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AbstratA sene to be photographed, usually inludes objets at varying distanes from theamera. Depth-of-�eld of a digital amera is the range of distane, all objets withinwhih appear to be sharp in the image. Due to the low depth-of-�eld of the amera,images aquired by them often su�er from degradation alled out-of-fous blur. Oneway to enhane the e�etive depth-of-�eld is to aquire several images of a sene withfous on di�erent parts of it and then ombine these images into a single image insuh a way that all regions of the sene are in fous. Aquired images are alledmulti-fous images and the proess of ombination is known as multi-fous imagefusion. The tehniques for multi-fous image fusion belong to the broad ategories,pixel-based, blok-based and region-based. They onentrate respetively on singlepixels, small bloks of size m � n and arbitrarily shaped regions. Image registrationis a neessary pre-requisite for multi-fous image fusion. The thesis presents a newtehnique for multi-fous image registration and three new tehniques for multi-fousimage fusion. Among these tehniques, the �rst one is pixel-based, the seond oneis blok-based and the third one is region-based. All of them use mathematialmorphologial tools. The pixel-based method is a multi-resolution tehnique thatemploys morphologial wavelet as a tool for signal deomposition and reonstrution.The blok-based method uses energy of morphologial gradients as a tool for fousmeasure. Finally the region-based method uses multi-sale morphologial tools forobtaining the foused regions from the input images. In this ontext, existing fusiontehniques are studied and ategorized. The thesis inludes experimental resultsobtained by applying the proposed methods and other well-known methods on avariety of input data-set. It also inludes performane analysis of various methodsusing standard quantitative evaluation tehniques. At the end it presents onludingremarks and a disussion on related future work.
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Chapter 1
Introdution
Advanements in digital imaging tehnology have inreased the popularity of on-sumer imaging produts suh as digital ameras and amorders. However due to thephysial limitations of the imaging systems, images produed by them often su�erfrom degradations. A sene to be photographed usually inludes objets at varyingdistanes from the amera. Sharpness distribution of an image of suh a sene isa�eted by various fators. The objet foused by the amera and the objets at thesame distane from the amera as the foused objet appear to be the sharpest in theimage. Sharpness of the objets in front of and behind the foused distane dereasesgradually in the image. This sharpness-loss is not signi�ant within a ertain range ofobjet distanes. This range is alled depth-of-�eld (DOF) of the amera [76℄. DOFas alulated by par-axial geometri optis model of image formation using a thinonvex lens is given in Appendix A of the thesis. DOF depends on various fatorssuh as, the amount of sharpness-loss regarded as aeptable, foal-length of the lens(longer the foal-length, shorter the DOF), distane of the foused objet (nearer theobjet, shorter the DOF) and the aperture used (dereasing the aperture will inreasethe DOF). The extreme ase of dereasing the aperture for maximizing the DOF hap-pens in a pin-hole amera. It has an in�nite DOF. Unfortunately, the optial powerin the image plane is redued onsiderably due to very small aperture. So ameras1



CHAPTER 1. INTRODUCTION 2with �nite DOF are preferred. A �nite but large DOF means that objets within alarge range (and hene possibly a large number of objets) will appear to be sharp inthe photograph. On the other hand, a small DOF means that objets within a smallrange (and hene possibly a small number of objets) will appear to be sharp in thephotograph and all other objets will appear to be out-of-fous in the photograph.Out-of-fous blur is one of the typial degradations whih our in images aquiredby digital ameras due to their low DOF [60, 76℄. The problem of low DOF is alsoenountered in mirosopy due to inrement in magni�ation and aperture [61, 6, 36℄.
1.1 MotivationOne way to enhane the e�etive DOF is to aquire several images of a sene fousedon objets at di�erent distanes and then integrate these images into a single imagein suh a way that all regions of the sene are in fous. Aquired images are alledmulti-fous images and the proess of ombination is known as multi-fous imagefusion (MFIF). The proess produes an image whose total area-in-fous is more thanthat of any of the onstituent images. Multi-fous images of a sene are aquired oneby one either by hand-held ameras or by ameras plaed on tripods, in identialenvironmental onditions in respet to sensor, light, view-diretion, orientation andobjet-ontents in the sene. They an be either grey-level or olor images. Sineeah image in a set of multi-fous images has fous on objets at di�erent distanesin the sene, an objet whih is in-fous in the near-foused image may be out-of-fous in other images. Similarly an objet whih is out-of-fous in the near-fousedimage may be in-fous in the far-foused image. Hene partial defousing/blurring isinevitable in this type of images. MFIF produes an image in whih blurred regionsare deblurred and every area is in fous. The fused image should be better for humanviewing as well as for subsequent proessing and analysis like segmentation, featureextration, objet reognition et. Figure 1.1 shows an example of multi-fous imageswith fous on omplementary regions and the fused image with fous on all regions.



CHAPTER 1. INTRODUCTION 3

(a) Near foused image (b) Far foused image () Fused imageFigure 1.1: An example of multi-fous image fusionThe tehniques for MFIF belong to the broad ategories, pixel-based, blok-basedand region-based. They onentrate respetively on single pixels, small bloks of sizem � n and arbitrarily shaped regions. It is interesting to study and ompare MFIFtehniques within a partiular ategory and the ones belonging to di�erent ategories.The ultimate goal of MFIF is to obtain all objets in the �nal image in fousedand identi�able form. Mathematial morphologi operators have the apability ofhandling objets in di�erent shapes and sizes. In this thesis, we explore mathematialmorphology as a tool for MFIF and propose new tehniques for the same employingthis tool. We provide a omparison of results obtained by various tehniques andoutline some related future work. Image registration is a neessary pre-requisite forMFIF beause before fusion the onstituent images must be positioned properly withrespet to a ommon oordinate system so that orresponding objets are overlaidproperly [41℄. We propose a new tehnique for multi-fous image registration also. Inthis hapter, a brief review of previous work on MFIF is given in Setion 1.2, objetiveof the thesis is given in Setion 1.3, a brief aount of mathematial morphologioperators is given in Setion 1.4, ontribution of the thesis is given in Setion 1.5,experimental set-up along with data used for experimentation are given in Setion 1.6,evaluation tehniques used are given in Setion 1.7, and �nally organization of thethesis is given in Setion 1.8.



CHAPTER 1. INTRODUCTION 41.2 Review of previous workThe fundamental onept behind MFIF is to selet the sharply foused regions fromthe input images to form an image in whih all objets are in fous. The basi stepsfor this are, to divide eah input image into overlapping or non-overlapping regions,then measure sharpness of fous for all regions, �nally selet the best-foused regionamong all orresponding regions to form the fused image. When all the regions ofinterest squeeze into single pixels, the approah is alled a pixel-based approah, whenthey are small bloks of size m � n, the approah is alled a blok-based approah;otherwise it is alled a region-based approah. Another ategorization is done onwhether the tehnique is based on spatial domain or frequeny domain. In spatialdomain tehniques, input images are fused in spatial domain using physially relevantspatial features. In frequeny domain tehniques, multi-sale deomposition (MSD) ormulti-resolution deomposition (MRD) by pyramid or wavelet transform is required.An early ategorization of frequeny domain MRD fusion shemes was given by Zhangand Blum [89℄. Piella [65℄ provided a general framework for these shemes and alsoproposed a new method for the same. Pajares and Cruz [59℄ presented a omprehen-sive tutorial on wavelet-based fusion methods. Goshtasby and Nikolov [30℄ presentedan overview of various fusion tehniques. Basi idea of MRD-based fusion shemesis the following. At �rst eah soure image is transformed/deomposed up to a levelby an MRD sheme. The deomposition gives the saled image as low frequenyoeÆients and the detail images as high frequeny oeÆients. Salienies of theoeÆients are measured by their ativity-levels. A seletion or deision map is re-ated from the ativity-levels of the oeÆients from all transformed images. Themap is used as a guide to onstrut the omposite representation of the transformedimages. Finally fused image is obtained by applying the inverse transform to theomposite representation. An MRD fusion sheme is ategorized depending on howthe ativity-levels of MRD-oeÆients are measured. If the ativity-level is measuredfor the oeÆients related to individual pixels, the method is alled pixel-based, if itis measured depending on the oeÆients of a small blok surrounding the onerned



CHAPTER 1. INTRODUCTION 5oeÆient, the method is alled blok-based and �nally; if it is measured dependingon all oeÆients in a region ontaining the onerned oeÆient, then the methodis alled region-based. Images fused by frequeny-domain MRD shemes may losesome information of the soure images beause of implementation of inverse multi-resolution transform.The idea of using MRD shemes for image fusion was �rst proposed by Burt [8℄ as amodel for binoular fusion for human stereo vision. He used Laplaian pyramid forMRD and hoose max rule for oeÆient seletion. Burt and Adelson [10℄ later in-trodued a new approah to image fusion based on hierarhial image deomposition.Adelson [2℄ then used the Laplaian pyramid tehnique for MFIF. Toet [78℄ proposedthe use of ratio of low-pass pyramids at suessive levels of Gaussian pyramids forfusion of visible and IR images. Burt [9℄ proposed that fusion within a gradientpyramid provides improved stability and noise immunity. Akerman [3℄ optimized theLaplaian pyramid fusion in respet of multi-sensor fusion. Burt and Kolzynski [11℄presented gradient pyramid fusion with a loal math measure and a window-basedsalieny measure. Li et al. [45℄ used similar method exept that wavelet transformis used instead of pyramid transform and onsisteny veri�ation is done along withwindow-based ativity measure. Wavelet based fusion tehniques are proposed laterby many other people inluding Chipman et al. [16℄, Petrovi and Xydeas [63℄, She-unders [72℄, Hill et al. [37℄, Hamza et al. [34℄, De and Chanda [19℄, Qu and Yan[68℄ and Lewis et al. [44℄. Frequeny domain tehniques in various ategories will bedisussed in detail in related hapters.Sine multi-fous images of a sene are aquired with fous on omplementary regions,foused regions in an image have more ontrast than their defoused ounter-partsin other images. Fous-measure (FM) is a quantity for evaluating the ontrast orsharpness of a pixel, blok or region [39, 50℄. Image variane, image gradients, im-age Laplaians, energy of image gradients (EOG), energy of image Laplaian (EOL)are traditional FM's employed and validated for appliations like autofousing [76℄.Modi�ed Laplaian (ML), Sum modi�ed Laplaian (SML) are modi�ations of image



CHAPTER 1. INTRODUCTION 6Laplaian [58℄. Spatial frequeny (SF) [25℄ and Tenengrad [36℄ were later introduedas fous measures. In spatial domain MFIF tehniques, input images are fused inthe spatial domain using fous-measure as a physially relevant spatial feature in lo-alized area. Sine these tehniques emphasize on a spei� or desired image area,very little/no hange ours in other areas. Pixel-level weighted averaging is a spa-tial domain tehnique in whih fusion is done by taking the weighted average of thepixel intensities of the input images. Weights are determined by tools like prinipleomponent analysis [71℄ or adaptive methods [42℄. Other spatial domain pixel-levelimage fusion approahes inlude, fusion using ontrollable amera [73℄, probabilistimethods [5℄, image gradient method with majority �ltering [23℄.The basi idea in spatial domain blok based fusion methods is to divide the inputimages into a number of bloks, then measure fous on orresponding bloks and�nally selet and ombine the foused bloks to reate the fused image [39℄. Oftenonsisteny veri�ation is done before reating the �nal fused image. Spatial domainblok based fusion methods are proposed in [47, 48, 55, 29, 27, 87, 21℄. Li et al. [47℄used spatial frequeny (SF) as the fous measure. In a subsequent work they [48℄used neural network (NN) to selet better foused bloks using three features SF,visibility and edge feature. Miao and Wang [55℄ used energy of image gradients (EOG)to measure fous in image bloks in an MFIF algorithm based on Pulse CoupledNeural Networks. In the method of Goshtasby [29℄, fous is measured by the sumof the gradient values of all pixels in the blok. In the method of Fedorov et al.[27℄ eah image is tiled with overlapping neighborhoods. For eah region the tilethat orresponds to the best fous (whih is measured by ML) is hosen. Zhang andGe [87℄ proposed a tehnique in whih foused bloks are deteted by measuring theirblurriness. De and Chanda [21℄ introdued a new fous measure alled energy ofmorphologi gradients (EOMG) and used it for image fusion in a blok-based MFIFalgorithm.In region-based fusion tehniques, among orresponding regions better foused onesare seleted and ombined to onstrut the fused image. So blok-size is not of any



CHAPTER 1. INTRODUCTION 7onern in these methods. Spatial-domain region-based fusion methods are proposedin [53, 57, 22, 49℄. Methods desribed in [53, 57, 22℄ use multi-sale morphology.Matsopoulos et al. [53℄ used multi-sale morphologi pyramids. Mukhopadhyay andChanda [57℄ used morphologi towers instead of morphologi pyramids. De et al. [22℄proposed multi-fous image fusion tehniques using multi-sale top-hat transforma-tion. Li and Yang's tehnique [49℄ is a spatial-domain, region-based tehnique whihdoes not depend on MRD. In this tehnique, input images are segmented aordingto the segmentation results of a temporary fused image and better foused regions areseleted and stithed to their desired positions to get the �nal fused image. Spatialdomain tehniques in various ategories will be disussed in detail in related hapters.Objetive of the thesis is given now.
1.3 Objetive of the thesisA number of researhers have suggested methods for MFIF as a solution to the prob-lem of low depth-of-�eld. As disussed before, the tehniques belong to the broadategories, pixel-based, blok-based and region-based. It is interesting to study andompare MFIF tehniques within a partiular ategory and the tehniques belongingto di�erent ategories. A good algorithm for MFIF should possess some importantproperties. It should be independent of image ontent and robust against probablemisalignments of input images. It should not produe any unwanted visual e�etor artifat. Quality of the fused image should satisfy the requirement for intendedappliation and �nally omputational omplexity should also be a�ordable. In gen-eral, pixel-based tehniques are intuitively straightforward, easy to implement andomputationally eÆient. But they are sensitive to mis-registration of input images.Blok-based and region-based tehniques are more robust in respet of registrationproblems though they are more omplex in general. Despite the inrease in omplex-ity, region-based methods have a number of advantages over pixel-based methods.These inlude the ability to use more intelligent semanti fusion rules and the ability



CHAPTER 1. INTRODUCTION 8to attenuate or aentuate ertain properties to the regions [30℄.Multi-fous images may ontain objets of di�erent shapes and sizes. The ultimategoal of MFIF is to obtain all objets in the �nal image in foused/deblurred form.Mathematial morphology is a subjet whih treats an image as an ensemble of sets.Morphologi operators have the apability of handling objets in di�erent shapes andsizes. They have some interesting omputational advantages as well. In this thesis weexplore morphologi tehniques as a tool for MFIF. Algorithms for MFIF proposedin the thesis employ various ombinations of morphologi operations.Given this, the objetive of the thesis is to propose and analyze grey-level MFIFshemes employing morphologi operators and having the following desirable proper-ties,� ability to work on a variety of input images,� robustness against probable mis-registration of input images,� extensibility to fuse multi-fous olor images,� low omputational ost,� adaptability to hardware implementation.Sine all algorithms for MFIF proposed in this thesis use morphologi operators, abrief introdution to them is given now.
1.4 Morphologi OperatorsMathematial morphology treats an image as a set of pixels [74, 75℄. Morphologioperators work with two sets, the original image to be analyzed and a struturingelement (SE). Eah SE has a shape and a size and it an be thought of as a parameter



CHAPTER 1. INTRODUCTION 9to the operation. Fundamental morphologi operations are morphologi dilation andmorphologi erosion. At �rst we present these two operators for binary images. Atwo-dimensional binary image signal is a funtion/mapping from domain D (whihis a subset of disrete two-dimensional Eulidean spae Z2) to a binary-set f0; 1g.Suppose A is the set of points representing the binary-1 pixels of the original binaryimage and B is the set of points representing binary-1 pixels of the SE. Then dilationand erosion of A by B, are denoted by A�B and A	B respetively and are de�nedas A� B = fb+ a j for b 2 B and a 2 Ag (1.1)A	 B = fp j b+ p 2 A for every b 2 Bg (1.2)where `+' denotes the binary-or operation. Pratially, A � B is the lous of originof B suh that B hits A. Similarly, A	B is the lous of origin of B suh that B �tsin A.We now onsider the ase of grey-sale images. A two-dimensional grey-sale imagesignal X is a funtion/mapping from domain D (whih is a subset of disrete two-dimensional spae Z2) to the set of grey intensity values fg1; g2; : : : ; gng where eahgi is a nonnegative integer. A grey-sale SE h is a mapping from its domain to theabove set of grey values. In this thesis, we use at SE's that is SE's for whih thevalue of h is always zero. Let (r; ) be a point in domain D, where r and  denote therow and olumn oordinates respetively. Dilation and erosion of X(r; ) by h(r; )are denoted by (X � h)(r; ) and (X 	 h)(r; ) respetively and are de�ned as(X � h)(r; ) = max(i;j)2Domain of h (X(r � i; � j) + h (i; j)) (1.3)(X 	 h)(r; ) = min(i;j)2Domain of h (X(r + i; + j)� h (i; j)) (1.4)where the maximum and minimum are taken over all (i; j) in the domain of h suhthat (r� i; �j) and (r+ i; +j) are in the domain of X. So dilation simply replaesthe value at eah point of X by the maximum value in the neighborhood de�ned bythe SE when the origin of SE is plaed at the point. Similarly erosion replaes thevalue at eah point of X by the minimum value in the neighborhood de�ned by the



CHAPTER 1. INTRODUCTION 10SE when the origin of SE is plaed at the point. Other morphologi operators areonstruted by ombining dilation and erosion. For example, opening and losing ofX(r; ) by h(r; ) are denoted by (X Æ h)(r; ) and (X � h)(r; ) respetively and arede�ned as (X Æ h)(r; ) = ((X 	 h)� h)(r; ) (1.5)(X � h)(r; ) = ((X � h)	 h)(r; ) (1.6)Both opening and losing are inreasing operations implying that opening (losing)of an image ontains openings (losings) of all its sub-images. Both opening andlosing are idempotent operations implying that suessive appliations of openings(losings) do not further modify the image. Finally, opening is an anti-extensiveoperation and losing is an extensive operation. In a grey-sale image X, an openingremoves all foreground strutures in the image that are not large enough to ontainthe SE. Similarly, a losing removes all bakground strutures in the image that arenot large enough to ontain the SE. Here foreground struture means an image regionof intensity value higher than the surrounding region.1.4.1 Multi-sale morphologi operatorsExtration of features by mathematial morphology depends on e�etive use of SE's.Sizes and shapes of SE's play ruial roles here. A morphologi operator with asalable SE an extrat features of various shapes and sizes. A sheme of morphologioperations with a salable SE is termed as multi-sale morphology [15, 52℄. For asalable SE h, size of its domain gets hanged. Let B be a set representing thedomain of h. Assume that B has a de�nite shape. Let n be an integer representingthe sale-fator of B and let nB denote the saled version of B at sale n. If B isonvex, then nB is obtained by n� 1 dilations of B by itself.nB = B�B � B � � � � � B| {z }n�1 times (1.7)When n = 0, onventionally B is taken to be a disk of unit size so that nB = f(0; 0)g.Let h be a at-top SE suh that its value at every point in its domain nB is zero. Then



CHAPTER 1. INTRODUCTION 11a morphologi operation by SE h redues to an operation by its domain nB. Thenmulti-sale opening and losing of X by salable domain nB are de�ned respetivelyas (X Æ nB)(r; ) = ((X 	 nB)� nB)(r; ) (1.8)(X � nB)(r; ) = ((X � nB)	 nB)(r; ) (1.9)The opening removes all bright/foreground strutures in the image X that are notlarge enough to ontain nB. Here foreground struture means an image region ofintensity value higher than the surrounding region. Similarly, the losing removes alldark/bakground strutures in the image X that are not large enough to ontain nB.These operators are used e�etively to detet foused regions whih in general havemore ontrast than orresponding defoused regions.Given the bakground and the objetive of the thesis and a short introdution tomorphologi operators, ontribution of the thesis is presented now.
1.5 Contribution of the thesisIt is already disussed that the objetive of the thesis is to propose and analyze grey-level MFIF shemes having ertain desirable properties. Mathematial morphologyis explored as a tool for MFIF and new tehniques are presented employing this tool.In addition to a brief review of previous work, the objetive of the thesis and a shortintrodution to morphologi operators, urrent hapter, viz. Chapter 1 inludes thedata-set used for experimentation purpose and the quantitative measures used forperformane evaluation.Sine registration is a neessary prerequisite for MFIF, a new algorithm for multi-fous image registration is presented in Chapter 2. It is an iterative algorithm forregistration of multi-fous images by ombining global and loal transformation mod-els. In the �rst step of the algorithm, a global translation is determined by maximizing



CHAPTER 1. INTRODUCTION 12the mutual information of the soure and the referene images and then it is appliedon the soure image. In the seond step, a blok-wise loal saling is applied on thetranslated soure image. The sale-fators are determined by maximizing a similaritymeasure of two orresponding bloks of the translated soure image and the refereneimage. The global and loal transformations onstitute a hybrid tehnique whihis iterated to obtain the optimal result. The proposed method is automati, easyto implement and gives good results. Results obtained by applying the method ondi�erent sets of multi-fous images are provided with. Performane of the system isevaluated and is ompared with a widely used method.Chapter 3 presents a pixel-based algorithm for multi-fous image fusion using mor-phologi wavelets. A nonlinear morphologi wavelet transform whih preserves therange in the saled images and involves integer arithmeti only is introdued at �rst.This transform is employed in a fusion algorithm to fuse a set of grey-sale multi-fous images. The method is omputationally eÆient and produes good results.Integrated-hip implementations of image proessing algorithms are going to beomemore ommon in near future. Our method will be useful in this respet. The problemwith this algorithm is that being a pixel-based method, it is not robust to mis-registration problem.Chapter 4 presents a blok-based algorithm for multi-fous image fusion using amorphology-based fous measure in a quad-tree struture. Fous-measure is a quan-tity for evaluating the ontrast or sharpness of a pixel, blok or region. A newfous-measure alled energy of morphologi gradients (EOMG) is introdued. It isused for a novel algorithm for MFIF whih employs a quad-tree struture for optimalsubdivision of input images while seleting the sharply foused bloks. Though thealgorithm starts with bloks, it ultimately identi�es sharply foused regions in inputimages. The fous measure EOMG is omparable with other fous measures viz. en-ergy of gradients (EOG) and variane. The algorithm is robust in the sense that itworks with any fous measure. It is also robust against pixel mis-registration. But asthe algorithm pereives an image as a union of variable-sized bloks, bloking e�ets



CHAPTER 1. INTRODUCTION 13may appear in the boundaries of arbitrary-shaped regions.Chapter 5 presents a region-based algorithm for multi-fous image fusion using multi-sale morphology. Sine multi-fous images of a sene are aquired with fous on theomplementary regions, foused regions in an image have more ontrast than their de-foused ounter-parts in other images. This implies that the foused regions ontainlarger number of physially relevant features than that ontained in orrespondingdefoused regions. Foused regions are deteted by extrating the bright and dark fea-tures at various sales by multi-sale top-hat transformation. Sine the best-fousedregions are deteted and opied from one image only, a slight error in registrationwill have no e�et in fusion exept in the borders of the foused regions. Henethis region-based method is robust to mis-registration. This method resembles themanual ut-and-paste method of image fusion whih is often used for omparisonpurposes. Thus the fused image obtained by the method is very similar to the idealfused image. Performane analysis reveals that our method is superior to fusion by astate-of-the-art method.Chapter 6 presents the onlusion of the thesis inluding a omparative study oftehniques presented in previous hapters. It also presents a disussion on relatedfuture work.In brief, in this thesis� Chapter 1 presents a brief review on existing literature, the objetive and on-tribution of the thesis, data-set used for experimentation and the quantitativemeasures used for performane evaluation,� Chapter 2 presents an iterative algorithm for registration of multi-fous imagesby ombining global and loal transformation models,� Chapter 3 presents a pixel-based algorithm for multi-fous image fusion usingmorphologi wavelets,



CHAPTER 1. INTRODUCTION 14� Chapter 4 presents a blok-based algorithm for multi-fous image fusion usinga morphology-based fous measure in a quad-tree struture,� Chapter 5 presents a region-based algorithm for multi-fous image fusion usingmulti-sale morphology,� Chapter 6 presents onlusion of the thesis and gives an outline on related futurework.Experimental set-up and the data-set used for experiments are presented now.
1.6 Experimental set-upProposed algorithms are implemented using C language in Unix environment. Allprograms are exeuted on a mahine with Intel Pentium proessor T4400 and 1 GBRAM. Standard algorithms proposed by others have also been implemented in thesame environment for omparison purpose.1.6.1 Data used in experimentationThe algorithms are applied on a large number of multi-fous image-sets whih varyin their objet-ontents and imaging set-up. Objet-ontents of image-sets vary innumber, shape and distane of objets from the amera. Texture of image-sets variesin regularity, density and in ombination of miro and maro texture. Some of theimage-sets depit indoor senes whereas others depit outdoor senes. Images ofindoor senes generally ontain human beings, animals and man-made objets. Man-made objets with straight-line edges (for example, book, book-shelf, table, window,door et.) are helpful to detet artifats like step-e�ets generated after proessing.Images of outdoor senes generally ontain natural objets like owers, plants, treesand also buildings. These images in general show irregularity in texture. Registration



CHAPTER 1. INTRODUCTION 15of suh images is diÆult beause in addition to other di�erenes temporal hangesbetween shots may our due to wind. Hene slight mis-registration may be presentin this type of images. This may in turn reveal the robustness of the fusion proedureagainst mis-registration.Sine it is not possible to inlude all experimental results in the thesis, we have ho-sen test image-sets in suh a way that experiments are validated by di�erent typesof images. Twelve representative image-sets are used in the thesis and they are ob-tained from web-sites [32, 24, 26, 1, 28℄. The image-sets named as `Doll', `Toy', `Disk',`Lab', `Pepsi', `Clok', `Campus', `Hydrant', `Garden', `Rose', `News' and `OpenGL'are shown in Fig. 1.2. Among these, the multi-fous `Doll' images (Fig. 1.2A) aresyntheti images generated from the famous painting named `Las Meninas' by DiegoVel�azquez kept at `Museo del Prado' in Madrid. These images have been generatedarti�ially by a modern painter um art-teaher John Hagan [32℄. He has visuallyestimated the distanes of various objets present in the painting. Aordingly di�er-ent portions of the original image of the painting have been arti�ially defoused byhim to illustrate the onept of `depth-of-�eld'. Though the blurring model and theparameters are not known to us, we have used this multi-fous image-set as an idealsyntheti data-set for evaluating the performane of fusion algorithms. Moreover, thisimage-set ontains three multi-fous images, hene it o�ers better illustration failitythan the sets of two images. Image-sets `Toy', `Disk', `Lab', `Pepsi' and `Clok' areobtained from web-site [24℄; `Campus' and `Hydrant' are obtained from web-site [26℄;`Garden' is obtained from web-site [1℄; `Rose', `News' and `OpenGL' are obtainedfrom web-site [28℄. The harateristis of test image-sets are given now.� Image-set `Doll' depits an indoor sene with many objets of arbitrary shapesand sizes and plaed at di�erent distanes.� Image-set `Toy' depits an indoor sene with many objets of regular shapesplaed before a large and mostly dark bakground.� Image-sets `Disk' and `Lab' ontain many objets of di�erent sizes and mostly



CHAPTER 1. INTRODUCTION 16Table 1.1: Multi-fous images and their sizesFigure SizeDoll 384� 576Toy 512� 512Disk 448� 576Lab 448� 576Pepsi 512� 512Clok 256� 256Campus 480� 640Hydrant 480� 640Garden 320� 448Rose 512� 704News 224� 320OpenGL 512� 704of regular geometri shapes.� Image-set `Pepsi' and `Clok' ontain large objets all of whih have regulargeometri shapes.� Image-sets `Campus' and `Hydrant' depit outdoor senes with objets of mostlyirregular texture and at large distanes among themselves.� Image-set `Garden' depits an outdoor sene with dense irregular texture.� Image-set `Rose' has a large area of regular grid-like struture as bakground.� Image-set `News' ontains dense but mostly regular texture.� Image-set `OpenGL' ontains both miro and maro textures.As mentioned in Setion 1.5, image registration is a neessary pre-requisite beforefusion. Among the above image-sets, �ve (viz. `Doll', `Disk', `Garden', `Rose' and
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A.(i) Doll: Near foused image

A.(ii) Doll: Middle foused image A.(iii) Doll: Far foused imageFigure 1.2: Multi-fous image data-sets used for experimentation`News') were not registered and we have registered them. Details of registration aregiven in Chapter 2. The rest of the images were already registered. Sizes of variousimage-sets after registration are given in Table 1.1.



CHAPTER 1. INTRODUCTION 181.7 Quantitative Performane EvaluationA good fusion algorithm should be able to work on a variety of input images, ro-bust enough to tolerate probable mis-registration of input images and should notprodue any unwanted visual e�et or artifat. Moreover quality of the fused imageshould satisfy the requirement for intended appliation and omputational omplexityshould also be a�ordable. Quality and time are inter-dependent and they are oftenrelated diretly, that is, better quality needs more time. So depending on the spei�appliation, one has to ompromise/trade o� between these two.There are two types of assessment, subjetive or qualitative and objetive or quantita-tive [62℄. In qualitative fusion quality assessment, subjets or observers are requestedto examine the input image-sets and the output images obtained by various fusiontehniques and then rank the output images aording to their visual quality [64℄. Av-erage of the ranks given by di�erent observers indiates the subjetive quality of thetehniques under examination. The proess is time onsuming, laborious and expen-sive. Moreover the assessment in this proess is non-repetitive, that is, for the sameset of images the ranking given by an observer may hange from time to time. Quan-titative fusion quality evaluation overomes these draw-baks by employing a metrithat quanti�es the quality of the fused images. The metri should estimate how muhinformation is obtained from the input images beause goal of image fusion is to in-tegrate information from multiple soures. In onventional methods, the ideal fusedimage is used as the referene image and the metris like mean-square-error (MSE),peak-signal-to-noise-ratio (PSNR) are used to estimate the error between the refer-ene image and the proessed image. Sine referene images are not available here,we need to use metris whih do not require them.In this thesis, quantitative evaluation of fusion algorithms is done by using two di�er-ent metris. They are based respetively on image gradients and strutural similarityindex. Eah of the metris yields a numerial value from the input image-set and thefused image. None of them requires any referene image. For both of them, greater
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B.(i) Toy: Near foused image

B.(ii) Toy: Middle foused image B.(iii) Toy: Far foused imageFigure 1.2: Continued
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C.(i) Disk: Near foused image C.(ii) Disk: Far foused image

D.(i) Lab: Near foused image D.(ii) Lab: Far foused imageFigure 1.2: Continued
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E.(i) Pepsi: Near foused image E.(ii) Pepsi: Far foused image

F.(i) Clok: Near foused image F.(ii) Clok: Far foused imageFigure 1.2: Continued
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G.(i) Campus: Near foused image G.(ii) Campus: Far foused image

H.(i) Hydrant: Near foused image H.(ii) Hydrant: Far foused imageFigure 1.2: Continued
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I.(i) Garden: Near foused image I.(ii) Garden: Far foused image

J.(i) Rose: Near foused image J.(ii) Rose: Far foused imageFigure 1.2: Continued
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K.(i) News: Near foused image K.(ii) News: Far foused image

L.(i) OpenGL: Near foused image L.(ii) OpenGL: Far foused imageFigure 1.2: Continued



CHAPTER 1. INTRODUCTION 25value means better fusion. The metris are desribed below for two input images,however they an be extended easily to three or more input images.1.7.1 Gradient similarity indexGradients operators are useful tools to measure variations in intensity of a pixelwith respet to its immediate neighboring pixels [13℄. It is observed that a pixelpossesses high gradient value when it is sharply foused. So in a set of multi-fousimages, pixels of a sharply-foused region possess higher gradient values than pixelsof the orresponding out-of-fous region. This observation led to an image fusionperformane measure employing image gradients [57, 22℄. For two multi-fous inputimages X1 and X2, gradient images G1 and G2 are obtained �rst. Then G1 and G2are ombined into G by taking the maximum gradient value at eah pixel position(r; ). Therefore G(r; ) = max (G1(r; ); G2(r; )) for all (r; ) (1.10)Thus only the sharply foused pixels from the onstituent images have their ontri-bution in the maximum gradient image G. Let ~G denotes the gradient of the fusedor reonstruted image F . It is referred to as the gradient of fused image. Then,more similar G and ~G are, better is the fusion algorithm. Now, following the usualde�nition of signal-to-noise ratio, a simple objetive measure of similarity betweentwo gradient images is alulated asS(G; ~G) = 1� qP(G(r; )� ~G(r; ))2pPG2(r; ) +qP ~G2(r; ) (1.11)We all S the gradient similarity index (GSI). Here, qP(G(r; )� ~G(r; ))2 deter-mines the error or dissimilarity between the images and it is normalized by the quan-tity pPG2(r; ) +qP ~G2(r; ) to make the measure unbiased to overall brightnessof the images. So for an ideal fused image S approahes the value 1. For our experi-mentation, we have alulated the gradients by Robert's gradient operator [70℄. For



CHAPTER 1. INTRODUCTION 26more than two input images, G(r; ) is alulated as the maximum of the gradientsat (r; ) taken over all input images.1.7.2 Fusion quality indexStrutural similarity index (SSI) proposed by Wang and Bovik [83℄ is an e�etivemetri to measure the quality of an image. For two real-valued sequenes X =(x1; x2; : : : ; xn; ) and Y = (y1; y2; : : : ; yn; ), the metri Q0(X; Y ) de�ned asQ0(X; Y ) = 4� �XY � �X � �Y(�2X + �2Y )� (�2X + �2Y ) (1.12)measures the strutural similarity of X and Y . Here �X and �Y are the mean valuesof X and Y ; �2X and �2Y are the varianes of X and Y ; and �XY is the ovariane ofX and Y . Strutural similarity of two images is de�ned in a similar way. Sine imagesignals are generally non-stationary, it is more appropriate to measure Q0 over loalregions and then ombine the di�erent results into a single measure. The authors [83℄proposed to use a sliding window approah. Starting from the top-left orner of thetwo images X1; X2, a sliding window of �xed size (with n pixels) moves pixel by pixelover the entire image until the bottom-right orner is reahed. For eah window w,the loal quality index Q0(X1; X2 j w) is omputed. Finally, the strutural similarityindex (SSI) Q0 is omputed by averaging all loal quality indies.Piella and Heijmans [66℄ proposed variants of SSI to measure quality of image fusion.Fusion quality index (FQI) Q(X1; X2; F ) for input images X1; X2 and output imageF is de�ned by them asQ(X1; X2; F ) = 1jW j Xw2W(�1(w)Q0(X1; F jw) + �2(w)Q0(X2; F jw)) (1.13)where Q0(X1; F jw) is the strutural similarity index of X1 and F over the loalwindow w, W is the family of all loal windows, jW j is the ardinality of W and �1and �2 are weights obtained from loal salieny measures. Loal salieny measures(X1jw) of input image X1 should reet the loal relevane of X1 within the window



CHAPTER 1. INTRODUCTION 27w, and it may depend on ontrast, sharpness or entropy. Given the loal salieniess(X1jw) and s(X2jw), the loal weights �1(w) and �2(w) is omputed. It indiates therelative importane of image X1 ompared to image X2. A typial hoie for �1(w) iss(X1jw)s(X1jw)+s(X2jw) . In our evaluation, we have taken the window-size to be of 8� 8 pixelsand the sum of gradient values in the loal window to be the loal salieny measure.For more than two input images, Q is alulated as the average weighted sum of Q0'salulated for all images. Here weight for a loal window in an image is alulatedas the salieny of the window in that image divided by sum of loal salienies for allorresponding windows in all other images.
1.8 Organization of the thesisOrganization of the thesis follows. A survey on multi-fous image registration andan iterative and hybrid method for the same are presented in Chapter 2. Chapter 3presents a omputationally eÆient pixel-based algorithm for MFIF using wavelet.Before desribing the algorithm, the basi theory and new wavelet alled morphologiwavelet is presented. Chapter 4 presents a blok-based method for MFIF. It employsa new fous-measure alled energy of morphologi gradients. Chapter 5 presentsa region-based method for MFIF using multi-sale morphologi operators. In eahhapter, after desribing the new algorithm, experimental results on data-sets givenin Figure 1.2 are presented. Finally, Chapter 6 presents onluding remarks andout-lines future work.



Chapter 2
Multi-fous image registration
2.1 IntrodutionImage registration is a neessary pre-requisite for multi-fous image fusion beausebefore fusion the onstituent images must be positioned properly with respet toa ommon oordinate system so that orresponding objets are overlaid properly[41℄. In general, the registration tehniques may be lassi�ed aording to two majoraspets: methodology and appliation-area. The methods an be ategorized into twotypes: (i) area-based and (ii) feature-based [92℄. A third ategory has emerged whihis a hybrid of area-based and feature-based tehniques. Registration tehniques mayalso be lassi�ed by their mapping models, that is by examining whether they applyglobal and/or loal mapping models. Global models use information from the entireimage to estimate the mapping funtion parameters. On the other hand, loal modelstreat the image as a omposition of bloks/regions and the funtion parameters areestimated separately for eah blok/region.Registration tehniques for multi-fous image have been proposed in [41, 90, 91, 18,22, 29, 27℄. Among these, the methods proposed in [41, 90, 91, 18, 22℄ use globalaÆne transformation models and the ones proposed in [29, 27℄ use global perspetive28



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 29transformation models. The tehnique proposed by Kubota et al. [41℄ is an area-based multi-sale tehnique. In this tehnique, from the soure and the refereneimages Gaussian pyramids are obtained at �rst. At the oarsest level of the pyramids,translation, rotation and magni�ation parameters are estimated by the minimumMSE between the two images. The parameters are propagated to the next �nerlevel and are further re�ned. The re�nement proess ontinues up to the originalresolution level and the parameters obtained there are used to register the soureimage. Zhang and Blum [90, 91℄ proposed a hybrid multi-sale sheme using botharea-based and feature-based tehniques. In this tehnique also, from the soureand the referene images Gaussian pyramids are obtained at �rst. At the oarsestlevel of the pyramids, an initial estimation of transformation parameters (mainlyrotation and translation) is done by using the edge features. The parameters areupdated by iterative re�nement of the optial ow estimation. They are propagatedto the next �ner level and are further re�ned. The proess ontinues up to the �nestlevel in whih the �nal parameters are obtained and are used to register the soureimage. De and Chanda [18, 22℄ desribed an area-based tehnique in whih at �rstthe soure and referene images are divided into equal number of bloks. A soureblok is swiped over the orresponding referene blok to �nd out the best mathingposition in the blok. Corresponding point-pairs are taken from best-mathing bloks.Finally, aÆne transformation parameters are estimated by the best-mathing pairsof points by using the least-square method. These parameters are then used toregister the soure image. Goshtasby [29℄ proposed a hybrid registration shemein whih the edge-intersetion points are used as unique landmarks. At �rst, thelandmarks in the soure image are found. Then orresponding landmarks in thereferene image are found by orrelation template mathing. From the orrespondinglandmark pairs, the best four satisfying the projetive onstraints are identi�ed. Theyare used to alulate the projetive transformation parameters. Soure image is thenregistered by using these parameters. Fedorov et al. [27℄ used a hybrid registrationsheme in whih a number of well-loated ontrol-points are extrated globally at�rst. Preliminary mathes of the tie-points are established by identifying the pairswith minimum distane in the desriptor spae. Afterwards, the inevitable outliers



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 30are pruned o� using RANSAC-like algorithm. Finally perspetive transformationparameters are estimated by the mathed tie-points using the Normalized DiretLinear Transformation (DLT) algorithm. Soure image is then registered by usingthese parameters.The methods desribed above use global transformation models and do not applyany loal model appropriate for registration of multi-fous images. In general, theseimages are aquired one by one in suh a way that eah image in the set has fouson objets at a partiular distane from the amera. This results in global as wellas loal variations in the images. In this hapter we explore these variations andpresent an iterative algorithm for registration of multi-fous images whih ombinesboth global and loal mapping models [20℄. In the �rst step of the algorithm, a globaltranslation is determined by maximizing the mutual information of the soure andthe referene images and then it is applied on the soure image. In the seond step,a blok-wise loal saling is applied on the translated soure image. The sale-fatorsare determined by maximizing a similarity measure of two orresponding bloks of thetranslated soure image and the referene image. The global and loal transformationsonstitute a hybrid tehnique whih is iterated to obtain the optimal result. Theproposed method is automati, easy to implement and gives good results. Resultsobtained by applying the method on di�erent sets of multi-fous images are providedwith. Performane of the system is also evaluated and is ompared with a widelyused method. The hapter is organized as follows. Setion 2.2 desribes the proposedalgorithm. Experimental results and disussion inluding performane analysis aregiven in Setion 2.3. Finally, onluding remarks are plaed in Setion 2.4.
2.2 An iterative hybrid registration algorithmMulti-fous images of a sene are aquired one by one either by hand-held amerasor by ameras plaed on tripods, in idential environmental onditions in respet tosensor, light, view diretion, orientation and objet-ontent in the sene [22, 27℄. Eah



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 31image in the set has fous on objets at di�erent distanes in the sene. Previous re-searh indiates that when the distane between the sene and the amera is large, itis usually possible to approximate the motion of the sene using an aÆne transforma-tion [90℄. Note that an aÆne transformation is usually a ombination of translation,rotation and saling (see Appendix B). In reality, for suh appliations, rotation of theamera relative to the sene is insigni�ant and hene is not onsidered here. Globalsale-hange between images may our due to hanges in foal settings. However inmost pratial appliations, it is less than three perent [76℄ and hene is not on-sidered here. We onsider global (horizontal and/or vertial) translation(s) betweenimages due to aidental amera-pan between shots taken by hand-held ameras andthe hanges due to variations in foal settings during aquisition.Foal variations are done intentionally to fous on objets at a partiular distane.For example, objets at the bakground of a sene are farther than those at theforeground and during aquisition, fous at bakground generates a far-foused imagein whih the bakground objets are in fous but the foreground objets are out-of-fous. Similarly fous at foreground generates a near-foused image in whih theforeground objets are in fous but the bakground objets are out-of-fous. Henepartial defousing/blurring is inevitable in multi-fous images. Partial defousinga�ets the images in two ways. Firstly, due to point-spreading, a blurred objetappears to be larger in an image when ompared to its foused ounterpart in someother image [40℄. In addition to that the radii-of-blur may vary in near-foused andfar-foused images. This results in loal sale-hange between images. Seondly, theposition of an out-of-fous objet may be hanged when ompared to the position ofits foused ounterpart in some other image. This is shown in Figure 2.1 by a par-axial geometri optis model of image formation using a thin onvex lens. The fousedimage of a point-objet P is reated as a point-image P 0 on Plane-2 whih is thein-fous image-plane for P . All other image-planes nearer to or farther from the lensthan Plane-2 are out-of-fous image-planes for P . Plane-1 and Plane-3 are two suhout-of-fous planes. The blurred images of point-objet P appear as blur-irles withdiameters AB and CD on Plane-1 and Plane-3 respetively. Hene the sizes of the
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Figure 2.1: Geometri Optis Model of Lens Systemfoused and blurred images of the point-objet do vary. In addition to that, blur-irleis shifted vertially upwards in Plane-1 and the same is shifted vertially downwards inPlane-3. So the foused and blurred images of an objet do have position di�erenesas well. Intensity or radiometri di�erenes aused by partial defousing are notdealt with in this work beause they are intrinsi to multi-fous images and we donot intend to hange them. We rather onentrate on spatial transformations due toamera pan and partial defousing. A single global transformation is not adequate toapture all these e�ets. Considering this fat, a registration tehnique is presentedwhih works in two steps. To nullify the e�ets of global translation(s), the soureimage is translated globally in the diretion(s) reverse to that of the amera pan.One the translation is done, loal variations in size and position are orreted byblok-wise loal saling. Above two steps are iterated until a ertain error riterion isful�lled. A shemati diagram depiting the iterative steps is shown in Figure 2.2.In registration of a set of multi-fous images, every image is equally authenti withits oordinate system. One of them is hosen to represent the ommon oordinatesystem and is alled the referene/target/destination image. Other images are alledsoure images. Soure images are then registered to the referene image. Registrationis a mapping between two images both spatially and with respet to intensity [7℄. Ifsoure image Xs and referene/destination image Xd are de�ned as two-dimensionalarrays of intensity values on spatial oordinates (r; ), then mapping between them
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Figure 2.2: Shemati diagram for a hybrid and iterative registration methodan be expressed generally asX 0s(u; v) = Fi(Xs(Fg(r; ))) (2.1)suh that e = jjXd(u; v)�X 0s(u; v) jj2 (2.2)be minimum, where Fi is the mapping for intensity transformation and Fg is themapping for geometri transformation so that (u; v) = Fg(r; ). The equation mayvary depending on the appliation. In this work, Fg is a spae-variant transformationwhih is a ombination of global and loal geometri transformations instead of asingle global transformation generally used for multi-fous image registration. Wedesribe below the method for registration of soure image Xs with referene imageXd.2.2.1 Global translationSine multi-fous images are aquired one by one, aidental amera pan duringaquisition may happen and this results in global translation(s) of the image in smallamounts. This e�et an be nulli�ed by translating the image in reverse diretion(s).The amount of translation is determined by maximizing the mutual information of



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 34Xs and Xd. Mutual information (MI), originating from the information theory, isa measure of statistial dependeny between two data-sets [33℄. MI between twooverlapping images Xs and Xd is given byMI(Xs; Xd) = H(Xs) +H(Xd)�H(Xs; Xd) (2.3)where H(Xs) is the Shannon entropy de�ned asH(Xs) = �Xk ps(k) log ps(k) (2.4)where ps(k) is the probability of ourrene of grey value k in the image Xs. Similaris the de�nition for Shannon entropy H(Xd) of image Xd. Joint entropy H(Xs; Xd)of two images Xs and Xd is given byH(Xs; Xd) = �X(k;l) p(k; l) log p(k; l) (2.5)where p(k; l) is the joint probability of ourrenes of grey values k and l in images XsandXd respetively. Entropy of a probability distribution is low when the distributionhas a few sharply de�ned, dominant peaks and it is maximum when all outomes havean equal hane of ourring that is, the distribution is uniform. The same is true forjoint entropy. It an be seen from Equation (2.3) that a small value of joint entropyleads to a large value of MI. The idea that MI an be used for image registrationwas pioneered by Collignon et al. [17℄ and Viola and Wells [80℄. Both groups usedthe idea for registration of multi-modal images. It is based on the assumption that iftwo multi-modal images are properly aligned, then orresponding objets (and henetheir respetive range of grey values) from two images overlay on one another. Thisresults in a few sharply de�ned, dominant peaks or ridges in the joint probabilitydistribution of the images. Hene, their joint entropy is minimized and onsequentlyMI is maximized.The idea is extended to multi-fous image registration. Soure image Xs is swipedover referene image Xd in suh a way that grids of both images math properly.This is done by applying integral amount(s) of translation(s) along the axes. So nointerpolation is employed here. Then for eah translation, overlapping sub-images of



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 35the translated soure image and the referene image are found. MI of the overlappingsub-images is alulated. Varying the translation-amounts within a range and alu-lating the MI of overlapping sub-images, the amount of translation whih maximizesMI is found. Suppose, the soure image Xs after optimum translation(s), is mappedto Xs(r + Tr;  + T) where Tr and T are respetive translations along the row andolumn axes. After mapping, only the overlapping portions of translated soure imageand referene image are retained and the rest are trunated. So essentially, trans-lated soure image and referene image beome of same size after trunation. This isimportant beause in next step we need the soure and referene images to be of thesame size. Heneforth, we shall refer to new soure image as Xs and new refereneimage as Xd.The hoie for ranges within whih Tr and T are varied is an experimental issue.Greater range means better auray, but that also means greater time-requirement.We have experimented with various ranges of Tr and T and have seen in general thatthe shifts are within 5 pixels. So we have taken the range of Tr and T to be -5 to+5. Mis-alignments greater than 5 pixels are orreted during suessive iterations.2.2.2 Loal salingVariations in foal settings during aquisition of multi-fous images result in loal saleand position di�erenes in foused and defoused images of an objet, as explainedin the beginning of this setion by using Figure 2.1. The problem is addressed byblok-wise registration of Xs with Xd. At �rst, Xs and Xd are divided into n equal-sized non-overlapping bloks. Sine Xs and Xd are of same size, their blok-sizesare taken to be equal. We have experimented with di�erent values of n and foundthat n = 16 is a reasonably good hoie for pratial purposes. Eah blok of Xs issaled independently by appropriate fators along the axes. Resultant image is thenobtained by stithing the saled bloks at their proper positions.



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 36Best sale-fators for a blokThe best sale-fators (along row and olumn axes) for the k-th soure blok is deter-mined by varying the sale-fators and then �nding out the ones whih give the bestmathing with the k-th referene blok. The range and preision for varying the salefators are important. We have experimented with three di�erent ranges viz. 0.96-1.04, 0.97-1.03 and 0.98-1.02 with three di�erent inrement-values in eah range, viz.0.02, 0.01 and 0.005. It is observed from our experiments that in general inreasingthe range does not improve the results but �ner preision gives better results. Therange 0.98-1.02 with preision 0.005 is found to be suitable for our purpose and wehave used those values for varying the sale-fators along the axes.Suppose that k-th soure blok is saled upon by the sale-fators sr and s respe-tively along r-axis and -axis. Depending on the sale-fators, horizontal and vertialdimensions of the saled blok are hanged independently. Saled soure blok isswiped over k-th referene blok. Suppose Xks and Xkd respetively are overlappingsub-images of k-th soure blok (after saling) and k-th referene blok. To �nd outthe best mathing sale-fators of k-th soure blok we need either a similarity or adissimilarity measure. Small blok-size redues the statistial power of the proba-bility distribution estimation [67℄. Hene instead of mutual information, area-baseddissimilarity measure sum of squared di�erenes (SSD) is used. For eah swipingposition of the soure blok, SSD between the overlapping sub-images Xks and Xkd isomputed by SSD(Xks ; Xkd ) =Xr X fXks (r; )�Xkd (r; )g2 (2.6)The best math ours when the SSD is minimum. The SSD's for best mathingpositions for 9 di�erent values (in the range 0.98-1.02 with preision 0.005) for eahof the sale-fators sr and s are noted. This results in total 81 readings of SSD forthe blok. The minimum of them gives the best sale fators for the blok. The rangeof sale-fators as stated above is obtained from experiments with a large number ofimages and is found to satisfy the real-life problem.



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 37Stithing a saled blokStithing a saled blok in the resultant image requires additional are. Before salingall soure and referene bloks are of equal size. After saling, if the saled soureblok is smaller in size than the original soure blok and is stithed to the resultantimage, then some blank area will be reated. In that ase an appropriate largerblok surrounding the original soure blok is saled and positioned there. If theresized blok is larger than the referene blok, it is lipped after positioning properly.Essentially, the registered soure blok and the referene blok should be of same size.For larity, onsider the following example.Let us illustrate the situations whih may our due to loal saling, with a soureblok of size, say 100�100 pixels. Suppose best sale-fators for the blok is 0:98 alongboth axes. So after saling, size of the blok is 98� 98 pixels whih is smaller thanits target area. Hene a 102� 102 blok ontaining the original soure blok is saledto obtain a 100� 100 blok whih �ts the target area. Now onsider another ase inwhih the best sale-fators for the blok is 1:02 along both axes. After saling itssize will be 102� 102 pixels whih is bigger than its target area. The best mathingposition of it is found by swiping it over the orresponding referene blok. Afterthat it is lipped to 100�100 pixels, and then stithed to its proper position. Finallyonsider the ase where the sale-fators are 1.02 along r-axis and 0.98 along -axis.So the blok beomes 102 � 98 pixels after saling. In this ase, a bigger blok ofsize 100 � 102 ontaining the original blok is taken, so that it beomes 102 � 100after saling. After �nding out the best mathing position, the blok is lipped to100� 100 pixels and is stithed to the target blok. Eah soure blok is registeredto the orresponding referene blok in this way.
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Figure 2.3: Average error between soure and referene images as the iteration stepnumber inreases2.2.3 IterationAs stated above, the proposed registration tehnique has two distint steps: (i) globaltranslation and (ii) loal saling. Optimum transformation parameters are determinedin these two transformations independently. But when they are ombined, indepen-dent parameters may not remain optimum any more. Hene we iterate these twosteps in the given order to ahieve more aeptable result. We expet and experi-mentally veri�ed to that the transformations F and Fi of Equation (2.1) are updatedand the error de�ned in Equation (2.2) is redued. The iteration is stopped whenthere is no signi�ant hange in error. Root-mean-square-error (RMSE) between thesoure and referene images is taken as the measure of error for our implementationpurpose. Average RMSE between soure and referene images (used in Setion 2.3)are shown against iteration step number in Figure 2.3. Column-0 indiates RMSEbefore registration, and for i=1 to 4, Column-i indiates RMSE after i-th step ofiteration. It is seen from the Figure 2.3 that RMSE dereases onsiderably in the�rst step of iteration, then as the iteration step number inreases RMSE dereases,but with gradually slower rate.



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 39InterpolationIn the global translation step, the soure image is swiped over the referene imagein suh a way that grids of both images math properly. Hene no interpolationis required in this step. In the loal saling step, however, grids of the soure andthe referene bloks do not math in general. Hene, interpolation is required. Bi-linear interpolation is a reasonable hoie in terms of ease-of-implementation andtime-omplexity. But during suessive iterations it may redue the ontrast of theimages. A higher-order interpolation like bi-ubi interpolation is a better hoie inthat respet although it takes more time [13℄. To redue the time-requirement, bilin-ear interpolation is used while estimating the sale-fators for a blok, and one thebest sale-fators are obtained, the blok is reonstruted �nally to be a part of theresultant registered image, using bi-ubi interpolation.
2.3 Experimental results and disussionThe proposed algorithm for image registration has been implemented in C languagein Unix environment. The global translation step has been implemented by varyingthe translation-amount from -5 to +5 with unit inrement along eah axis. In theloal saling step, soure and referene images are divided into 16 bloks and foreah blok the sale-fators along the axes are varied from 0.98 to 1.02 with aninrement-value of 0.005. At most three iterations were seen to be enough in eah ase.Experimental results for �ve sets of multi-fous images (`Doll', `Disk', `Garden', `Rose'and `News') are shown in �gures 2.4-2.8. In eah result, original multi-fous imagesare followed by registered images by the proposed method. The �rst image is taken asthe referene image in eah ase. To show the e�etiveness of the method, di�ereneimages (between the soure and the referene image) before and after registration arealso provided.In Fig. 2.4, A.(i), B.(i) and C.(i) respetively are near-foused, middle-foused and



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 40far-foused images before registration; A.(i) is taken as the referene image and B.(i)and C.(i) are taken as soure images. After trunation of A.(i); A.(ii) is the newreferene image; B.(ii) and C.(ii) are registered versions of B.(i) and C.(i) respe-tively. In Fig. 2.4, the images D. and E. are di�erene images between A.(i) andB.(i) and between A.(i) and C.(i) respetively. So they are di�erene images (be-tween the soure and the referene image) before registration. Finally, the images F.and G. are di�erene images between A.(ii) and B.(ii) and between A.(ii) and C.(ii)respetively. So they are di�erene images (between the soure and the refereneimage) after registration. As stated in Setion 2.2, this work onentrates on positionand sale di�erenes due to partial defousing and does not aim to hange the in-tensity/radiometri di�erenes aused by it. This is evidened by di�erene images.In both images A.(i) and B.(i), the bakground region is out-of-fous and very lit-tle or no intensity di�erenes do exist there. Di�erenes in that region are mainlydue to position and sale di�erenes. Comparison of the di�erene images D. and F.shows that the position and sale di�erenes in the bakground region are reduedonsiderably in the latter. The di�erenes in other regions (aused by position andsale di�erenes as well as intensity variations due to fousing and defousing) are noteliminated ompletely but are redued whih is shown by less bright edges in theseregions. Similar is the ase for the middle region of di�erene images E. and G.Figure 2.5 shows registration of a widely-used set of multi-fous images whih de-pits an indoor sene ontaining many objets of di�erent geometri shapes and ofdi�erent sizes. In this �gure, A.(i) and B.(i) are near-foused and far-foused imagesrespetively; A.(i) is taken as the referene image and B.(i) is taken as soure image;A.(ii) is the new referene image after trunation of A.(i), and B.(ii) is the registeredversion of B.(i); �nally C. and D. are the di�erene images between A.(i) and B.(i)and between A.(ii) and B.(ii) respetively. Inspetion of di�erene images inside thelok region reveals thinner and less bright edges in image 2.5.D. whih in turn indi-ate that the proposed registration tehnique orrets the mis-alignments and loalsale variations in the input images.



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 41Figure 2.6 shows the results of registration of multi-fous images of an outdoor sene.In general, registration of images of suh senes is diÆult beause in addition toother di�erenes temporal hanges between shots may our due to wind. Here thetask was more hallenging beause of the dense and irregular texture of the images.In �gure 2.6, A.(i) and B.(i) are near-foused and far-foused images respetively;A.(i) is taken as the referene image and B.(i) is taken as soure image; A.(ii) is thenew referene image after trunation of A.(i), B.(ii) is the registered version of B.(i);�nally C. and D. are the di�erene images between A.(i) and B.(i), and between A.(ii)and B.(ii) respetively. Comparison of di�erene images 2.6.C. and 2.6.D. reveals thatdi�erenes have redued onsiderably after registration.Images of Figure 2.7 have a large area of regular grid-like struture as bakground.Any mis-alignment an be deteted easily in this type of images. The results ofregistration do not show any suh e�et. In �gure 2.7, A.(i) and B.(i) are near-fousedand far-foused images respetively; A.(i) is taken as the referene image and B.(i)is taken as soure image; A.(ii) is the new referene image after trunation of A.(i),and B.(ii) is the registered version of B.(i); �nally C. and D. are the di�erene imagesbetween A.(i) and B.(i) and between A.(ii) and B.(ii) respetively. Comparison ofimages 2.7.C. and 2.7.D. shows that edges are less bright in the latter whih meansmis-alignments have been orreted after registration.Finally, Figure 2.8 shows the results of registration of images of dense but mostlyregular texture. In this �gure, A.(i) and B.(i) are near-foused and far-foused imagesrespetively; A.(i) is taken as the referene image and B.(i) is taken as soure image;A.(ii) is the new referene image after trunation of A.(i), and B.(ii) is the registeredversion of B.(i); �nally C. and D. are the di�erene images between A.(i) and B.(i)and between A.(ii) and B.(ii) respetively. Comparison of images 2.8.C. and 2.8.D.shows that dark areas have inreased in the latter whih means after registration thedi�erene between soure and referene images have been redued.Careful manual inspetion of the results also shows that the proposed registrationmethod does not produe any unwanted visual artifat or aliasing. To show that there



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 42is no blok stithing artifat in the registered images, we have provided Figure 2.9whih shows magni�ation of a portion (where orners of four bloks oinide) ofmiddle-foused image Fig. 2.4.B.(i) and orresponding registered image Fig. 2.4.B.(ii).
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A.(i) A.(ii)

B.(i) B.(ii)

C.(i) C.(ii)Figure 2.4: `Doll': Original, Registered and Di�erene images. A.(i) Near-fousedimage (referene-image), A.(ii) Trunated near-foused image (new referene-image),B.(i) Middle-foused image, B.(ii) Registered middle-foused image, C.(i) Far-fousedimage, C.(ii) Registered far-foused image, D. Di�erene between A.(i) & B.(i), E. Dif-ferene between A.(i) & C.(i), F. Di�erene between A.(ii) & B.(ii), G. Di�erenebetween A.(ii) & C.(ii)
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D. E.

F. G.Figure 2.4: Continued2.3.1 Quantitative performane evaluationComparative study of the proposed registration method with the most widely used oneviz. global aÆne transformation [22℄ have been done. Sine subjetive evaluations maynot be universally aeptable, we ompare the methods by three quantitative measuresviz. root-mean-square-error (RMSE), mutual-information (MI) and normalized-ross-orrelation (NCC) [13℄. Good registration dereases the value of RMSE betweensoure and referene images and inreases the value of MI and NCC between thetwo images. Quantitative results are presented in Tables 2.1-2.3. In eah table, the�rst olumn gives serial-number of the soure and referene image-pairs as shownin �gures 2.4-2.8; the seond olumn presents the quantitative-metri values before
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A.(i) A.(ii)

B.(i) B.(ii)

C. D.Figure 2.5: `Disk': Original, Registered and Di�erene images. A.(i) Near-fousedimage (referene-image), A.(ii) Trunated near-foused image (new referene-image),B.(i) Far-foused image, B.(ii) Registered far-foused image, C. Di�erene betweenA.(i) & B.(i), D. Di�erene between A.(ii) & B.(ii)
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A.(i) A.(ii)

B.(i) B.(ii)

C. D.Figure 2.6: `Garden': Original, Registered and Di�erene images. A.(i) Near-fousedimage (referene-image), A.(ii) Trunated near-foused image (new referene-image),B.(i) Far-foused image, B.(ii) Registered far-foused image, C. Di�erene betweenA.(i) & B.(i), D. Di�erene between A.(ii) & B.(ii)
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A.(i) A.(ii)

B.(i) B.(ii)

C. D.Figure 2.7: `Rose': Original, Registered and Di�erene images. A.(i) Near-fousedimage (referene-image), A.(ii) Trunated near-foused image (new referene-image),B.(i) Far-foused image, B.(ii) Registered far-foused image, C. Di�erene betweenA.(i) & B.(i), D. Di�erene between A.(ii) & B.(ii)
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A.(i) A.(ii)

B.(i) B.(ii)

C. D.Figure 2.8: `News': Original, Registered and Di�erene images. A.(i) Near-fousedimage (referene-image), A.(ii) Trunated near-foused image (new referene-image),B.(i) Far-foused image, B.(ii) Registered far-foused image, C. Di�erene betweenA.(i) & B.(i), D. Di�erene between A.(ii) & B.(ii)
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A. B.

C. D.Figure 2.9: Magni�ation of seleted areas before and after registration. The bloksused for saling during registration and those used formagni�ation are shown in singleand double lines respetively. A. Fig. 2.4 B.(i) shown in bloks, B. Fig. 2.4 B.(ii) shownin bloks, C.-D. Corresponding areas bounded by double-lines are shown magni�edregistration; the third and fourth olumns give the quantitative-metri-values afterregistration, respetively by global aÆne transformation method and by the proposedmethod; and the �fth and sixth olumns give perentages of redution or inrementof the metri-values after registration.It is seen from the Tables 2.1-2.3 that RMSE is dereased and MI and NCC areinreased in all ases. It is also seen that perentage of derement in RMSE andperentages of inrements in MI and NCC by the proposed method are higher thanthose by global aÆne transformation method in all ases exept for Figure 2.8 inTable 2.2. In general, there are notable improvements in the results by the proposedmethod however time-requirement is slightly more in this method.
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Table 2.1: Comparison of RMSE (less is better) between soure and referene imagesbefore and after registration by (i) Global AÆne Transformation method and (ii)Proposed MethodSoure and referene RMSE before RMSE after Registration %-redution in RMSEimages Registration by (i) by (ii) by (i) by (ii)2.4.B with 2.4.A 21:746 17:815 16:883 18:07 22:362.4.C with 2.4.A 22:970 22:047 17:534 4:01 23:662.5.B with 2.5.A 18:469 17:313 15:753 6:25 14:702.6.B with 2.6.A 46:793 40:599 33:203 13:23 29:042.7.B with 2.7.A 25:722 18:673 14:840 27:40 42:302.8.B with 2.8.A 46:519 39:084 37:800 15:98 18:74
Table 2.2: Comparison of MI (more is better) between soure and referene imagesbefore and after registration by (i) Global AÆne Transformation method and (ii)Proposed MethodSoure and referene MI before MI after Registration %-inrement in MIimages Registration by (i) by (ii) by (i) by (ii)2.4.B with 2.4.A 1:285 1:447 1:487 12:60 15:712.4.C with 2.4.A 0:999 1:150 1:329 15:11 33:032.5.B with 2.5.A 1:463 1:550 1:594 5:94 8:952.6.B with 2.6.A 0:398 0:593 0:708 48:99 77:882.7.B with 2.7.A 0:866 1:078 1:311 24:48 51:382.8.B with 2.8.A 0:393 0:509 0:469 29:51 19:33



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 51Table 2.3: Comparison of NCC (more is better) between soure and referene imagesbefore and after registration by (i) Global AÆne Transformation method and (ii)Proposed MethodSoure and referene NCC before NCC after Registration %-inrement in NCCimages Registration by (i) by (ii) by (i) by (ii)2.4.B with 2.4.A 0:903 0:934 0:941 3:43 4:202.4.C with 2.4.A 0:892 0:899 0:936 0:78 4:932.5.B with 2.5.A 0:918 0:918 0:940 0:00 2:392.6.B with 2.6.A 0:588 0:704 0:800 19:72 36:052.7.B with 2.7.A 0:790 0:886 0:935 12:15 18:352.8.B with 2.8.A 0:402 0:575 0:586 43:03 45:772.4 SummaryIn this hapter we have proposed an iterative method for registration of multi-fousimages by ombining global and loal transformation models. It is automati, easyto implement and gives good results. It does not require any manual intervention forfeature or ground ontrol point (GCP) seletion. Di�erent sets of multi-fous imagesare registered by the proposed method. We have ompared the performane of themethod with global aÆne transformation method in respet of quantitative measuresRMSE, MI, NCC and time-requirement. The proposed method is found better thanthe other method in respet of RMSE, MI, NCC although the time-requirement ismore in the proposed method. Generally, registration tehniques require interpola-tion and use of a partiular interpolation method a�ets the results in various ways[92, 67℄. In the �rst step of the proposed algorithm, no interpolation is required sinethe grids of soure and referene images overlay perfetly. In the seond step of thealgorithm, interpolation is required. Bilinear interpolation is a reasonable hoie interms of ease-of-implementation and time-omplexity. But during suessive itera-



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 52tions it may redue the ontrast of the images. A higher-order interpolation likebi-ubi interpolation is a better hoie in that respet although it takes more time[13℄. To redue the time-requirement, bilinear interpolation is used while estimatingthe sale-fator for a blok, and at the end of the loal-saling step, when a blok isreonstruted to be a part of the resultant registered image, bi-ubi interpolation isapplied. The proposed image registration tehnique an be extended for registrationof multi-fous olor images in RGB format. For this, at �rst eah olor image is to beonverted to grey-level image by omputing the grey-level intensity at eah pixel byas (R+G+B)=3. Then the global and loal transformations are to be determined byapplying the proposed tehnique on the grey-level images. Then the transformationsare to be applied on the orresponding olor images.



Chapter 3
Pixel-based fusion
3.1 IntrodutionPixel-based multi-fous image fusion tehniques onentrate on individual pixels ofthe images and work either in spatial domain or in frequeny/transform domain.In spatial domain tehniques, input images are fused in the spatial domain usingphysially relevant spatial features in loalized area. Sine they emphasize on aspei� or desired image area, very little/no hange ours in other areas. Pixel-level weighted averaging is a spatial domain tehnique in whih fusion is done bytaking the weighted average of the pixel intensities of the soure images. Weights aredetermined by tools like priniple omponent analysis [71℄ or adaptive methods [42℄.Weighted averaging often has serious side e�ets like redution in the ontrast of thefused image. Other spatial domain pixel-level image fusion approahes inlude, fusionusing ontrollable amera [73℄, probabilisti methods [5℄, image gradient method withmajority �ltering [23℄. The method desribed in [73℄ depends on ontrolled ameramotion and does not work for arbitrary sets of images. Probabilisti tehniques [5℄involve huge omputation using oating point arithmeti and thus requires a lot oftime and memory-spae. Image gradient method with majority �ltering [23℄ has thedrawbak that the defoused zone of one image is enhaned at the expense of foused53



CHAPTER 3. PIXEL-BASED FUSION 54zone of others.An image often ontains physially relevant features at many di�erent sales or res-olutions. Multi-resolution (MR) tehniques for image fusion explore and use thatfat. They work either in spatial domain or in frequeny/transform domain. A. A.Goshtasby and S. Nikolov [30℄ pointed out that although pixel-level fusion is a loaloperation, transform domain algorithms reate the fused image globally. By hanginga single oeÆient in the transformed fused image, all (or a whole neighborhood of)image values in the spatial domain will hange. An early ategorization of frequenydomain MR fusion tehniques is found in [89℄. The basi idea of these methods isto deompose eah soure image by an MR transform, then to onstrut a ompositerepresentation from the transformed images and �nally to obtain the fused imageby applying the inverse transform. The tehniques vary in their hoie for MR de-omposition sheme and in their hoie for oeÆient-seletion rule for making theomposite representation. Popular MR deomposition shemes are pyramid trans-form and wavelet transform. The idea of using MR shemes for image fusion was �rstproposed by Burt [8℄ as a model for binoular fusion for human stereo vision. He usedLaplaian pyramid for MR deomposition and hoose max rule for oeÆient sele-tion. Burt and Adelson [10℄ later introdued a new approah to image fusion basedon hierarhial image deomposition. Adelson [2℄ then used the Laplaian pyramidtehnique for multi-fous image fusion. Toet [78℄ proposed the use of ratio of low-passpyramids at suessive levels of Gaussian pyramids for fusion of visible and IR images.Burt [9℄ proposed that fusion within a gradient pyramid provide improved stabilityand noise immunity. Akerman [3℄ optimized the Laplaian pyramid fusion in respetof multi-sensor fusion. Burt and Kolzynski [11℄ presented gradient pyramid fusionwith a loal math measure and a window-based salieny measure. Ranhin andWald [69℄ presented one of the �rst fusion shemes using wavelet transform. In theirmuh-referred work, Li et al. [45℄ presented fusion shemes using wavelet transform.In their implementation, the preliminary deision map is generated by window-basedativity measure whih is then �nalized by onsisteny veri�ation with majority�lter. Wavelet transform is also onsidered by Chipman et al. [16℄, Petrovi and Xy-



CHAPTER 3. PIXEL-BASED FUSION 55deas [63℄, Sheunders [72℄, Yang et al. [86℄ and Hill et al. [37℄. Piella [65℄ provideda general framework for MR image fusion and also proposed a new method for thesame. A omprehensive tutorial on wavelet-based fusion methods is found in [59℄.Reently, wavelets are onsidered for image fusion by Wang [81℄, Wang et al. [82℄,Hamza et al. [34℄, Qu and Yan [68℄, Lewis et al. [44℄, Tsai and Lee [79℄ and Yangand Li [85℄. Wang [81℄ presented a pixel-based algorithm employing a multi-wavelet(whih is an extension of salar wavelet) transform with two wavelet funtions and twosaling funtions. A feature-based fusion rule is used to ombine original sub-images.Mutual information is employed for objetive evaluation of fusion performane. Inthe method proposed by Wang et al. [82℄, after deomposition of input images bywavelet transform, images at the lowest resolution are segmented into regions bywatershed algorithm. Wavelet-oeÆients are tested region-wise for ativity-levelmeasurement and math-degree measure. Saled and detail oeÆients are ombinedrespetively by hoose-max and weighted average rule. Combined oeÆients areinversely transformed to get the �nal fused image. In the method of Hamza et al. [34℄,input images are deomposed by a bi-orthogonal wavelet transform. Seletion-mapis reated by measuring the ativity-level of eah wavelet oeÆient by Jensen-Renyidivergene. The map is re�ned into two deision regions aording to a threshold.Saled and detail oeÆients are ombined either by hoose-max and or by weightedaverage rule depending on the region they belong to. Finally ombined oeÆientsare inversely transformed to get the �nal fused image. In Qu and Yan's [68℄ method,after deomposition of input images by a disrete wavelet transform, a pulse-oupledneural network is employed to extrat features of the input images in the waveletdomain. Regional �ring intensity harateristi is omputed and used to ombine theoeÆients. Finally ombined oeÆients are inversely transformed to get the �nalfused image. Lewis et al. [44℄ onsidered a dual-tree omplex wavelet transform (DT-CWT) for segmenting of the features of the input images either jointly or separately toprodue a region map. The images are then fused region-wise in the wavelet domain.Tsai and Lee [79℄ presented a method in whih after segmentation of input images intoregions, quality of a region is measured from low frequeny wavelet bands by adaptive



CHAPTER 3. PIXEL-BASED FUSION 56deomposition algorithm. Then regions with better quality are seleted to produethe fused image. Yang and Li [85℄ proposed a method in whih the soure imagesare represented at �rst by sparse oeÆients using an over-omplete ditionary. TheoeÆients are then ombined by hoose-max fusion rule. Finally the fused image isreonstruted from the ombined sparse oeÆients and the ditionary.Wavelet transform an be onsidered as a speial ase of pyramid transform but it hasmore omplete theoretial support [51℄. One major advantage of wavelet transformis that spatial as well as frequeny domain loalization of an image is obtained simul-taneously. Another advantage is that it an provide information on sharp ontrasthanges, and human visual system is espeially sensitive to these hanges. Wavelettransform is a linear tool in its original form [51℄. But non-linear extensions of dis-rete wavelet transform are possible by methods like lifting sheme [77℄ ormorphologioperators [31, 35℄. The problem with linear wavelets like Haar wavelet is that duringsignal deomposition or analysis the range of the original data is not preserved [35℄.Seondly, linear wavelets at as low-pass �lters and thus smooth-out the edges. Thisresults in redution in the ontrast in fused images. The nonlinear wavelet intro-dued by Heijmans and Goutsias [35℄ overomes this drawbak by using morphologioperators. But it involves division operation and thus either requires oating pointarithmeti or introdues trunation error by using integer arithmeti.In this hapter we present a nonlinear morphologi wavelet transform [18, 19℄ whihpreserves the range in the saled images and involves integer arithmeti only. Wethen use this transform to present a fusion algorithm to fuse a set of grey-sale multi-fous images. The method is omputationally eÆient and produes good results.Integrated-hip implementations of image proessing algorithms are going to beomemore ommon in near future. Our method will be useful in this respet. The resultsobtained by it have been ompared with those obtained by using Haar wavelet and themorphologi wavelet suggested by Heijmans and Goutsias [35℄. The hapter is orga-nized as follows. Setion 3.2 gives the basi theory (without proof) of multi-resolutionanalysis using wavelets and a brief disussion on morphologi operators. This setion



CHAPTER 3. PIXEL-BASED FUSION 57also introdues the proposed wavelet transform based on these operators. Setion3.3 desribes the image-fusion algorithm using the new morphologi wavelet. Exper-imental results and disussion are given in Setion 3.4 and the onluding remarksare presented in Setion 3.5.
3.2 Basi theory and a new morphologi waveletA brief overview of multi-resolution signal deomposition theory using wavelets isgiven �rst, followed by the disussion on morphologi operators, and �nally a newwavelet transform based on these operators is presented.3.2.1 Multi-resolution AnalysisThe theory of multi-resolution signal deomposition sheme using wavelets an beapplied to a wide variety of signals. We are restrited here to two-dimensional grey-sale image signals only. A two-dimensional grey-sale image signal X is a mappingfrom domain D (whih is a subset of disrete two-dimensional spae Z2) to the set ofgrey values fg1; g2; : : : ; gng where eah gi is a nonnegative integer. Let us onsider aset V0 of suh image signals. A multi-resolution signal deomposition sheme on V0uses two types of operators, namely, signal analysis and signal synthesis operators;whih are also known as saling funtion and the wavelet funtion respetively. Signalanalysis operators  "j : Vj ! Vj+1; map the signal spae Vj at level j, to a oarsersignal spae Vj+1 and the detail analysis operators !"j : Vj ! Wj+1 , map Vj to aoarser detail spae Wj+1. All V 0j s and W 0js have the same struture as V0. Signalanalysis operation proeeds by mapping a signal to a level higher in the pyramidstruture, thereby reduing information. Details are stored at eah level to restorethis information loss. If analysis operators are applied j times reursively on an imagesignal X 2 V0, saled and detail signals at level j are denoted by Xj and Y j, where



CHAPTER 3. PIXEL-BASED FUSION 58Xj 2 Vj and Y j 2 Wj. Then we have "j (Xj) = Xj+1; Xj+1 2 Vj+1 (3.1)!"j (Xj) = Y j+1; Y j+1 2 Wj+1 (3.2)Signal synthesis or reonstrution is done by synthesis operator  #j : Vj+1�Wj+1 ! Vj,whih map a signal to a level lower in the pyramid. To ensure loss-less or perfetreonstrution, the following ondition must be satis�ed. #j ( "j (Xj); !"j (Xj)) = Xj; Xj 2 Vj (3.3)There are two more onditions, namely, "j ( #j (Xj+1; Y j+1)) = Xj+1 (3.4)!"j ( #j (Xj+1; Y j+1)) = Y j+1 (3.5)where Xj+1 2 Vj+1 and Y j+1 2 Wj+1. They ensure that the deomposition is non-redundant in the sense that repeated appliations of these shemes produe the sameresult. A speial ase alled unoupled wavelet deomposition ours when there existsa binary operation _+ on Vj and operators  #j : Vj+1 ! Vj and !#j : Wj+1 ! Vj suhthat  #j (Xj+1; Y j+1) =  #j (Xj+1) _+ !#j (Y j+1); Xj+1 2 Vj+1; Y j+1 2 Wj+1 (3.6)Then perfet reonstrution and non-redundany onditions beome #j "j (Xj) _+ !#j!"j (Xj) = Xj; Xj 2 Vj (3.7) "j ( #j (Xj+1) _+ !#j (Y j+1)) = Xj+1; Xj+1 2 Vj+1; Y j+1 2 Wj+1 (3.8)!"j ( #j (Xj+1) _+ !#j (Y j+1)) = Y j+1; Xj+1 2 Vj+1; Y j+1 2 Wj+1 (3.9)If a one-dimensional wavelet deomposition sheme an be applied to two and higherdimensions, by applying it to other dimensions sequentially, then this deomposi-tion is alled separable. A new wavelet transform based on morphologi operators ispresented now.



CHAPTER 3. PIXEL-BASED FUSION 593.2.2 A new morphologi WaveletHeijmans and Goutsias introdued a morphologi variant of the Haar wavelet byusing the morphologi operation dilation (erosion) [35℄. It is an one-dimensionalsheme and the multidimensional implementation an be obtained by applying it toother dimensions sequentially. However, a two-dimensional non-separable version ofthe morphologi Haar wavelet transform has also been de�ned in [35℄, whih will beused in our experiments for omparison purpose. We, now propose a non-separabletwo-dimensional unoupled morphologi wavelet deomposition sheme, whih will beused for our image-fusion algorithm. Unique analysis operators ( "; !") are used at alllevels of the multi-resolution sheme. Similarly, unique synthesis operators ( #; !#)are used at all levels. These operators are explained for the lowermost levels 0 and 1.Let us onsider the signal spae V0 of Setion 3.2.1. It is our original signal spae.Then V1 and W1 are the signal and detail spaes at level 1 having the same strutureas V0. Consider an image signal X 2 V0. Then X is a mapping of (a subset of) Z2to the set of grey-values G and it an be represented by an M � N matrix, whereM;N 2 Z. Let us assume that M and N both are even. Then X an be divided intoonseutive and disjoint 2� 2 sub-matries or bloks, whih are total MN4 in number.Four positions of suh a blok B may be denoted by (r; ), (r;  + 1), (r + 1; ) and(r + 1; + 1) (see Figure 3.1) where r and  denote row and olumn positions of theimage-matrixX. Using quadrati downsampling, the analysis operators  " : V0 ! V1and !" : V0 !W1 are de�ned as "(X)(B) = maxfX(r; ); X(r; + 1); X(r + 1; ); X(r + 1; + 1)g (3.10)!"(X)(B) = ( yv; yh; yd ) (3.11)where yv; yh; yd represent the vertial, horizontal and diagonal detail signals respe-
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= ydFigure 3.1: Wavelet transform on a 2� 2 bloktively. Let  "(X)(B) be denoted by M . Then yv; yh; yd is de�ned asyv = 8<: M �X(r; + 1); if M �X(r; + 1) � 0X(r; + 1)�M; otherwise (3.12)yh = 8<: M �X(r + 1; ); if M �X(r + 1; ) � 0X(r + 1; )�M; otherwise (3.13)yd = 8<: M �X(r + 1; + 1); if M �X(r + 1; + 1) � 0X(r + 1; + 1)�M; otherwise (3.14)The seond ondition in the last three equations is required to maintain the informa-tion on position of the maximum value M as evidened in the suessive example.Saled signal and detail values obtained above belong to X1 and Y 1 respetively andthey an be stored onveniently in similar positions of another matrix.The original signal at level 0 is reonstruted by the synthesis operation. Usingquadrati upsampling, synthesized signals bX are given bybX(r; ) = bX(r; + 1) = bX(r + 1; ) = bX(r + 1; + 1) = M (3.15)and synthesized details bY are given bybY (r; ) = min (yv; yh; yd; 0) (3.16)bY (r; + 1) = min (�yv; 0) (3.17)bY (r + 1; ) = min (�yh; 0) (3.18)bY (r + 1; + 1) = min (�yd; 0) (3.19)where M = X1(r; ) is the saled signal at (r; ) and yv; yh; yd are vertial, horizontaland diagonal details respetively. This is an unoupled deomposition sheme and



CHAPTER 3. PIXEL-BASED FUSION 61the binary operation _+ is the ordinary addition of numbers. Hene the reonstrutedsignal X 0 at any point (u; v) 2 f(r; ); (r; + 1); (r + 1; ); (r + 1; + 1)g is given byX 0(u; v) = bX(u; v) + bY (u; v) (3.20)Example: Let us onsider the 2� 2 blok B of X with X(r; ) = T0; X(r; + 1) =T1; X(r + 1; ) = T2 and X(r + 1;  + 1) = T3. Let Tm = max fT0; T1; T2; T3g. Then "(X)(B) = Tm and the details are given by !"(X)(B) = (Tv; Th; Td) whereTv = 8<: Tm � T1; if Tm � T1 > 0T0 � Tm; otherwiseTh = 8<: Tm � T2; if Tm � T2 > 0T0 � Tm; otherwiseTd = 8<: Tm � T3; if Tm � T3 > 0T0 � Tm; otherwiseNow Tm may our at any of the four positions of the blok 2 � 2 submatrix. Thesituations of Tm ourring at (r; ) and (r + 1; ) are illustrated in the �gure 3.2. Inthe �rst ase Tm ours at position (r; ) and all the detail values are positive. Inthe seond ase Tm ours at position (r + 1; ) and the information is preserved byplaing the negative value T0 � Tm as the horizontal detail.The analysis operator-pair ( "j ; !"j ) an be used reursively to deompose a signal upto a desired level k � 1. Similarly the synthesis operator-pair ( #j ; !#j ) an be usedreursively to reonstrut a signal from any level to the lowest level 0. It is easy tosee that the analysis and synthesis operators satisfy the perfet reonstrution andnon-redundany onditions 3.7 - 3.9 given in Setion 3.2.1. The operators  " and !"involve elementary arithmeti operations and one interesting point to note is that theinteger values are mapped to integer values only. Another point to note is that, if allvalues of X belong to the range [0; R℄, then analyzed signal-values will belong to therange [0; R℄ and analyzed detail-values will belong to the range [�R;R℄, irrespetiveof the number of times the operators are applied [see �gure 3.3℄.
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Case 2: Transform when T2 is maximumFigure 3.2: Illustration of proposed wavelet transform on a 2� 2 blok3.3 Multi-fous image fusionWe now present the image fusion algorithm proposed by us using the morphologiwavelet transform given in Setion 3.2.2. Consider n two-dimensional multi-fousimages X1; X2; : : : ; Xn. These images must be registered and of the same size. Theproposed analysis operators  " and !", are applied on the n individual images k timesreursively. If Xi; i = 1; 2; :::; n are M � N images, the analysis operators an beapplied at most kmax times where kmax = min(blog2M; blog2N). After ompletionof the analysis operation, at the topmost level k, a set of n saled images are obtained.They are denoted by Xki ; i = 1; 2; :::n. A set of detail images Y ji ; i = 1; 2; :::nare also obtained at eah level j, j = 1 to k. As mentioned in the last setion, ifthe range of greylevels in image Xi is [0; R℄, then that of the saled images Xki is[0; R℄ and that of the detail images Y ji ; j = 1; 2; :::k is [�R;R℄. While omparingXki ; i = 1; 2; :::n position-wise, a higher absolute value orresponds to a brighter pixeland while omparing Y ji ; j = 1; 2; :::k; i = 1; 2; :::n position-wise, a higher absolutevalue orresponds to sharp-ontrast features suh as edge, line and region boundaries.
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(a) (b) ()Figure 3.3: (a) Original signal X, (b) Saled signal X1 and details Y 1 = fy1v ; y1h; y1dgat level 1, () Saled signal X2 and details Y 2 = fy2v; y2h; y2dg at level 2Based on this observation, saled images Xki ; i = 1; 2; :::n are ombined by omparingthe values at eah position (r; ) and hoosing the one with the greatest absolute value.Similar operation is applied on orresponding detail images at eah level. Thus a singlefused image at level k and a detail image at eah level j, j = 1; :::; k are obtained.Then the reonstrution phase begins. The image at level k � 1 is reonstruted byapplying the synthesis operators  # and !# (as proposed by us in the previous setion)followed by addition. Synthesis operators are applied k times reursively to obtainthe image at original domain i.e. at level 0. The algorithm an be summarized asbelow.3.3.1 Algorithm1. Analysis step: Apply the analysis operators  " and !"; k times reursively, onimage Xi; i = 1; : : : ; n and get Xi = fXki ; Y 1i ; Y 2i ; : : : ; Y ki g, where Xki is thesaled image at level k and Y ji ; j = 1; : : : ; k are the details at levels 1; 2; : : : ; krespetively.2. Fusion step: Compare fXi; i = 1; 2; : : : ; n g and ombine them intoX = fXk; Y 1; Y 2; : : : ; Y kg, where Xk and Y j are respetively given byXk(r; ) = max fjXk1 (r; )j; jXk2 (r; )j; : : : ; jXkn(r; )j g andY j(r; ) = max fjY j1 (r; )j; jY j2 (r; )j; : : : ; jY jn (r; )j g



CHAPTER 3. PIXEL-BASED FUSION 643. Synthesis step: Reonstrut the fused image Xj at level j; j = k � 1; : : : ; 0,by applying the synthesis operators  # and !# respetively on Xj+1 and Y j+1following by addition, i.e.Xj(r; ) =  #(Xj+1(r; )) + !#(Y j+1(r; ))3.3.2 IllustrationThe algorithm is illustrated by using 2 � 2 sample data A and B taken from themulti-fous images X1 and X2 respetively.Let A = 24 a0 a1a2 a3 35 and B = 24 b0 b1b2 b3 35 where ai and bi; i = 0; 1; 2; 3 are non-negative integers. Applying the analysis operators  " and !" one, A beomes,A1 = 24 a10 a11a12 a13 35where a10 = amax = max fai; i = 0; 1; 2; 3g anda1i = 8<: amax � ai if amax > ai�(amax � a0) otherwiseHere a10 is the saled signal-data and a1i ; i = 1; 2; 3 are the detail-data at level 1.Similarly, after the analysis operation, B beomes,B1 = 24 b10 b11b12 b13 35A1 and B1 are fused in C1, by the fusion step, whereC1 = 24 10 1112 13 35 and 1i = 8<: a1i if ja1i j � jb1i jb1i otherwise for i = 0; 1; 2; 3The fused data C at level 0 is obtained by applying the synthesis operators  # and!# followed by addition. ThereforeC = 24 0 12 3 35



CHAPTER 3. PIXEL-BASED FUSION 65where0 = 10 +min(0; 11; 12; 13) and i = 8<: 10 if 1i < 010 � 1i otherwise for i = 1; 2; 3We now, laim that, i is always less or equal to R, where R is the greatest value ofai and bi; i = 0; 1; 2; 3. This happens beause i is obtained by subtrating a non-negative value from 10 = max(a10; b10). However the lower bound of i may not remainwithin the lower bounds of A and B. The method an be applied to the ompleteimages X1 and X2 by taking as many 2� 2 samples as required.
3.4 Experimental results and disussionThe proposed fusion algorithm was tested on a large number of input images. Foromparison purpose, fusion with Haar wavelet and with two-dimensional morphologiwavelet introdued by Heijmans and Goutsias [35℄ were also implemented. Fusion re-sults for multi-fous image-sets shown in Fig. 1.2 are given in Fig. 3.4. For eah inputimage-set three fused images are shown; the �rst one is obtained by the proposedwavelet, the seond one is obtained by Haar wavelet and the third one is obtainedby morphologi wavelet introdued by Heijmans and Goutsias. The fusion is done bydeomposing the onstituent images up to the third level, in all the ases. Quanti-tative evaluations by gradient-similarity-index (GSI) and fusion-quality-index (FQI)as explained in Setion 1.7 are given respetively in tables 3.1 and 3.2. Note that forboth quantitative metris GSI and FQI, higher the value better is the fusion. Timerequired in seonds for pixel-based algorithms using di�erent wavelets are given inTable 3.3.
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A.(i) A.(ii) A.(iii)

B.(i) B.(ii) B.(iii)

C.(i) C.(ii) C.(iii)Figure 3.4: Results of multi-fous image fusion by pixel-based methods. In eah row,images shown are obtained by applying the proposed algorithm respetively with (i)morphologi wavelet proposed by us, (ii) Haar wavelet and (iii) non-linear waveletproposed by Heijmans and Goutsias



CHAPTER 3. PIXEL-BASED FUSION 67Table 3.1: Performane evaluation of pixel-based methods by GSIFigure Proposed wavelet Haar wavelet Heijmans' waveletDoll 0:855 0:839 0:847Toy 0:819 0:830 0:819Disk 0:873 0:789 0:870Lab 0:865 0:832 0:864Pepsi 0:927 0:923 0:928Clok 0:865 0:890 0:866Campus 0:794 0:808 0:790Hydrant 0:869 0:833 0:864Garden 0:786 0:763 0:778Rose 0:848 0:847 0:846News 0:906 0:924 0:902OpenGL 0:902 0:841 0:902Average 0:859 0:843 0:856
3.4.1 DisussionCareful manual inspetion of fused images in �gure 3.4 reveals that the results ob-tained by the proposed wavelet are better than that of Haar wavelet and are om-parable to that of Heijmans and Goutsias' wavelet [35℄. However, artifats suh asbloking e�ets are notied in some of the fused images. But this is a ommon phe-nomena in all pixel-based image fusion using multi-resolution approah and happensdue to the fat that error introdued at the topmost level is ampli�ed during reon-strution [45℄. In our ase, these e�ets are found in border regions and in in regionswhere the data is out of fous in all the soure images. For example, one an �nd suhe�ets along the edges of the lok in Figure 3.4:C and in the middle-right portion inFigure 3.4:A. However, these e�ets are present in the fused images obtained by the
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D.(i) D.(ii) D.(iii)

E.(i) E.(ii) E.(iii)

F.(i) F.(ii) F.(iii)Figure 3.4: Continued
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G.(i) G.(ii) G.(iii)

H.(i) H.(ii) H.(iii)

I.(i) I.(ii) I.(iii)Figure 3.4: Continued
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J.(i) J.(ii) J.(iii)

K.(i) K.(ii) K.(iii)

L.(i) L.(ii) L.(iii)Figure 3.4: Continued



CHAPTER 3. PIXEL-BASED FUSION 71Table 3.2: Performane evaluation of pixel-based methods by FQIFigure Proposed wavelet Haar wavelet Heijmans' waveletDoll 0:805 0:779 0:791Toy 0:775 0:783 0:760Disk 0:853 0:851 0:847Lab 0:851 0:849 0:845Pepsi 0:869 0:877 0:863Clok 0:884 0:880 0:882Campus 0:895 0:875 0:880Hydrant 0:877 0:875 0:867Garden 0:791 0:783 0:781Rose 0:856 0:861 0:849News 0:867 0:872 0:857OpenGL 0:857 0:828 0:837Average 0:848 0:843 0:838other two wavelets as well. In addition to this, one an �nd small blak spots in fusedimages obtained by by Haar wavelet method (for example, along the edge of the lokin Figure 3.4:C.(ii)). This happens beause fusion by Haar wavelet method generatesnegative pixel values after reonstrution whih are trunated at value zero. A gen-eral problem faed by pixel-based methods is sensitivity to mis-registration. Inputimages `Garden' as shown in Fig. 1.2:J are dense in texture and diÆult to registerbeause being images of outdoor senes, temporal hanges due to wind are presentin them along with fous hanges. Fused images as shown in Figure 3.4:J are notvery good and illustrate the fat that pixel-based methods are sensitive to even slightmis-registration. Table 3.3 shows that the time taken by various wavelets are moreor less same and are not signi�ant.Apart from the quality of the results, the proposed algorithm has some omputational



CHAPTER 3. PIXEL-BASED FUSION 72Table 3.3: Time requirement in pixel-based methodsFigure Proposed 2D Haar Heijmans'morphologi wavelet wavelet morphologi wavelet(seonds) (seonds) (seonds)Doll 10 8 10Toy 13 11 14Disk 7 6 9Lab 10 12 15Pepsi 11 9 16Clok 1 1 1Campus 12 11 16Hydrant 13 13 18Garden 7 8 12Rose 14 12 15News 1 1 1OpenGL 11 13 14Average 9 9 12advantages as well. Unlike two other wavelets experimented with, our method ensuresthat integer pixel values are mapped to integer values only during both analysis andsynthesis. This is an useful property for lossless data ompression [12℄. Seondly,irrespetive of the number of times the analysis operators are applied, the rangeof the values in the saled images will be same as that of the original multi-fousimages, say [0; R℄, and the range of the detail values will be [�R;R℄. Hene memory-spae required during deomposition is �xed. Thirdly, arithmeti operations likeaddition, subtration and omparison are the only operations used in the method.Other two methods involve division operation and thus they either requires oatingpoint arithmeti or introdues trunation error by using integer arithmeti. Fourthly,due to the nonlinear nature of the proposed method, important geometri information



CHAPTER 3. PIXEL-BASED FUSION 73(e.g. edges) is well-preserved at lower resolutions. Finally, the method is very fastdue to its simpliity. For a set of n, M � N images, it takes only O(n �M � N)omputational time. The simpliity of the method and the use of integer arithmetimakes it suitable for hip-level implementation.Besides this, the nonlinear wavelet proposed by us possesses the following invarianeproperties. Both analysis and synthesis operators are translation invariant in the spa-tial domain. In the frequeny domain, they are grey shift (multipliation) invariant.That means adding (multiplying) a ertain value to all pixel values in the original datawill result in adding (multiplying) that value to the saled signal data during analysis[35℄. Also, details will not hange in ase of addition and will get multiplied by thatvalue in ase of multipliation. The wavelets possessing these invariane properties,o�er better option for image fusion than those whih do not possess them [89℄.
3.5 SummaryIn this hapter we have presented a non-linear wavelet onstruted by morphologioperators and also presented a multi-fous image fusion algorithm based on thatwavelet. The results are good onsidering the fat that the omputational ost isvery low. The use of elementary arithmeti operations makes the method suitablefor hardware implementation. However the results may su�er from the problem ofbloking e�ets around the edges and at regions where the data is out of fous inall the soure images. Registration error may aggravate the problem. But this is aommon problem for other methods experimented with in this hapter. Our method isde�nitely better than Haar wavelet method and is at par with Heijmans and Goutsias'wavelet method in this respet.



Chapter 4
Blok-based fusion
4.1 IntrodutionIn this hapter we present a blok-based method for multi-fous image fusion. Sinemulti-fous images of a sene are aquired with fous on omplementary regions,foused regions in an image have more ontrast than their defoused ounter-partsin other images. Fous-measure (FM) is a quantity for evaluating the ontrast orsharpness of a pixel, blok or region [76, 38, 50℄ and an be used e�etively for multi-fous image fusion. A fous-measure should possess ertain desirable properties [38℄.It should be independent of image ontent, monotoni with respet to blur, unimodal,robust to noise and it should have large variations in values with respet to thedegree of blur and should have minimal omputational omplexity. Image variane,image gradients, image Laplaians, energy of image gradients (EOG), energy of imageLaplaian (EOL) are traditional FM's employed and validated for appliations likeautofousing [76℄. Modi�ed Laplaian (ML), Sum modi�ed Laplaian (SML) aremodi�ations of image Laplaian [58℄. Spatial frequeny (SF) and Tenengrad werelater introdued as fous measures [25, 36℄. Evaluation of various FM's in MFIF anbe found in [38℄. 74



CHAPTER 4. BLOCK-BASED FUSION 75A number of blok-based fusion methods are available in the literature whih employdi�erent fous-measures to distinguish between foused and defoused bloks. Li etal. [47℄ proposed a MFIF tehnique in whih input images are divided into m � nbloks and better foused ones are seleted (by measuring their SF) to produe aninitial fused image and the �nal fused image is produed by majority �ltering ofthe initial result. In a subsequent work [48℄ they proposed a neural network (NN)to selet better foused bloks using three features SF, visibility and edge feature.Miao and Wang used EOG to measure fous in image bloks in an MFIF algorithmbased on Pulse Coupled Neural Networks in [55℄. In Goshtasby's method [29℄ fousis measured by sum of gradient values of all pixels in the blok. Instead of justutting and pasting the better-foused bloks, entire images are blended with weightsthat monotonially derease from blok-enters to smooth out the boundary betweenadjaent bloks. In the method presented by Fedorov et al. [27℄ eah image is tiledwith overlapping neighborhoods. For eah region the tile that orresponds to the bestfous is hosen. Seleted tiles are seamlessly mosaiked by multi-resolution splinetehnique to onstrut the fused image. Zhang and Ge proposed a tehnique [87℄in whih foused bloks are deteted by measuring their blurriness. Blok-maps arereated and small isolated bloks are removed. Finally fusion map is onstruted andfusion is done aordingly. Blok-based tehniques presented in [47, 48, 55, 29, 27, 87℄are sensitive to blok-size. Li et al. mentioned that optimal blok-size ould be hosenby adaptive methods [48℄. Goshtasby proposed to determine the optimal blok-sizeby an iterative proedure whih is time-onsuming [29℄. Fedorov et al. proposed toonstrain the minimum tile-size by use of multi-resolution spline tehnique [27℄.We present an eÆient blok-based algorithm for MFIF whih is not sensitive toblok-size. Although it starts with identifying the foused bloks, �nally the fousedregions in eah input image are identi�ed. Hene the results are omparable with re-gion based methods. We also propose a new measure of fous energy of morphologigradients (EOMG) and use it for our purpose. The paper is organized as follows.In Setion 4.2, sub-setion 4.2.1 desribes the quad-tree based algorithm to detetfoused bloks, 4.2.2 desribes the reonstrution of onneted regions and 4.2.3 de-
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Images divided
into blocks
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Focus

Image 1

Image 2

Multifocus Images

on
Block−pairs

  Fused ImageFigure 4.1: A generi shemati diagram for multi-fous image fusion by omputingthe fous measure on equal-sized blokssribes EOMG. Setion 4.3 ontains experimental results and disussion inludingperformane analysis and �nally 4.4 ontains summary of the hapter and onludingremarks.
4.2 A new blok-based fusion algorithmA generi shemati diagram of blok-based approah for MFIF is shown in Fig. 4.1.The number of bloks n plays a ruial role in this approah [48℄. A small value of nmeans a large size for eah blok and a large blok is more likely to ontain portionsfrom both foused and defoused regions. This may lead to seletion of onsiderableamount of defoused regions. On the other hand, a large value of n means small sizefor eah blok. This too may lead to seletion of some defoused bloks sine therelative ontrast do not vary muh on small and relatively smooth regions. Moreoversmall bloks are more a�eted by mis-registration problems. The problem of hoosingan ideal n is illustrated in Fig. 4.2. Suppose Image-1 and Image-2 are two multi-fousimages of a sene, fous being on omplementary regions. Foused regions are shownas shaded regions. If eah image is divided into four quadrants, four orrespondingblok-pairs are reated. From eah pair, the one with better fous is hosen and
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Image 1

Image 2

16 blocks will result
into 25% blurred
area in fused images

4 blocks will result
into 50% blurred
area in fused image

Multifocus Images
with focus on
shaded regionsFigure 4.2: Problem of multi-fous image fusion with equal-sized bloksopied to the resultant image. But in eah pair both the bloks ontains �fty perentout-of-fous area. So irrespetive of whih bloks are hosen, total �fty perent areain the fused image will be out of fous. In a similar way, if the images are dividedinto sixteen bloks eah, twenty-�ve perent of the fused image will be out of fous.A ommon way to �nd n that generates the best result is by experimentation andveri�ation with various values of n [48, 29, 27℄. This requires a onsiderable amountof pre-proessing time. To overome these problems, we present an algorithm [21℄whih do not use �xed number of divisions in any portion of the multi-fous images.Rather it makes use of a quad-tree struture to obtain the optimal subdivision whilemeasuring fous.4.2.1 Detetion of foused bloks in a quad-tree strutureThe method is desribed for two input images and it an be extended easily to threeor more input images. Heneforth the words blok and node are used interhangeably.Two input images represent the root-nodes at the zero-th level of two quad-trees. Eah



CHAPTER 4. BLOCK-BASED FUSION 78input image is divided into four quadrants to obtain a quadruple of nodes. Henefour pairs of orresponding bloks are obtained at level one of the quad-tree. Forsuh a pair of bloks, any of the following situations may our: one is fully fousedand the other is fully out-of-fous, both are partially foused or both are fully out-of-fous. To �nd out the situation, fous-measure is omputed on eah blok of thepair. Normalized di�erene in fous-measure (NDFM) between orresponding bloksis alulated as NDFM = Absolute di�erene in fous-measuresSum of fous-measures (4.1)NDFM is ompared with a threshold then. In �rst situation, fully foused blok hasa onsiderably greater FM and NDFM is greater than the hosen threshold. So thebloks in the pair are not subdivided and the blok with greater fous-measure (FM)is opied into the resultant image. In seond and third situations, FM's do not varymuh on orresponding pair of bloks and NDFM between them is less than or equal tothe threshold. So both bloks in the pair are further subdivided into four quadrants.NDFM for orresponding smaller blok-pairs are alulated and ompared with athreshold again. They are further subdivided if required. The reursive subdivisionis stopped if either the blok-size beomes very small or NDFM is greater than thethreshold at some level. The proess is repeated for all four pairs of orrespondingbloks obtained after the initial subdivision.Generally images are ombinations of textured and smooth regions. It is seen thatvariations in fous and hene values of NDFM are greatly inuened by texture and/orgrains of the original images. In partiular, variations in fous are greater in texturedregions than in smooth regions. Values of NDFM obtained at the �rst two levels of thequad-trees give an initial idea about the distribution of texture/grains in the originalimages. It is also observed that NDFM between a pair of orresponding bloks at alevel are inuened by their immediate anestor bloks. This is beause the formerbloks are parts of the later ones. To deide on whether the NDFM is small enoughto allow subdivision of a pair of bloks, a global threshold is not e�etive for bloksat all levels beause their size and anestors are di�erent. The value of threshold for
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2 1Figure 4.3: Subdivision of images in bloks aording to a quad-tree struturea pair of orresponding bloks at a level is alulated as a onstant multiple of theNDFM at their immediate anestor bloks. So it is dynamially updated for eahquadruple of orresponding nodes at a level. In this work the onstant multiplier Mis alulated asM = Mean of NDFM at level 1NDFM at level 0 � Standard-deviation of NDFM at level 1� 100(4.2)So it is onstant for a set of input images and is derived from them only.An example of subdivision of two input images in a quad-tree struture is illustrated inFig. 4.3. Here X1 and X2 are input images at level zero. After initial subdivision, Xk1and Xk2 (k = 1; : : : ; 4) are orresponding pairs of bloks at level 1. NDFM betweenthe root nodes is jF (X1)�F (X2)jF (X1)+F (X2) . That between Xk1 and Xk2 is jF (Xk1 )�F (Xk2 )jF (Xk1 )+F (Xk2 ) and thethreshold for all of them is T = M � jF (X1)�F (X2)jF (X1)+F (X2) . At level 1, the seond pair ofbloks X21 and X22 are subdivided into smaller bloks to reate blok-pairs X2k1 andX2k2 ; k = 1; : : : ; 4 at level 2. Aording to the theory developed, X21 and X22 aresubdivided beause jF (X21 )�F (X22 )jF (X21 )+F (X22 ) � T . X2k1 and X2k2 will be further subdivided ifjF (X2k1 )�F (X2k2 )jF (X2k1 )+F (X2k2 ) � M � jF (X21 )�F (X22 )jF (X21 )+F (X22 ) ). Fig. 4.4 illustrates the reursive subdivision oftop-left quadrant of Image 2 in Fig. 4.2. Other quadrants will be subdivided similarly.If the number of input images is m and m > 2, then four sets of m orrespondingbloks are reated after initial subdivision. For eah of the m bloks in the set,
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Focus is on shaded regions. After initial division
into four blocks, divide a block if necessary only.Figure 4.4: Reursive subdivision of upper-left quadrant of Image 2 in Fig. 4.2fous-measure is omputed. Di�erene of the maximum and the minimum of these mmeasures divided by sum of these m measures is used as the NDFM for the set. Thevalue of threshold for the set is alulated as a onstant multiple of the NDFM at theirimmediate anestor bloks. The onstant multiplierM is given by the Equation 4.2.Detetion of foused bloks from m images is algorithmially presented below.1. Read m input images Xi; i = 1 to m.2. Divide eah Xi into four quadrants to get four sets of orresponding bloksfXki ; i = 1 to mg; k = 1 to 4 at level 1.3. Calulate onstant multiplier M .4. Repeat for eah set of orresponding bloks at level i(a) Compute threshold T for the set.(b) Compute FM on eah blok of the set.() Find out their maximum Fmax and minimum Fmin.(d) Calulate NDFM for the set.(e) If NDFM greater than threshold thenCopy the blok with greatest FM to the resultant image.



CHAPTER 4. BLOCK-BASED FUSION 81else if size of bloks > minimum size permissible thenSubdivide all bloks in the set into four smaller quadrants andRepeat the steps in 4 for smaller bloks at level i = i+ 1else Copy the blok with greatest fous measure to the resultant image andstop.Deteted foused bloks of various sizes are merged naturally and foused regions areprodued. Fig. 4.5 shows the gradual detetion of foused regions as the number oflevels in the quad-trees inrease. It is seen that as blok-size beome smaller bordersof foused regions are deteted more aurately but small spurious defoused bloksappear inside the regions. This is due to noise or small unresolved bloks on whihrelative ontrast do not vary muh. So deteted regions require reonstrution whihis explained in the next subsetion.4.2.2 ReonstrutionIt is evident that a foused region must be wider than the dimension of the spuriousbloks inside it. The largest onneted foused region is onstruted by a morpho-logial �lter onsisting of an alternating sequene of opening and losing with a diskstruturing element (SE) of inreasing radius [22℄. However, opening and losing witha disk SE trims some sharp onvex portions and appends some sharp onave por-tions respetively. In addition to this some unresolved pixels may still be present.As a result the regions obtained from di�erent input images are neither disjoint norexhaustive. The �nal fused image is generated as follows. If a pixel belongs to onlyone region then its value is opied from the orresponding image. If a pixel belongsto no region or more than one region then weighted average of all input-values at thatpixel is opied. Related weights are determined by gradient value at the pixel in theorresponding input image divided by sum of the gradient values at the pixel in allinput images.
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(a) (d)

(b) (e)

() (f)Figure 4.5: Detetion of foused regions in a set of multi-fous images up to variouslevels in a quad-tree. Figures (a), (b) and () show input images; (a) Near fousedimage, (b) Middle foused image, () Far foused image. Figures (d), (e) and (f) showdeteted foused regions respetively up to levels 6, 7 and 8 where white, grey andblak bloks are deteted from (a), (b) and () respetively.



CHAPTER 4. BLOCK-BASED FUSION 83We now present a measure of fous in the next subsetion to solve the ritial problemof measuring the degree of fous on a blok.4.2.3 Energy of Morphologi Gradients: a new measure offousSuess of the proposed algorithm depends on how aurately the fous-measure andistinguish between foused and defoused bloks. Edge-strength an be used suess-fully to identify foused bloks, beause they have better ontrast and hene moreprominent edges than orresponding defoused regions. Edge-strength, in turn ismeasured by image gradients. Energy of gradients (EOG) is a well-known fous mea-sure theoretially explained and experimentally validated in disrimination of fousquality if the blur funtion is assumed to be Gaussian or trunated Bessel [76℄.A simple method of performing grey-sale edge detetion by mathematial morphologyis to take the di�erene between an image and its erosion/dilation by a SE [43, 14℄.The di�erene-image is the edge-strength image. In general, a grey-sale SE is givenby the mapping h : D ! f0; : : : ; 255g. Dilation and erosion of a grey-sale imageX(r; ) by a grey-sale SE h(r; ) are denoted by(X � h)(r; ) = max(i;j)2Domain of h (X(r � i; � j) + h (i; j)) (4.3)(X 	 h)(r; ) = min(i;j)2Domain of h (X(r + i; + j)� h (i; j)) (4.4)where the maximum and minimum are taken over all (i; j) in the domain of h suhthat (r� i; � j) and (r + i; + j) are in the domain of X. Most popularly used SEfor edge detetion is alled rod. A rod is a grey-sale SE whih is at on top and hasa disk-shaped domain with enter at (0; 0) [43℄. Then the domain of rod SE of radius1 (using ity-blok distane) is denoted by Drod1 and is de�ned by the setDrod1 = f(0;�1); (0; 1); (0; 0); (�1; 0); (1; 0)g:



CHAPTER 4. BLOCK-BASED FUSION 84Therefore (X � h)(r; ) = max(i;j)2Drod1 (X(r � i; � j) + h (i; j)) (4.5)(X 	 h)(r; ) = min(i;j)2Drod1 (X(r + i; + j)� h (i; j)) (4.6)Sine a rod is at on top, values of h(i; j) for all (i; j) 2 Drod1 are taken to be zero.Then (X � h)(r; ) = max(i;j)2Drod1 (X(r � i; � j)) (4.7)(X 	 h)(r; ) = min(i;j)2Drod1 (X(r + i; + j)) (4.8)Heneforth we denote (X�h)(r; ) and (X	h)(r; ) by d(r; ) and e(r; ) respetively.Dilation residue edge strength Gd and erosion residue edge strength Ge by rod SE areobtained as Gd(r; ) = d(r; )�X(r; )= max(i;j)2Drod1 [X(r � i; � j)℄�X(r; )= max(i;j)2N4(r;)[X(i; j)�X(r; )℄ (4.9)Ge(r; ) = X(r; )� e(r; )= X(r; )� min(i;j)2Drod1 X(r + i;  + j)= max(i;j)2N4(r;)[X(r; )�X(i; j)℄ (4.10)So morphologi edge operators are loal neighborhood operators whih take the maxi-mum among the four �rst di�erenes in diretions 0Æ; 90Æ; 180Æ and 270Æ. Morphologiimage gradient G(r; ) at a point (r; ) is alulated as the sum of Gd(r; ) and Ge(r; )G(r; ) = Gd(r; ) +Ge(r; ) (4.11)We de�ne energy of morphologi gradients (EOMG) asEOMG =Xr X (G(r; ))2 (4.12)A foused blok produes larger EOMG than its defoused ounterpart beause pixelsin a foused blok are in sharp ontrast and hene have greater edge-strength. SoEOMG an be used as a measure of fous.



CHAPTER 4. BLOCK-BASED FUSION 854.3 Experimental results and disussionThe proposed algorithm have been tested on the input images given in Fig. 1.2 withvarious fous measures, viz. EOMG, EOG, Variane, Tenengrad, EOL, SML, SF et.Sine it is not possible to present all results obtained by various fous measures, weprovide the results obtained by EOMG, EOG and Variane in Figure 4.6. For eahinput image-set three output images are shown; the �rst one is obtained by EOMG,the seond one is obtained by EOG and the third one is obtained by Variane. Thefusion is done by allowing the onstituent images to be subdivided up to level seven,although that may not be required for all ases. Quantitative evaluations by gradient-similarity-index (GSI) and fusion-quality-index (FQI) as explained in Setion 1.7 aregiven respetively in tables 4.1 and 4.2. The atual run-time in seonds requiredby the proposed blok-based fusion method using three di�erent fous measures viz.EOMG, EOG and Variane are given in Table 4.3.
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A.(i) A.(ii) A.(iii)

B.(i) B.(ii) B.(iii)

C.(i) C.(ii) C.(iii)Figure 4.6: Results of multi-fous image fusion by the proposed blok-based methodwith (i) EOMG, (ii) EOG and (iii) Variane



CHAPTER 4. BLOCK-BASED FUSION 87Table 4.1: Performane evaluation of blok-based methods by GSIFigure EOMG EOG VarianeDoll 0:904 0:902 0:762Toy 0:822 0:822 0:822Disk 0:913 0:913 0:877Lab 0:915 0:910 0:900Pepsi 0:945 0:945 0:952Clok 0:885 0:891 0:801Campus 0:776 0:776 0:760Hydrant 0:885 0:886 0:868Garden 0:782 0:777 0:809Rose 0:882 0:882 0:876News 0:933 0:932 0:929OpenGL 0:919 0:914 0:867Average 0:880 0:879 0:8514.3.1 DisussionCareful manual inspetion of experimental results shows that the proposed fousmeasure EOMGwork equally well on input images whih vary widely in their fousing,objet-ontent and in their texture. It also shows that the results obtained by variousfous measures are good and do not vary muh in their quality. This shows robustnessof the algorithm.Now disussion on quantitative evaluations are given. The tables 4.1 and 4.2 showthat for `Toy' images all the three fous measures yield idential values. This impliesthat fused images produed by the proposed algorithm with three di�erent fousmeasures are idential. This happens beause quad-trees generated by EOMG, EOGand variane are idential in that partiular ase. The tables also show that for
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D.(i) D.(ii) D.(iii)

E.(i) E.(ii) E.(iii)

F.(i) F.(ii) F.(iii)Figure 4.6: Continued
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G.(i) G.(ii) G.(iii)

H.(i) H.(ii) H.(iii)

I.(i) I.(ii) I.(iii)Figure 4.6: Continued
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J.(i) J.(ii) J.(iii)

K.(i) K.(ii) K.(iii)

L.(i) L.(ii) L.(iii)Figure 4.6: Continued



CHAPTER 4. BLOCK-BASED FUSION 91Table 4.2: Performane evaluation of blok-based methods by FQIFigure EOMG EOG VarianeDoll 0:836 0:837 0:795Toy 0:838 0:838 0:838Disk 0:877 0:877 0:870Lab 0:875 0:875 0:873Pepsi 0:884 0:886 0:894Clok 0:903 0:903 0:893Campus 0:909 0:909 0:897Hydrant 0:914 0:914 0:913Garden 0:829 0:830 0:820Rose 0:890 0:890 0:883News 0:894 0:893 0:890OpenGL 0:882 0:882 0:871Average 0:877 0:877 0:869some images like `Disk', `Campus' and `Rose'; EOMG and EOG produe identialvalues. Following the argument just stated, it is onluded that quad-trees generatedby EOMG and EOG are idential for those images. On average, performane ofEOMG is slightly better than EOG and better than variane. Moreover as EOMGworks equally well with all input image-sets (whih vary widely in ontent, textureand fousing), we onlude that it ful�lls the desirable properties of a fous measurementioned in setion 4.1; viz. ability to measure fous irrespetive of image ontent,monotoniity with respet to blur, unimodality, robustness to noise and apability toprodue large variations in values with respet to degree of blur. Regarding the timerequirement, average time taken by the proposed algorithm is less than a minute forall the three fous measures EOMG, EOG and variane.Formal omputational omplexity of our method is desribed now. In detetion step,



CHAPTER 4. BLOCK-BASED FUSION 92Table 4.3: Time requirement of the blok-based algorithm with three di�erent FM'sFigure EOMG EOG Variane(seonds) (seonds) (seonds)Doll 41 37 45Toy 59 55 62Disk 24 27 33Lab 26 20 21Pepsi 30 25 39Clok 19 17 14Campus 33 30 34Hydrant 34 28 29Garden 28 29 25Rose 31 33 32News 22 19 23OpenGL 32 23 27Average 32 29 32eah input image is subdivided aording to a quad-tree struture. Suppose an inputimage has M �N pixels and the quad-tree has l levels. Maximum possible value of ldepends on the minimum blok-size. For example, if the minimum blok-size is takento be 2�2, then for a 512�512 image l is equal to 8. More formally, maximum possiblevalue of l is equal to min(log2M � 1; log2N � 1). If all levels of the quad-tree havemaximum possible nodes then it means all pixels in the image are to be alulatedupon up to level l. So omputational omplexity is O(M �N � l) for a single image.For a set of k input images the omputational omplexity beomes O(M�N � l�k).It is seen in pratial ases that maximum possible level is not required always andmost of the levels do not have more than half of the maximum possible nodes. Sotime-requirement in detetion step is e�etively in order of size of input images.Reonstrution is done by iteratively applying the morphologial operators opening



CHAPTER 4. BLOCK-BASED FUSION 93and losing with a disk SE of inreasing radius. So time requirement in this step alsois in order of size of input images.
4.4 SummaryIn this work we have proposed an algorithm to enhane the e�etive DOF of amera bymulti-fous image fusion. It is a simple quad-tree based algorithm whih reursivelydivides and then ompares and selets/rejets bloks. For e�etive subdivision ofbloks, NDFM of a set of orresponding bloks is alulated and ompared with athreshold. The proess of reursive subdivision ontinues until either NDFM beomesgreater than the threshold or the blok-size beomes very small. No threshold issupplied manually, rather thresholds are alulated automatially from the inputimages. Deteted foused bloks are merged naturally to form foused regions whihare reonstruted then to remove any spurious bloks inside them. So although theproposed method starts with bloks, it �nally detets foused regions from eah inputimage. These regions are then opied to reate the �nal fused image. The method isfast and easy to implement. Its time omplexity is of the order of size of the inputimages. We have also proposed a new fous measure EOMG in this work. It satis�esthe desirable properties of a fous measure. The proposed algorithm is robust inthe sense that any fous measure an be used for its implementation. Sine it is ablok-based method, it is robust against pixel mis-registration. Moreover, sine thealgorithm is based on neighbourhood operators, it an be eÆiently implemented inmahine vision systems having speial hardware support for morphologi operations.



Chapter 5
Region based fusion
5.1 IntrodutionIn this hapter we present a region-based method for multi-fous image fusion (MFIF).Generally regions onvey more semanti information than single pixels and smallbloks. So region-based fusion approahes an avail more intelligent semanti fusionrules than pixel-based and blok-based methods. A number of region-based fusiontehniques are found in the literature. They are based either on spatial domain or onfrequeny/transform domain. Spatial domain fusion methods may depend on multi-resolution or multi-sale deomposition (MSD). Frequeny domain fusion tehniquesdo depend on MSD. They use either pyramid or wavelet transform for MSD. Region-based fusion tehniques using pyramid or wavelet transform have been proposed bymany researhers [88, 86, 65, 64, 82, 34, 85℄. Some key points of region-based MSDimage fusion approah [88℄ are eah pixel is onsidered as part of objet or region ofinterest, image features suh as edges and regions are used to guide the fusion, bothspatial and frequeny information are retrieved from the oeÆients. Basi steps ofMSD image fusion tehniques are the following. At �rst eah soure image is trans-formed/deomposed by an MSD sheme like pyramid transform or wavelet transform.Low and high frequeny oeÆients forming respetively saled and detail images are94



CHAPTER 5. REGION BASED FUSION 95obtained from the transform. Regions representing image features are then extratedfrom the transform oeÆients by an image segmentation method. The regions arethen fused based on region harateristis. The �nal fused image is obtained by ap-plying the inverse transform to the omposite representation. Experimental resultsof these methods are enouraging. However, the images fused in this way may stilllose some information of the soure images beause of the implementation of the in-verse transform. There are region-based fusion methods using ombination of wavelettransform and arti�ial neural networks [55, 46, 68, 39, 84℄. These methods are mo-tivated by fusion of di�erent sensor signals in biologial systems and use multi-layerpereptron neural networks or pulse-oupled neural networks. There are transformdomain methods whih use Independent Component Analysis (ICA) and TopographiIndependent Component Analysis bases in image fusion [56℄.Spatial-domain region-based fusion methods may or may not depend on multi-saledeomposition (MSD). Methods for image fusion using multi-sale morphology aredesribed in [53, 57℄. In method of Matsopoulos et al. morphologial �lters withstruturing elements of varying size are used to onstrut a morphologial pyramid.Suh pyramids are onstruted for eah input image. Then morphologial di�erenepyramids are onstruted for eah of the above pyramids. After that, an intermedi-ate pyramid is onstruted by ombining information at eah level from the abovedi�erene pyramids. Finally, reonstrution is done by using appropriate morpho-logial operations on the intermediate pyramid to produe the �nal fused image.This method an be used for multi-fous images as well, but it was not mentionedwhether the method an be applied to more than two input images. Sine in thethird step the di�erene pyramids are ombined by hoosing the maximum at eahpixel, this method is sensitive to the problem of mis-registration as mentioned be-fore. Mukhopadhyay and Chanda proposed a similar method in [57℄ exept that theyhave used morphologial towers instead of morphologial pyramids. They have usedtheir method for fusion of multi-fous images. But their method involves proessingand storing of saled data at various levels whih are of the same size as that of theoriginal images. This results in a huge amount of memory and time requirement.



CHAPTER 5. REGION BASED FUSION 96Li and Yang's tehnique [49℄ is a spatial-domain, region-based tehnique whih doesnot depend on MSD. In this tehnique, a temporary fused image is obtained at �rstby taking the average of all input images. The temporary image is segmented bynormalized-ut algorithm. Input images are segmented aording to the segmenta-tion results of the temporary image. Fous measure of orresponding regions aremeasured by spatial frequeny and better foused regions are seleted and stithed totheir desired positions to get the �nal fused image. The tehnique is time-onsumingand depends greatly on the performane of the segmentation algorithm.In this hapter a spatial domain, region-based fusion method is presented. Multi-salemorphologial �lters are employed to identify foused regions from input images.Foused regions from various images are then stithed at their proper positions toreate the �nal fused image. Sine best-foused regions are seleted and opied fromone image only, a slight error in registration will have no e�et in fusion exept inthe border of the regions. Prior segmentation is not required in the method. Manualut-and-paste of foused regions from multi-fous images is onsidered to be the bestand it is often used for omparison purposes [45℄. The proposed method is a loseapproximation to this and produes good results. The results have been omparedwith those obtained by Li and Yang's tehnique [49℄. The hapter is organized asfollows. Setion 5.2 desribes the proposed method in detail. Subsetions 5.2.1,5.2.2 and 5.2.3 present the methods for multi-sale top-hat transformation, detetionof foused regions and image reonstrution respetively. Experimental results anddisussion inluding performane analysis are given in Setion 5.3. Finally, summaryof the hapter and onluding remarks are plaed in Setion 5.4.
5.2 Fusion by multi-sale morphologyThe objetive of region-based fusion methods is to detet foused regions from everyinput image, then to stith deteted foused regions to their proper positions in thefused image. Sine multi-fous images of a sene are aquired with fous on omple-



CHAPTER 5. REGION BASED FUSION 97mentary regions, foused regions in an image have more ontrast than their defousedounter-parts in other images. This implies that foused regions ontain larger num-ber of physially relevant features of di�erent shapes and sizes. Extration of featuresby mathematial morphology depends on e�etive use of struturing elements. Sizesand shapes of struturing elements play ruial roles here. A morphologial operatorwith a salable struturing element an extrat features of various shapes and sizes.A sheme of morphologial operations with a struturing element of varying sale istermed as multi-sale morphology [15, 52℄. We use suh a sheme for our purpose.The sheme is known as multi-sale top-hat transformation. We desribe now thetransformation and detetion of foused regions by using it.5.2.1 Multi-sale top-hat transformationA two-dimensional grey-sale image signal X is a funtion/mapping from domain D(whih is a subset of disrete two-dimensional spae Z2) to the set of grey valuesfg1; g2; : : : ; gng where eah gi is a nonnegative integer. A grey-sale struturing el-ement (SE) `h' is a mapping from its domain to the above set of grey values. Fora salable SE `h', size of the domain get hanged. Let B be a set representing thedomain of `h'. Assume that B has a de�nite shape. Let n be an integer representingthe sale-fator of B and let nB denote the saled version of B at sale n. If B isonvex, then nB is obtained by n� 1 dilations of B by itself.nB = B�B � B � � � � � B| {z }n�1 times (5.1)When n = 0, onventionally B is taken to be a disk of unit size so that nB = f(0; 0)g.Let `h' be a at-top SE suh that its value at every point in its domain nB is zero.Then a morphologi operation by `h' redues to an operation by its domain nB. Thenmulti-sale opening and losing of X by salable domain nB are de�ned respetively



CHAPTER 5. REGION BASED FUSION 98as (X Æ nB)(r; ) = ((X 	 nB)� nB)(r; ) (5.2)(X � nB)(r; ) = ((X � nB)	 nB)(r; ) (5.3)Opening removes all bright/foreground strutures in the image X that are not largeenough to ontain nB. Hene X Æ nB essentially ontains all bright/foregroundstrutures of X having size greater than or equal to nB. Similarly, losing removesall bakground strutures in the image X that are not large enough to ontain nB.Hene, X � nB ontains all dark/bakground strutures of X having size greater thanor equal to nB. Here foreground struture means an image region of intensity valuehigher than the surrounding region.Top-hat transformation for opening and losing �lters are de�ned respetively as:d(n)o (X(r; )) = (X Æ (n� 1)B) (r; )� (X Æ nB) (r; ) (5.4)d(n) (X(r; )) = (X � nB) (r; )� (X � (n� 1)B) (r; ) (5.5)Thus, d(n)o (X) ontains all the bright features that have size greater than or equal to(n � 1)B but less than nB. Similarly, d(n) (X) ontains all the dark features withinthe same range of size. Hene the feature image de�ned asD(n)(X(r; )) = maxfd(n)o (X(r; )); d(n) (X(r; ))g (5.6)ontains all the image features having size within the range [(n � 1)B; nB). Heneimage features are thus sieved out based on their size and stored in orrespondingD(n)(X).5.2.2 Detetion of foused regionsIt is evident from the previous disussion that if a partiular feature (bright or dark)of an image is sharply foused it is sieved out in relatively lower sale. Let Xj; j =1; 2; : : : ; k be a set of multi-fous images and let D(n)j denote the feature image of Xj



CHAPTER 5. REGION BASED FUSION 99at sale n. Now if a pixel (r; ) is sharply foused in the image Xi, then at lower sale,D(n)i (r; ) should be greater than D(n)j (r; ) for all j 6= i. Thus, the foused region ofeah image an be identi�ed and marked. Let F (n)j denote the foused region at salen of image Xj and let F (n) denote the union of foused regions at sale n from allimages Xj; j = 1; 2; : : : ; k. Then detetion of foused regions at various sales F (n)jan be algorithmially presented asStep-1: F (0)j (r; ) = 0 for all jStep-2: n = 1Step-3: Calulate D(n)j (r; ) for all images XjStep-4: F (n)j (r; ) = 1, if D(n)j (r; ) > maxfD(n)i (r; )g for all i 6= jStep-5: F (n)(r; ) = F (n)1 (r; ) _ F (n)2 (r; ) _ � � � _ F (n)k (r; )Step-6: If all pixels of F (n) are not equal to 1, inrease n by 1 and go to Step-3Hene, the foused regions or, more spei�ally, the foused pixels in the imageXj aremarked by 1 in F (n)j . In pratie, we terminate this algorithm when at least p-perentpixels of F (n) beome 1 or no further hange ours in F (n). Rest unresolved pixelswhere F (n)(r; ) = 0 either belong to smooth regions or belong to boundary of fousedregions and are taken are of at the subsequent stage. Binary images orresponding tofoused regions deteted at various sales for the near-foused `Doll' image in Fig. 1.2are shown in Fig. 5.1.5.2.3 ReonstrutionImage of foused region F (n)j for j-th input image may appear to ontain spuriouswhite spots in sharply foused region (shown here as blak olored) and blak spotsin the out-of-fous region (shown here as white olored). This phenomenon an beobserved in Fig. 5.1. It is evident that a foused objet or region must be wider
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(a) (b) ()Figure 5.1: Binary images orresponding to foused regions deteted at various salesfor the near-foused `Doll' image in Fig. 1.2. Foused regions obtained by using (a)2� 2 SE. (b) 4� 4 SE. () 8� 8 SE.than the dimension of these spurious spots. Then these spots an be treated as ad-ditive and subtrative noise that are introdued due to salt-and-pepper noise presentin the out-of-fous regions and also due to pixels that remain unresolved after theprevious proessing. It is well-known that opening and losing �lter respetively anremove additive and subtrative noise eÆiently. Hene, an alternating sequential�lter formed by onatenating opening and losing with a small disk struturing ele-ment is applied on eah binary image Fj(r; ) to obtain Rj(r; ) onsisting solid blakblob(s). So the largest onneted regions Rj mark the �nal foused regions in Xj.Binary images orresponding to foused regions (of multi-fous `Doll' images Fig. 1.2)deteted at the third iteration and the orresponding largest onneted regions areshown in Fig. 5.2. Now the image where all regions are properly foused may bereonstruted by putting together the pixels of Xj's orresponding to marked (blak)regions of Rj's. However, it should be mentioned here that opening and losing witha disk struturing element trims some sharp onvex portions from the blob and ap-pends some sharp onave portions to the blob respetively. In addition to this someunresolved pixels may still be present. As a result Rj's are neither disjoint nor ex-haustive. That means neither Ri ^ Rj; i 6= j produes a blank (or white) image norWj Rj produes a �lled (or blak) image. Hene, the resultant fused image ~X(r; ) is
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(a) (b) ()
(d) (e) (f)Figure 5.2: Deteted foused regions and the orresponding largest onneted regionsfor multi-fous imagesgenerated by non-linear superposition of Xj(r; ) depending on Rj(r; ) as follows.~X(r; ) = 8>>><>>>: Xj(r; ); if Rj(r; ) = 1 and Ri(r; ) = 0 for all i 6= javg fXj(r; ) jRj(r; ) = 0 for all jgavg fXj(r; ) jRj(r; ) = 1 for more than one jg (5.7)The funtion avg(:) stands for pixel-wise average from a set of images. Experimentalresults and disussions are presented now.

5.3 Experimental results and DisussionThe proposed algorithm has been tested on the input images given in Fig. 1.2. It isseen in the experiments that three iterations are suÆient to detet foused regionsin all images. So top-hat transformation is applied on input images at three di�erentsales. Disk struturing elements of three di�erent sizes viz. (a) 2� 2, (b) 4� 4, ()8� 8 are employed for this purpose. For omparison purpose, we have implemented



CHAPTER 5. REGION BASED FUSION 102the region-based fusion tehnique presented by Li and Yang [49℄. Experimental resultsby the proposed algorithm and by Li's method are shown in �gure 5.3. In eah row,the fused images obtained by the proposed method are given �rst, followed by fusedimages by Li and Yang's method. Objetive evaluations by gradient-similarity-index(GSI) and fusion-quality-index (FQI) as explained in Setion 1.7 are given respetivelyin tables 5.1 and 5.2. Atual time in seonds required by the proposed algorithm andLi's method are shown in table 5.3.Table 5.1: Performane evaluation of region-based methods by GSIFigure Proposed method Li's methodDoll 0:907 0:799Toy 0:808 0:805Disk 0:912 0:869Lab 0:924 0:800Pepsi 0:942 0:945Clok 0:864 0:870Campus 0:782 0:799Hydrant 0:862 0:843Garden 0:857 0:784Rose 0:891 0:873News 0:926 0:853OpenGL 0:906 0:863Average 0:882 0:840
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A.(i) A.(ii)

B.(i) B.(ii)

C.(i) C.(ii)Figure 5.3: Results of multi-fous image fusion by region-based methods. In eahrow, images shown are obtained by applying (i) proposed region-based algorithm (ii)Li' algorithm



CHAPTER 5. REGION BASED FUSION 104Table 5.2: Performane evaluation of region-based methods by FQIFigure Proposed method Li's methodDoll 0:840 0:818Toy 0:846 0:833Disk 0:873 0:871Lab 0:877 0:842Pepsi 0:896 0:892Clok 0:910 0:906Campus 0:916 0:912Hydrant 0:917 0:906Garden 0:838 0:812Rose 0:900 0:883News 0:897 0:873OpenGL 0:877 0:863Average 0:882 0:8675.3.1 DisussionCareful manual inspetion of images in �gure 5.3 reveals that the results obtainedby the proposed fusion method is better than fusion by Li's method. Inspetion ofthe rane in the fused image `Toy', the edge of the table in the fused image `Pepsi',the rose in fused image `Rose' and the letter `O' in fused image `OpenGL' show thatit produes better results than Li's method. In both the tables 5.1 and 5.2, theaverage values produed by our method is better than that produed by Li's method.The average time taken by the proposed method is less than one and a half minute,however the average time taken by Li's method is more than six minutes. So also inrespet of time requirement, the proposed method is better.
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D.(i) D.(ii)

E.(i) E.(ii)

F.(i) F.(ii)Figure 5.3: Continued
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G.(i) G.(ii)

H.(i) H.(ii)

I.(i) I.(ii)Figure 5.3: Continued
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J.(i) J.(ii)

K.(i) K.(ii)

L.(i) L.(ii)Figure 5.3: Continued



CHAPTER 5. REGION BASED FUSION 108Table 5.3: Time requirement in region-based methodsFigure Proposed method Li's method(seonds) (seonds)Doll 71 221Toy 89 505Disk 78 339Lab 76 342Pepsi 80 490Clok 37 119Campus 96 479Hydrant 89 470Garden 78 214Rose 81 628News 38 102OpenGL 82 587Average 75 3755.4 SummaryIn this work we have proposed a region-based method for multi-fous image fusion.In general, region-based methods do depend on prior segmentation of input images.Therefore, performane of the segmentation algorithm, both in respet of time andquality, a�ets the performane of the fusion algorithm. Generally, number of re-gions produed by segmentation proess is muh larger than atual number of fo-used/defoused regions. It means more proessing time is required during evalua-tion of fous-quality of orresponding regions. Moreover, it is diÆult to evaluatethe fous quality for small regions, whih means distintion between orrespondingfoused and defoused ounterparts is diÆult whih ultimately may lead to seletionof a defoused region. The proposed method does not need any prior segmentation.



CHAPTER 5. REGION BASED FUSION 109Rather, it employs multi-sale morphologial �lters to detet features in fous at var-ious sales from eah input image. Union of them onstitutes foused regions fromthe image. Deteted regions from all input images are put together to reonstrut thefused image. Sine the best-foused regions are deteted and opied from one imageonly, a slight error in registration will have no e�et in fusion exept in the bordersof the foused regions. Hene this region-based method is robust to mis-registration.This method resembles the manual ut-and-paste method of image fusion whih isoften used for omparison purposes. Thus the fused image obtained by the method isvery similar to the ideal fused image. Performane of the algorithm is ompared witha region-based algorithm proposed by Li and Yang. Performane analysis reveals thatour method is superior to fusion by Li and Yang's method.



Chapter 6
Conlusion and future work
Multi-fous image fusion (MFIF) is a way to enhane e�etive depth-of-�eld of a dig-ital amera. Tehniques for MFIF an be divided into broad ategories, pixel-based,blok-based and region-based. It is interesting to study and ompare tehniqueswithin a partiular ategory and tehniques belonging to di�erent ategories. Thethesis (i) surveys extensively on existing literature for MFIF methods and lassi�esthe methods aording to the above ategories, (ii) proposes a method for multi-fousimage registration, (iii) proposes new methods for MFIF, one in eah of the ategoriesmentioned above, (iv) presents experimental results for proposed methods on a largedata-set, (v) ompares the results with those obtained by other well-known methodsand (vi) does performane analysis using standard quantitative evaluation tehniques.All tehniques for MFIF proposed in the thesis use mathematial morphologi tools.Image registration is a neessary pre-requisite for image fusion. The thesis presentsa method for multi-fous image registration in Chapter 2. The method is omparedwith a widely used registration tehnique and is found to produe better results thanthe latter. Chapter 3 proposes a non-linear tool morphologial wavelet and presentsa pixel-based algorithm for MFIF using the same. The algorithm is omparable withother standard pixel-based tehniques. Interesting mathematial properties of thewavelet used makes the algorithm hardware implementable. Chapter 4 proposes a fo-110



CHAPTER 6. CONCLUSION AND FUTURE WORK 111Table 6.1: Performane summery of the (i) Pixel-based algorithm by the proposed 2Dmorphologi wavelet, (ii) Blok-based algorithm by proposed fous-measure EOMGand (iii) Proposed region-based algorithmFigure Pixel-based Blok-based Region-basedTime FQI Time FQI Time FQI(seonds) (seonds) (seonds)Doll 10 0.805 41 0.836 71 0.840Toy 13 0.775 59 0.838 89 0.846Disk 7 0.853 24 0.877 78 0.873Lab 10 0.851 26 0.875 76 0.877Pepsi 11 0.869 30 0.884 80 0.896Clok 1 0.884 19 0.903 37 0.910Campus 12 0.895 33 0.909 96 0.916Hydrant 13 0.877 34 0.914 89 0.917Garden 7 0.791 28 0.829 78 0.838Rose 14 0.856 31 0.890 81 0.900News 1 0.867 22 0.894 38 0.897OpenGL 11 0.857 32 0.882 82 0.877Average 9 0.848 32 0.877 75 0.882us measure based on mathematial morphology and presents a blok-based algorithmfor MFIF using the same. The algorithm is fast, easy-to-implement, and produesgood results. Finally, Chapter 5 presents a region-based algorithm for MFIF usingmathematial morphology. This algorithm properly selets the foused regions frommulti-fous input images and then opies and pastes them to form the �nal fused im-age. It resembles the manual ut-and-paste method for MFIF often used to produeimage all-in-fous, for testing purposes [45℄. Results produed by this algorithm arethe best amongst all the three proposed MFIF algorithms. For omprehensive as-sessment of the proposed pixel-based, blok-based and region-based methods, atual



CHAPTER 6. CONCLUSION AND FUTURE WORK 112run-time in seonds and fusion quality index (FQI) for the test images are given inTable 6.1.After omparing the results of various tehniques for MFIF, we �nd the following.� Pixel-based and region-based methods are respetively the least and the mosttime-onsuming amongst the methods in the three ategories mentioned above;and blok-based methods take more time than pixel-based methods but lesstime than region-based methods.� Performane-wise pixel-based and region-based methods are respetively theworst and the best methods among the three ategories, and blok-based meth-ods are mid-way between pixel-based and region-based methods.� Pixel-based and region-based methods are respetively the least and the most ro-bust in respet of mis-registration problem whih means slight registration-errorresults into severe performane degradation in pixel-based methods whereas thaterror does not a�et region-based methods so muh.� Finally, pixel-based and region-based methods are respetively the least and themost diÆult in respet of implementation and usage.� Blok-based methods maintain a good trade-o� in terms of time-omplexityand performane; and they are moderate also in respet of implementation andusage. Finally they are moderately a�eted by mis-registration problem. Sothey are often hosen for pratial purposes.The proposed MFIF tehniques an be used to integrate multi-fous olor images.For that, the input multi-fous olour images (in R,G,B format) may be representedin intensity-hromatiity format. The proposed MFIF methods may then be appliedto the intensity images to get the fused intensity image. Input hromatiity imagesare ombined following the same steps as the ones used in ase of intensity images.Finally, the fused intensity and hromatiity images are ombined to get the fusedolor image. We now outline some future work as extension of the work done.



CHAPTER 6. CONCLUSION AND FUTURE WORK 1136.1 Future work6.1.1 Fusion by area morphologyBasi tools of morphologi �lters are opening and losing. Morphologi (also alledstrutural) opening is an inreasing, idempotent and anti-extensive operation de�nedas an erosion by a SE followed by a dilation by the reeted SE. An operation havingthe same properties, but that annot be written as a unique erosion followed by adilation, is alled an algebrai opening [75℄. Area opening is an algebrai opening.It preserves the onneted sets in the foreground having areas greater than a giventhreshold value and removes all other sets. Here foreground means an image regionof intensity value higher than the surrounding region and area is measured in numberof pixels. The dual operation of area opening is area losing. It is an algebrailosing whih preserves the onneted sets in the bakground having areas greaterthan a given threshold value and removes all other sets. This information an beused suessfully to extrat foused regions in multi-fous images.In multi-fous images, foused regions have more ontrast and hene larger number ofsmall features or grains than their defoused ounter-parts. This implies that whenompared with the orresponding defoused region, a foused region has (i) greaterrange of grey values and (ii) greater number of pixels with very high and very lowintensity values in the range. These pixels an be extrated by using area openingand area losing respetively. Subsequently, foused regions an be deteted by usingthese pixels. In general, region-based fusion methods are more omplex and time-onsuming than pixel-based and blok-based methods. We plan to work for a simpleregion-based multi-fous image fusion method by using the operations, area openingand losing. Use of eÆient algorithms [54℄ for these operations may redue thetime-requirement for the method.



CHAPTER 6. CONCLUSION AND FUTURE WORK 1146.1.2 Extension to multi-modal imagesThe proposed MFIF tehniques an be used to integrate multi-modal images. In amulti-sensor data aquisition system, the image data of an objet onsists of informa-tion aquired by di�erent sensors from di�erent perspetives and possibly at di�erentresolutions. The larity of the objet features may be di�erent in di�erent imagingmodalities. For example, in the area of biomedial imaging, two widely used modali-ties, namely the Magneti Resonane Imaging (MRI) and the Computer Tomographi(CT) san do not reveal all types of tissue struture with equal larity. CT san isespeially suitable for imaging bones or hard tissues, whereas the MR images aremuh superior in depiting the soft tissues. These two imaging modalities are thusomplementary in many ways and no one alone is suÆient in terms of required infor-mation ontent. The propsed methods may be extended for fusing suh multi-modalimages.6.1.3 Hardware embeddingTomorrow's omputing and ommuniation tehnology will rely on extensive use ofembedded software. There are previous work on speial purpose hardware design formathematial morphologi algorithms [4℄. Proposed algorithms an be embedded inhardware using eÆient gate-arrays. Embedded hardware design primarily dependson use of parallel operations. Graph-theoreti design approahes like preedenegraph and interval graph may be applied on proposed algorithms to explore theirinherent parallelism and hene their potential for hardware embedding. Simpler ofthe proposed algorithms an be eÆiently implemented in mahine vision systemshaving speial hardware support for morphologi operations.



Appendix A
Depth of �eld
Depth of �eld an be alulated by par-axial geometri optis model of image forma-tion using a thin onvex lens [76℄. Figures A.1(a) and A.1(b) illustrate two di�erentsituations using suh a model. In both �gures, P and Q are two point-objets, L isthe lens, F is the foal point and D is the diameter of aperture of the lens (assumedto be irular in this ase). Point-objet P on objet plane at distane u from thelens is perfetly foused as point-image P 0 on sensor plane at distane v from thelens. Well-known lens equation 1f = 1u + 1v relates the position of these two points, uand v, with that of the foal length f of the lens. Point-objet Q is taken in suh away that it is further from the lens than P in �g. A.1(a) and nearer to the lens thanP in �g. A.1(b). The distane of Q from the lens is u1 and u2 in �gures A.1(a) andA.1(b) respetively where u1 > u and u2 < u. Foused images Q0 of Q are formed atdistanes v1 and v2 in respetive �gures where v1 < v and v2 > v. So foused imagesof Q are formed in front of and behind the sensor plane in respetive �gures. In bothases, blurred irular images of Q with diameter P 0Q00 is formed on the sensor-plane.We an estimate the blur-irle radius r in �g. A.1(a) using similar triangles,2rD = v � v1v1r = (v � v1) D2v1115
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Similarly we an estimate the blur-irle radius r in �g. A.1(b),2rD = v2 � vv2r = (v2 � v) D2v2It is readily seen in both ases that, larger aperture generates larger blur irle.Using the above relations for the blur irles, we an derive depth-of-�eld (DOF) fora lens system, where r now beomes the radius of largest aeptable blur irle in theresultant image, whih an be hosen based upon sensor resolution and human visualauity limits. Note that the lens equation is also satis�ed by u1; v1 pair and u2; v2pair. We an estimate the DOF from �g. A.1 using similar triangles,2rD = v � v1v1vv1 = 1 + 2rD1v1 = 1v (1 + 2rD )1u1 = 1f � 1v (1 + 2rD )= 1f � ( 1f � 1u)(1 + 2rD )= (f � u)(1� 4r2D2 ) + u(1� 2rD )uf(1� 2rD )Therefore, u1 = uf(1� 2 rD )f � 2 rDu if 4r2 << D2 (A.1)Similarly from �g. A.1(b),u2 = uf(1 + 2 rD)f + 2 rDu if 4r2 << D2 (A.2)And, DOF = u1 � u2 (A.3)where u1; u2 are the distanes to the nearest and the furthest objet planes with blurirles having radii less than or equal to the hosen r. As D tends to in�nity, u1 and117



u2 tend to u and DOF tends to zero. This result agrees with the ommon knowledgethat reduing the aperture-size inreases DOF and inreasing the same redues it.In summary, DOF depends on the following fators, the amount of sharpness-lossregarded as aeptable, the aperture used (dereasing the aperture will inrease theDOF), the foal length of the lens (longer the foal length, shorter the DOF) andthe distane of the foused objet (nearer the objet, shorter the DOF). An extremease of dereasing the aperture for maximizing the DOF happens in ase of pin-holeamera. It has an in�nite DOF. Unfortunately, the optial power in the image plane isredued onsiderably due to in�nite DOF. So ameras with �nite DOF are preferred.But the problem is that they annot generate the images of all objets at variousdistanes from the amera with equal larity.
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Appendix B
AÆne transformation
AÆne transformation is a ommon tehnique for image registration. It is basedon the assumption that only geometri transformations possible between a relatedpair of images are translation, rotation, isotropi saling and shear (non-uniformsaling in some diretion). Properties like parallelism, ratio of lengths of ollinearor parallel segments, ratio of areas, linear ombination of vetors are invariant underaÆne transformation [13℄. The equation for aÆne transformation is given now.Let (x; y) be a point in two-dimensional Cartesian oordinate system. In homogeneousoordinate system the point is represented by (x; y; 1). Let the point be representedby (X; Y; 1) in homogeneous oordinate system after transformation. Then aÆnetransformation of (x; y; 1) to (X; Y; 1) is represented by the equation26664 XY1 37775 = 26664 t11 t12 t13t21 t22 t230 0 1 37775� 26664 xy1 37775where the 3�3 oeÆient matrix is a omposite form of the transformation funtionsfor translation, rotation, isotropi saling and shear.
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