the elementary subgroup that we will establish on

the way under the usual stable range condition.

15






CHAPTER

Commutator Calculus in Roy’s Elementary

Orthogonal Group

For elementary groups, commutator relations are useful tools for establishing theories like
local-global principle, normality etc. It involves a large body of calculations which is
known as commutator calculus. The standard commutator formulas for GL,, was proved
by L.N. Vaserstein in [62] and independently by Z.I. Borewich and N.A. Vavilov in [20].
The commutator calculus for relative elementary congruence subgroups are done in [29-31].
These commutator relations are generalized to a Chevalley group G(R) over a commutative

ring R by A. Stepanov in [54].

In this chapter, we establish various commutator relations among the elementary gen-
erators of Roy’s elementary orthogonal group which were defined in Chapter 1. Obtaining
commutator relations is the key to establish the local-global principle and the normality
of the elementary subgroup in the orthogonal group we are looking at. We will use these
commutator relations to prove the local-global principle over a polynomial extension in
Chapter 3 and use them to prove the normality of the elementary orthogonal group in

Chapter 5 .

Most of the results in this chapter are from [4].
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Chapter 2. Commutator Calculus

2.1 Commutators of Elementary Transformations

In this section, we establish various commutator relations among the elementary generators
of Roy’s elementary orthogonal group. We will carry out the computations in two different
ways - one is by choosing bases (which we call the method using coordinates), and the other
by just using the formal definition without choosing bases (which we call the coordinate-
free method). We need commutator relations of length up to 16. By the ‘length’of a
commutator, we mean the number of words in the commutator expression. We begin by
recalling the definition of Roy’s elementary generators by both methods which was done
in the previous chapter.

The following is a coordinate-free definition of the elementary generators.

Definition 2.1.1. For # € Hom,4(Q, P) or Hom(Q, P*), define 6* as dgi of! or dg; oftog,
where ¢ is the natural isomorphism P — P** according to whether § € Homy(Q, P) or

Hom 4 (Q, P*) respectively. Then the elementary transformations Ey and E, ' are given by

E9:1+0—9*—%90*,

1
Ejf =1-0+06"— 500" = Eo)
We now recall the definition of elementary generators using coordinates from Chapter 1.

Definition 2.1.2. Let a,d € Homu(Q, P); 8,7 € Homyu(Q, P*) and w;, t;,v;,¢; € Q for
1 <i < m. Then, choosing bases {z;}1, {fi} ™, {z: }I", respectively for P, P* @), one can

define the following elements in Hom4(Q L H(P)).
Q5 (Z,:L‘, f) = (07 <wijvz>$i70)7 a/?j (Z,:L‘,f) = <<f7xi>wij>070):
5kl (Z,f[],f) = (07 <tkl7z>m/€70)7 6;l (Z,(L’,f) = <<f7xk>tkl>070):
5ij(27$,f) = (0707 <Uijvz>fi)v :}(Z,l’,f) = <<x7fi>vij7070)v

’Ykl(Z,ZL‘,f) = (anv <Ckl’2>fk)> 7]:[(27$vf) = <<x7fk>ckl70>0)'
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2.1. Commutators of Elementary Transformations

Here w;;, v;; denote the elements n; o p;(w;),n; o pj(v;) respectively and ¢y, t; denote the
elements n; o py(cx), m o pi(t), where p; is the j™ projection as defined in Section 1.1.3 of
Chapter 1.

Now, for 1 <4,k < m and 1 < 5,1 < n, the corresponding orthogonal transformations

Ea;s Es,s B, B and their inverses have the following form.

Ea,, (z,2, f) = (Z — ([, x)wij, x + (wiz, 2)xi — (f, 2i)q(wij) s, f>7

By, (2.0, f) = (2 = (fandtu, @+ (b 2)an = (Fa)alta)e, f).
Eﬁ (2,2, 8) = (2= Uuadvg, @, f+ (v, 20 = (o, falvg) ),
S ) = (2 = (rahen, @ f + o, )i = (@, f)alen) i),
Exl (v f) = (24 (Fmwy, e = (wg, 2 = {Feda(wg)as, ).
Byl (2, f) = (24 (fantu, o = (b, 2)a — {F anda(tia)an, f ),
B3, (zw.f) = (24 (i whvg, @ f = (0,20 = (@, F)a(o) £,
By (z2.0) = (24 (fetdou, @ f = (o) fu = (@ foalcu) fr).

The first (and the simplest) set of commutators which we compute is between elemen-
tary generators corresponding to two elements of Hom 4 (@, P); this is given in the following

lemma.

Lemma 2.1.3. Let o,6 € Homyu(Q, P). Then, for i,j,k,l with 1 < i,k < m and

1 < 4,1 < n, the commutator of the type [Eai].,E(;kl} s given by

[Eaij,E(;M] (z,x, f) :<I + Oy — ozijél’;l> (z,z, f)
=<27 T+ (f, @)ty wig)xr — (fs Te) (Wi, ta) s, f>'

In particular, if 1 = k, then [Eam E5kl] =1

Proof. For o, € Homu(Q, P) and for any 4,7, k,l with 1 < i,k < mand 1 < 5,1 < n,

using the coordinate-free definition of the elementary generators, we have the commutator
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Chapter 2. Commutator Calculus

relation

[Eaij,Egkl:| (z,z, f)
— EaijE(;klE;;Egj(z,x,f)
= B, By Bt (1= 8+ 6 - %5“5;;1) (2. 1)
= B, Es, ((I — S+ 0 — %5@2; — oy +aj; — %Oéz‘jafj - aij521> (2, , f))
= E,,, (([ —ai +aj; — %aijoz;kj — ;05 + 5k104fj>(2733, f))
= (I — ;0 + 5kla;‘j> (z,x, f).

Using coordinates, we may compute the above commutator as

[Eaij,Egk,} (z,, f)
— B, By, B! (z o)ty @ — (b 2Tk — (F 2 )q(te) T, f)
= Bayy B, (2 (fwiywy + (. 2ty @ — {{wy, 2+ (F,2)q (wy)
) (i, tu) s = { b0, 2) + (Frwndaltu) [, f)
= Ea, (2 + (faduwy, © = {(wy2) + qlwg)(F.23) + (frved (wig,t)
(@)t wi e, )
= (= o4+ (F) (s wihee — F e wy ), f).

If : = k, then we have
Oma;(z,x, f) = (O, (f, i) (i, wij)z, O) = ;0 (2, @, f).
Hence [Eaij,Eéﬂ] -y O
As a consequence of this lemma, we have the following commutator relations.

Corollary 2.1.4. For any i,j5,k,l with 1 < i,k <m, 1 < 35,1 <n and for a,b,c,d € A

with ab = cd, the following equation holds.

|:ECLC¥»L']'7 Eb(;]d] - |:Ecaij7 Ed(skli| .
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Proof. For o, € Homu(Q, P) and for any 4,7, k,l with 1 < i,k <m, 1 < j,Il < n and

a,b,c,d € A with ab = cd, we have

[Emz.j , Ebgkl} = [ — abay0f + abdya;  (by Lemma 2.1.3)

=1- Cdozij5;:l + Cddkl&;'kj = [Ecaijv Ed5kz]' .

We now compute the ‘mixed commutator’ of elementary generators corresponding to
elements of Hom4(Q, P) and Hom4(Q, P*). These also yield commutator relations. The
expression for the commutator as given in the proof of the lemma below may appear
complicated and we need only its special case ¢ # k. This special case can be deduced

after obtaining the general expression and specializing it.

Lemma 2.1.5. Let a« € Homa(Q, P) and € Homa(Q, P*). Then, for i, j,k,1 with

1<i,k<mand1l<j 1l <n withi#k,

|Boi B3| (2o, ) = (1= iy + Buoiy) (2,2.)
= (2, & — (@, fr)(Wij, vy i, [+ (f, i) (Ui, wij) f )

Remark 2.1.6. In the proof of the above lemma, we obtain an explicit expression for the

commutator in the general case which specializes to the given expression when 7 # k.

Proof of Lemma 2.1.5. For o € Homu(Q, P), 6 € Homu4(Q, P*) and for any 1, j, k, 1 with

1<ik<mand 1<yl <n with ¢ # k, we have the coordinate-free expression

[anEEk,} (z,z, f)
= Eo, B}, B, B (2,7, f)
= B, B3, B2} (1 Bt B — 2008t (2.0 1)
= EaijE;’kz <<I — B+ By — %Bkl@:z — Q5 + O‘zj - %aija;kj — ;B
— ;B — %&fjﬁm% + %@ij@z}ﬁkl + }laijc“:jﬁklﬁzl) (%2, f))
= Ba, (1 +afy = o}y - %a;;ﬂm;:l + B + %ﬁzzaw;’} + BBy
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Chapter 2. Commutator Calculus

1 1 1
—§5Zzaijafj5kz - Z@Zzaw;ﬂmﬁzl -y — 5@1';‘04%3 — i By

+§Oéij04;-kj5kl + Zaijaijﬁkzﬁkz + Briag; — BB + §ﬂklﬁklaij

_Zﬁklﬂklaijazjﬁkl + Zﬂklﬁklazjazj - gﬁklﬂklaijazjﬁklﬁkl> (2,2, f)>

= (I + B + §5k104ij04ij + BB — §5klaij@ijﬁkl — Zﬁklaijaijﬁklﬁkl
1

1
- 062}61@1 - 504;351@15;:1 - Oéz}ﬁkzafj + a%ﬁkzaz}ﬁkl - Eafjﬁkﬁ;z%]’
1

1 1
— Zafjﬁklﬁzlaiﬂfj + Z&fjﬂklﬁzlaijafjﬁkl + gafjﬁklﬁzlawafjﬁkl@z

— ;B + §@ij05;‘kjﬁkl + iaijarjﬁklﬁzl — Qo B — %&ijoé}kjﬁklﬁ;l

+ ij B + %aijﬂiz%a;} + i B ij B — %Oéz‘jﬂiz%afjﬁkl

— T30 B+ Puudy — BudiyBa + £ Bubiuos + BByl
_iﬁklﬁzlazja:jﬂkl - %mlﬁzl@iﬂé:jﬁklﬁ;z) (Za z, f)

Now using coordinates, we have

* * — w1
[Eaij’ Eﬂkli| (Z’ ) f) - EaijEﬁsz iEBkl (z7 Z f>

(&%)

= Bay By ot (2 (@ s @, £ = {{ow 2) + (o, fidalvw) | £ )
= Fuy B, (2 + {020 = o 2) oo 20) — (o Sid i midalon) b
+(, fu)vw, © - {(wij, 2) + {f zi)q(wig) + (2, fr) (Wij, ver)
—(ont, 2) (S, zi)q(wis) = {fo, mi)(x, fk>Q<wij)Q(vk‘l)}xia
f- {(Ukl,@ + <17’fk>Q(Ukl)}fk )
= Ba, (24 {{F0) = s D) = (@, ) Fe wi)a(on) o
o { (w2 i) + (o, ) (wig, vds o) + (£ i) @i, fida(wy)
—(vnt, 2)(fi 2i)*q(wiy) — (x, fk)(fkaIi>QQ(UkZ)Q(wij)}Ukza x
- {(wij@ + (@, fu) (wig, vm) + (f, 2i)q(wij) = (or, 2) (fr, i) g (wij)
—(z, fk><fkaff?i>Q(UkZ)Q(wz‘j)} i [+ {(wz‘j’zﬂxz’,f@qwkﬂ
+ (@i, ) (@i, fida(om)a(wiy) — (ow, 2) (i, fr) a(v)a(wyy)
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2.1. Commutators of Elementary Transformations

(i) (s wig) — (o, fi) (s fio) *a(or)a(wiy)
(o, 2) (o, i) (s, i)
= (= { w2 + (a Fod sz, o) + (£ 22)aCuwy)
= (U1, 2) (i, wa)a(wig) — (x,fk><fk,xi)q(vkz)q(w¢j)}<xz~, fe)vu
—{(vu 2) + (. (o) + s, S {ou wy)
— (Wnt, 2)(ort, wig) (@i, fi) + (i, ) (@i, fr)q(ve)g(wiy)
+ (wig, 2) (@i, fi)a(ow) = (vm, 2) (i, fi) *a(vr) g (wiz)
o i) (s i a(om)atwig) (o, fiws,
2+ { =, fi) o) = (ou 2) (e Fidawy)
— (@, fi) (@i, fr)q(wig)q (o) + (wij, 2) {or, wig) {fe, 73)
+ (, fio) (vrty wig)*) (o, fio) — (@ fio) (ot wis) (fie 23)*q(vr) g (wiz)
— (wig, 2){wi, fio)*a(ow)a(wig) — (@i, ) (i, fi) a(vr)a(w)®
(o 2) (s ) a0 a(wi)* + (@ ) @i, f)*ava)a(wsy))? fa,
£+ { i P fdalvnatwy) = (o, 2) (@ ) a(wa)alwy)
+ (fs i) (vee, wig) + (wig, 2) (23, fe)q(0r)
—(, fi)(zi, fi)*a(vm)q (wij)_<U7€l>z><vkl7wij><xivfk>}fk>‘

In the special case when ¢ # k, using the fact that (z;, fx) = 0, we obtain

[EaijaEEk,} (z,2, f) = (Za x — (7, fr)(wij, v) i, [+ (f, $i><vklawij>fk)-

Now agi (2,2, ) = (0, (. fi iy, v):,0), - Bualy (22, ) = (0,0, (F, 2idoms, wip) )

Hence if ¢ # k, then

Eayr B3, o ) = (200 = (o fidwg va)as, £+ (f@) o wi) fi)
= (1 = cwgBiy + Buagy ) (2. ). =
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Chapter 2. Commutator Calculus

The following corollary lists the resultant commutator relations from the above lemma.

Corollary 2.1.7. For any i,75,k,l with 1 < i,k < m, 1 < 5,1 < n, i # k and for

a,b,c,d € A with ab = cd, the following equation holds.

|:EaOlij? El;kﬁkl] - [Eco‘ij’ E;5k1:| )

The lemma below computes the commutator of elementary generators corresponding

to two elements of Homy(Q, P*).

Remark 2.1.8. For any i, j, k,l with 1 <4,k <m, 1< 5, ] <nandi # k, the commutator

-1
[Eaij, E;kl} is given by

[anEEM}l(Z%f) = (27 z + (@, fi) (wij, vi)i, | —(f, $i><vkl;wij>fk;>
— (I+ 0B — Buay) (2,2, f)
= [E;kl,Eaij] (z,z, f).

Lemma 2.1.9. Let 8,7 € Homu(Q, P*). Then, for i,j,k,l with 1 < i,k < m and

1 < 4,1 < n, the commutator [Ez;ij, E: | is given by

[Eg,ij, E:M] (z,z, f) = <I + B — Bz‘ﬂZz)(zaxaf)

= <Z> x, f+ (@, fi){cr,vij) fr — <l’,fk><vij,ckl>f¢>-

In particular, if i = k, then [E;ij’ Er =1

Ykl

Proof. For f,v € Homy(Q, P*) and for any 4, j, k,l with 1 <,k <mand 1 < j, 1 <n, we
have the coordinate-free expression
* * * * *—1 o —1
|:E/Bij ’ E’Ykli| (Z’ Ly f) - E/Bij E’Yszﬁij E’Ykl (’Z’ L f)
* * *k — * 1 *
- EﬁijE’Ysz/D’ij 1<<I (e e §/Vk:l'7kl> (Z, z, f))
= Ej B, <<f YtV — VeV Bij + Bi; — 5@':’@5 - ﬁz‘ﬂm) (2,7, f))

= 3, (1= s + 8 — 3585 — Bt + a8y ) (2.2, )
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2.2. Triple Commutators

= <I — Bijvm + %lﬁfj) (z,2, f).
Using coordinates, we have

B3, B3| = B3, B

Vil i Ykl

B, B (2. f)
= E5, B3, B3 (2 +{z, fr)ewm, @, f— (cw, 2) fi — (2, fk>Q(Ckl)fk>
= B5, B, (2 + (o fdow + (@ v, @, = {{vi2) + (@, fa(vy)
+(z, fk><vijackl>}fz‘ — {<0k1,2> + <$,fk>q(0kz)}fk>
= B3, (= + (e v, 2, £ = {(wg, ) + aloy) . £)
+(, fu)(vij, cm}fi + (z, fi><0kl7vz‘j>fk>
= (Z, z, [+ (x, fi){cn, vij) fe — <x,fk><vijackl>fi)-

If i = k, then

YBii(z, @, f) = (0707 (z, fi) (cri; vij) fr. — <I,fk><vij,ckz>fi> = Bij (2, 2, f).
Hence | B3, B3, | = 1. O

Y

Immediately, we deduce the following commutator relations.

Corollary 2.1.10. For any ,j,k,l with 1 < i,k <m, 1 < j, 1l <n and for a,b,c,d € A

with ab = cd, the following equation holds.

[E;Bij ) E;’Ykz] - |:E:Bij ) Esm] :

Remark 2.1.11. In the following sections, we will prove more complicated commutator
relations of lengths 10 and 16; we will show how the indices may be specialized so that the

commutator is non-trivial.

2.2 Triple Commutators

In this section, we prove certain triple commutator relations among the elementary gen-

erators of Roy’s elementary orthogonal group. We start with a commutator of length 10
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Chapter 2. Commutator Calculus

which involves a commutator of elementary generators corresponding to two elements of

Homy (Q, P).

Lemma 2.2.1. Let o, 6 € Homu(Q, P) and 8 € Homyu(Q, P*). Then, fori, j, k,l, p,q with
1 <ik,p<m, 1< jl,qg<nandk # p, the triple commutator [Egm [Eakl,E(;qu 18

given by
EAkj [EEU’ Exﬂ} it i=p,
[E;ija [Eakm E6pq:|:| = Eﬁpj |:EEZ7 Esm] if 1= k‘7
7T
I if i#pandi#k,
where A\yj = oy Bij and &5 = —0paty By

Proof. For a,§ € Homy(Q, P), 8 € Homu(Q, P*) and for i, 7, k,l,p,q with 1 < i, k,p < m,
1<4,l,qg <n and k # p, we have

[Eas Bs) (2,2, 1) = (14 00y — aady, ) (2,2, f)
= (= @+ (20 oy wiady = (.20 (g wia), S ).
(by Lemma 2.1.3)
[Bo Byl (2,2, f) = (B o] (2,2, f)
— (1 = Gpaia + awidy, ) (2,2, )
(2 & = () s i), + {F,2) by wi)ev, S ).

(by Lemma 2.1.3)

Hence we get the coordinate-free expression

* * *_1 —1
|:E5ij7 [Eak“ E5qu (Z’ L, f> - Eﬁz‘j [Eakw E5pq} Eﬁij [Eaku E5pq} (Z7 Z, f)
- EEU [Eakﬂ E‘;pq} E;;l ((I + aklé;q - 61711@]:[) (27 X, f))
* * * * * * 1 *
- Eﬂij [Eow E5pq] ((I + ﬁij + ﬁijaklépq - Bijdpq@kl — Bij — 5513@]

+Oékz5pq — OpgQgy — §Bijﬁij04kz5pq + 551‘;‘5@55;7(10%1) (2, f))
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2.2. Triple Commutators

— 55, (1 85+ 85— ﬁlﬁ@w + BLandl, — @J B,

1 * * * *
+ 50150001 + Cradp i + 0%15 B35 Bij — q%zﬁm@]
— OpgQty B — O‘kl5 BZJ/BU paCh; — 25pqakzlﬁl]6makl5

—|—%@kl(5 i B0, + —(San,:lﬁijﬁjj(Spqazl — ﬁ;}@,qazl) (z,z, f))
<I+B TeNT %Oékl(s o315 B5;0pg 0t + Bz]ﬁwaklé*
3083 Buy — 500 B BigoniSly + auiSly
- éapqazl@jﬁz;émazl — 58580t — S0
~ Bt~ 5O 0SB Bond ) (. )
(2.2.1)

On computing using coordinates, we get

B (B B | (220, 1) = By [Bauss Byl By [ Biyy) ™ (2,2, f)
= B}, [Buws Ba) B, (5 % = (£.20) by wr),
(.2 (s wi), f )
= B}, [Bas By, (2 {5 2) s wiad v, )
(.21 (s W S+ (. ) Jigs@ = (F 00 s w0}
 {Frp) b widans | = {2ty wia) o, i) ()
sk s wia)a(vig) + {2, [)a(vig) + (v, 2) | i)
= B3, (2 {48 20t ) (tpar ) = (F, 20 (@ s w)
(o f) o, @ = { @ F)a() + @o S (F.30) (s wi)a(v)
v, 2) = () s £ s 0)a(0i) [ 22 (s w00},
+ {<Uz‘j7 z) + (@, fi)q(vig) + (f, o) (T, £i) (Epgs W) q(vig)
(@ ) i) s W) 0035) i) s 1)
f- {(%fi)qwz’j + (@ i) (s 2p) (tpgs wra)q(vij)
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Chapter 2. Commutator Calculus

(04,2 = (s £ s wia)a (i) | i)
= (=4 {0 20) (s £) = CFs 20w, 1) ity b,
T — {(vzj, 2) + (@, fi)a(vig) + (i, ) (f, 2p) (tpg, wia)q (Vi)
(o ) 28 s w0r0)a (Vi) (i ) s i)y
+ {(vzj, z) + (fi, 2)q(vig) + (fi xu) (f, 2p) (bpg, wia)a(vi)
~Fo k) (o Wty 0 (035) i ) (s ),

P { P i) = (o) i) s witdav) )
(2.2.2)

Now, for Ar; = audy, fi; as in the statement, we can describe the maps Agj, A}, %)\kjk,’;j

and the elementary transformation Ej, ; as

Nz, f) = andi Bz, £) = (0 (03, 2) (Fis ) (Wit ) 21,0,
Mgz ) = Bbpaia(z . ) = (U 20 (g wiad (s fi)3g,0,0).
SN2, ) = (0.0, 0o ) s a0, 0),
By, (2,2, f) = (1 + g — AL — %Am;j) (2,2, f)
= <Z = (fs @) (fis @) (Wi, tpg) Vi, @ + {(%‘7 2)
(o) fisp) (Wi a)a(v3) b, f ).
If i # k, then, by Remark 2.1.8, we have
|Biy Bay | (o f) = [Ex,;j,EEij]_l(z,m,f)
= (1 3B, + b)) (2. f)
= (=2 @+ (@, F) o) (00, tr) a0 ),
F = {F o) (Fos ) i a0 )

and hence we get

Bay | Bayr B | (2o, £) = (14 Mg = Ny = 5h0y = 5850 + 5085 (., f)
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2.2. Triple Commutators

= (Z = (f, o) (@, fi) (tpg> Wha) Vi, © + {(fz, 2)q(vij)
= F i) o @) s W) (i) + (035, 2) Pl )

(Sivan)is | = (£ 20 o) (g o) (0) ). (223)

Similarly, if 7 # p, we have

B, (B, o] (1) = (T 65 = & = 366 = 5506 + 5685 ) (2,2, f)
= (== (e, £ oy widvig, o + { (i )a(vy)
— () s ) (s i) (034 (035, 2) (b, )

(fisam)ans f = (foa) fom) s wda(o) ) (2:24)

We now consider the following possible conditions on the indices.
Case (i): i = p.
If i = p, then, by Equations (2.2.2), (2.2.1), and (2.2.3), we have

(B (B Ba) | (o 1) = (1= 100000+ by B + 500054835 = 5 BpiB 000

0 ) (2.
= (= = (Fou) s wra)vps, @+ { (g2 2) = (F20) s i) (0)
s 2)(005) b wit) s | = {Fs 20 gy i) a(03) )
= Bn,, | B3, Bay | (0.
Case (ii): i = k.

If i = k, then, by Equations (2.2.2), (2.2.1), and (2.2.4), we have

[E/Bij, [Eays Eapq” (2,2, f) = (I + Br;id,, + §5kj5kj04kl5pq - §5pq%zﬁka‘ﬁkj
* 1 * * *
—0pq 0y Brj — §5pqak15kj5kj0‘kl5pq> (2,2, f)
= (24 (. 20) s W) vy, @ = {001y 2) + (£, by wiada(01)

+(z, fk)qwkj)}@pqawklﬂpa f+{f, $p><qu7wkl>q(vkj)fk)
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Chapter 2. Commutator Calculus

— B, [EﬁkE%] (2,2, f).
Case(iii): i # k and ¢ # p.
If i # k and i # p, then, by Equation (2.2.2), we have
[Egij’ [Eakl’E‘Spq” (Z,Z',f) = [(Z,{L', f) O

As a consequence of the above lemma on triple commutators, we observe the following

commutator relations.

Corollary 2.2.2. For any i,7,k,l,p,q with 1 < i;k,p < m, 1 < jl,q <n,i+#k and
k#p and a,b,c,d, e, f € A with abc = def and a*bc = d?ef, the following equation holds.
Bt [Brosss Ees) | = | By [Beorss g |-

Proof. For any 4,7, k,l,p,q with 1 < i k;p <m, 1< j,l,¢g <n,t# kand k # p and

a,b,c,d,e, f € A with abc = def and a?bc = d*ef, we have
[E;Bz-ﬁ [Ebakﬂ Ec(;pqﬂ (z,z, f) = (I — a2bcﬁfj5pqa}zl + abcag 0y, Bi; + %a2bcakl5;qﬁijﬁfj
—%a%cﬁijﬁfﬁpqazl — %aszCzaklézqﬁijﬁfjépqazl) (z,z, f)
= (1 = def 80,0 + de oy B + %d% Feuadsy 855
—%d% £ 8538 8pg0tf — %d%z P8y, BBk ) (2., f)
_ [E;;Bij, [Emkl,EﬁmH (2,2, f). O

The following lemma on triple commutators involves a mixed commutator.

Lemma 2.2.3. Let o, 6 € Homu(Q, P) and 8 € Homyu(Q, P*). Then, fori, j, k1, p,q with
1 <u,k,p<m,1<jl,q<nandk # p, the triple commutator [Eaij, [EékuEquH 18
given by
E/ch |:Eo¢ij7 E“ﬂ} ’ if = b,

2

B [P B3| -
1 if 1=k or 1#p,

where fig; = Oy, 0ij-
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2.2. Triple Commutators

Proof. For a,d € Homu(Q, P), 5 € Homu(Q, P*) and for 4, j, k,l,p,q with 1 < i, k,p < m,

1<4,l,qg <n and k # p, we have the coordinate-free expression

| Ess By, | o, 1) = (14 Bl = 0By ) (2,2, )
= (2 &= (o, fo) b, vpadns £+ (F 20t v) ).
(by Lemma 2.1.5)
| Ess Bpy, | (202, 0) = | B, B (5, )
= (2 @+ (o fdltua vpdan, £ = (Fr 2t v ).

(by Remark 2.1.8)

Hence we get

[Eaij’ |:E6kl’ Egpq]} (Z Z f) Eau Edk” Egpq E;i [E5k17 Egpq} (Zv Z, f)
= Ea,; E&w Egpq Ec:i <<] — Bpglia + 5kl/8;q> (2,2, f))

— Fasy | B By | ((1+ 0 = alyBoadia + 0w, — e

_;O‘w — BpgOr + ;O‘mazjﬁpq kl)(z x f))
= B, (T + a3y — B — 0+ 5005003 Byabi
+ (5klﬁ;q@ij - léklﬁzq@ija:jﬁpq(szl = 01 B OktBg
B0y — BBl — 3050 ) (2., )
= ((I — @ BpgOrs + 5 Bpg i BpgOry + Eéklﬁ;qaija:j
- 5k15;q5k15;q - %5klﬁzqaija:jﬁpq5;;l
— Brg01iBpaiy + %O‘ija:jﬁpq‘SZzﬁpq‘SZz + Ok1 By i

—%aijafjﬁpq5:l> (z,x, f)) (2.2.5)

Now if we use coordinates, we obtain

|:Ea¢j7 [Egkl’E;pqu <Z7$7f) = CM” |:E5k17E18 :|E o |:E5kluEﬁ ] (Z7x7f>
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Chapter 2. Commutator Calculus

= Buy | Bs B3| Bal (5 @+ (o Syt tpa) o, £ — () (bt v
= Bayy | Bous B3y, | (24 (@i = (£, 0t vpa) s i), @
= (wij, 2)ai + (@, fp) (ks Vog)Tne + (f s ) (rts Vpg) (S, i) a(wig)
—(fowidalwi e, | = f o) s )
= Boy, (=4 { (f13) = (F10) (s ) s ) prog = { (i, 2)
(o aawsg) + (£ ) b v (Fys i) g w3)
o { {wigs 2) = (Foad i, fylltuss o) g+ wda(w) }
(6, P trts )t £ = () (bt 00 (Fy 20
= (== (o) bt o) U g, + { (F ) lay)
(w5, 2) = F 00 (s ) (i F)(wi) s )

(@i fo)an = (o) (s s Fyda(wi)os f). (2:2.6)

The maps ik, f %,ukj pr; and the elementary transformation E;’;k]_ are given by the fol-

lowing expressions.

i (2,2, f) = 0 Bpyciij(2, 2, f) = (0, {wij, 2) (trt, Vpg) (Tis fp) 2k, 0),
:ultj(za xz, f) = a}kjﬁquSZz(Za xz, f) = (<f’ xk><tkl’ UPQ><xi7 fp>wij7 07 0)’
1

_,uijZj (Z, xz, f) = (07 <fa xk><tkl> qu>2<xi> fp>2q<wij)xk> 0)7

2
* s 1 *
E,ukj(zaxaf) = (I_l—/’bk’] — Mg — §lukjluk]> (sz7f)

= (2 — {fs ) (ht, Vpg) (@i, [p) Wi, T + (Wi, 2) (Ert, Vpg) (Tis fp)Tn

- <f> $k><tkl,qu)2<Ii7fp>2(J(wij)3?k, f )

If 7 # k, then, by Lemma 2.1.3, we have

1

1
[Eaij,Eﬂ%} (Z,l’, f) = (I + 5/”@]‘052} - 5051'3'/14]:]') (Z,ZE, f)

= (= + (o) bty ) (@i fyda i = (Frond b, vy (i ) g, f
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2.2. Triple Commutators

and hence we get

1 1
Eukj |:EOéij7E%:| (vavf) - ([ + Hrj — ,u}:,] - %Mk;]/ﬁ;] + élukja;kj o iaijﬂ2j> (27.27, f)
=<Z — (s @) (ht, Upg) (@i, fp)wig, @ + {(f, i) q(wij)
o (i 2) = (Foon) bt ) i Fp)a03) ()

<'Iia fp>xk’ - <f7 xk><tkla qu><x’i7 fp)q(wm)x'w f) . (227)
We now consider the following possible conditions on the indices.
Case(i): i = p.
If i = p, then, by Equations (2.2.6), (2.2.5) and (2.2.7), we have
* * * * 1 * *
[Eaij, [Eakl, Egqu (z,2,f) = ((I — 0 BpgOps + Okt Bpgij + §5klﬁpqaij0‘ij
1 * * * 1 * *
—§5klﬁpqaijaijﬁpq5kl - §az‘jaij5pq5kl
0l BouSialadia ) (2, )
= (Z — (s ) (Chts vpg)wig, @ + (wij, 2) (ks Vpg) T
+ (fs @) (bt Upg) @(wig )z — () (b, vpg) @ (wig) w3
—(f, k) (tht, Vog) *q(wiy ), f>
= Eﬂkj |:Eozij7 E%} (Zv L, f)
Case(ii): i =k or i #p.

If i = k or ¢ # p, then, by Equation (2.2.6), we have

[Eaij, [E5 EﬁH (2,2, f) = I(z,2, ). O
We now deduce the commutator identities from the above lemma.

Corollary 2.2.4. For any i,7,k,l,p,q with 1 < t,k,p < m, 1 < j,l,qg <mn,i# p and
k#p anda,b,c,d, e, f € A with abc = def and a*bc = d?ef, the following equation holds.

|:ECLO¢Z']'7 |:Eb6kl7 E:ﬁquH = [Edaij7 |:Ee5kl7E}<‘qu:|i| .
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Chapter 2. Commutator Calculus

We now compute the expression for the triple commutators which has a mixed com-

mutator.

Lemma 2.2.5. Let o € Homyu(Q, P) and 5,y € Homa(Q, P*). Then, fori,j, k1, p,q with
1 <i,k,p<m,1<jl,qg<nandk # p, the triple commutator [Egij, [Eakl,Ej;qu 18
given by

E* [E;ij,Eij], it i=p,

|:Egz‘j’ |:Eak’l’ E;pq]} - i
1 if i=k or i#p,

where Vp; = —Ypa0g; Bij -
Proof. For a € Homu(Q, P), 8,7 € Homu(Q, P*) and, for i, j, k., [, p,qwith 1 < i, k,p < m,
1<4,l,g <n and k # p, we have
(B B2, (2o0) = (1 2ttt = 0o ) (2,2, )
= (20 &= (o, fod{epm wna)n, £+ (Fo) (e wi) )
(by Lemma 2.1.5)
Bavis B2,,) 7 (22 ) = (1= pattiy + aniny ) (2, )
— (20 @4 (@ o) (s W), | = (o 20) (s Wiy ).

(by Remark 2.1.8)

Hence we get the following coordinate-free expression.

b -1
* * * % *—1 *
[Eﬁiy" [Eakl’ E’qu“ <Z’ Z, f) - E/Bij Eakl’ L Eﬁij |:Eakl7 E’ypq:| (Z, €z, f)

Tpa |

:Eakl, Equ: EE_; ((I — Vgl + aklfy;q> (z,x, f)>

=Ly, :Eakl’ E:pq: (([ — Vpg QU + iV, — Bij + B3
—%ﬁz‘jﬁfj + B0, — %5ijﬁ;jakl7;q> (2, f))

= kg, ((I — Bij + B — 551‘3‘@]' + B350V pg — éﬁijﬂij@kﬁpq

_ *

- E/Bij

* * * * * * *
= Ypg Qi Bij — Q1Y pg Okl Vpg — Vpaki Vpart — _7anklﬁijﬂij
2
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2.2. Triple Commutators

1 * * *
——qu%zﬁij@jakwpq> (2,2, f))

2
* * * 1 * *
= <<I + B0 Ypg — Tea®iPij — 5 VpaiBii By
1 * * 1 * * *
+§6ij6ijakl’ypq - élypqaklﬁijﬁija/kl/y};q) (2, , f)) : (2.2.8)

Now, by computing using coordinates, we have

B | o B | = By | Bouis By, | B | B B }_l(z,x, f)
= B, | B B3, ] B3 (2 4 (o, £ 0i)is £ = (.20 (o 0n0) )
= Ep,, Eakw E:pq- (z + (fis @)vig + (2, fp){Cpgs W) (T, fi)vij, T
+ (@, fo)(cpgs W), f — iz, 2) fi = (fs ) {Cpg, wia) fp — (2, fi)a(vis) fi
(@ ) epas wid) (wn, Fa(vig) )
— B, (2 (oo m)vig + (. fy) o, widlan, fidvg, @, f = (vig, 2)
— (@, fi)a(vij) fi — (@, fp)(Cpg» wia) (i, fi)a(vij) fi
— (Vij, 2)(Cpgs k) Tk, fi) fp — (2, fi) (Cpgs wia) (T, fi)q(i) f
(2 fo) (o 0 (n, S0 (035) )
= (= + (2. Sy M ey widaw, fivi, @, f = { (&, fidawy)

+(vij, 2) + (@, fp){Cpg> Wit) (T, fi>Q('Uij)}<Cpq7wkl><xka fi) fo

(@, fp)(Cpgs wrt) (i, fi>Q(Uij)fi>~ (2.2.9)
The maps v,; in the statement of the lemma, as well as the other maps v, éz/pj v,; and

the transformations Ej —are given as

i (21, f) = = Ypaiaig (2, ) = (0,0, =(viz, 2) s wia) i ) )
iy 2o, £) = = By (52 0) = (=, o) s i) (i 20)035,0,0).
S, ) = (0,0, . By e w2 a0 ).
B, (2, f) = (T4 vy = ;ym i) (2,2, f)

= <Z+ <x7fp><cpq7wkl><xk7fi>vij7 T, f - <Uij7z><CPQ7wkl><xk7fi>fp
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Chapter 2. Commutator Calculus

(o, fo) oy 0 (s £)20(033) ).
If 7 # p, then, by Lemma 2.1.9, we have
1 1
[EEU,E"Z%} (z,z, f) = (I+ iypjﬁ;‘j — éﬁz’jV;j>(Z,$, f)
= (= @ £+ (@ £y g wid) , F)a(v)
= (. S} Cpas wnt) (w, fYa(v33) fy)

and hence we get

1 1 1
E,fpj [E;ij, Eﬁ%] (z,x, f) = <I + Vpj — Vi — §ijl/;j + 3 wiBij — §6ijV;j>(Z, z, f)
= <Z+ <$a fp><cpquwkl><xk7fi>vij7 x, f— {<$afi>Q(Uij
(v 2) (@, B {par W) (s £)a(035) ey W)

<xk7 fi)fp + <$= fp><cpqa wkl><1’k7 fz’>Q(Uij)fi>- (2-2-10)

We now consider the following possible conditions on the indices.
Case(i): i = k.
If i = k, then, by Equations (2.2.9), (2.2.8) and (2.2.10), we have

* * * * * 1 * *
[Eﬂijv [Eakl’ EquH (2,2, f) = ((I + Bz'jakl’qu — VpaBij — §7pqak15ij5ij

o BBnns — 3 BB en ) (2 1))

= (=4 (@ £o) (Cons Wit @, f = (v Do i) fy
+ (@, fo) (pgs wrt)q(vig) fi — (2, Fyp)(Cpgs wra)*q(vis) £
— (. £ eps wia(vi) )

- B [E;ij, By } (2,2, f).

Case(ii): i =pori #k.

If i = k or ¢ # p, then, by Equation (2.2.6), we have

5 | B B )| (o ) = 1z, ), O
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2.2. Triple Commutators

The set of commutator relations we deduce from the above lemma is given in the

corollary below.

Corollary 2.2.6. For any given 1,7, k,l,p,q, where 1 < ¢, k,p <m, 1 < j5,1,q <n such
that i # k and k # p and a,b,c,d,e, f € A, [E;Bij, [E{fm,Empq” = [E;Bij, [EZW, Efam]]
if abc = def and a*bc = d?ef.

Finally, another triple commutator is computed in the following lemma and the com-

mutator relations which follow from this are stated in the corollary below this lemma.

Lemma 2.2.7. Let o € Homyu(Q, P) and 5,y € Homa(Q, P*). Then, fori,j, k1, p,q with
1 <ik,p<m, 1<y l,qg<nandk # p, the triple commutator [E%., [EEM,E;MH 18

given by

E;Ykkj {Eau’Et'kj} if =p,
B [ B )| =

1 if 1#pandi#k,

{EQE} it i=k,

where My = ﬁkl’y;q(xij and Vp; = YpgBictij-

Proof. For « € Homa(Q, P), 5,y € Homa(Q, P*) and for i, j, k,l,p,q with 1 < i, k,p < m,
1<4,l,qg <n and k # p, we have

(B3 B2, ] o £) = (1 aB = B (2,2 f)
= (20 @ o fidewarvia)Fy = (@ 1) (v, i)
(by Lemma 2.1.9)
(B B3] ) = [, B )
(1 = ol + Burgy ) (2,2, f)
(2 0 F = @ S leps oud o+ (. Jy) 0 o) )

(by Lemma 2.1.9)
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Chapter 2. Commutator Calculus

Hence we get

[E%" [E;kl’ E;qu (2,2, f) = Ea,
= B,
= B,

* * * *
- O‘ij%qﬁkl + Oéijﬁkﬂpq +

_Eﬁkl )

_Eﬁkl )

_|_

2

_E;kl ’ L

VTpq |

E*

E*

*

1
* *
_aijaij’yp(IBkl -

| -1 *
Eaij [Eﬁkz )

] |

_ E;; ((I — YpaBi + Bm,i}) (z,, f))

] |

E*

VTrq

| )

(1= paBis + By — g +

1
* * *
Eaijaij%qﬁkl - ij

—OéijOé

2

1 * *

1
= Eaz’j <([ — Oéij + Oé;kj _

* * * * *
5 Qi %ij — Vet + G Bk Vg

* *
27pq5k10‘z‘jaij

* *
§aijaij6kl7pq -

1 * * * 1 * * * *
+ §7pq5klaijaij'7pq5kl - §’quﬁklaijaijﬁkl7pq + Bkl’quaij

1 * * 1 * * * *
+ §ﬁkl’7pqaijaij - §ﬁk17pqaijaij7pqﬁkl — VpaPri i

1 * * *
+§5k17pq06ij%j5kﬂpq> (2,2, f))

* * * * 1 * * *
= ((I + O‘ijﬂkﬁpq - O‘ij’ﬁ?qﬁkl + §7pqﬁklaijaij7pqﬁkl

1
* * * * *
+ iaijaijﬁkl’)/pq - §7pq6k105ij05¢j6k17pq
* k * * *
- §O‘ijaij7pq6kl + BriVpgis — §7pq5klaijaz‘j

1 * * * 1 * *
- §5kl’7pq0ﬁj%ﬂpqﬁkl + §5k17pq04ij04ij

* 1 * * *
—VpaPrij + §5k17pq04z‘j0%j5k17pq> (2, , f)) :

Computing with coordinates, we get

[Eaij’ |:Eg)kl’ E:;pqi|:| (Z’ z, f> - Eaij

_E/J’kz )

_Eg’kz ) E

E*

7pa |

*
Tpq

+(, fp) (Vkt, Cpg)

= E,,

_E/J’kz )

(2.2.11)

. 1
E;! [E;M, EV} (2,2, f)

- oni <27 Z, f_ <'T,fk><cpqukl>fp

)

E*

7pa |

| (=4 {0020 = (@ 1) (e v 1)

@ ) e via) (@i, i) fwig, @ = {(wi 2) + (fowida(wy)
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2.2. Triple Commutators

— (2, fi) (Cpqs 1) (i, fp)a(wig) + (@, fp) (Cpg vii) (i, fi)
a(wig) fis £ = (@ ) s v fo - @ Sy s ) )
= Ba,, (= + {2, FoMeps tudas, fi = (@, £ (cpny vua) (@i, 1)
(o) fwig, @+ { (@ ) vi) (@i Fy)alws) = (wy,2)
—(foada(wy) = (@ ) (e v i, fidalwy) fa
£+ {4, fdems vd s, fida(wis) + (wi, 2) + (F2i)a(wyy)
(. i) (s vu) (@1, Fy)a (i) i b @i Fy e via) f
+ {2 fidlews v o fo)a(wsg) = (wiss 2) = (F.23)a(wy)
(@, ) Cpas o, F)a(wig) i, fid oy via) )
= (24 { @ fo) @i, £o) = (@, Fidais o) (s via)ws,
2+ { (o, Fo) @i £) = (@ i) (@i £3) e o)
alwi)zi, f+{(wy 2) = (o, fi) s via) (@1, )
q(wi;) + (f, zi)q(wiz) — (2, fo)(Cpg, Vi) (23 f)
a(wig) P @i, fy} e via) i+ { (@ £ s )
(@i, fo)a(wij) — (f, zi)a(wiy) — (wiy, 2)

— (@, fp)(Cpgs via){(Ti, fk>Q(wij)}<«Ti, fi) (Cpas Ukl>fp)-
(2.2.12)

The transformations ny;, 75, %nkjn,f,j and E;kj are given by

My (2,2, F) = Burpgoig (2, £) = (0,0, (g, 2){epr v (fys i) ).
iy (. 2.0) = a8z 2 ) = (@ Fedleps o) U, 0,0)
St ) =(0,0, (o, ) era )y a(w) ).
By 2y, £) = (2 = (@, il o viad iy fo)wig, @, f + (w35, 2) oy via) (@i )

—(a Fed ey v (i, £ 0w ).
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Chapter 2. Commutator Calculus

If i # k, then, by Lemma 2.1.5, we have

bl 1) = (14 oy — sogny) (2.2, )
= (= @ = (@ ) e vidai, fr)alw)ai,

I (f, 2i){cpg, via) (T, fp>Q(wij)fk>

[EOCM )

kj
2

and hence we get

T, 1,1,
5 Mki kg + 5"k %ij = —Oéijnkj> (z,2, f)

E:; [Eam?EnkJ](Z?x?f): <I+77kj_771:j_2 2
= ( 2 = (@, fi)(Cpg, Vi) (@is fp)wij, & — (2, fi)(Cpq, Vka)
(@i fhatwi)as, £+ { (w2 + (Fwdalwy) = (2. fi)

(s Vi) (s £5)a(2035) s v i, fo) fie ). (2:2.13)

Similarly, if ¢ # p, then we have
B [EaE } (20, 1) = (T 9y = 0y = Sty — Sty + 5oy 2., )
= (Z + (@, fo) (g, V) (@i, fr)wig, & — (2, fp){Cpgs Vit)
(s, f)atwig)ai, £ = { (wy,2) = (Fadatwy) = ()
(Cpgs Vi) (Tis fr)q(wij) } (i, fr) (Cpgs m)fp) : (2.2.14)
We now consider the following possible conditions on the indices.

Case(i): i =

If i = p, then, by Equations (2.2.12), (2.2.11), and (2.2.13), we have

(B [B0 3, ]] o £) = (T = o — 500030060+ Brton
3 B0y 3 o0 i) (2,7, )
= (== (@ S {eps v, @ = (2, fid{ep, vl
f =+ (wpjs 2)(engs via) fie + (f @p) (Cpgs i) q(wpj) S
— (@, f) o via)*awyy)
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2.3. Multiple Commutators

- B [EQE%] (2,2, f).

Case(ii): i = k.

If 1 = k, then, by Equations (2.2.12), (2.2.11), and (2.2.14), we have

* * * * * 1 * *
[Eaij; [Eﬁw EquH (z,2, f) = <<] — Yok + i BriVp, + ioékjoékjﬁkﬂpq
1

S0 — 5Bty By ) (7. 1))
= (2 + (25 fo) (Cpas V) Whj» T + (T, fp) (Cpg, Vi) q(wig )T,
£ = {{wis ) + (foxda(wrs) + (@ ) (e via)a(wis) |

<Cpqa Ukl>fp>‘
Case(iii): i # p and i # k.
If 7 # p, then, by Equation (2.2.12), we have
Eas [ By B2, )| (o ) = 12, ), 0

Corollary 2.2.8. For any i,j,k,l,p,q with 1 < i,k,;p <m, 1 < j,l,q <n, i1 # k and
k#p and a,b,c,d, e, f € A with abc = def and a*bc = d*ef, the following equation holds.

[E‘mij’ [E;Bkz’E:%fJ” - [Eda“’ [E:'B“’E;%q” '

2.3 Multiple Commutators

In this section, we establish some four-fold commutator formulae. These will be needed
while proving the normality of the elementary orthogonal group. In this section, the com-
putations will be done without using coordinates, since the computation using coordinates

1s too involved.

Lemma 2.3.1. Let a € Homu(Q, P) and B,7, n € Homu(Q, P*). Then, fori, j, k1,1, s,p,q
with 1 < i,k,r,p < m, 1 < j,l,s,qg <n, i #k and r # p, the four-fold commutator
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Chapter 2. Commutator Calculus

(B0 B2y ) B, B, )| s given by

p
* * : _
|:Elipq0‘;55’ Eﬁij7zl:| if k= T,

[[EEU ) Ej;kl]7 [Ears 9 E:qu}i| == |: ;klﬁ;} y ::pq&;ﬁs:| if /L — r)

1 otherwise .

\

Proof. 1f i # k, then, by Lemma 2.1.9, we have
[E5,0 E5 )z 2, ) = (I + B — Byvia) (=2, f).
If r # p, then, by Lemma 2.1.5, we have
B, B, (2, ) = (I fipg, — i) (2, ).
Now if i # k and r # p, then we get

[EZ’”7 E* ]7 [Ears7 E:qu] (27 x? f) = I:E;Z] ? E* ][Ears7 E:pq][E;Z]7 E* ]_I[Ea'rs7 E;,pq]_1<z7 x? f)

Ykl ki Tkl

= (B}, B By B3, JE B2 (= ppga,
+tshing) (2,2, f))

= [E;ijvE;leEarsa E;pq] ((I — fpgQlys + Oérs,u;q - ’Yklﬁ;j
+Bi i — B Qrstiong + Bi Vi Qesting) (2,2, f))

- [E;iﬁ ES ((I — ViBij + Bij Vi — WiBijQrshipg + BijViarstipg
— HpgQy s HpgQtns — FpgQirs VktBij + HipgQrsBig Vet — CrshlpgOirs g
— HpqQty VB33 Qs g F Hpg ks BiViiQtrsting) (2, %, f))

= (I = WlBij00msking — pg@rs VB + Bij Ve Crshipg
+ Hpg@rsBijria) (25 2, f)

= Bz B | By Bl | (.- (231)

Now if k = r, then Equation (2.3.1) becomes [E;p E;ij"/;tl:| (2,2, f) and in particular

*
qQrs’

(B B 2 ) = Tenf) 8 =,
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2.3. Multiple Commutators

and if 4 = r, then Equation (2.3.1) becomes [E’;kl B Ezpqa:s] (z,z, f) and in particular

[E:klﬁ;j’ Ezpqais] ('27 T, f) = [(Z, x, f) if k= p. ]

Lemma 2.3.2. Let o, 6,& € Homa(Q, P) and € Homa(Q, P*). Then, fori,j, k,l,r,s,p,q
with 1 < i,k,r,p < m, 1 < jl,s,qg <n, i1 # k and s # p, the four-fold commutator
[Eaij7 E5kz]7 [Eﬁrsa Egpq]i| is given by

.
[Eékzafjv Eg’rsB;q] if i=p,

|:[E0éij7 E(Sle [Efrsv Egpq]:| - [Eaijél’:” EETS,B;LJ if k= D,

1 otherwise .

\

Proof. 1f i # k, then, by Lemma 2.1.3, we have
[Eaij7 EJM]('Z: Z, f) = (I + 5’610‘;} - 042’3'521)(2, xz, f)

If r # p, then, by Lemma 2.1.5, we have

[Eevor £5,,1(2, 2, ) = (I + Bpglrs = &rsBpg) (2,7, f).-

Now if i # k and r # p, then we get

(Boiys Bols By B5,]| (2,2, ) = [Bay» Es)[Eeyr B3, Boiys Bol ™ [Beos B5,,)7 (2,2, f)

= [Basys Bo [ Beo B5, | [Basy Bsl ™ (1= Bpays
Ersbg) (2,2, )

= [Boiys Eo|[Beras B, ] (T = Bpa&rs + &g — Ouic;
O + Oy Bpgbrs™ — 0 Ba&rs) (2, @, f))

= [Basy» Esy] (I = 0 + aigdyy + 01a; Bpglrs™ — aijdriBpals
— BparsBrabrs — ErsBpgSrsBpg T ErsBpgOrii; — &rs BpgtijOr
—&rsBpgOk105;Bpgrs + ErsBpg O Bpabns) (2, T, f))

= (I + 01105 8p€rs™ — O Bpe&rs + &rsBpgOricis;
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Chapter 2. Commutator Calculus

— &8Okt — §rsBpgOr105;8paEys
+ &g ijOri BpaSrs) (2, @, )
= [Basty Bens,) |Bouorys Bergy, (0, ). (2:32)

Now if k£ = p, then Equation (2.3.2) becomes [Eau%v E&Sﬂ;q} (z,z, f) and in particular

[EO‘ZJ kl’E&Sﬁ* } (27$7f) = [(Z,.Z', f) if 1= T,

and if ¢ = p, then Equation (2.3.2) becomes [E(;W;j, Egmggq] (z,z, f) and in particular

[Edklarj7EfrsB;q:| (zyx, f)=1(z,z,f) if k= ]

Lemma 2.3.3. Let o, 6 € Homu(Q, P) and B,y € Homa(Q, P*). Then, for any i, j, k,1,r,
s,p,q with 1 < i k.r,p<m,1<7jl,s,q<mn,i#k andr # p, the four-fold commutator
By B3, )2 [Bs,.o B2, ] is given by

VTpq

( -1
[Eaijﬁ?;u E:pqtsis] if k=randi#p,

[[Eozija E;kl]a [E6rsa E:pq]i| = |:E5T87;q, Egklafj] if 1= P and k 7A r,

1 if k#randi#p.

\

Proof. 1f i # k, then, by Lemma 2.1.5, we have

[Eaij7E;kl]<z7'T’ f) = (I + Bkla:j - O‘ijﬂ;l)(z’x7 f)

If r # p, then, by Lemma 2.1.5, we have

(B B3, 1(2, 2, f) = (I 4 9pg07s = Ors7pg) (2,2, ).
Now if ¢ # k and r # p, then we get

[Eaij’ E;kl] [E(S'rs’ E*pq]:| (27 Z, f) = [Eaij’ E;kl] [E6r57 Ej;pq] [Eaij7 E;kl]il[Ears’ E’tpq]il(z7 z, f)

= [Eaij ) E;kl] [Eé Ej;pq] [Eaz‘j ’ E;kl] (([ f)/pqa*

rs?

+0rs7py) (2, 7, f))

44



2.3. Multiple Commutators

= [Eaij7 EEM] [Es,.. E:pq] (([ — YpgOrs + 5r57;q - 516104;}
i By + i Biadrspg + Brici;1pedrs) (2,2, f))
= [Bays Ej,, ] (I = B + aij By + uiBi0rs Vg + BricYpaOrs
- 'qu(s;ksﬁkla:j — YpaOrsVpgOrs — 5r57;q(5r57;q - 5r57;qaijﬂ;:l
+ VpqOrsBri Qi YpgOrs 075 Vg i BpiOrs Vpg ) (2, T, f))
= (L + B VpaOrs + ijBribrspg — YpaOrsBuiCti; — OrsVpgii By
+ VpaOrsBriC; YpgOrs — OrsVpgii BriOrs Vpg — Brici; Brices;
+ it B VpaOrs — i Bruii B — Bt YpgOrs Brics;
- aijBZzaijﬁzzarﬂ;q + Bkla:j7pq6:sﬁkla:j7pq5:s
+ i B Ors Vg ij Br + ij BrOrs Vg ii BraOrs Vpg ) (2, 2, f)
= (I + Briai;Vpg0rs + Qi Bri0rs Vg — VpaOrs BriCts;
+ @ijﬁzz5r57;q04ijﬁzl5rw;q — 5r57;q04ijﬁ;z
— 5r57;qaij3/il5rs”y;q - ﬁkl&fﬂpq&sﬁm&fj
+ 7pq5:sﬂklafj7pq5:s + ayj ﬁ;l(srsﬁqo‘i]’ B
+ ﬁkla;‘kj’qu‘sjsﬁkla:j'ypqé:s)(Za z, f). (2.3.3)
Now if k = r and i # p, then, by Equation (2.3.3), we have
(1B B30 (s B2 )| (2ot ) = (B B ] (21 £)
and if i = p and k # r, then, by Equation (2.3.3), we have
[Baiss By ) (Bo B )| (20, 1) = [ By B | (202 1),
Now if ¢ # p and k # r, then, by Equation (2.3.3), we get
([Basys 5, B B2 )| (00, ) = 12,2, ), =
Lemma 2.3.4. Let a,0,&, p € Homyu(Q, P). Then, fori, j, k1,7, s,p,q with1 < i k,r,p <m,
1 <408, <n,i+#k andr # p, the four-fold commutator [[Eaij,Egkl], [EgTS,EMqu 1

given by
[[Eaij7 E5kz]7 [Eﬁrsv E,uqu =1
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Proof. 1f i # k, then, by Lemma 2.1.3, we have
[Eaiﬂ EéleZ,J?, f) = (I + 5klo‘:j - ai]‘%l)('za Z, f)

If r # p, then, by Lemma 2.1.3, we have

[Efrs7 EMpq](’Z? Z, f) = (I + Mqu:s - grs,u/;q)(z7 €, f)

Now if i # k and r # p, then we get

([(Basys Bols B Bul] (2,2, ) = [Bayys Esal[Ber.s By [ Basys Bs ™ By Bu]™ (2,2, f)
= (Bays B Bers B[ Eays Bl ™ (1 = e,
) e )
= (Bays B 1B B ) (1= b + oty + Suact
_aijézl) (2,2, f))
= [Bay, B ) ((1+ 80 — ity ) (20, 1)
=1I(z,z, f). O

Lemma 2.3.5. Let 8,7,n,v € Homa(Q, P). Then, fori,j, k,l,r,s,p,q with1l <i k,r,p <m,
1 <j4,l,s,q <mn,i+#k andr # p, the four-fold commutator [[E§J7E* |, [E: B ]] 18

Ykl Nrs? Vpq

given by
{Egij’E* LB, B ]} =1

Ykl Nrs’? Vpq

Proof. 1f i # k, then, by Lemma 2.1.9, we have

[E5,: B3 (2w, f) = (L + By — Biva) (2,2, f)-
If r # p, then, by Lemma 2.1.9, we have

(B B ) (2, ) = (I A+ vpgniys = hestipg) (2, 2, ).
Now if i # k and r # p, then we get

B5, B 1B L B | (20, ) = (B B ) B B L BS ) B, LB, 7 (2,2, f)

Ykl Nrs? Ykl Mrs’? Ykl Nrs? " Vpq
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2.3. Multiple Commutators

= (B3, B, B, By B B )7 (1= v
sy, ) (5. 1))
= (B3, B, 1B, B, (1= viats = mesvy = B
+Biia) (.., )
= [E3,, B3] (([ = B + @j%}kz) (2, , f))
=1I(z,z, f). 0
Lemma 2.3.6. Let o, 6 € Homu(Q, P) and B,y € Homa(Q, P*). Then, for any i, j, k, 1,
s,p,q with 1 < i k.r,p<m,1<7jl,s,q<mn,i#k andr # p, the four-fold commutator
[[Eaij, Es, 1, (B3, E;pq]] is given by

-1

(
[Eaijﬂzl’ E:pqtm] if k=randi#p,

[[Eaijv Es,l, B3, E;q]} = [Eér%, E;;W,] if i=pandk#m

1 if k#randi#p.

\

Proof. 1f i # k, then, by Lemma 2.1.3, we have
(B Esy (2,2, f) = (I + Opcr; — a;0m) (2, f).
If r # p, then, by Lemma 2.1.9, we have
[E5,.» B2, 102, 2, f) = (I + pg Bl — Brsipg) (2, 7, f).
Now if ¢ # k and r # p, then, by the coordinate-free method, we get
([Bacys Bs) 1B, B2 )| (2 1) = (B, Bo JIBS B (B, Ba) ™' 1B, B ) 7 (2, )
= (Bays B B5,. B2 ) By B~ (1= 008
B (252, )
— By B 15 B2, (1= paBis + By —

* * * * * * *
+aij5kl + 6klaij7pqﬁ1ﬂs - (SklaijﬁTS’ypq - aijdklquﬁm
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+aij I:ZBTSV;q) (27 Z, f))
= [Eaij7 E5kl] <<[ - 61@1&2} + aijézl + 6kla;‘kj7pq6:s
— 0k10; Brspy — QijOriVpaBrs + 01 Brs Vg
- /7pq5:s‘5kla;‘kj + VpgBrsQtijOpy + 6r57;q5k1@;j
- 5rs7;q0‘ij O + %qﬁjsfskla:j'%qﬁ:s
- W/pqﬂ:sékla:jﬁrfY;q — VpaBrsijOr VpaBrs
+ ’YPQB:SO[U(SZZ/BTS’Y;(] - ﬁr57;q5kla:j7pq5:s
+ BTSV;qékla:j 57"8’7;(] + Brs’}/;q@ij 5I>:l7pq6:s
_/Brs’}/;qaijézlﬁrs’ygq> (Zv x, f))
— (T + w1 — om0y Brs iy — 0 a5
+ Qij 0k BrsVpg — VpaBrsOkij + Ypa BrsijOg
+ ﬁrsf}/;q(skl&:j - Brsf)/;qaij(sltl - ﬁrsfyzqaijézlﬁrs’y;q
+ VpaBrs Ok YpaBrs — VoalBrsOkiQi; Brspg
= YpaBrsij O VpaBrs + VpaBrs i 5:151"5'7;(1
- Brs’y;q5kla:j7pq6:s + 5r57;q5kla:jﬁr57;q
+ BrsVpqQig O VpaBrs — k10 YpaBrsOk10;
+ Ok VpaBrsij Oy + Ok BrsY pgOriCli;
— 0RO Brs Vg ij Ot Qi Okt BrsVpg i O
— QO YpaBrsCtij Oy — Ctij 0y Brs VO
+ Q0 Vg BrsOri %5 + Okl Brs Vg Cti Ot Ypa Ors
- 5kla:jﬁrs/7;qaij Zzﬁrﬂ;q + aij@izﬁmﬁqaiﬂzlﬁrﬂzq
+ 08105 Vpa Brs 01 Vpa Brs — Ok VpalBrsOk105 Brs Vg
— Ok YpaBrs@ij Okt VpaBrs F Oki 5 Vpa BrsijOri BrsVpg
— Ok Brs Y pg Ok Vg Brs + Ok Brs Vg 010 Brs Vg

* * * * * * * *
- &ij(skl7pqﬂrsaklaij'7pqﬁrs + aij5kl/7pq/3rs(5kla¢jﬂrs'7pq
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2.3. Multiple Commutators

* * * * * * * *
+ QO VpaBrsij O VpgBrs — QijOryVpalBrs i 5klﬁr5’7pq
* * * * * * * *
+ Oé’lj(sk;lﬁ?"sfypqék’laz]quﬁrs - O‘zydklﬂrs’ypqéklawﬂmqu

- aij(;;;lﬁrﬂ;qaij Zl/ypqg:sx’% xz, f) (234>

Ifi=pork=rori+#randk # p, then the Equation (2.3.4) becomes

Basys ol U250 B2, 1] (20, 1) = T 0B+ €503 = paBradiacy
— BrsVpa®ii Okt = BrsVpg@ijOriBrs Vg
+ 713(16:55143104%%61/8:3 - 5klazj7pq5:sékla;j
+ Qi 51?157"5’7;(10‘1'3'5121 + Qi 5Zzﬁr57;qaij 5Zlﬁrs’yzq

+ 5kla:j7pqﬁ:55kla;j7pqﬁ:s + aijél:lBTS'V;q‘SklO‘:ijqﬁ:s-
(2.3.5)

If i) i=pand k # ror (ii) i # r,k # p and k # r, then the Equation (2.3.5) reduces to
I S0, — Bripis0is = | Boesy B -

If i) k=randi#por (ii) i # r, k # p and i # p, then the Equation (2.3.5) reduces to
I+ 0By — tpabistety = [Eui By

Ifi=rork=porifi#pandk#r, then the Equation (2.3.4) becomes

Bosys Bl U5 B2 1| (21 ) = T = 800 Bussy = a0 a3 + YpalBis0is O
+ BrsVpgOki 5 — VpalBrsCtijOriVpa s
+ BrsVpgOki Qi BrsVpg T 0k Brs Y pgOriti;
— 0 Vpa s Qi Oy T Ok10; BrsVpg Qi Okt Voa s

+ 0110 Brs Vpg Okt BrsVpg + Qi Ok Vpa Brs Oy Vg Brs-
(2.3.6)

If i) i=rand k # por (ii) i # p,k # r and k # p, then the Equation (2.3.6) reduces
to

* * * * *
I — 01085 Vpq + VpaBrs®ijOr = | Esaz, quﬁ;‘s] :
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If (i) k=pand i #ror (ii) i # p,k # r and i # r, then the Equation (2.3.6) reduces to

I = 0 YpaBrs + BrsVpgOkiiy; = | Eaysy, EEM;:(,] ' -
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CHAPTER

Local-Global Principle for Roy’s Orthogonal Group

J.-P. Serre, in his 1955 paper “Faisceaux algébriques cohérents”, conjectured that a finitely
generated projective module over a polynomial ring in n variables over a field is free. In
1976, this was proved independently by D. Quillen (see [43]) and A.A. Suslin (see [56]).
Soon after, in [57], A.A. Suslin proved the K;-theoretic analogue of this conjecture, which
says that if &k is a field and r > 3, then SL,.(k[Xy,...,X,]) is generated by elementary
matrices. An exposition of this can be found in [27]. Later, A.A. Suslin and V.I. Kopeiko
established an analogue of the above theorem for the symplectic and the orthogonal groups
(see [35,58]). They also proved the normality of the elementary subgroup in the linear,

symplectic and orthogonal cases.

D. Quillen’s famous local-global principle says that a finitely presented module over a
polynomial ring R[X]| over a commutative ring R is extended from R if and only if the
localized module over Ry[X] is extended from Ry for every mazimal ideal m of R. He

raised an analogous question for quadratic modules.

In [10], A. Bak et al. gave a uniform proof of local-global principle for classical groups
(linear, symplectic and orthogonal) over a commutative ring with identity, and relates nor-
mality of elementary group to local-global principle. Local-global principle for transvec-
tions of a projective module with a unimodular element is proved in [18]. Also, local-global

principle for general quadratic group and general Hermitian group are done in [17].

In this chapter, we use the commutator relations which we proved in Chapter 2 to prove
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Chapter 3. Local-Global Principle

a local-global principle for the group of Dickson—Siegel-Fichler-Roy (DSER) elementary
orthogonal transformations. These results are used in Chapter 4 to prove certain extend-
ability results on quadratic modules. Also, we can realize from the yoga of commutators
that some features of Roy’s group mimic Tang’s well-known Hermitian group defined in
[60], as well as Bass’s unitary transvection group defined in [16].

Most of the results in this chapter are from [5].

3.1 Splitting Property
In this section, we state a splitting property and extend Lemma 1.4 of [55] regarding Roy’s

transformations.

Notation 3.1.1. E(«) denotes either E, or E*, where a € Homa(Q, P) or Homu4(Q, P*)

respectively.

Combining Lemma 1.2 and Lemma 1.3 of [55], we have the following lemma.

Lemma 3.1.2 (Splitting Property). For ai,as € Homa(Q, P) or Homa(Q, P*) , we have

aq %) (8%

Blow s =B (3) B 2(3) = B(3) BlaB ().

When P is a free A-module of rank m, we write O4 (Q L H(A)™) in place of O4 (Q L H(P)).
Let n; : A — A™ be the inclusion map into the 7** component. Then 7; induces an inclusion
ni 04 (QLH(A)) — O4(QLH(A)™) which takes EO4 (Q L H(A)) into EO4 (Q LH(A)™).
For oo € Homy(Q, A), let E;(a) € EO4 (Q L H(A)™) be the image of F(«) under n; .

Lemma 3.1.3 ([55, Lemma 1.4]). The group EO4 (Q L H(A)™) is generated by E;(«)

(1 <i<m), where @ € Homa(Q, A).

Lemma 3.1.4. Following the same notation as above, the group EO4 (Q L H(A)™) is
generated by E(cy;) (1 <i<m and 1 < j <n) with o € Homu(Q, P) or Homy (Q, P*).

Proof. For v € Homx(Q, P) or Hom(Q, P*), we have a = > 7" 377 | a;; from the previ-

ous section. By repeated application of the splitting property, we have

f0 ()5 () £ (5)£() (D)
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A(m—1)n A(m—1)n a1
() s (P5) ()
2 () 2 2

This proves the lemma. O

3.2 Comparison of Roy’s Elementary Orthogonal Group with
Other Groups

The orthogonal group of @) L H(P) is denoted by O4 (@) L H(P)), where @ and P are free A-
modules of finite rank and the elementary orthogonal group is denoted by EO 4 (Q L H(P)).
Here, we compare Roy’s elementary transformations with the so-called Eichler transforma-

tions and also with the unitary transvections.

3.2.1 Roy's Transformations as Eichler-Siegel-Dickson Transformations

In this section, we view Roy’s group of elementary orthogonal transformations in terms of

Eichler-Siegel-Dickson transformations. The latter are defined as follows:

Definition 3.2.1 ([28, Chapter 5]). Let (M, B, q) be a non-degenerate quadratic module
over A and let O (M) be its orthogonal group. Let w and v be in M with w isotropic and
B(u,v) = 0. For r = ¢q(v), define the ESD transformation ¥, ,, € End(M) by

Yupr(®) = +uB(v,x) —vB(u,x) — urB(u, ).

One can easily verify the following properties:

( u,0,q(v) Zu,—v,q(v)a
(d O'Zuﬂ),q(v)oﬁl = Zaujguq(v) for o € OA(M)
(e 20’070 = ]

We may regard the elementary orthogonal transformations F,,; and E,Z’] as ESD trans-
formations. More precisely, the orthogonal transformation E,, of Q L H(P) given by

Eoy(z,z, f) = (2 — (fiw)wij, = + (wij, 2)x; — (f, 25)q(wij)x;, f) can be written as
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in,wij7q(wij)(z,x,f). For,

Sasaigawiy) (2,8, ) =(2,2, ) + (0,24, 0)((wi5, 0,0), (2, 7, f)) — (wi;, 0,0)
((0,24,0), (2,2, f)) — (0, 25,0)q(wi;)((0,2:,0), (2, 7, f))

=(z = {f,wi)wij, © + (wij, 2)z; — (f, zi)q(wi;)zi, f).

Similarly, the elementary orthogonal transformation B of QL H(P) given by

L, (z,z, f) = (2 = (fi, x)vij, , [+ (vij, 2) fi — (x, fi)q(vi;) fi ) can be written as the ESD

j
transformation Xy, .. qw.,)(2, 2, f).

These elementary orthogonal transformations also satisfy the properties listed above.
From this, we can conclude that Roy’s group of elementary transformations EO 4 (Q L H(A)™)
is a subgroup of the group of ESD transformations. The reverse containment of these groups

will be addressed in the upcoming article [6].
3.2.2 Comparison between Roy's Elementary Orthogonal Group and Unitary

Transvection Group

In this section, we will see that Roy’s transformations can also be viewed as unitary
transvections [16, Section 5] of certain types of quadratic modules over a unitary ring

(A, N, A). See [16, Section 4] for further details about unitary rings.

Definition 3.2.2 ([16, Section 5]). Let M =V 1L H(P). If v = (v,p,q) € M, we have
f(z,xz) = f(v,v)+(q,p) p. Suppose P has a unimodular element py. i.e., there is a ¢y € P*
such that (qgo,po)p = 1. For any elements py € P,wy € V and ag € A with ag = f(wo, wo)

mod A, assume that the following conditions hold.

f(po,po) € A, (wo,po) =0, f(wo, wp) =ag mod A.
If z = (v,p, q), then o, 40w, is defined as
Opo.anwo (T) = 2 + po(wo, ) — woA(po, ¥) — porao(po, ).
Now take A = 0, A = 1, f(wp, wo) = ag and (wg, wo) = 2f(wg, wo) = 2ag. Then we have

Eo,(z,1, f) = O, i) (z, 2, f),

2 ij
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EEU (z, f, ) = O-fiy(vij;’ij) i (z, f, )

for z € V,x € P,f € P*. In this way, Roy’s group could also be viewed as unitary

transvection group.

3.2.3 Comparison between Roy's and Petrov's groups

In [39], V. Petrov introduced a new classical-like group called odd unitary group over odd
form rings. This group generalizes and unifies all known classical groups such as quadratic
groups, Hermitian groups, classical Chevalley groups. In Section 6 of his paper, V. Petrov
defined an elementary subgroup EUy (R, £) of an odd hyperbolic unitary group Uy (R, £).
We recall Petrov’s definition for the odd unitary group.
Let R be a ring with pseudo-involution and V' be a right R-module with an anti-
Hermitian form B. Let $ denote the Heisenberg group of the form B. The subgroups £,

and £, of $ are defined as follows:

Luin = {(0,a +@)|a € R},
Lmax = {€ € H[t2(§) = 0}

An odd form parameter £ is a subgroup of §) that lies between £,;, and £,., and is
stable under the action of R. The pair (R, £) is called an odd form ring and the pair (V, q)
is called an odd quadratic space, where ¢ = (B, £) is an odd quadratic form. We denote B
by (-,+)4- The even part of the form parameter is denoted by £.,. The pair (V, q) is called
an odd quadratic space.

Let Ty, (a) be the Eichler-Siegel-Dickson transvections defined in an odd quadratic space
as follows:
Let u,v be vectors of an odd quadratic space V and a be an element of R such that

(u,v), =0, (u,0) € £, and (v,a) € £. Then
Tyo(a)(w) = w+ ul ((v, w), + a(u,w)y) + v(u,w), forweV. (3.2.1)

Suppose Vj is an odd quadratic space with an odd quadratic form gy = (By, £). Then
the orthogonal sum V = H' L V; is called an odd hyperbolic unitary space of rank I
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corresponding to the odd form parameter £. The unitary group U(V,q) in this case is
called the odd hyperbolic unitary group and is denoted by Uy (R, £). Now, the elementary
hyperbolic unitary group EUg (R, £) is given to be the group generated by

Tij(a> =T, —e;ae, (0), j #+i, a € R, (3.2.2)
Ti(u,a) = Tope_ (231 ac_y), (u,a) € £, (3.2.3)
T:(0,a), a € £, (3.2.4)
where i,j=1,---,1,—l,---,—1 and ¢; = —1.

Now, if we take the involution to be a — —a and for [ = m, R = A, where A is a

commutative ring, V5 = ) and
£ = Loax = {(u,a) : 2a — B(u,u) =0},

then we get Roy’s transformations as elements in EU,, (A, £). Since Roy’s elementary

transformations are of the type T¢,,(a) or T¥,,(b), where (e;,v), =0 = (f;,v), and a,b € A

B(v,v)

such that (v,a),(w,b) € £. ie., v and w are such that q(v) = =5

B(w,w)
Bluw) _y,

= a and ¢(w) =

Precisely, we can write Roy’s elementary transformations as follows:

Eay (2,2, ) = (2,2, f) + eil(wig, (2,2, [)g + q(wig)(es, (2,2, ))q) + wig(ei, (2,2, f))q
= Teouw; (q(wis)) (2, 7, f).
B, (2w, f) = (2, ) + fil(vig, (2,2, F)g + a(vi) (i, (2,2, £))g) + vis (fis (2,2, f))q
= T, (q(vig)) (2, 7, f).

We now recall the following results from [39].

Lemma 3.2.3 ([39, Lemma 2]). Let v be a vector of V' such that (e;,v), = (e_;,v), =0,
and a be an element of R such that (v,a) € £. Then T,,,(a) belongs to EUy (R, £).

Proposition 3.2.4 ([39, Proposition 1]). The group EUy (R, £) coincides with the group
generated by all the elements of the form T..,,(a), where (e1,v), = (e_1,v), = 0 and
(v,a) € £.

o6



3.2.3. Comparison between Roy's and Petrov's groups

Since (wij, q(wij)), (vi, q(vij)) € £ and (e;, wiz)q = (fi, wis)q = (€s,vij)q = (fi,vij)g = 0,
by Lemma 3.2.3, we can conclude that F,,; and EEJ belong to EUs,, (A, £). Thus

EO4 (Q LH(A)™) C EUypp(A, £).
Now, by Proposition 3.2.4, we have

EUzn(A, £) = (Te,,0(a)|(v,a) € £)
= (Ea,, B, for a € Homy(Q, P), 8 € Homa(Q, P*))

= (Eay;, Ej,, for 1 < j <mn, and for a € Homu(Q, P), 8 € Homu(Q, P")).

Since <Ea1j,E§1j for 1 <j <nand for &« € Homu(Q, P), 5 € Homx(Q, P*))

C (Eq,;, L, for 1<i<m,1<j<mnandforaec Homy(Q, P), 5 € Homu(Q, P)),

we have

EUsn(A, £) = EO4(Q L H(A)™).

Remark 3.2.5. Bak’s hyperbolic general quadratic group is a special case of Petrov’s odd
unitary group. It is obtained by taking Vj = 0 and £ = £., in odd hyperbolic unitary
group V = H' 1 V. Bak’s group can not be compared with Roy’s elementary group since,
for defining Roy’s elementary transformations, one need V; # 0.

Let n > r. Then, for (0,a;), -+ ,(0,a,) € Lyax, the general Hermitian group
GH(R,as,--- ,a,) of Bak and Tang may be regarded as a special case of Us;_p) (R, Lmax)
by taking Vo = (f1,--+ , fr, for, -+, [-1) with anti-Hermitian form By given by

By <Z Jibi, Z ijj) = ilelajcj - Zb_ia_ic_i. (3.2.5)
i j j=1 i

Thus in particular, if we take @ to be of rank 2r and a; = --- = a, = 0, R = A; then we
get O4 (QLH(A)™) = GH(A,0,---,0) = Oa(H(A)™™) which is the classical orthogonal
group. But in general case, we can see that the elementary generators and the commutator
relations among them mimics that of the general Hermitian group. At this point, we do
not explicitly compare the elementary generators of the DSER group with that of the

elementary Hermitian group.
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3.3 EO4(QLH(A)™) is perfect

In this section, we observe that the elementary orthogonal group EO4(Q L H(A)™) is
perfect.

Theorem 3.3.1. If m > 2, then EO4 (Q L H(A)™) is perfect.

Proof. To prove [EO4 (Q LH(A)™),EO4 (QLH(A)™)] = EO4(QLH(A)™), we need to
prove that any element in EO 4 (Q L H(A)™) can be written as a commutator. This follows
from the commutator relation proved in Chapter 2.

Since EO4 (Q L H(A)™) is generated by elementary transformations of the type E,,,
and E;J by Lemma 3.1.4, it is enough to show that these transformations can be writ-
ten as commutators of elements of EO4 (Q L H(A)™). By triple commutator relations in
Section 2.2 of Chapter 2, we can write the transformations E,,; and E;gij as products of
commutators of elements of the group EO4 (Q L H(A)™). Thus the elements E,,; and
L, belong to the commutator subgroup [EO4 (Q L H(A)™),EO4 (@ LH(A)™)]. Hence
EO4 (Q L H(A)™) is perfect. O

Remark 3.3.2. The condition m > 2 in the above theorem is necessary in order to have

non-trivial commutator relations.

3.4 Local-Global Principle for Roy’s Elementary Orthogonal
Group

In this section, we establish that EO s;x)(M[X]), where M = Q L H(P) such that @ and

P are free modules of rank n and m respectively, satisfies a local-global principle.

Theorem 3.4.1 (Local-Global Principle). Let 0(X) € Oax)(M[X]). If, for all maxi-
mal ideals m of A, 0(X)m € O, (Mn)-EO 4, x](Mu[X]) , then 0(X) € O4(M)-EO 4;x1(M[X]).

Before beginning the proof, it is worthwhile to observe:
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Remark 3.4.2. Replacing 6(X) by 6(0)7!6(X), we may assume that 6(0) = 1. Further, for
H(X) € OA(M)EOA[X}(M[XD and 9(0) =17 implies that Q(X) € EOA[X](M[X]). Indeed, if
9(X) = ve(X) with v € O4(M) and £(X) € EO41x(M[X]), then v = 0(0)e(0) ' = (0) .

In view of this remark, we can rewrite Theorem 3.4.1 as follows:

Theorem 3.4.3 (Local-Global Principle). Let 0(X) € O zix(M[X]) be such that 0(0) = 1.
If 0(X)m € EO 4, x](Mn[X]) for all mazimal ideals m of A, then 6(X) € EOax)(M[X]).

We begin with some lemmas of which the first one is an elementary observation in

group theory.

Lemma 3.4.4. Let G be a group and a;,b; € G fori=1,...,n. Then
H?:1 aib; = H?:l Tibirz‘_l H?:1 a;,

where r; = H;Zl aj.

Lemma 3.4.5. The group EOsix)(M[X]) is generated by elements of the form
YE (Xay;(X))y™t, where v € EO4(M) and a;;(X) € Homa(Q[X], P[X]) or
Homy (Q[X], P*[X]).

Proof. Let (X) be an element of EO 4;x(M[X]) such that #(0) = /. Then
0(X) = HZ:I E (aikjk (X)) = H;:l E (aikjk (0) + Xa/ikjk (X))
=1L B (—ai“ﬁ“ (0)) B (Xdy (X)) E (—ai’“é’“(o)) (by Splitting property)

o r+1
= [1,21 axbe,

Where “ - E (M) ’ bk = E<Xa/1k]k<X)) fOI' k = 17 w1y
Qg = F (aik71;k71(0)> FE (aik;gk(0)> for k = 2; T
Ary1 = E <%T(O)> ) br—i—l = 1.

By Lemma 3.4.4, we have

Q(X) = sz ’YkE (Xa/ikjk (X)) ’Wﬁil H;;ill Ak,
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where v, = [[5_, a; € EOA(M) and ]} ax = [T}, E(a,;,(0)) = 0(0) = I.

Therefore

G(X) = H;:i ’ykE (Xa,ikjk (X>> Vk_1~ L
Lemma 3.4.6. Let o,§ € Hom(Q, P), 8,7 € Hom(Q, P*) and s be a non-nilpotent el-
ement of A. Fix r € N. Let i,k,p, € {1,2,...m} and j,l,q € {1,2,....n} for every

t € N. Then for sufficiently large integer N, there exists a product decomposition for
E (&W;;) E (sN2Yyy) E (—%Wi;) in EO4,(M,) given by

a a z
B (SWy) B (sNaYu) B (-5 Wy) = H E (V20 Zp,g,)
where WY, Z € {«, 3,7,0}, a,x € A and xy € A, Ny € N for t € N are chosen suitably.

Proof. To prove the lemma it is enough to consider the following cases.

Case 1: (WY) € {(a,a),(,9), (8, 8), (8,7)}.
E(&W;) B (sVaYu) B (2Wy) " =TT B (sV2:Z,,,).

Subcase (a): i # k.

B (L) B (sNavi) B (Swy) " = [B(Sw) B (5Navi)| B (sNavi)
= [E (as"Wy;), E (s'2Yy)] E (sNxYkl)
(by Corollary 2.1.4 and Corollary 2.1.10)
=1, E (s"21Zp,4,) for N; > 0.
This equation holds for any positive integers p,q with p+q¢ =N —r.
Subcase (b): i = k.

a a —1 a
E <;Wi]~> E (sVNaYy) E (gwij) ~ |E (EWZ-]) B (sVaYi) | B (s aYi)
=F (SN(L‘YM) .
(by Lemma 2.1.3 and by Lemma 2.1.9)

Case 2: (W)Y) € {(a, ), (5, a)}.

E (EW]> B (VoY) E (SEWJ) T B (M Zy).

S
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Subcase (a): 1 # k.

For instance,

a N a -1 1
E (?Oéi]) E (sVafu) E (;0%) = ErayEvep, L

57'(123
[Eﬁal] ) :N:EBM} E:Nxﬂkl
= [Easran, :qmgkl] En,g, (by Corollary 2.1.7)
= HtV:1 E(SNtthptqt) for N; > 0 and v < 5.

Subcase (b): i = k.

For instance,

sT Qg

~1
E (ﬁaij) E(sVuBy) E (3%) — By, By, Ea (3.4.1)
s” s" s ST P4

Set N = Ny + Ny + N3 such that Ny > r+ 2 and Ny + N3 > 2r + 4. Now, by replac-
ing Ey, 5 with [Eszvlakl, |:ESN2x63«l, ESN37;Q:|:| {E N B Eleakl:| in equation (3.4.1), and by
S l’T

using Lemma 2.2.7, we have
E7az] sNxBZESTa” = Esiraij [Eleakl’ |:E3N2:(:ﬁ;‘l7 E5N3'y;q]i| |:E5N1627§’ ESNlOékl:| E SFauj”

Then we will see that the following are in the required product form.

1
( ) E7aszN1aklE—alj
(b) Eaa, [ESNWZ,ESNM; } o

( ) ESTO"LJ |:E5Nxﬁ§l7E5N1akl:| E ,ra”

For, (a) Ea

57 Qg

EpioyEa,, = [Es

raU?

ESNlakJ ESNlakl
— [Ea Esq,%] Exi,, (by Corollary 2.2.8(i))
=TI, E (sM1Zy,q,) for N, > 0 and v < 5.

This equation holds for any positive integers p/, ¢’ with p’ +¢ = Ny — r.

1
() Esayy | Evaugs s Eusoos, ] Eil = [Eia [ESN%@Z,ESN%H [ESNWZ,ESNM;J

ST Qg
|:E8P//a y |:E8‘1”:Eﬂ* EST//'YP j|i| |:ESN2$537E5N3’Y;qi|
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(by Corollary 2.2.8)

=11 (s thptqt) for N; > 0 and v < 14.

This equation holds for any positive integers p”, ¢ and r” with 2p” +¢" +r" = Ny+ N3 —2r.

1
(C) Es%aij [EsNx%’Eleakz] B Faij [Eraw’ |:ESNI%’E3NIQM:|:| |:ES Ng n’E Nlakl:|
2 2

|:Esp///a s |:Esq///:pﬁ2;l7 Esrmakl:|:| |:E3N:pﬁ2;l7 ESNlOlkl:|

(by Corollary 2.2.4)

:HE s v ptqt for Ny >0 and v < 14.
t=1

This equation holds for any positive integers p™, ¢ and r" with 2p” +¢"+r" = N, +N —2r.
Hence equation (3.4.1) is of the form [[;_, E(s™x:Z,,q,) for N; > 0 and v < 52. O

Lemma 3.4.7 (Dilation Lemma). Let s be a non-nilpotent element of A and let M =@ L
H(P). Let 0(X) € Oapx)(M[X]) with 6(0) = 1. Let Y, Z € Homa(Q, P) or Hom(Q, P*).
If0,(X) = (0(X))s € EOu,x) (M,[X]), then, for N > 0 and for all b € (s)N A, we have
0(bX) € EOaix) (M[X]).

Proof. Let 0,(X) € EO4,x) (M[X]). Then 6,(X) = [[,_; F (,;.(X)), where
;. (X) € Homy (Qs[X], Ps[X]) or Homa(Qs[X], PX[X]) for all k € N, 4, € {1,2,...,m}
and j € {1,2,...,n}.

Let v, (X) = 4,5, (0) + Xaf . (X). By the splitting property, we can write

1kJk

() = B (450 ) b (xal, 0 £ ().
Then

0,(X) = IT5 B (24 2) B (Xal,,, (X)) B (2552),

2 kK 2

By Lemma 3.4.5, one has

0,(X) = [Tio wE (Xa,; (X)) %'
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where v, = H?:l a; with — a; - FE <ai1j21 (0)> 7
ary1 = B (O“%T(O» 7
ag = F (aik—lﬂ;—1(0)> E <a¢kj2k(0)> fork=2,..r.

Hence we can write

0,(sVX) = HZ; E (sNXo/-

ikJk

(VX)) vt for N> 0.

Claim : If £ = H?zlE(cj) ,¢; € M,, then, for (¢E (sNxZij) ¢!, we have a product
decomposition given by

¢E (sNaZy) € =TI E (sMaZy,y,) (3.4.2)

with N; — oo for N > 0, x; € A.

Proof of the Claim. We do this by induction on k.
Let £ = &€&y ... &, where § = E (¢;). When k = 1, by Lemma 3.4.6, we have a product
decomposition

GE (sVaZy) &7 =TI B (5w Zis,)
with N; — oo for N > 0. Now assume that the result is true for k — 1. i.e., we have
§io . &Gr B (sN2Zyy) (G1&e . &on) =TIV E (sV a0 Zs,y,)

with Ny — oo for N > 0. Now, by Lemma 3.4.6, we can write

GE (sN2Ziy) &7 =TI B (sMaeZeyg,) = mapta - . o (say).

Hence we have

(G162 Ga&) E ("0 Zy) (9% &)
= (G& &) paptn i (G2 Gmr) ™
=(&& &) (& &) (G G)
po(6&a. &)t (Gl G ) (G& - Gn)
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Now, by applying induction to each of the expressions &1&s ... &1 (§1&o - .5,{_1)71 as [
varies from 1 to A\, we have a product decomposition as in equation (3.4.2). Therefore we
can write
0, (sVX) = I E (sN'2,Z;,;,) for N large enough.
The terms s™Vtx, for 1 <t < )\ is contained in M [X] as required. Hence
0(0X) = 1,5 [T E (M2 Zi,j,) € EOapx (MIX])
for all b € (s)V A. O

Proof of Theorem 3.4.3. Let m be a maximal ideal of A. Choose an element s, from A\m
such that
H(X)sm € EOASm[X}(M

Sm

[X]).
Define
K(X,Y)=0(X +Y)o(Y) .
Clearly (X,Y)s, € EO4,_xy)(Ms,[X]) and (0,Y) = I.
Now by applying Dilation Lemma with A[Y] as the base ring, we get

K(bwX,Y) € EOaxy) (M[X,Y]),

where by, € (sY) for some N > 0.
Since A is the ideal generated by {Sm}memax 4, there exist maximal ideals my, ..., m,

and elements s,, € A\ m; such that A =" (Sw,). Therefore

A= (sp)

i=1
for any N; > 0. Hence for by, € (s3)?) with N; > 0, we have Y7 by, = 1.
Observe that (b X,Y) € EOgxy)(M[X,Y]) for 1 <i <.
0(X) =031, bn X) 0 (g b X) ™ 0 (X b, X) 6 (g b X) -+
0 (b, X + b, X) 0 (b, X) 0 (b, X)
=IT;-1 #lbm X, T3)r(b, X, 0),

where T; = >, by, X. Hence 0(X) € EO4x)(M[X]) . O
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3.5 A Local-Global Principle for EO(Q L H(A)™) - O(H(A)™)

In this section, we prove a local-global principle for the set EO4(Q L H(A)™)-O(H(A)™),
where @) is a free A-module of rank n. We also assume that the generalized dimension of

A is at least d.

Theorem 3.5.1 ([45, Theorem 2.5]). Let A be a ring of generalized dimension > d. Let
(Q,q) be a diagonalizable quadratic A-space. Consider the quadratic A-space Q 1 H(P),
where rank (P) > d. Then

Oa(QLH(P)) = EO4(QLH(P))-Oa(H(P))
= {eB | e € EOA(QLH(P)),5 € Oa(H(P))}
= {Pe| e € EOA(QLH(P)), 5 € Oa(H(P))}
= Ou(H(P))-EOA(QLH(P)).

We now prove the Dilation lemma for EO4(Q L H(A)™) - O(H(A)™).

Lemma 3.5.2 (Dilation Lemma). Let s be a non-nilpotent element of A and let m > d.
Let 6(X) € Oapy(Q @ AX] L H(AIX])™) - O (H(ALX])™) with 6(0) = 1. If 0,(X) =
(0X))s € EOu1x1(Q® A,[X] L H(A[X)™) - Oy (H(AJX])™), then, for d > 0 and for
all b € (s)?A, we have 0(bX) € EO4x1(Q ® A[X]| L H(A[X])™) - Oapx)(H(A[X])™).

Proof. 1f 0,(X) = ¢(X)B(X), where €(X) € EO4,x)(Q ® AJ[X] L H(A,[X])™) and
B(X) € Oa,x)(H(As[X])™), then 6(0) = I = £(0)3(0); whence

05(X) = {e(X)=(0) " HB(0) " B(X)}-

In other words, we may assume at the onset that €(0) = I and 3(0) = I. The rest of the

proof follows from Lemma 3.4.7. O
We now prove the local-global principle for EO4(Q L H(A)™) - O(H(A)™).

Theorem 3.5.3 (Local-Global Principle). Let (Q,q) be a diagonalizable quadratic A-
space. Let m > d and let 0(X) € Oax)(Q ® A[X] LH(A[X])™) be such that 6(0) = I.
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Suppose that, for every m € Max (A), we have agm = PuYm, where
fn € BO4yx) (Q® An[X]) L H(AnIX])™) and v € Oaix (H(AR[X))™) with 5(0) =1,
¥(0) = 1. Then o = By with B € EOx)((Q ® A[X]) LH(A[X])™),v € Oax)(H(AX])™).

Proof. The proof follows in similar lines as Theorem 3.4.3 except for the following. Let m

be a maximal ideal of A. Choose an element s, from A\ m such that
0(X)sn € EOA,,1x) (Q © As [X] L H(As, [X])™) O, 1x)(H (As, [X])™).

Define
K(X,Y)=0(X + Y)smH(Y)_l.

Sm

Then

K(X,Y) = e1mmes = e1mse2 (3.5.1)

for e1,60 € EO4,_(xv)(Q ® A[X,Y]LR™), n1,m2 € Oy, _x,y)(R™) and 73 = m1,. Since
EO4,, xy)(QRA[X, Y] LR™)-O4,, xv](h") = O, xy)(h™)EO4,, xv)(QRA[X,Y] LA™),
by Theorem 3.5.1, we can write equation (3.5.1) as
K(X,Y) = ereyms
for some €5 € EO4,_x,v)(Q ® A[X, Y] LA™) and 1 € Oy, _x,y](h™). That is,
K(X,Y) € EOa, xv)(Q ® A [X, Y] LR™) - Og, xy)(h™) and (0,Y) = I.
Therefore, by applying Lemma 3.5.2 with base ring A[Y],
K(bmX,Y) € EOaxy)(Q @ AX, Y] LA™) - Oaixyy(A™),
where by, € (sY) for any sufficiently large N. O

3.6 Action Version of Local-Global Principle

In this section, we prove an “action version” of Quillen’s local-global principle. We begin
by recalling some known results in this direction. In a letter to H. Bass, L.N. Vaserstein

proved the following action version of Quillen’s well-known local-global principle.
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Theorem 3.6.1 ([36, Chapter III, Theorem 2.5|). Let n > 3 and v (X) € Um, (A[X]). If
v(X) € GL, (Au]X]), for all mazimal ideals m of A, then v (X) € v (0) GL, (A[X]).

A result similar to the one above was proved for the elementary linear group by R.A.

Rao which is the following.

Theorem 3.6.2 ([46, Theorem 2.3]). Let v (X) € Um, (A[X]),n > 3. Suppose, for all
mazimal ideals m in A, v(X) € v (0) E, (An[X]). Then v(X) € v (0) E, (A[X]).

Similar results are also proved in [8,10,21]. More generalized results of the action
version of local-global principle for Chevalley groups are established in [7,54].

In [48], A. Roy proved the following result.

Theorem 3.6.3. Let A be a commutative Noetherian ring and d = dim Max A < co. Let
P be a finitely generated projective A-module of rank > d+1, and () a quadratic A-space.
Let a be an ideal of A and w € Q L H(P) such that Aq(w) + a = A. Then there exist

A-linear maps oy, -+ ,ap : Q — P such that
o(P-component of E,, o---0 E,, (w))+a=A
Then R. Parimala extended this result for generalised dimension.

Theorem 3.6.4 ([38, Theorem 3.1]). Let A be a commutative ring and d be a generalised
dimension function on Spec A. Let (Qo, qo) be a quadratic A-space and let Q=Qo L H(P),
where P is a finitely generated projective A-module of rank > d(A) + 1. Let w = (2, z, f)
be an element in Qo L H(P) such that q(w) = qo (2) + f(x) is a unit in A. Then there
exists N = Eq, 0 Eqy, 020 E, € EO4(QoL H(P)) such that n(z,z, f) = (2,2, f') with

" unimodular in P.

The above result states that elements of unit norm in a quadratic space of sufficiently
large Witt index can be brought into general position by elementary orthogonal trans-
formations. This can be considered as a quadratic analogue of a stability theorem of
Eisenbud-Evans [25, Theorem A (ii)b].

R.A. Rao, in his Ph. D. thesis (1984), raised the following question.
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Question 3.6.5. Is there a “local- global” principle for the action of the elementary
group EO i (Q ® A[T| LH(A[T])") on non-singular elements? Explicitly, let (Q,q) be
a quadratic A-space and let w be a non-singular element in (Q L H(A)") ® A[T]. Assume
that, for all meMax (A), there exists an element o € EO g, 1) (Q ® An[T] L H(An[T])")
such that oww = w (0) EO i (Q @ A[T) LH(A[T])"). Does there exist an element o in
EO.yr) (Q ® A[T] L H(A[T])") with ow = w (0)7

In this chapter, we give an affirmative answer to this question.
Let @@ and P be free A-modules of rank n and m respectively. In the remaining part of
this section, d denotes a generalized dimension function on Spec A.

The main theorem of this section is:

Theorem 3.6.6. Let (Q,q) be a quadratic A-space and let M = @Q L H(A)™, where
m is at least d(A) + 1. Let w € (Q LH(A)™) ® A[T] be non-singular. Suppose, for all
m € Max (A), there exists an element o in EO s, (Q LH(A)™) ® An[T]) such that
omw = w (0) EO 4 ((Q LH(A)™) ® A[T]). Then there exists an element o in the elemen-
tary group EO o (Q @ A[T), H(A[T))™) with ow = w(0).

We begin with a lemma which uses a standard argument of L.N. Vaserstein (see [36,

Chapter III, Proposition 2.3]).

Lemma 3.6.7. Let S be a multiplicatively closed set in A and let n + 2m > 6. Let
w(X) € Umyyom(A[X]) and let w(X) € w(0) EO ((Q LH(A)™) ® A[X]). Then there is

an element s in S such that, for any a in A,
w (X +asT) € w(X) EO(QLH(A)™) ® A[X,T)).
Proof. Let 9(X) € EO((Q L H(A)™) ® Ag[X]) such that w(X)9(X) = w(0). Let
O(X,T) = I(X+T)WX)"' € EO(QLH(A)™) ® As[X,T)).
Then

w(X +T)0(X,T) =w(X +T)I(X +T)9(X)"!
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=w(0)9(X)™!

= w(X) € Ag[X, T|" ™.

Since 0(X,0) = I, we can find 0*(X,T) € EO((Q L H(A)™) ® A[X,T]) which localizes
to O(X, sT) for some s € S with 6*(X,0) = I (by applying Dilation Lemma to the base
ring A[X] ). Then in A[X,T|", we have

w(X 4+ sT)0*(X,T) —w(X) =Tv(X,T)
for some v(X,T') which localizes to 0. Thus, for some s* € S and for all a € A, we get
w(X + ass™T)0* (X, as"T) — w(X) = Tas*v(X,as*T) = 0. O

Proof of Theorem 3.6.6. Let w be a non-singular element in (Q LH(A)™) ® A[T]. By
Theorem 3.6.4, there exists an element n € EO (Q, H(A)™) such that n(w) has its P-

component unimodular in P. This implies that the order ideal
o (P- component (1 (w))) = A.

which in turn implies that o (n (w)) = A. Hence n (w) is unimodular in @ L H(A)™.
Let n +2m > 6. Let w(X) € Umy,i9,(A[X]). If, for all maximal ideals m of A,
w(X)m € w(0)y EO(Q L H(A)™ ® Ay[X]). Using Lemma 3.6.7 it follows that, for each

maximal ideal m of A, there exists s € A\m such that, for all a € A,
w(X +as;T) € w(X) EO(Q LHA)™ ® A[X,T]). (3.6.1)

We note that the ideal generated by s} s is the whole ring A. Therefore there exist elements
Skyyt Sk, in A\m such that aysg, + -+ + a,s,, = 1, where a; € Afor 1 < i < r. In

equation (3.6.1), replacing X by assg, X + -+ + a,s,, X and a5, T by arsg, X, we get

w(X) = w(arsg, X + azsp, X + -+ + a,55,X)
€ w(agsg, X + -+ a,s,,X) EO(Q LH(A)™) ® A[X]).
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Again in equation (3.6.1), replacing X by agsg, X + - -+ + @55, X and a,, T by agsg, X, we
get

w(agsp, X + -+ + aps, X) € w(agsp, X + -+ a,5:X) EO(QLH(A)™) @ A[X]).
Continuing in this way, we have
w(asp, X +0) € w(0)EO(Q LH(A)™) ® A[X]).
Combining all of these, we get
w(X) € w(0)EO((Q LH(A)™) ® A[X])

and hence the result is proved. O
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CHAPTER

Extendability of Quadratic Modules over a
Polynomial Extension of an Equicharacteristic

Regular Local Ring

In this chapter, we obtain an extendability theorem for quadratic modules over polynomial
rings. If A is an equicharacteristic regular local ring of dimension d, we prove that a
quadratic A[T]-module @ for which the Witt index of Q/T'Q is at least d, is extended from
A. This improves a theorem of R.A. Rao which proves the above theorem when A is a local
ring at a smooth point of an affine variety over an infinite field. To establish our result,
we use a local-global principle for Roy’s elementary orthogonal group that was proved in
Chapter 3.

The results in this chapter are contained in [5].

4.1 Some Known Results

Let A be a commutative Noetherian ring in which 2 is invertible and let B be the polynomial
A-algebra A[X1,...,X,] in n indeterminates. Let @ = (Q, ¢) be a quadratic space over B
and let Qg = (Qo, qo) be the reduction of () modulo the ideal of B generated by X, ..., X,.
In [58], A.A. Suslin and V.I. Kopeiko proved that if @ is stably extended from A and if,
for every maximal ideal m of A, the Witt index of Ay ®4 (Qo, o) is larger than the Krull
dimension of A, then (@, q) is extended from A. In [19], I. Bertuccioni gave a short proof
of this and another proof is in the Ph.D. thesis of R.A. Rao. In that thesis (see [44,45]),
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it was shown that one can improve this result to quadratic spaces with Witt index at least
d, when A is a local ring at a non-singular point of an affine variety of dimension d over an
infinite field. Moreover, a question was posed at the end of the thesis whether extendability
can be shown for quadratic spaces with Witt index at least d over polynomial extensions
of any equicharacteristic regular local ring of dimension d. In the next section, we answer
this question affirmatively.

As before, we consider the orthogonal group of @ L H(P), denoted by O4(Q L H(P)),
where Q and P are free A-modules of finite rank. Also, recall that Roy’s elementary
group EO4(Q L H(P)) is the subgroup of O4(Q L H(P)) generated by E, and E}, as
a € Homy(Q, P) and 8 € Homu(Q, P*) vary.

The following cancellation theorem for quadratic spaces over semilocal rings was proved

by A. Roy.

Theorem 4.1.1 ([48, Theorem 8.1}). Let A be a semilocal ring and let R, Ry and Ry be
quadratic spaces over A such that R1 R = R1 Ry. Then Ri = Rs.

We now recall the following theorem of A.A. Suslin and V.I. Kopeiko.

Theorem 4.1.2 ([58, Theorem 7.13)). Let R be a commutative ring in which 2 is invertible.
Any stably extended quadratic R[Ty,--- ,T,]-space Q with Witt index of Q/(Ty,--- ,T,)Q
at least max (2,dim R + 1), is extended from R.

In his Ph. D. thesis, R.A. Rao improved the above theorem when R is a regular ring as

follows:

Theorem 4.1.3 (Extendability in the complete case). If R is a complete unramified reqular
local ring and Q is a quadratic R[T},--- ,T,]-space with Witt index of Q/(Th,--- ,T,)Q at
least 1, then Q) is extended from R.

Definition 4.1.4. Let k be a field. A ring R is said to be of essentially finite type over k
if R = S71C, where C is a finitely generated k-algebra and S is a multiplicatively closed
subset of C'.
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We say R is a reqular k-spot if R is the localisation of a finitely generated k-algebra C'
at a regular prime p € Spec(C).

R.A. Rao, in his Ph. D. thesis, proved the following proposition.

Proposition 4.1.5 ([44, Proposition 1.3]). Let R be a regular k-spot. Let Q be a quadratic

R[T\,--- ,T,]-space. Assume

(i) Witt index (Q) > 1, where “bar” denotes “modulo (T4, -~ ,T,)”.
(ii) Q is extended from k.
Then Q is extended from R. In particular, if Q is hyperbolic, then Q itself is hyperbolic.

He also proved the following theorems.

Theorem 4.1.6 ([44, Theorem 1.1]). Let A be a complete equicharacteristic reqular local
ring. Then every quadratic space Q over A[Ty,--- ,T,] with Witt index (Q) > 1, where

“bar” denotes “modulo (Ty,---,T,)”, is extended from A.

Theorem 4.1.7 ([45, Theorem 3.3]). Let B = R[X], where R has dimension d. Let Q) be
a quadratic R|X|-space with hyperbolic rank > d + 1. Then Q is cancellative.

In the following proposition, the symbol [a, b] denotes the quadratic space with quadratic

form having its value matrix

Proposition 4.1.8 ([9, Proposition 3.4]). Let A be a semilocal ring and (E,q) be a free

quadratic space over A. Then E has an orthogonal decomposition
E =lay,b] L ... Llap, b, or
E =lay,b] L ... L [an, b, L]

with a;,b; € A and ¢,1 — 4a;b; € A*(1 < i < n) according as dim E = 2n or 2n + 1. If

2 € A*, then E has an orthogonal basis. i.e.,

E=l] L... LJey
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with ¢; € A* for 1 <i < m.
The next theorem is a famous result due to M. Karoubi.

Theorem 4.1.9 ([36, Chapter VII, Theorem 2.1]). Let R be a commutative ring in which
2 is invertible, and let (P, B) be an inner product space over R[Ty,--- Ty]. If P is stably
extended from R, then (P, B) is also stably extended from R.

We now recall the famous Cohen’s structure theorem.

Theorem 4.1.10 (][22, Theorem 15]). A commutative regular local ring (R,m) of Krull
dimension d is isomorphic to a formal power series ring k[[X]] over a field if and only if

R is equicharacteristic and is complete with respect to its m-adic topology.

4.2 Extendability of Quadratic Modules

In this section, the principal result [Theorem 4.2.2] on the extendability of quadratic A[T-
spaces of Witt index > d over an equicharacteristic regular local ring of dimension d is
deduced from the local-global principle which we proved in Chapter 3.

The analysis of the equicharacteristic regular local ring is done by a patching argument,
akin to the one developed by A. Roy in his article [49]. This argument reduces the problem
to the case of a complete equicharacteristic regular ring; which is a power series ring over
a field, provided one can patch the information. We show that the patching process is
possible because of the local-global principle established for Roy’s elementary group in
Chapter 3.

We begin with the following crucial observation.

Lemma 4.2.1 ([42]). Let A be a regular local ring containing a field. Let (Q,q) L H(A) be
a quadratic A[T]-space. If (Q/TQ) L H(A) is hyperbolic, then (Q,q) L H(A) is hyperbolic.

Proof. In [42], D. Popescu showed that if A is a geometrically regular local ring (over a
field k), or when the characteristic of the residue field is a regular parameter in A, then it
is a filtered inductive limit of regular local rings essentially of finite type over the integers

(or over k).
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In view of this, we may regard (Q,q) L H(A) to be a quadratic B[T]-space over some
regular local ring B essentially of finite type over k with (Q/7'Q,q/(T)) L H(A) hyperbolic.
In view of Proposition 4.1.5, (Q, q) L H(A) is hyperbolic over B[T], whence over A[T]|. O

We now prove the extendability theorem.

Theorem 4.2.2. Let (A, m) be an equicharacteristic reqular local ring of dimension d and

2 € A*. Then every quadratic A[T]-space (Q,q) L H(A)" with n > d is extended from A.

Proof. Let {m, s, ..., mq} be a regular system of parameters generating the maximal ideal
m of A.

Let A’ denote the (y, ..., m)-adic completion of A. We observe that A? is isomorphic
to the power series ring k[[X1,..., X4]] by Theorem 4.1.10, where k is the residue field
A/m of A. We also observe that A’ is the (m)-adic completion of A~

We now recall the following A. Roy’s garland of patching diagrams in [49].

AT

A[T]
~ e
/ Al [T} Ad—l [T} \
N A
Ar [T] / A2[T] Ad=2[T] \ Ag [T
~ ~. o o

-~ /,
A}rl [T} Al [T] N Al+1 [T} A;irgl [T]
AL (T A, LT
N A
Az A2, ()

Td—2

CAL [T s AV 7]

Tl41 T41

We now focus on the following patching square P;(A)[T].

Al [T] Al+1 [T]
(A m [T] — (A ), [T

For all [, this is a cartesian square as rings. Moreover, by [37], it is also a cartesian

square of quadratic spaces. This will enable us to analyze the quadratic A-space.
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We prove the result by induction on d — [, starting with [ = 0. In this case A is a
complete equicharacteristic regular local ring, whence a power series ring over its residue
field. We now appeal to Theorem 4.1.6.

Now assume the result for d — 1 = m. For d — (I + 1) = m — 1, consider the patching
square Pp,_1(A)[T].

We fix some notations as follows:

For a regular parameter 7 of A, let Q' = Q@ A![T], Q° = Q, Q', = Q ® A',[T] and for
a quadratic A-space Q;, we denote Q; ®@ Al by Q.

Let (QLH(A)")/(T) = Q1L H(A)", where @ is the quadratic A-space Q/(T). Since
A™1 is local, by Proposition 4.1.8, Q;™ " is diagonalizable. Since A™ ! is regular, by
Theorem 4.1.9, (Q L H(A)")™ ! is stably extended from A™!. Let

(QJ_H(A)”)m_IJ_H(A)T = Amfl[T] ® (le_l J_H(A)”J”’) for n > d.
Then

(QLu(ayy™tLHAy), = ((4m), [Te (@), LHA)™)) forn>d

TTm

By Theorem 4.1.7, we get the isomorphism

(@QLEMA™), = (a7, @ (@), LHAY)).

Using the extendability for quadratic spaces over A™[T] via induction hypothesis, we have

~

T (QLHAM)" — A™[T| @ (1™ LH(A)"™).

Now, by identifying the quadratic spaces <((QJ_H(A)”)m_1)Wm ®(Am’1)m i (A", [T]))
and ((QLH(A)"™ ' @ vy A7) with ((QLH(A))™ ' @ v ((A™),, [71) ).

via the patching technique for quadratic spaces from [37], we have maps 7, T corresponding

to o, 7 and

o7 ' € Opamy, ) (((Qlj_H(A)")m)ﬂm) :

Since ((A™)r,.),, is local, ((Ql)mmn)m is diagonalizable and hence, by Theorem 3.5.1,
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O (((@),,), LH(A)") = BO (((@1™),,,),, LH(A)") - O (H(A)").
Therefore we can write
(67 71), = b,
where o, € EO((Am)Wm )T (((Ql )Wm)mJ_H(A)"> for some o € O(AM)W,,L[T} (((le)ﬂm) J_H(A)")
with a(O) = [ and B, € O((Am)ﬂ'm)m[T] (H(A)n) for some [ € O(Am)wm[T} (H(A)n) with

B(0) = I, via the same argument as in Lemma 3.5.2.

Then, by Theorem 3.5.3, we have
o t=ap

with o € O (((@1™),., ) LH(A)"), a(0) = I, 8 € Oam),, i1 (H(A)") and 3(0) = I. Now
via the ‘deep splitting’ technique introduced in [44] which we have described in Chapter 1,
we can write o7 ' = 3 € O(H(A)").

We now have

QLHA)" = ((QLHMAM™™), 1(@QLHA")
S (Aml ((w o LH(A)") 0B, A"(T] @ (Qi" LH(A)"))
~ (@, [T LH(A)", B,Q"[T) L H(A)")

(
~ QUM TT)L(H(A)", B, H(A)") = @™ [T] LQs,

where @, is the quadratic A™~1[T]-space defined by the patching technique. Now
Q" NI LQy LH(A) ~ Q™ LH(A) ~ @, '[T] LH(A)"".

By cancellation of quadratic spaces over local rings (see Theorem 4.1.1), we have
Qy L H(A) ~ H(A)™. Since B(0) = I, Qy/(T) ~ H(A)". Thus, by Lemma 4.2.1, Q
is extended from A™~! whence so is (Q L H(A)")™~ . Hence the result is true for [ + 1.

Then the theorem follows by induction. O]
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CHAPTER

Normality and Injective Stability

In 1960’s, H. Bass initiated the study of the normal subgroup structure of linear groups.
He introduced a new notion of dimension of rings, called stable rank, and proved that the
principal structure theorems hold for groups whose degrees are large with respect to the
stable rank. Later, J.S. Wilson, I.Z. Golubchik and A.A. Suslin made many other important
contributions in this direction. In 1977, A.A. Suslin proved that over any commutative

ring A, the group E,(A) is normal in GL,(A) when n > 3.

The normal subgroup structure of symplectic and classical unitary groups over rings
were studied by V.I. Kopeiko in [35], G. Taddei in [59] and by Suslin-Kopeiko in [58].
Similar results were obtained for general quadratic groups by A. Bak, V. Petrov, and G.
Tang in [14], for general Hermitian groups by G. Tang in [60] and A. Bak and G. Tang in
[13], and for odd unitary groups by V. Petrov in [39] and W. Yu in [64].

The stability problem for K of quadratic forms was studied in 1960’s and in early 1970’s
by H. Bass, A. Bak, A. Roy, M. Kolster and L.N. Vaserstein. The stability theorems relate
unitary groups and their elementary subgroups in different ranges. The stability results for
quadratic K; are due to A. Bak, V. Petrov and G. Tang (see [14]), and for Hermitian K
are due to A. Bak and G. Tang (see [13]). Recently, in [64], W. Yu proved the K;-stability
for odd unitary groups which were introduced by V. Petrov. Stronger results for spaces
over semilocal rings are due to A. Roy and M. Knebusch for quadratic spaces (see [32,48])

and H. Reiter for Hermitian spaces (see [47]). In [52], S. Sinchuk proved injective stability
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Chapter 5. Normality and Injective Stability

for unitary K under stable range condition. We adapt the method used by him for proving
injective stability:.

In this chapter, we establish normality results for DSER group and stability results for
DSER group under Bak’s A-stable range condition. We also prove the injective stability
for K of the orthogonal group under stable range condition. A useful tool in the proof is a
decomposition theorem for the elementary subgroup that we will establish on the way. For
proving stability, we adapt the method used in [13,14,52]. We also need some commutator
relations which are proved in Chapter 2.

Let A be a commutative ring with identity in which 2 is invertible. Let F,, and EEJ
be defined as in Chapter 1. Also, let O4(Q L H(P)) and EO4(Q L H(P)) be as defined in
Chapter 1. Throughout this chapter, we assume that () and P are free A-modules of rank
n and m respectively.

Most of the results in this chapter are from [3].

5.1 Main Theorems

In this chapter, we prove the following normality theorems.
(i) 04(Q L H(A)™ ) normalizes EO4(Q L H(A)™). In particular, EO4 is a normal
subgroup of O4.
(i) If m > dim Max (A) 4 2, then O4(Q L H(A)™) normalizes EO4(Q L H(A)™).
(iii) If m > 1, then OA(Q L H(A)™) normalizes EOA(Q L H(A)™) provided A satisfies the
stable range condition 0-SA;.
Using normality theorem and a decomposition theorem, we establish the following sta-
bility theorem for KO;.
Suppose A satisfies the stable range condition 0-SA;. Then, for all m > 1+ 1, the coset
space KOy m(Q LH(A)™) is a group. Further, the canonical map

KOy, (QLH(A)") — KO1,,(QLH(A)™)
is surjective for | < r < m, and when m > 1+ 2, the canonical homomorphism

KOy (QLH(A)™ ) — KOym(QLH(A)™)
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1S an 1somorphism.

Using the decomposition theorem, we prove the following injective stability theorem
for KOy under the usual stable range condition.
Let A be a commutative ring of stable rank | in which 2 is invertible and let m > 1 + 2.

Then the canonical map
KOy, 1 (QLHA)™ ) — KOy,,(Q LH(A)™)

1S 1njective.
A key tool used in the proofs of the above theorems is a decomposition theorem for the
elementary orthogonal group EO 4(Q L H(A)™). This decomposition involves the following

subgroups.

C = ([E

Qmj)

Ej 1.[Fas s Espy) Bayy 1 <i<m, 1 < gk < ny,

En={nm :n€EOA(QLH(A)™ ") and m € Cy,},
G, = <E%, (Easys B3 )y [Bas Bsy 1< ij <m1<rk < n> ,

Gro = (B3, (Bl Boo L (B B ) i1 < <m 1 < vk <n)

Lin = GGy = ([Fa By, 10 Smd <k <),
Un = (Eays [Bays Esy ) : 1< 0,5 <m,1 <1k <n),

U- — <E;ir,[EEiT,E’;jk] A<ij<m1<rk< n>

m

Yt =(E,,,.E

QA —1,k [

E

amfl,k7E5 1§]7k§n>§Um7

i)
Y- = (B}, B, By, B ) 1Sk <) <UL
V= <[Eaik,E§mj],[ e B Ji1<i<m—2,1<j k< n> ,
Vo= <[Eamk, By ) [Bap v Bj )i 1<i<m—2,1<jk < n> ,
Ut=U,xV*T U =U_xV", Gn=U,x Ly.

Definition 5.1.1. Let 6 € EOA(Q L H(A)™), where @ has rank n. An G,U,, F,-

decomposition of # is a product decomposition § = néu, where n € G,,,§ € U,, and

e Fp.
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Chapter 5. Normality and Injective Stability

The decomposition theorem for EO4(Q L H(A)™) that we prove in this chapter is:
Let A satisfies the stable range condition SA; and let m > 1+ 2. Then every element of
EOA(Q LH(A)™) has a G, U, F,,-decomposition.

5.2 Roy’s Elementary Group is Normalized by a Smaller
Orthogonal Group

In this section, we prove that the orthogonal group O4(Q L H(A)™ ') normalizes the
elementary orthogonal group EO4(Q L H(A)™).
Now, by 3.1.4, each E,, E} for a € Homu(Q, P) and 8 € Hom4(Q, P*) can be written
as a product of Ey,;, £ .1 <i<m,1 < j <mn. Hence we can consider EO4(Q L H(P))
as the group generated by E,,;’s and Ej ’s for « € Hom(Q, P) and 5 € Homa(Q, P*).
Now, by the commutator relations which we proved in Chapter 2, we note the following

useful interpretation.

Lemma 5.2.1. The elementary orthogonal group EOA(Q L H(A)™) is generated by the
elements of the type E.,;, E}, [E%., E(;kl] , [E%., Egkl] , [E;ij, E;kl} for a € Homu(Q, P),

B € Homu(Q, P*) and fori,j,k,l with 1 <i,k <m,1 <jl<n andi#k.

Towards the proof of the normality theorem, we first recall some of the commutator

relations that we proved in Chapter 2 (Lemma 2.2.5, 2.2.1, 2.3.1, 2.3.2, 2.3.3).

Lemma 5.2.2. Let o, 9, € Homyu(Q, P) and 8,7, p € Homyu(Q, P*). Then, for any given
1,7, k, L such that 1 < i,5,t <m and 1 < k,l,r,s < n, we have the following commutator
relations.
(1) [EE““’ [EO‘”’E;J'ZH - E;jk [E;jk,EZJ, where 1k = — VB, Vik = _%%lairﬁfk’
Gr = =P and i # J.
(it) [E2k7 [an Eéﬂﬂ = By, [Egjk, EE,J; where Ajx = 0,05, Bik, Sk = %53'1042}@'1@;
Gk = Bix and i # j.
(iii) HE;Z,T,E;JJ , [Eajs,E;tk]] = (B2, EL, ], where G = —Buri the = junozs® and for
1,7, t distinct.
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5.2. Roy's Elementary Group is Normalized by a Smaller Orthogonal Group

(iv) [[anEajJ ; [EsmaEEjs” = [Eh,, By, where Ny = @;:05", mis = EuBis” and for
1,7, t distinct.

(v) HE%MEEJJ , [E(;js,E;tkH = [EmeZts]f where ny = —ai By, pes = Ydjs  and for
1,7, t distinct.
In particular, we have the following commutator relations.
(U@M:P%{&WEM]F%E%]a
(i1) Exy = |3, [Banes B, [ﬁgw,zxgu}i
(iii) (B¢ B = (1B B2, [Bane Byl
() [Brgs Bn] = [[Bows Bs,il s [Pe B ]|
(0) By By ] = B B, ] 5 [Eonss B3, )]
Lemma 5.2.3. The elementary orthogonal group EO4(Q L H(A)™) is generated by those

elementary generators having m as one of the subscripts.

Proof. The commutator relations in Lemma 5.2.2 show that the group EO4(Q L H(A)™)

is generated by the elements of type E.,, ., B} . [Ea;, B3 ] [Ba,s B3] [Ba,,» Es,] and
[E3,, B3] when Q. O

As a consequence of Lemma 5.2.3, it follows that the groups U, and C,, generate the
elementary group EO4(Q L H(A)™).

We now state the main normality result of this section.
Theorem 5.2.4. O4(Q L H(A)™') normalizes EOA(Q L H(A)™).

Proof. For proving this, it is sufficient to prove that U,, and (), are normalized by
04(Q LH(A)™ 1Y), and we do this by direct matrix calculation.
We consider the matrix representation of elements of O4(Q L H(A)™).

a b c

Let T=1d e f| €04a(QLH(A)™). Then
g h ]

TT =0, (5.2.1)
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where U = ¢ L ]0 [;n is the matrix of the bilinear form associated to the quadratic
form on Q L H (A)Y:1 Here, ¢ denotes the matrix corresponding to the nondegenerate
bilinear form on () and ; (;n is the matrix of the bilinear form on the hyperbolic
space. This equation is equirgalent to the following set of equations.
a‘pa+gld +d'g = b‘pa +h'd + e'g =0 cloa+jid+flg=0
a‘pb+gle +d'h =0 b‘yb + h'e +e'h = 0 c'pb +je+f'h=1,
alpc+g'f +d'j=0 b'oc +h'f +e'j =1, cloc+jf+fj=0

These equations are equivalent to the equation
(P_lat(,O go‘lgt gp_ldt
T—l — CtSO jt ft
bl h! el

The stabilization homomorphism O4(Q L H(A)™Y) — O4(Q L H(A)™) is given by

a | b o] cd o0
a b d | e 0| f 0 a b c
d & f'|—10 0 1 0 0l=1|d e f|=T. (5.2.2)
g b J g | W 0| j o0 g h j
0 0| 0 1

We now consider the generators for the subgroups U,, and C,, of EO4(Q L H(A)™) and
prove that they are normalized by an element in O4(Q L H(A)™™1).

Consider T' € 04(Q L H(A)™™1) as an element in O4(Q L H(A)™) by the stabilization
homomorphism. Then we conjugate the elementary generators of EO4(Q L H(A)™) and
write the conjugated element as a product of elementary generators. Corresponding to the

elementary generator E, ., we have

myj?

[n 0 _Qb_lat()émjtj
1 . . . . . Y
T Eo,,T = |jana Ly+janb jlanc—can'j— %Jtamjozmj j
0 0 I — blagm;'i
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I, 0 0
=10 I, ijamjcblan;'j— 3i ombcan;’]
0 O I,
I, 0 0 I, 0 0
0 I jlamjc—clami | | 0 L+ jlamb 0
0 0 I 0 0 Iy, — blany,'j
]n 0 _gbflatamjtj

st 1s¢ -1, ty
Jamja In, —3)amjag  a‘am;’]

0 0 I,

= [Ejtam,betor Eitan, [Eetds Ejtam; | [Ebtg: Bitam; | Bjtan;a-
2
Corresponding to the elementary generator E;mj, we have

—qﬁ_latﬁfnje 0
I, — ', e 0
tﬁm]a e'fm;b — b’ e — %etﬁmjﬁjnje I + €'B;c

L, 0 0 I, 0
0 I, 0 0 I,

—1
T E; T =

1 e'B,jcb!B,'e — 3 €' Bm;bc' 3], e In 0 etﬁmjb—btﬁfnje

0 0 I, —¢ta'fl e 0
I, —ctpt e 0 0 I, 0

mj

0 Ln+e€'fmjc) \efma —3€'Bn0e In

= E;ijcbt@Eztﬁmj} [Elttqbv Ztﬁmji| |:Ect¢7EZt6mj:| E(etﬁmja)'
P
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Corresponding to the elementary generator [E,,,, E;kl], we have

In 0 ¢ (dtﬁklamjj)
T_l[Eamj> E;kl}T = _jtamjﬁzrlﬂ]tdd In =] O‘myﬂkze ' B~ mjj J Oémjﬁbilﬁiilf
0 0 Ly + €' Bras,;j

0
0 In Jlamo B’ (=550 Buctal, i
I,

0
m £ Buo™! mjj—jt@mj¢_15/f;lf
L,
( 0

—J Ozm]ﬂkle 0
I, + etﬂkz@fm—j

0 ¢~ H(d" Briar,i)"
Jam]¢ 1ﬁk1d L, _%jtamjﬁbilﬁkldﬁb (dtﬁklam].])t
0 I,

= E(jta;nj)’E(jta7nj¢716kltfetﬁkl) [E(jtamj)’E(ftﬁkz)]

[E(jtamj) ) E(*etﬁkz)} E_ (tom;jo=1B),d):

Corresponding to the elementary generator [E,,,, E} ], we have

In _Qb_l(etﬁmka;jg)t 0
T_l[Eom‘jv E;’mk]T = 0 [m - jtaijﬁ;z@ke 0
e Buka;g € fBmrajih —h'ayBr e Ly + e Buralj
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0
0

0
L,
%etﬂmkqs ! h.] O‘zggb 16t ke - _etﬁmkgb 1 Jhta1j¢ 1ﬁt ke I

0 e'Bumrajjh —hlay;B) e Iy 0 0 Ly + €' Brrciji
_¢71<etﬁmkafjg)t 0
I, 0

0 0 I, 0 0
[m 0 0 [m —jtczijﬁ;‘nke 0

eﬂmka”g —-etﬁmk%]g¢ (tﬁmka;"}g)t

Eéetﬁmk¢_1a§jjht0ﬁj)’ E:etimk )} [EEkhtaij)’ Egetﬂmk)

[E(jtaij)7 Eeketﬁmk)] EEkethk‘z) z]'g)‘

Corresponding to the elementary generator [E,,,,, Fs,], we have

I, 0 ¢_1gt5jla:nkj
T_I[Eamw E5jz]T =|-j @mka 18 L, jt@mk(S J ((5Jla Oémk(sg*l).]
0 0 Ly + h'6,0% ]

I, O 0
=10 I, %jt@mk(s;zhjtéjlo‘:mj_%jtamké;ljhtfsjlo‘;mj

0 0 L,

0 0 I, 0 0
0 0 In (050, — Qmkdy)]
I,

I,
0 I — jlmd;h
0 0 L, +h'ser,i) \o 0
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L, 0 o'glozar,]
_jtamké;lg L, _%jtamké;lggb_lgt(sjla;kj
0 0 I,
= E(%jtamk)’E(jfamkzs;lhjtaﬂ)} [E(jtamk),EEkmﬂ)] [Ean: Egan ] B
Corresponding to the elementary generator [E} | E7 |, we have
I, ¢71dt7jl¢71 ﬁnke 0
TES BT = 0 L + £19:07 B 0
_etﬁmk(b 17]1(1 € (’yjlﬁmk ﬁmk’}/j*l)e [m tﬁm]¢ 1%[
I, 0 0
=10 L, 0
0 etﬁmk’Y]l (ef = )’yjlﬁmk e ]
I, 0 0
0 I, 0
0 e (VBi — Buk )€ Im — € B 5 f
I, 0 0
0 Im + ft’yjlqs_lﬁmkte 0
0 O - etﬂm]¢ l%l
I, ¢~ dl 071 Bl e 0
0 I, 0
—e' B¢ hd  se' Bt pdo T A 0 Bl e I,

= et Eletsietingl et Bletnyn]

[E(*etﬁmk)? E(ftV.ﬂ)]E(—etﬂmW?ld)'
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These equations prove that C,, and U, are normalized by O(Q L H(A)™!). Hence the

theorem follows. ]
We can immediately deduce the following stability result.

Corollary 5.2.5. EO4 is a normal subgroup of O4.

5.3 Normality of Roy’s Elementary Group under a Condition
on Hyperbolic Rank

In this section, we prove that the elementary orthogonal group EO 4(Q L H(A)™) is normal
in the orthogonal group O4(Q L H(A)™) under a condition on the hyperbolic rank. First,
we prove the normality when the hyperbolic rank at least d + 2, where d = dim Max (A) .

In the following theorem, let ¢ denote the quadratic form on Q.

Theorem 5.3.1 ([48, Corollary 6.4]). Let A be a Noetherian ring with dim Max (A) =d < oo.
Let P be a finitely generated projective A-module of rank > d 4+ 1 and ) be a quadratic
A-space. If QQ contains a non-singular element w, then the orthogonal transformations of

Q) L H(P) act transitively on the elements of norm q(w).

Remark 5.3.2 ([48, Remark 5.6]). Let w be an element of @) L H(P) with its P-component
unimodular. Then there exists an orthogonal transformation £ which maps w into H(P).
For, let w be written as (z,z, f) with z € Q,x € P, and f € P*. Since z is unimodular,
there exists an A-linear map (' : P — @ satisfying §'(z) = z. Let 5 : Q@ — P* be an
A-linear map such that 8* = ’. Then

Ej(z,x, f) = (z — B (x), @, [+ B(z) — %66*(9:))
_ <O,x, 4 B(:) — %/35*(1;)) |

Theorem 5.3.3 ([48, Theorem 7.1]). Let ) be a quadratic A-space of hyperbolic rank
larger than d 4+ 2. Then the orthogonal transformations of Q) act transitively on

(i) the non-singular elements of Q of a given norm and
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(ii) the set of hyperbolic planes in Q.

Theorem 5.3.4 ([48, Theorem 8.1')). Let A be a semilocal ring and let Q be a quadratic
space over A of rank at least 1. Then the orthogonal transformations of Q) act transitively

on the non-singular elements of Q) of a given norm.
We now prove the following normality result.

Theorem 5.3.5. The elementary orthogonal group EO4(Q L H(A)™) is normal in the
orthogonal group O4(Q L H(A)™) when m is at least d + 2, where d = dim Max (A) .

Proof. By Theorem 5.3.3, it follows that the group EO4(Q L H(A)™) acts transitively
on hyperbolic pairs. In the case of semilocal rings, by Theorem 5.3.4, the same holds for
m>1.

For, if « € O4(Q L H(A)™) and (eq, f1) is a hyperbolic pair, then, by Theorem 5.3.1,
(cver, af1) and (eq, f1) are in the same orbit of EO4(Q L H(A)™) . Let e be a map which
takes one orbit to the other. Therefore ex fixes (eq, fi) and hence eae € O4(Q L H(A)™™1),

1

whence so does (ea)'. Now, by Lemma 5.2.4, it follows that (ea)* normalizes the group

EO4(Q L H(A)™). But then a~! normalizes the group EOA(Q L H(A)™). O

5.4 A Decomposition Theorem

In this section, we prove a decomposition of Roy’s elementary group under the stable range
condition. Assume that A satisfies the stable range condition SA;.

We start with the following lemma.

Lemma 5.4.1. The elementary orthogonal group EOA(Q L H(A)™) is generated by G,
and Y ~.

Proof. Tt follows from the commutator relations

[EEZT ) E:mj]

I:Egzr ) Ej;]s]

[[E;M’E* ], [EQ”H?S,E;W]} for1<i<m-1,1<rjkl s,q<n,

TYm—1,k

[[E;j”E::mt]? I:Eamk7E;1qj|:| for 1 S Z’J S m - ]‘77’ # j? 1 S r7 57l7t7k7q S n?
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Ep = [Eay: [Ep B2l By Bty )™ for 1<k <myi#k1<jlr<n,
2

Nk

that the subgroup generated by G,, and Y~ contains all the generators of the elementary
orthogonal group EO4(Q L H(A)™). O

Lemma 5.4.2. Let the subgroups UT, U=, Y™ and Y~ are as defined in Section 5.1. Then
we have the following inclusions involving these subgroups:

(i) Y- UTCUY YT,

(1)) YTU- CU Y'Y,
(1)) Y-UTU- CUTUYTY ™.

Proof. (i) Let o € Ut. Then o = nu, where 7 lies in the subgroup generated by [E,,, , EEJ-J?
where 1 <71 <m—-21<j<mandl < k,l <nand p € Y". Then from the
commutator relations, it follows that for any & € Y, the element &né~! lies in U™,
Thus o =&t - € peUTY YT,

(ii) Similar proof as (i).

(iii) Follows from (i) and (ii). O

We denote by S the set consisting of elements o € L,, such that the matrix correspond-
ing to o has the (n +m — 1,n +m)™ and (n + m,n +m)™ entries zero.
The following lemma is a crucial one since it depends on the stability conditions. The

rest of the proof of the decomposition theorem is independent of the stable range condition.

Lemma 5.4.3. Let m > 1+2. Then, for every o € L,,, there exist elements p, € V1, 1, €
V= such that Y,p,0 € S.

Proof. Let o € L,, and let v be the (n + m)™ column of the matrix corresponding to o.
From the definition of stable rank, it follows that there exists a matrix v € M(m — 2,2, A)

such that <0 Im_o v 0) v € A™? is unimodular. Hence we get an element ¢, € VT
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such that the first n +m — 2 coordinates of v' = p,v form a unimodular column, where

I, 0 0
I,
0 2 7 0
Po = 0 ]2
I, 0
0 0 2
_Vt Iy

Now, there exists another matrix x € M(2,m — 2, A) and ¢, € V'~ such that v = ¥, 0’

. " o\ —
has the coordinates v, ., = v, ,,, = 0, where

I, 0 0
I,—o 0
0 ? 0
1/10' = K IQ
I_o —kK!
0 0 2
0 I,
Hence ¢, p,0 € S. O

Corollary 5.4.4. Let m > 1+ 2. Then we have the following inclusion
U,U- L, CUTUS.

Proof. Let 0 € L,,. Then, by Lemma 5.4.3, there exists ¢, € V*. Since ¢, normalizes

U,,, we have

UnUpo = (Une; ) (0oUpeyt -5 (g - po0) CUTUTS. O

m

Lemma 5.4.5. Let m > 2. Then we have the following inclusion
Y- UTU-SCUU L,F,,.

I, 0 0
Proof. Let 0 € Sand 7 € (Y~)?. Then 7isof thefoom7=| 0 [, 0 | for some skew-
0 v In

symmetric matrix 7. Now it follows from the definition of S that the (n +m)®" column of
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6 remains unchanged if we multiply @ on the left by an element of Y ~. Hence the (n+m)™

column of @ coincides with that of the identity matrix and the m'* column of ~ is zero.

Since 7 is a skew-symmetric matrix, we get that the m'* row of v is also zero. We now get
TeU,NE, CF,.
Now, by Corollary 5.4.4 and Lemma 5.4.5, we have the following inclusions.
Y UtU O CUTUYYY HCUTU YN (Y)Y CUU L,E,. O
We now have enough machinery to prove the following decomposition theorem.

Theorem 5.4.6 (Decomposition Theorem). Let m > | + 2. Then every element of
EOA(QLH(A)™) has a G, U, F,,-decomposition.

Proof. Since L,, normalizes both U,, and U,,, we have
GnU, F, =U,L,U, F, =U,U, L,F,.

To prove G,,U, F,, = EO4(Q L H(A)™), it is enough to prove that G, U, F,, is stable
under left multiplication by the generators of EO4(Q L H(A)™). Now, by Lemma 5.4.1, it
is enough to show that Y~G,,U_F,, C G, U, F,,. We now get

Y GnUs Fyp =Y UpUs LnFy, CY UTUSF,, CUTU Ly Fy € GulUn Fy. O

5.5 Normality under A-Stable Range

In this section, we prove the normality under the assumption that A satisfies the O-stable
range condition 0-SA;. i.e., A satisfies the stable range condition S'A; and for every unimod-
ular vector (ay,...a;41,b1,...byy1)t € A?+2 there exists an (1+1) x (1+1) skew-symmetric

matrix 3 such that (ay,...a;1)" + B(b1, ... bi1)t € AL is unimodular.

Lemma 5.5.1. Let m > 1+ 1. Then, for any o € O4(Q L H(A)™), there is an element

0 € G, such that oo has 1 in its (n +m,n + m)™ position.
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We shall use the following theorem of L.N. Vaserstein in the proof of Lemma 5.1. For

completeness, we include its proof.

Theorem 5.5.2 (L.N. Vaserstein, [61, Theorem 1] ). Let R be an associative ring of
finite stable rank l. Then, for any natural number n > 1 and any unimodular row (b;)1<i<n

, there exist ¢; € R such that (b; + ¢;bp)1<i<n—1 is R- unimodular and ¢; = 0 when i > [.

Proof. Let n > [. Since the stable range condition SA; holds, we have Y "  a;b; = 1 for

some a; € R. Now let bj = b; (1 <i <) and by, =", a;b; € R. Then the vector
= (b3)

(1 < < 1) such that >\ RV, = R, where b/ = b + &b}, = b; + ¢, > i1 abj. We

set B;; = ca; (1<i<l<j§n—1),ci:c;an (1 <i<l)and ¢; =0 when i > I.

Then b/ = b; + ¢ib, + >,

and B=1,_; + ZZ 1 EJ "1 Bijeiy € GLy_1(R), where B, je; ; is the matrix with B, ; in

1<i<i+1 is R-unimodular and by the stable range condition, there exist ¢; € R

i l+1 B;jb; (1 < i <1). We also set b = b, when I < i < n
position 4, j and with zeros elsewhere. Since the vector b” = (b)1<;<,—1 is R-unimodular,

the vector B~'0" = (b; + ¢;b,)1<i<n_1 is also unimodular. O

Proof of Lemma 5.5.1. Let o be the 3 x 3 block matrix corresponding to the orthogonal
transformation o € O4(Q L H(A)™) given by

011 012 013
0= 1021 022 023 |;
031 032 033
where 011 is an n X n matrix, 1o, 013 are n X m matrices, 091, 031 are m X n matrices and
022,093, 039, 033 are m X m matrices. Since 0! € O4(Q L H(A)™), it also has a similar
matrix description. Now (091, 099, 093) is a unimodular vector in M, (A) x (M,,(A))?. Let
v = (u,v9,v3) be the bottom row of (091, 099, 023). It is unimodular in A"*?™. Then there
exists a vector v/ € A"™®™ such that (v,v') = 1.
The unimodular vector (u,vs,vs) can be written as (u, {(f;, v) hi<i<m, {(€: V) h<i<m)-

Then, by unimodularity condition, we have

m

Z<fi’ Ve +Zel, fiy + (' uy =1

=1
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which implies that

m m

ZA(fi,w + ZA(@-,U} + A u) = A.

ie., ({{e,v) i<icm, {{fi, v) }1<i<m, (v, u)) is unimodular in A>™*,
Since m > [+1 and A has stable rank [, by Theorem 5.5.2; there exist ¢; € A (1 <i < m)
such that

ZA(fi, vy + A <Z<€i’ v) + ¢ (v, u>> = A. (5.5.1)

i=1
Now set v" = v' = > ((fi,v)e; + (€, V) f;). Then (f;,v") =0, (e;,v") =0, (v, u) =
(v',u). Now take iy = [Ti2) Ef = [[i2) Tfcoo € G and denote i1 (v) by (u', v, v3).

B3, (0) = v+ Bi(0) — B (0) — 5555 ()
=v— (v, fi)e" + (cv” u) f; — q(ev") (v, fi) fi.

Set a; = (fi,v), and b; = (e;, v). Then a; = (f;, B, (v)) = (fi,v) = a; and b = (e;, B, (v)) =
(e, v) + ciu,v") — qle”) (v, fi) = (ei,v) + ci(v',u) — Gq(v") (v, fi) = bi + c;(v',u) +
r;a; for r; € A. Hence, by equation 5.5.1, we get

m

Z Adfj + AV, = (Alfi, B3, () + Ales, E5 (v))) = A

i=1
Thus, by multiplying o with p; = [[:2; B}, = [[:Z; T}, e, We can assume that (vg, v3) is
unimodular in A%™.

Since A satisfies the 0-stable range condition 0-SA; and m > [ + 1, there exists a

skew-symmetric matrix v € M,,(A) such that v} 4+ v}y is unimodular in A™. Now set

I 00
pe=10 1 0f= H H [E;ij’E:;kl] GG”"“

1<i,k<m 1<j,I<n
0 v

where I denotes the identity matrix and 0 denotes the zero matrix of the corresponding
block size.
Since A satisfies stable range condition SA; and m > [ + 1, there is a product € of

elementary matrices such that (v} + v4y)e = (0,...,0,1).
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Set
I 0 0
H3 = 0 ¢ 0 H H aua /Bkl € Gm
-1 1<4,k<m 1<5,l<n
0 0 &

Then o paps has (n +m)™ row (v/,0,...,0,1, vgerl). This completes the proof of the

lemma. O

Theorem 5.5.3. Let A be a commutative ring in which 2 is invertible. Suppose A satisfies
the stable range condition 0-SA;. Then, for all m > [, the elementary group EO4(Q L
H(A)™) is normal in O4(Q L H(A)™).

Proof. Let n € EO4(Q L H(A)™), where rank ()) = n. By Lemma 5.5.1, there is an
element p; in G,,, € EOA(Q L H(A)™) such that the (n+m,n-+m)™ coefficient of g is 1.
Then there is a matrix oo = [[}* HK] k<nlBan;» B3, ] such that 1o 05 has 0 in the first n+

m—1 entries of its (n+m)" row and 1 in the (n+m)™ entry of this row. It follows that there

is a matrix g3 = (H H1<r k<n 5,0 mG]> (H H1<7" k<n By B }) (H?:l E%j)

th

such that p3n0;0s has the same m'* row as 19,0, and the same m'* column as the (n 4+

2m) x (n 4 2m) identity matrix. For any matrix

011 O12 013
o= |0y 0w o9 €0a(QLH(A)™),

031 032 033

it follows from equation (5.2.1) that the (n+2m,n+2m)™" coefficient of 310102 is 1. Then

there is a matrix

01 = <ﬁ1 II (Ea ﬁw) (H I (&, %) (ﬁ L EQWEW]) (jlleij>

=1 1<r,k<n i=1 1<r,k<n =1

such that p403m010> has the same (n + m)™ row and (n + m)" column as p3n0,0, and
the same (n + 2m)™ column as the (n + 2m,n + 2m) identity matrix. Now, it follows
that 040310102 has the same (n + 2m)" row as the (n + 2m,n + 2m) identity matrix.
Thus, by the stabilization homomorphism, we have g403m0102 € OA(Q L H(A)™ 1), where
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rank () = n. Let p = p403m0102. By Proposition 5.2.4, it follows that p normalizes
EO4(Q L H(A)™), where rank (Q) = n. Since n = 03 0, po; " 07", it follows that n
normalizes EO4(Q L H(A)™). Thus EO4(Q L H(A)™) is normal in O4(Q LH(A)™). O

5.6 Stability of K;

In this section, we prove the following stability theorem using the normality theorem of
the previous section and the decomposition theorem under the O-stable range condition

and injective stability of K; of O4(Q L H(A)™) under the usual stable range condition.

Theorem 5.6.1. Let A be a commutative ring of 0-stable rank [ in which 2 is invertible.
Then, for all m > 1+ 1, the coset space KOy ,(Q L H(A)™) is a group. Further, the

canonical map

KO1,(QLH(A)") — KOy m(QLH(A)™)

is surjective for | < r < m, and when m > 1+ 2, the canonical homomorphism
KO- 1(QLH(A)"™) — KOy, (Q L H(A)™)
s an 1somorphism.
Proof. By Theorem 5.5.3, we get that KO ,,(Q L H(A)™) is a group and the map
KOpm-1(Q L H(A)™Y) — KOy m(QLH(A)™)
is surjective. By induction on m — [, we obtain that the map
KO1(Q LH(AY) — KOy u(Q L H(A)™)

is surjective for [ < r < m.

To prove the final assertion, let 0 € O4(Q L H(A)™ 1) NEO4(Q L H(A)™). Let néu be

th

an F,)U, (;)G(m)—decomposition of o. Since the (n + m)" row of n coincides with that of

the (n+2m) x (n+2m) identity matrix, it follows that the (n+m)™ row of nép coincides
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with the (n + m)!" row of £u. Thus the (n + m)™ row of &u coincides with that of the

(n+2m) x (n 4 2m) identity matrix. We can write the matrix p as

I ~ 0
p=10 ¢ 0 |,
9 ¢ et

where [ is an n X n identity matrix, v is an n X m matrix, € is an m X m invertible matrix,
¥ and v are matrices of size m x n and m x m respectively.

If (u,v,w) denotes the (n +m)™ row of &, then the (n 4+ m)™ row of &u is

I ~ O
(u, v, w) 0 ¢ O =<u—i—w19, wy + ve + w, w(gt)—l).
9 o et

Since the (n +m)" row of £y is same as that of the (n + 2m) x (n + 2m) identity matrix,
we get w(e?)™! = 0. Now, by the invertibility of (¢')~!, we get w = 0. This implies that
u=0. Thus £ € G,,.

Now write n = 111, where 1, € EO4(Q L H(A)™™!) and u; € C,, C G-

Then o = mui&p and pép € G, N04(Q L H(A)™1). Now it suffices to show that
piép lies in EO4(Q L H(A)™™1). In fact, we show that péu € Gy

Write
I v 0

pi§p =10 ¢ 0
VA
Since pu1ép € O4(Q L H(A)™ 1), it follows that v and § have their last column 0 and 9, §

1

have their last row 0. Also, it follows that ¢ € GL,,_1(A). From the definition of G,,, we

see that € is an m x m matrix of the form

Thus ¢’ € E,,(A) NGL,,—1(A). Since A satisfies the stable range condition, by the stability
for K of the general linear group [15, Chapter V, Theorem 4.2], we get ¢’ € E,,_1(A).
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Thus p1ép lies in G,,. Hence the canonical homomorphism
KOy, 1(QLHA)™ ) — KOy,,(Q LH(A)™)
is an isomorphism. O

Now, we prove the injective stability for K; of the orthogonal group O4(Q L H(A)™)

under the usual stable range condition.

Theorem 5.6.2. Let A be a commutative ring of stable rank | in which 2 is invertible and

let m > 1+ 2. Then the canonical map
KOy, 1(QLHA)™ ) — KOy,,(Q LH(A)™)
18 1njective.

Proof. Let o be an element of O4(Q L H(A)™ ) NEOA(Q L H(A)™). Then, by Theo-

rem 5.4.6, 0 can be written as a product Tvu, where

In 0 t13 ]n U12 0
T= |ty tan to| €Gnm v=1|10 I, 0/|€U,, e Fy,.
0 0 53 uzr usy I,

Since the (n + m)™ column of u coincides with that of identity matrix, we get
t33(use)it =0 fori=1,...,m.
Since t33 is invertible, we get
(uga)i1 =0 fori=1,...,m.

Hence p € F,,. Thus we can assume that 0 = 7 and 7, u € O(Q L H(A)™1).

th, O
Now proceeding as in Theorem 5.6.1, we get that toy = 22 € E,(A). Thus
0 1

thy € En(A) N GL,,_1(A). Since m > s-rank A + 2, the injective stability theorem for
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K of the general linear group [15, Chapter V, Theorem 4.2], we have t}, € E,,_1(A) and
hence 0 € EO4(Q L H(A)™!). Thus the canonical map

KO1m1 (QLH(A)™ ) — KOy n(QLH(A)™)

is injective. 0
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