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Chapter 1

INTRODUCTION

Fxistence of an edge-disjoint collection of cycles of given length m, which partition a complete
undirected graph I(, of order n, depends on both m & n. In 1847, T, P. Kirkman|4]
determined the spectrum of 3-cycle systems (the set of all n such that a 3-cycle system of
order noexists). In 1892, speclrum problem for n-cycle systems of /), was settled[7]. Kotziglh
in 1965 and Rosall0] 1 1966 determined the spectrum of m-cycle systems, for all even .
But the general problem of packing s still unsolved.

In this work, we have haundled odd-cycle systems and even-cycle systems separately. It
has been known that the spectrum of 3-cycle systems 1s precisely the set of all n = 1 or 3
(mod 6). We have considered those n where n = 0or 2 0r 5 (mod 6). Our objective is to
pack largest possible no. of 3-cycles in a complete graph where no. of nodes is of the form
61, 6t + 2 or 61 + 5. The packing problem 1 case of 4-cycle systems i1s handled in a different
way. The spectrum of 4-cycle systems 18 preasely the set of all = 1 {(mod &), In this
work, we have considered the problem of packing 4-cycles in a complete graph of even order.
A construction, that produces an edge-disjoint collection of largest possible no. of 4-cycles
from a complete graph of even order, is given. It has also been shown that this construction
is equivalent to Spouse-avording varniant of Oberwolfach Problem proposed by Huang, Kotzig
and Rosal3]| in 1979.
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Chapter 2

m-CYCLE SYSTEMS :
EXISTENCE & CONSTRUCTION

This chapter contains all the important definitions and results regarding m-cycle systems
and decomposition of complete grapi.

An m-cycle system is a pair {5,C), where C is an edge-disjoint collection of m-cycles which
partition K, with vertex set 5. The number n
system (S, C). Of course |C| = n(n —1)/2m.

|

151 is called the order of the m-cycle

In this work, we have considered two special cases, viz. 3-cycle systems or triple systems and
4-cycle systems.

2.1 STEINER TRIPLE SYSTEMS

A Steiner triple system (inore simply, triple system) is a pair (5,7'), where T" 15 a collection
of edge-disjoint triangles (or triples) which partition the complete ugdirected graph /v, with
vertex set S.For a triple system (5,1 of order n, |1 = n{n — 1)/0.

In this work, we will denote the 3-cycle

by {z,y,z} or siimply zyz in any order.

Example 2.1 (1) The unique triple system of order 3.
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(2) The unique (to within womorphisin) triple system of order 7.

(3) The unique (lo within isomorphism) triple system of order 9.
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(4) The non-cyclic triple system of order 13/8].

1 2 3
1 4 5
1 6 7
1 8 9
1 10 11
112 13

5) Triple system of order 15/8].

1 4 5
1 6 7
1 8 9
1 10 11
112 13
1 14 15
2 4 6

2.2 CONSTRUCTION OF TRIPLE SYSTEMS

Let @ = {1,2,3,...,28} and JI = (11,23, {3,411, {5.6}, .. {2k 1, 261} The 2-¢lement
subsets in I are called holes. Let (), 0) be a commutative quasigroup' with the property
that, for each hole h € IT, (I, 0) is a subquasigroup. Suc
quastigroup with holcs I, and exists {or every 2k > 6i12].
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A groupoid (G, o) is said to he a quasigroup 1 for any two elements a, b € 7, each of the equabions
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eaoxr =10band yoa = b has a unique solution in (7.
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1 a quasigroup is called commutative

7 8 13

7

N oy N © W

10

12

15
14
14
15
12
13



An example of commutative quasigroup of order 8 with holes 711 = {{1,2},{3.4},{5,6}, {7, 8}}
1s shown below: ‘

0 IL"Z“JLHK 115160 7 8_1
1l l2lslslal7lols
22t 6]7i8l3]4]5
3l8tei3tat7i2]s]
40571431118 {2]6
54 {81711|516]3]2
6171321865114
7161452131178
B3 |5]|1]6]2](4({8]|7

The 6! + 1 Construction. Let ({,0) be a commutative quasigroup ol order 2¢ with holes
I, set § = {oo} U(Q x {1,2,3}) and deline a collection of triples 1" as follows:

(1) For each hole h € I{, construct a copy of the triple systemi of order 7 on {oo} U (A X
{1,2,3}) and place these 7 triples in 1", and

(2) if z and y belong to different holes of H, the three triples {(z,1),(y,1),(z o y,2)},
{(2,2),(y,2),(xz 0y,3}}, and {{z,3),(y,3),(z 0oy, 1)} € T

Then (5,7 i1s a triple systemn of order 61 4- 1.

The 6/ + 3 Construction. Let (), 0) be a commutative quasigroup of order 2¢ with holes
H = {hy, ho, bz, ..., hg}, sel § = {o0p, 002,003} U (Q x {1,2,3}) and define a collection ol
triples T' as follows:

h,
(1) Construct a copy of the triple systern of order 9 on {oo;, 00y, 003} U (% {1,2,3)) and

place these 12 triples in T,

(2) for each of the remaining holes ho, lis, ..., g construct a copy ol the triple system of
order 9 on {00y, 004,003} U (A x {1,2,3}) such that {oo), 00q, a1 18 one of the triples, and

place the 11 trples o 1) and
(3) the same as (2) in the 6 + 1 Counstruction.
Then (5,7) 1s a triple system of order 6 4 3.

Thesec two constructions produce triple systems of every admissibleorder n = 1 or 3 (mod 6},
n > 19. Also we already have exainples of triple systems of ovder 3,7,9, 13 and 15.Thus we
can produce any triple system of order n, where n =1 or3 (mod 6),n > 3.

Theorem 2.1 The spectrum for Steiner triple syslems (thal s, 3-cycle systemns) is precisely
the set of alln =1 or 3 (mod ().



2.3 ODD-CYCLE SYSTEMS

The obvious necessary conditions for the existence of an m-cycle system (8,C) of order
S| = n are

(1) n=>2m, iln>1
(2) n1s odd,and
(3) n(n — 1)/2m is an integer,

]

Let[nj]={z|z=n (mod2m)},1 <n < 2m.
Let S[n] be the order of m-cycle systems that belong to [n].

Theorem 2.2 [2] Let m > 3 be odd. If | < n < 2m salisfies the necessary conditions (2)
and (3) for the existence of an m-cycle system and if the smallest number in Sn] is n or

n + 2m, then S[n| = [n] or {n]\ n respectively.

2.4 4-CYCLE SYSTEMS

In this work, we will denote the 4-cycle

*® Y
" P
w 4 e 2

by any cyclic shift of (x,y, z, w) or (y, 2, w, z).

Example 2.2 J-cyele system of order 9.
Let C={{1,1 +¢,8+ 1, +1) |1 € Zg}.
Then (Zg,C) 15 a §-cycle system of order 9.

The n + 8 Construction. Let ({oo} U X, () be a 4-cycle system of order n and {({oo} U
Y, () a 4-cycle system of order 9. Let [ = {hy,hy,... hin_vy2} and & = {g1, 92, 93, 94}
be partitions of X and Y, respectively, into “holes” of size 2 and set O3 = {{a,c,b,d) |
all i; = {a,b} € H and ¢; = {¢,d} € Z}. Then ({cc} U X UY,CLUC, 10 C4) 18 a 4-cycle
system of order n + 8.

Starting with the 4-cycle system of order 9, the 748 Construction produces a 4-cycle system
of every order =1 (mod 8).

Theorem 2.3 The spectrum for f-cycle system 1s preciscly the set of all n = 1 {mod 8).

0



2.5 EVEN-CYCLE SYSTEMS

The necessary conditions for the existence of an even-cycle system are the same as for odd-

cycle systems. The idea here is to extrapolate the n 4+ 8 Construction for 4-cycle systems to
cven-cycle systems in general.

Theorem 2.4 [11] The f:ompfctﬁ bepartile graph Kx y can be decomposed into edge-disjoint
cycles of length 2k +f and only if

(1) | X| =2 and |Y| = y are even,
(2) x>k andy > k, and
(3) 2k divides 2 - y.

The n+2m Construction. Let m = 2k and let ({co}UX, C'1) be an m-cycle system of order
n and ({oo} UY, () an m-cycle system of order 2m + . (Such an m-cycle systemn is known
to exast lor all i = 28 > 4 {5, 10].) Let €3 be a decomposition of Ky y into m-cycles | Kyy
satislies the necessary conditions for such a decomposition.) Then ({oc}UXUY, CLUC,UC,)
18 an m-cycle system of order n 4 2m.

Theorem 2.5 [9] If 1n 1s cven awd there exists an m-cycle system of order n, then there

exists an m-cycle system of every order n + 2mz, x is any posilive inleger.



Chapter 3

PACKING OF 3-CYCLES IN A
COMPLETE GRAPH

The necessary conditions for the existence of a triple system {5, C) of order |5] = n are

(1) n >3,
¢ (2) nisodd, and
| (3) n(n—1)/61s an integer.

In this chapter, we will consider those cases where n is cven and/or n{n — 1}/6 15 not an

toeper.

3.1 PACKING OF CYCLES

By packing of cycles of length m in a complete graph of order n we mean the generation of

largest possible no. of edge-disjoint m-cycles from that complete graph.

In general, the upper bound of number of 3-cycles, that can be packed in a complete graph

, . n{n — 1) __

I(,, of order n, is given by ( - But, for even n, number of 3-cycles can never exceed
)
nin — 2 - : .
; ) . This is shown in the following lemnma.
Lemma 3.1 For even n, the upper bhound of number of 3-cycles that can be packed m a
, Cn(n -2
complele graph K,, of order n 15 |- ( ; )
)

Proof : Let . be the numnber of occurrences ol tth vertex(clement) i the system of 3-cycles
packed in the complete graph, assumed to be undirected. Fach vertex can appear with two
distinet vertices at a time. As n is cven, no vertex can appear in more than (n—2) /2 places,
Also there are n such vertices. Thus

Y0, < n(n — 2)
2

=




. Hence number ol cycles produced 1s atmost

n(n —2)/2 n(n — 2)
3 G

|

Illustration : Let us consider a complete graph of order 8 i.e. here n = 8. There are

8 :
(z)zgs

cdges in the complete graph. So no. of edge-disjoint triangles should be less than or equal
to |28/3] = 9. |
But each vertex can appear with two distinct vertices at a time, thus any verlex can appear

i atmost 3 triples.

* ] 4 gfl
Total no. of occurrences of all the vertices 1s 8 X 3 = 24. T'hus, we can have atmost n = 8

Lriples.

The unique ( to within isomorphism ) packing of order 8.

1 2 4 3 4 6 5 6 8 7 8 2
6 7 1 8 1 3
Similarly, for n = 10, upper bound for no. of 3-cycles is

?-L(?-LT-E) . lleS} — 13
0O 0

The unique (to within isomorphism ) packing of order 10.

1 2 3 2 4 6 3 4 7 4 8 10
1 4 b5 2 5 8 3 6 8 5 ¢ 10
1 6 7 2 7 9 3 5 9 6 9 10
1 8 9

- [ i—
Lemma 3.1 can be generalised for all m > 3.

Lemma 3.2 For even n, the upper bound of number of m-cycles thal can be packed in a
. I n(n —2)
complete graph K, of order n 1s (Z
1

3.2 GENERAL CONSTRUCTIONS FOR n = Gt, Gt +2

The following construction produces a maximal packing of 3-cycles in a complete graph of
every admissible order n = 0 or 2 (1mmod 6), for every n > 2.

Y




The 6i+% Construction ( £ =0 or 2 ). Let § be a set of 6¢+k elements and S’ = SU{OO},
where 0o 18 a dummy element. Deline a collection of triples T as {ollows :

(1) Construct a copy of the triple system of order 6t 4 1 or 6¢ +3 on 5', depending on value
of &, (for & = 0, construct triple system of order 6¢ + 1; otherwise, triple system of order
61 + 3 should be constructed ) and place all these triples in 71", and

(2) delete those triples from T where one of the three clements is co.
Then (5,7") is a packing of 3-cycles in a comnplete graph of order n = 6{ + &k, k =0 or 2.

We will prove that this packing is mazimal.

Theorem 3.1 The Gt + & Construction produces mazimal packing of 3-cycles in ¢ complete

graph of order 6t + k, k = 0, 2.

Proof : By lemma 3.1, upper bound of number of 3-cycles that can be packed in a complete
n{n — 2)

6
Case 1. £ = 0,n = 6¢. Then

graph of order n 1s , wlien n 1s even.

L — 9 GL(GE — 2
’H:(?LG )-| _ (}6 ) __t(ﬁt_.__'z) :6.{2-—-—2[.

By definition, |5’ = 6t + 1.
Now, for a triple system of order 6¢ + 1, number of triples generated -
(6t + 1)64

()

=460 + 1) = 6% - ¢

p . . Ot |

I'he dummy element oo will appear in 7= 3t triples.

Thus |T'| = 61* 4t — 3t = 62 — 21, which is equal to the upper bound of number of 3-cycles,

that can be packed in a complete graph of order 6.

Case 2. k=2 n =06t 4 2. Then

!

n(n — 2) (6t -+ 2)6t
G 6

o — = +a

= (6t + 2) = 61% + 2L

As

S = 6t + 3, number of triples generated following 6¢ 4+ 3 Construction is

Ot + 3)(68 + 2 | | 2
( ) + )[( +_) — (2{ _*, l)(:” -.I- l ) T “:’“ "'}‘ 5{ ‘i l
)

Ot + 2

The dummy element oo will appear in S = 3t + 1 triples.

Thus |T| = (6¢* + 5t + 1) — (3t + 1) = 617 + 21, which 1s equal to the upper bound of number
of 3-cycles, that can be packed in a complete graph of order 6¢ + 2.

The above results show that the 6t + k& Construction gencrates the maximal packing of

3-cycles in a complete graph of order 64 + &, for & = 0, 2. L]

10



3.3 GENERAL CONSTRUCTIONS FOR n =6t +5

Next, we consider complete graphs of order n where n i1s of the form 6t 4 5t = 0,1,....
Then n can also be expressed as 18f + k£ where k = 5,11 or 17,1 = 0,1.... We will handle
these three cases separately, But, first the definition of Latim Square.

Definition 3.1 An array

a1 dyg 1 Qn
g1 Uz -~ Uy
Uy {dy2 - Qyp

s an v X n Latin rectangle if each row contains the numbers 1,2,...,n in some order and if
each column does not contain any digit repeated. In general, r < n, and if r = n, the array is
a Latin Square and each number 1,2,. .. n occurs exactly once in each row and column [1]

The following construction produces a packing of 3-cycles 1 a complete graph of every
admissible order n =5 (mod 18).

The 18/ + 5 Construction. Lel 5y, 5,,55 be three muatually disjoint seis, containing
G 4 1 elements cach (we assume that all the eleaments oo particular set are distinet.) Set

S =5 U5 US3U {001,003}, Then |S| = 18f + 5. Define a collection of triples as {ollows :

(1) For { = 0, construct a packing of 3-cycles on 5 as follows :
1 2 3 1 4 ©

and place these 2 triples in T.

(2) I'or £ > 1, do the following

(a) construct a copy of the triple system of order 6 4 3 on 57 U {o0y, 003§
and place these triples in T,

(b) for each of S and 53, construct a copy of the triple system ol order 6¢ + 3
on S; U {oo;,004),7 = 2,3 and place all but the triple {oo,, 004, @}, { where
a € 5,1 =2,3)inT, and

(c) construct a latin square of order (61 + 1) x (61 + 1) based on elements of
53 and place the triples {a;,b,,¢;;} in T, where a; 1s the tth element of 5y, b, is
the yth element of 5; and ¢;; 1s the element in the 1th row and jth column of the

latin square, 2,y = 1,2,...,060 + 1.

i Bl |

Then (5,T) 1s a packing of 3-cycles in a complete graph with 18f + 5 vertices, t = 0,1, .. ..

Definition 3.2 Let a(n) denote the upper bound of no. of edge-disyeint 3-cycles that can be
packed in a complete graph of order n, and b{(n) denote the marimum no. of edge-disjoint

cycles that can be genervaled from a complete graph of ovder n, using some method of con-
struction,

[



Theorem 3.2 The I8!+ 5 Consiruction produces a packing of 3-cycles in any complete
graph of ordern =5 (mod 18) with a(n) -~ b(n) = |.

Proof : When the 18t + 5 Construction is followed, no pair of elements can appear in

more than one triples. So, it produces a packing of 3-cycles in complete graph of order = 5

(mod 18).

= ‘,'I
Now, lor t = 0, a(n) = a(5) = [L} :‘( J B
)
But b(n) = 2,
( follows from rule-(1), described in the construction.)
Thus, a(n) — b(n) = 1.
I'or £ > 1,
o) - ezl
L (l -
(18t +5)(18¢ + 4)
= | - |
32447 4 162t + 20
= ; |
= 54t° 4+ 27t +3 (3.1)

We calculate b(n) as follows :
By rule-(2a),
(6t + 3)(6t + 2)
G

= (2t + 1)(3t+1) =64 +5¢ + 1
triples are produced.
Rule-(2b) will produce 6¢* + 5¢ triples from cach of &, & S,
Also, rule-(2¢) can produce (6¢ + 1)? triples.
Thus,
b(n) = (64504 1)+ 2(6* 4 5¢t) + (6t + 1)?
= B4t 4+ 271 + 2 (3.2)

From equations 3.1 & 3.2 we get,
a(n) — b{n) = 1.
Hence the theorem. O

Next, we will discuss about a construction that can produce a packing of 3-cycles in a
complete graph of every admissible order n = 17 (mod 18).

The 18t 4 17T Construction. Let 5;,5,;,5; be three mutually disjoint sets. containin
..11 2? J‘ -.’ 3
6t + 5 elements each (we assume that all the elements in a particular set are distinct.) Set

S = 51U S;US53U {00y,005}. Then |5

= 138t 4+ 17. Deline a collection of triples as follows :

12
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(1) construct a copy ol the triple systemn of order 6(¢ + 1)+ | on Sy U {00,002} and place
these triples in 1,

(2) for cach of S and S3, construct a copy of the triple system of order 6(t + 1) + 1 on
S U {o001,009},2 = 2,3 and place all but the triple {00y, 00q,a} ( where a € S;,7 = 2,3 ) i

T, and

(3) construct a latin square of order (6t + 5) x (6¢ + 5) based on elements of S3 and place
the triples {a;, b;y¢i;} in T, where a; is the 2th element of Sy, b; is the jth element of S, and

ci; 15 the clement in the tth row and jth column of the latin square, 2,7 = 1,2,...,6f + 5.
Then (5,7) 1s a packing of 3-cycles in a complete graph with 181 + 17 vertices, # = 0,1, .. ..

Let a{n) and b(n) be as defined in definition 3.2.

Theorem 3.3 The 18t + 17 Construction produces a packing of 3-cycles in any complete

graph of order n = 17 (mod 18) with a(n) — b(n) = 1.

Proof : I'rom the construction, 1t 1s clear that any pair of eleinents can appear in atmost
one triple. So, the above construction produces a packing of 3-cycles in complete graph of
every order = 17 (mod 18).

Now,

«(n) n(nG—-— 1)

e -

i

(18t + 17)(18¢ + 16)
i G
3241% + 594t + 272
i G
54° + 991 + 45 (3.3)

|

{

t

We calculate b(n) as follows :
Rule-(1) will produce,

6(¢ + 1) + 1][6(¢ + 1}]
6

= G(t+ 1)*+ (1 + 1)

triples from S; U {ooy, 00, }.
Rule-(2) can produce one less iriples [rom cach of S5 U {coy, 00y} and S3 U {00, 00,1}, e, a
tolal of

20600+ 1)+ (¢ + 1) — 1]

triples will be produced. Using rule-(3) we can produce (6¢ + 5)? triples. Thus,

b(n) = 6(t+1)+(t-+1)+26(+1)*+{t+1)—1]+ (604 5)°
54¢% 4- 99t + 44 (3.4)

|

13



IFrom equations 3.3 & 3.4, it follows that,
a(n) — b{n) = 1.
Hence the theorem. 1

We are left with those n where n is ol the form 18{ + 11,t = 0,1,.... We suggest one

construction that can produce a packing of 3-cycles in a complete graph of every admissible
order n = 11 {mod 18) with a(18¢ 4 1) — b(I8L + 11) < 21+ L.

The 181 + 11 Construction. We construct the packing inductively.

(1) For t = 0, construct a packing of 3-cycles on .5 with 11 vertices as follows :

1 2 3 2 4 8 3 4 6 4 7 10
1 4 b5 2 6 10 3 7 9 4 9 11
1 6 7 2 b 9 3 8 10 b 7 8
i 8 9 2 7 11 3 b 11 6 8 11
1 10 11

and place these 17 triples i |

(2) Let us assume that a packing of 3-cycles can be constructed from any complete graph of
order n = 181 + 11, where t < &k — 1. Also, using 18t + 5 & 181 4 17 Constructions, we can
produce a packing of 3-cycles from any complete graph of order n =5 or 17 (mod 18). tor

! = k, the packing is constructed as follows :

Let S;, So, 83 be three mutually disjoint sets, containing 62 + 3 clements each
(we assume that all the elements in a particular sct are distinct.) Set S =
S, U S, US3 U {oo;,002}. Then |S] = 18t + 11. Define a collection of triples as
described below : |

(a) For each S;,7 = 1,2,3, construct a packing of 3-cycles dn 5; U {00y, 00,
such that the pair {00y, 00y) does not appear in any triple. As 15; U {0y, 000 H =
Gk + 5 and Gk + 5 < 18(k — 1) 4 11 for all £ > 1, such a packing exists by our
assumption. Place all the triples thus produced in 77,

(b) construct a latin square of ovder (6¢ + 3) x (6¢.+ 3) based on elements ol
S, and place the triples {a;, b;, ¢} in Ty where a; is the tbh clement ol Sy, 0,05
the jth element of 5y and ¢;; is the clement in the tth row and jth columm of the
latin square, t,7 = 1,2,...,06¢ + 3.

Then (S, T) is a packing of 3-cycles in a complete graph with 188 + 11 vertices, 1 = U, 1,.. ..
Before proving that for the above construction a(18¢ 4 11) — b(18L 4+ 11) < 2¢ + 1, we should

prove the following lemnma :

Lemma 3.3 Given a complete graph of order n, if for some construction a(n) — b(n) 2 1,

then there are at least 3 pairs of vertices that will never appear in any triples of the packing.

4



Proof : No. of edges in a complete graph of order n -~

noy  n(n—1)
2 )2

Let a(n) — 0(n) = 1.

nin —1
Now, a(n) = ( )

b 6 g

n{n —1
S0, b(n) = ( ) 1.
T - . . . ?L(?L — l)
['hus, no. of triples obtained by the coustruction is 7 — 1.
)
Flach triple contains three distinct edges. So, atinost )
n(rn — 1 n — 1
(. —~ 1) B n(n‘ ) 5
6 2

edges can appear in the packing, i.e. 3 edges will never appear in any triples of the packing.

Simitlarly, for a(n) — b(n) = & > 1, no. of triples obtained by the construction is

n(n — )
2k
b

o L,

Thus, 3k > 3 edges will never appear in any triples of the packing.

llence, we can always get at least three pairs of vertices ( terminals of cdges ) that appear
n no triples. 0

Theorem 3.4 (1) The 18t+ 11 Construction produces a 3-cycle packing in a complele graph
of every order n = 11 (mod 18), and
(2) a(18¢ 4+ 11) — (18t + 11) < 2t + 1.

Proof : (1) Case 1. = (.
All the 17 triples shown in the construction are mutually edge-disjoint.
So, it 1s a packing.

Case 2. > 1.
For all 2 = 1,2,3, we can always have such a packing on S, U {oo1, 009} that a particular
palr (00, 007) never appears in any triple.

( follows from lemma 3.3, )

Thus, all the triples gencrated from 5; U {00y, 00,),1 = 1,2, 3 are edge-disjoin.
Again, triples gencrated from latin square are also edge-disjoint.

( [ollows from defn of latin sqguare., )



Hence, the 18411 Coustruction gencrates a packing of 3-cycles in a complete graph of cvery
admissible order no= 11 (mod 18).

(2} We prove the second part by mduction.

Casel. =0 n=18+11=11.

11 x 10
Now, a(11) = ; J = 18.
)
But, (11) = 17,
( from construction. )
Thus, a(1) = 0(11) =1 =2 x 0 + 1,

e, a(l8t+ 11) — (1 bf +11) <2t 41 for { = 0.
Case 2. lLet us assume that
a(18t + 11) — b(18¢ + 11y <20 4 |

forall t <k~ 1 k> 1.
Now, for { = £,

188 4+ 11} (184 + 10
)
[ 3248% 4 378k + 110
= | - |
= 54k* + 63k + 18 (3.5)

The packing is constructed from three (G + 5)-packings.

Subcase 2.1. Let 6k +5 = 18m + 5 for some m. Then £ = 3m.

According to the 18t + 5 Construction, 541m? 4+ 27m + 9 triples are lJIDdLl{ cd from a complete
graph ol order 18m 4 5

( See equation 3.2, )
Thus,

B8k +11) = (Gk +3)% 4 3(54m? + 2Tm + 2)
(64 +3)% + 3(6k* + 9k + 2)
5S4k* 4 63k + 15 (3.6)

£

Irom cquations 3.5 & 3.6 we got,

3
< 264 bas k> | (3.7)

a(18L + 11) — b(18k + 11)

[

Subcase 2.2. Let 6k +5=18m + IT for some m. Then & = 3m + 2.
By the 18t + 17 Construction, 54m? 4 99 + 44 triples can be produced from a complete
graph of order 18m + 7. ( See equation 3.4. )

16



Thus,

b(18k + 11) (6k 4 3)% + 3(54m? 4+ 99m + 44)

. F

(Gh + 3)* + 3(6k* + 9k + 2)
S4k% + 63k + 15 (3.8)

{

So, here also

a(18% + 11) — b(18% -+ 11) 3

< 28+ 1,ash > 1 (3.9)

{

( follows from equations 3.5 & 3.8, )

Subcase 2.3. Let 64+ 5= 18m + 11 for some m.
Then bk =3m +1,1.e. 3m =% - 1.
Thus, m < bk — 1, {for all £ > 1, and

H

a(18m + 11) — b(18m + 11) < 2m + 1
( by our assumption. )

Now, a(18m 4 11) = 55hn? + 63m -+ 18, ( from cequation 3.5, )

So, at least
(54m* + 63m + 18) — (2m + 1) = 5dm® + 6im + 17

triples can be produced from cach of 5; U {ooy, 00q},t = 1,2, 3.

Thus,

b(18k +11)
i.e. O(18k + 11)

(6 + 3 + 3(54m® -+ 61lm + 17)
54k* 4+ 61k 4+ 17 (3.10)

|
4

'V

Irom 3.5 & 3.10, 1t {ollows that,

a(18k + 11) — b(18k + 11) < (54k® 4+ 63k + 18) — (54k* + 61k -+ 17)
2k + 1 (3.11)

Thus, a(18t +11) = (18t + 11} < 2t + 1, for t = k.

( follows [rom resulis 3.7, 3.9 & 3.11. )

So, the statement 1s true for all ¢ > 1. Hence the theorent. J

17



In most of the cases, the dilference is imuch less than 2641,

The following table shows the di[fei*cnce between a( 18+ 11) & 6(18L411) for different values

of t.

t 118t 4+ 11} 66 +5 | a(18 + 11)—
b(18L + 11)

0 L 5 1
! 29 11 3
2 A7 17 3
3 G5 923 3
4 83 29 3
) 101 39 3
6 119 41 3
7 137 4f 3
8 155 HJ 3
9 173 59 3
10 191 65 3
11 209 Tl 3
12 227 T 3
13 245 83 27
14 263 89 3
15 281|  95 3
22 407 137 27
31 569 | 191 27
40 731 | 245 8]
49 893 299 27
58 1055 | 353 27
G7 1217 1 407 81
170 1379 461 27
89 [H4l 515 27
(34 1703 H50Y 81
103 1865 623 27
112 2027 677 27
121 2189 731 243
130 2351 785 2
139 213 | 839 27
143 2675 1 893 81
1o7 2837 947 27
166 2949 1001 27
175 3161 | 1055 3]
154 3323 1109 27
193 3485 | 1163 27

13




1| 186+ 11| 6t+5 | a(18t + 11)~
b(18t + 11)

202 3647 | 1217 943
211 3809 | 1271 97
920 3971 | 1325 27
290 1133 1 1379 S
238 1295 1 1433 o
247 A157 | 1487 27
256 4619 | 1541 5]
265 4781 | 1595 97
274 4943 | 1649 27
283 5105 | 1703 243
292 5267 | 1757 27
301 5429 [ 1811 27
310 5501 | 1865 R1
319 5753 | 1919 27
398 5915 | 1973 27
337 6077 | 2027 §1
346 6239 | 2081 27
355 6401 | 2135 27
364 6563 | 2189 799
373 6725 | 2243 27
382 6387 | 2297 27
391 7049 1 235] 5|
100 201 | 2405 27
109 7373 | 2459 27
418 7535 | 2513 S|
427 7697 | 2567 27
436 7859 | 2621 27
415 Q021 | 2675 243
154 S183 1 2729 27
163 Q345 | 2783 7
479 8507 | 2837 3|
181 SGGY | 289 27
490) 8831 | 2045 27
199 8993 | 2999 3]

1 Y

For all other ¢t < 500,a(18f + 11} — §{18¢t 4+ 11) = J or 9.




Chapter 4

PACKING OF 4-CYCLES IN A
COMPLETE GRAPH

f

[n 1979, Huang, Kotzig & Rosal3] formulated spouse-avoiding variant of the Oberwolfach

Problem. The problem is cquivalent to decomposing the cocktail-party craph K, — F (the

A nccessary condition for the existence of a 4-cycle system of order nis n = 1 (mod 8).

complete graph /A, minus oue I-factor) into isomorphic edge-disjoiut cycles. Decomposition

of I, — F into a collection of edge-disjoint 4-cycles is possible only when . =0 (mod 4).

In this chapter, we will consider the problem of packing 4-cycles in complete graphs of order
n=0 (mod 2).

4.1 GENERAL CONSTRUCTIONS FOR n = 2¢

The iollowing construction generates a maximal packing of 4-cycles in a complete graph of

-

order n = 0 (mod 2), for every n > 2.

The 2 Construction. Let S' = {0,1,...,(1 —1}}. Consider a coluplete graph with vertex
set S = 8§ x {1,2}. Then [S] = 2{. An element (a,7) of 5" x {1,2} will be denoted by a..
Define set Ty as {ollows

Te = {01, (04 K)oy o0, (2 R)) |2 =01, ..., (4 — k= 1)} Ao 1,2, (0= 1),
t—1

Let 1" = U Ty,
k=1

Then (5,717) 15 a packing of 4-cycles in a complete graph of order 20, 1 = |, 2

1 L ] L]

Theorem 4.1 The 2t Construction produces mazimal packing of J-cycles in a complele
graph of order 28t = 1,2,....

Proof : According to lemma 3.2, the upper bound of number of 4-cycles that can be packed



in a complete graph Iy of order 24 1s

(A - 2) | - 1)

8 2
Now [Ty =1 — &
Thus,
t—1
T o= Y- )
k=1
= ({—-D)+-2)+---+F+2+1
t(f— 1)

{

which is equal to the upper bound of maximum number of edge-disjoint 4-cycles that can be
gencrated from a complete graph of order 2t.

Hence, the 20 Construction generates the maximal packing of 4-cycles 11 a complete graph

of order n =24t =1,2,.... (7

Equivalent Construction forn = 2f, t = even. Let t = 2m and 5’ = {0,1,...,(2m—2)}.
Define S = ({oo} US") x {1,2}. Thus [5] = 4m = 2L.
Any clement {a, ) of 5 will be denoted by «;.
Let Ty = {{001,04,004,00), (11, (2m — 2)y, 15, (2m — 2)1), ..., ((m — 1)y, g, (m — 1)g,my )}
and,
Te = {{oo1,(0+ k)g,000,(04+ &)y ), (14 k), (2 =24+ k), (L + &), (2 — 24 F)), ..
o (= 1+ B, (R, (e — 14 K)oy (m o+ By )}

where addition is taken modulo 2m — 1, £ =1,2,...,(2m — 2).

2m—12
Define T = U T

k=0

Then (5, 1) 15 a packing of -cycles in a complete graph of order 2000 = 1,2, ..

dm—2 2rm—2 t(i N 1)
As |TV= Y |Tk] = Y m=m(2m-1) = 5 this also produces a maximal packing.
k={) E=0

We will call the above construction as The 4m Construction.

4.2 OBERWOLFACH PROBLEM AND ITS VARI-
ATIONS

The well-known Oberwolfach problem(O1") was formmulated by Ringel at a graph theory meet-
ing in 1967: “Is it possible to seat an odd number 21 + 1 of people at s round tables
T, Th, ..., Ty {(where T; can accommodate exactly k; > 3 people and 2: ki =2n+ 1) for m
different meals so that ecach person has every other for a neighbour exactly once?” "The prob-

lem 15 cquivalent 1o decomposing the complete graph Ko into isomorphic edge-disjoint

+)1

F ]



2-factors. Several authors gave solutions in many cases, but the problem remains open in
general.

The spouse-avoiding variant of the Oberwolfach problem(NOP) is as follows: “At a gathering
there are n couples. Is it possible to arrange a scating for the even number 2n of people
present at s round tables 13,75,..., T, (where T} can accommodate exactly k; > 3 people
and » " k; = 2n) for m different meals so that cacl person has every other person except his
spouse for a neighbour exactly once?” 'T'his problem is equivalent to decomposing the grapl
Kon — I (where F is one 1-factor) into isomorphic edge-disjoint 2-factors.

Formulation of Oberwolfach problem(OP) and Spouse-avoiding Oberwolfach prob-
lem(NOP) : OP (NOP, respectively) consists of decomposing the complete graph I(, (the
cocktail-party graph K, — F', respectively) into isomorphic edge-disjoint 2-factors, each con-

sisting of s circuits having length ky, &y, ... k,; here k; > 3 for each i = 1,2,...,3, and

Y ki = v. The problem is denoted by OP(v; ki, ko, ... ky), and by NODP(v; kq, kg, ... ky),
1=1

H

respectively, I ky = Ky = -+ = Ly = &, we write simply NOP(v; k) instead of

NOP(v; by, &y, .. k).

Il a solution to either of the two problems exists, we say that OP{v;hy, ke, .0 k) (or
NOP(v; k1, ba, .00, k) ) exists.

Result 4.1 An NOP(k; k) exists if and only if k is even.

Result 4.2 Let k be cven. If there caists an NOP(v; k) and a resolvable decomposilion of
Ny tnto k-circutls then theve exists an NOP(20; k).

Result 4.3 The necessary condition for the existence of an NOP(wv; k) 13

v=0 (mod &) if k is even.
v=0 (mod 2k) ifk is odd.

il

Result 4.4 An NOP(v;4) eaists if and only if v =0 (mod 1).

We will show that the 4m Construction is cquivalent to Spousc-avoiding variant of Qberwol-
fach problem.

Theorem 4.2 The dm Construction is equivalent 1o NOP (4 1),

Proof :We will give the proof in two parts —
(I} @1 and ay ((a € {oo} U S" } will never appear together (as neighbours) in any 4-cycle.

(1) Givew any a; and b,(a # b), we can always find one 4 -cycle where ayp and by appear as
neighbours,

f
[~



Proof of (1) : I'or @ = o0, it is trivially true. Let us assume that a # oo.

Any 4-cycle in T}, not containing the vertices ooy, 004, is of the form
(e +R), 2m =41+ k), (G4 k), (2m — (B4 1) + k)y)

wherecr = 1,2,...,(m—=1)and k = 0,1,...,(2m —2),

and addition 1s taken modulo 2m — 1.

Now,

+E)—Cm—-(E+1)+k) = 20 (mod 2m —1) (4.1)
(2m -G+ 1)+ k) (i + &) (2m — 1) — 2 (mod 2m - 1) (4.2)

¥

As T <o <m—1;noneof 20 & (2 — 1) — 24 can ever hecome zero.
Thus, ay and a; can never occur as neighbours in any 4-cycle.
Proof of (I1) :

Casc 1. @ Let us assume that @ = oo, b #£ co.

Then a; and b, will appear as neighbours 1n the 4-cycle (oo, by, 009, b)).

Casc 2. : Let a # 00, b = oo.

Then, in the 4-cycle (ooy, ag, 009, a1 ), a; and by will appear as neighbours .

Case . : Let a # 0o, b # oo.

et a—b=1r (mod 2in — 1), where 0 < < 2m — 1.

Firest, we assume that r is even. Then r = 2p for some p, | < p < m — 1. Let a — P =
(mod 2m — 1),0 < g < 2m — 1.

Then ap and by will be neighbours in the 4-cycle

{(p+a)y, 2oe— (4 1) 4 q)o, (P + ¢)2s (20 = (p+ 1) + )y)

But, if r is odd, then » can be expressed as (2m — 1) — 2/ {or some 3/, 1 < p' <m — 1. Let
a—2m—p'+1))=¢q¢ (mod2m—1),0 <¢ < 2m— 1.

In that case, ay and b, will appear as ucighbours in the 1-cycle
(0" + )1, Cm— (0" + 1)+ )2, (0 + ¢ )y (2 = (' + 1) + ¢ )1)

In all the three cascs, a pair (ay, by) appears exactly once.

Thus, il we define 2m couples as (a;,ay),a € {co} U S, and assume that there are 1 round
tables, each of which can accommodate exactly 4 people, then cach of 4 persons will
have every other person except his/her spouse for a neighbour exactly once, that is, the 4m
Construction is equivalent to NOP(dm;4). Henee the theorem. O

Nearly Spouse-avoiding Oberwolfach Problem. We assume that, at a gathering there
are t couples, ¢ is odd. We modify the 4m Construction as follows

Let = 2m—1and 8" = {0,1,...,(2m—2)}. Deline § = §'x {1,2}. Then, [S] = 2f = 4m—2.
Any element (a,j) of S is denoted by «;.



Define

Te = {((1+k),(2m—2+ k) (1 + k), (2m—2+ E)),. ..

oy (=1 = k), (m 4 k), (m— 14 k), (10 + k)a)}

where addition is taken modulo 2m-— 1,4 =0,1,...,2m — 2.

2m-—2
Let T= ] T
k=0

Then
2m—12

17| = Z 1| = (m — 1)}{(2m - 1)

=1}

(1.3)

By lemma 3.2, the upper bound of number of 4-cycles that can be packed in a complete

graph of order 4m — 2 1s

(Am — 2)(4m — 4)

8

== (2m — 1){m — 1}

(4.4)

From 4.3 & 4.4 it (ollows that (5,7) is a maximal packing of 4-cycles i a com ele graph
_ ; I . | gral

of order 4m — 2. So. the above construction gives a nearmost solution to Spouse-avoiding

Obcrwolfach problem.



References

1]
2]

3]

M.Hall Jr., Combinatorial Theory {Ginn-Blaisdell, Waltham, MA, 1967)

D.G.Hoflinan, C.C.Lindner and C.A.Rodger, On the construction of odd cycle systems,
J.Graph Th.,13 (1989}, 417-426.

C.Huang, A.Kotzig and A.Rosa, On a variation of the Oberwolach problem, Discrete
Math.,27 (1979), 261-277.

Rev.T.P.Kirkman, On a problem in combinations, Cambr. and Dublin Math.J.,2 (1847),

191-204.

A.Kotzig, On decompositions of the complete graph into 4k-gons. Mat.-Fyz. Cas, 15
(1965), 227-233.

C.C.Lindner and C.A.Rodger, Decomposition into cycles 11: Cycle Systems.
DIl Lucas, Récréations Mathématiques, Vol Il, Ganthiers Vitlars, Paris, 1892

R.A.Mathon, K. T.Phelps and A.Rosa, Sinall Steiner triple systeine and their properties,
Ars Combinatoria, 15 (1983), 3-110.

!
C.A.Rodger, Graph Dccompositions, Proc. 2 International Catania Combinatorial

Conference, to appear.

A Rosa, On cyclic decompositions of the complete graph into (4rm 4+ 2)-gons. Mat.-UFyz.
Cas, 16 (1966), 349-352.

D.Sotteau,  Decompositions of K, L (K

ma) mto cycles {circuits) of length 24,
J.Combin.Th.(B}, 30 (1981), 75-81.

L. Teirlinck, Generalized idempotent orthogonal arrays, Coding Theory and Design The-
ory, IMA volumes in Mathematics and its Applications, 21 (1990), 368-378.

25



