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Chapter 1

Introduction

Combinatorial techniques find widespread application in the arca of urban services. Some
woll-known problems aver design of rapid transit systemes, location and staiting of police
stations, assigminent ol shilts for municipal workers, ronting of garbage trucks 1o picl up

garbage, routing of strect sweeping vehicles, and so on.

We have taken up the problem of designing the routing of strect sweeping vehicles(refer
Helly. W ,[7] & Roberts.F.S, [1]) under the multi{farious constraints that are involved in mn
nicipal street sweeping operations and the mteresting graph-theoretic and combinatorial

s

problems that are mvolved in the process of developing ctlicient solutions,

The problem has been studied in detail by L.Bodin and 5.lkursh when they were developing,
a model for streel-sweeping operations for the New York ity Departiment of Sanitation in
the Urban Science Program at the State University of New York at Stony Brook. The New
York City Sanitation Department had a $200, 000, 000 anuual budget of which $10, 000, 000

wentt Lo street-sweeping. The computerized sweeper routing based on this model saved about,

51,000,000, The model was used n o part of the District of Columbia where it ent costs by
over 20%.

As mcntioned by Tucker and Bodin [2]) the dificulties inherent in building good mathemat-
ical models for street-sweeping are indeed diverse in nature. The eflort and moncey needed
to collect proper data may be huge, changing any existing system to enhance efliciency
may be next to mpossible - the chiangeover may be economically prolubitive or there may
be stilf resistance from the workers union. Moreover, it is known that more precisely one
defines the problem taking care of all the underlying counstraints, the more wnwicldy the
model becomes. On the other hand, certain idealized assuniptions made to obiain elegant

mathematical analysis may make the model far from being realistic.
Tucker and Bodin [2] have laid emphasis on the realization of many of the above-mentioned
constraints, some of which are specific Lo the city under consideration. There 1s no analysis

on the computational complexity or bounds of the algorithms presented by them. In this

work, we have emphasised on the computational complexity of the problem, made o survey

on the related optimization algorithms [or networks that have bheen used, and have presented



an c-approxiumnate algoritiun for the routing in the case of a mixed graph, which happens to
be the most generalized case. |



Chapter 2

On What Has Been Done

2.1 Statement Of The Problem

The problem 1s to design an efficient sct of routes for sweeping the streets in some city. By
‘sweeping a strect”, we mean that only the sides of a strect along the curbs are to be swept.

This task is to be performed by vehicles called “mechanical brooms”.

At first sight the problem seems to be trivial; send a broom up and down the length of

one streed, north south or cast-west, and hn.\?q it repeat this on the next parallel street: and
partition the street into sels of north-south and east-west streets such that cach street can
be covered during a single hroom’s period on the streets, But let us consider the constraints
mvolved. For a broom to sweep a curb, no parked cars must be present. Phus, parking
regulations of the city must be taken into consideration. Secondly, major arterial rontes
cannot be swept during rush hours. [n vesidential and wmanufacturing districts, where full
parking capacity of the streets is needed much of the time, special regulations are needed.
Thirdly, when among onc-way strects, hroom routes should try to avoil turns where the

curb to be swept will switeh from lelt to right. Finally, U-turus should also be minimized.

It has to be noted that the sweeper vehicle must frequently raise its hroom and travel some
distance along those streets that are not to be swept because of parking regulations or hecause
they have heen swept already or due to be swept by some other vehicle., I is natural that
the vehicle will travel faster in these cases. The speed of the vehicle in this case is terimed as
the deadheading speed, and the time spent with the broom up is termed as the deadheading

time. Since the time needed to sweep is predetermined, this deadheading time is what must
be minimized,

2.2 'T'he Mathematical Model

The general structure that can incorporate all this information is a directed graph ¢ = (N, )

where NV is the set of nedes and a set 1) of e¢dges, cach directed from one node to another



node. An edge represents one side of a strect. The length of each edge is the time it takes
for a mechanical broom to traverse the edge. A node represents a street-corner. An edge ¢;

{rom node @ to node y can be written as ¢; = (2, 1).

Ifthe time constraints imposed by the parking regulations are considered, the large problem

i8 broken into many short manageable problems. That is, for cach period of the day or week,

- we formr the subgraph of edges on which parking regulations (and rush-hour constraints)
permit sweeping. lor each of the subgraphs generated. we find a minimal set of routes that

collectively cover the edges of the subgraph.

2.3 Analysis of the Mathematical Problem

Two different approachies have been used in seeking a near optimal number of routes to cover
the edges of the directed graph. We can either divide the graph up into subgraphs of size
small enough that each subgraph can be covered by a single route (of a given length), or we
can find one extended route covering all the edges in the graph, and then break it up into
appropriate sized routes. The first inethod has heen called “cluster first-roule sccond” and
the sccond method has been called “route first-cluster sccond”. The latter method is more
tractable because an exact mathematical solution exists 1o the minimal tour problem. The

drawback of the “cluster first-route sccond™ is that there may remain edges scatiered about

alter subgraphs have been cut out.

2.3.1 The Route first-Cluster second Method

The first task in this approach is to obtain a minimal tour that covers all the edges of the
given graph. The latter part of the job is concerned with breaking up the grand tour into

subtours of appropriate size.

bxistence of an fuler etvenit simplifies the first part of the problem. Ealer cirenit exists if
the difference hetween the inner degree and the ouler degree for every node i the graply is

« #
equal to zero. :

If, however, an euler circuit does not exist, then we would have to lind a grand tour repeating

edges in such a way that the extra cost s mininmzed.

Theorem 2.1 Let & be a divected graph with a length assigned to cach edge, and lel 1 be a
larger graph conlaining (. Let A be a minimal length collection of cdgesf{a stngle edyge may
be counted scveral times in A) drawn from the graph 1l suech that the addition of cdges of A
makes d{a) == 0 for cach node @ v the new graph. We assume thal sueh o set A crists. Then
A may be partitioned inlo paths from nodes of negative degree to nodes of positive degree. If
deg(z) = —k{ovt+k)in (7, then k of the paths start(end) af x.

The above theorem tells us how to nunimize the deadhicading time. We have to look at all
S .
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Turn Weight ﬁ
Strarght ahead ()
Right Turn I
Left Tarn ]
U Tarn S

Swit.ch sides of street | 10

Raise or lower broom { 5

Table 2.1 Weights assigned i cach of the cases
&4 5

ways of pairing ofl negative nodes with positive nodes with deadheading paths and then pick
up the set of pairings that minimizes the total deadheading time.

To solve the minimum pairing problem, we need a mintrix giving the lengths between the
ith negative node @; and the jth positive node yj,dor all 2,7, The routes of the shortest
paths between cach of such z; and y; is to be stored. VFven if the graph is disconnected it is
required to solve the pairing problem for the whole grapli at once since there s o possibility
that the oplimal pairing may link up nodes in the different componepts. La the matrix there
is a row for each negative node and a column for each positive node. Intry a;; of the matrix
5 the cost in going, via the shortest path, Irom the itls negative node x; to the jth positive
node %;. This problem can now be solved as a transportation problem, the “supply” at z;
being b; =| d(x;) |, and the “demand” at y;, ¢; = d(y;). T'his method of solution is due o
Edmonds J.05] and a detailed discussion can be found i fidmonds J. and Jolinson [ 1..[4].

Note that i order to use this method, we always need ). =) ¢

The solution of this problem gives a minimal set of pairings, t.e., it tells us which paths of

deadheading edges to add, The next step is to make the alring of the tnward and outward
B . | l

edges in cach node. Tucker and Bodin liave done it o such a way that andesirable turns

have been minimized. They have assigned weights to cach possible type of pairing, as shown
in Table 2.1. +

At each node, the inward and the outward cdges are paired up in such a way that the sum
of the weights arc minimized. By lorming a matrix W% for the Lth node . with a row for
each inward edge and a column for cach outward edge. Fntry wi; is the weight for pairing
the ith inward edge with the jth outer cdge. The problem is now posed as an assignment

problem.After the assignment problem has been solved for each node. the grand circuit can
be formed.

In the case of a disconnected graph, we would have found the euler cireuit for cach of
the components. 1ach compounent is now considered to be a single node, and a minimal
spanning tree is coustructed using the nodes so that the total deadheading time needed to
link together the individual components is minimized. To find (he distance between the
closest nodes in cach pair of components approximate distance supplicd by the Manhatlan

distance (diflerence of coordinates) have been used.

()



?i]ﬂw we arrive at the final stage; breaking up the grand tour into routes of feasible length.

In the routing system developed for the New Yorlk City, this part was done by hand. We

ﬁa,w* developed approximate algoriths for this part, which is discussed in detail in C hapter

il and 5.
Algorithm: Route first-Cluster second

l.

Given the mput graph G to obtain (7, append edpes such that each of its components

is eulerised.

(a) Matrix of shortest distances I hetween negative nodes x; and positive nodes y; of
G1s calculated.

(b) Transportation problem with the above matris is solved, with row supplies ——d(a;)
and column demands d(y;).

(¢) Using the minimal path algorithm, the shortest paths in the larger graph /1 hetween
the negative and positive nodes paired in step 1(h) 1s found.

d} The duplicated paths thus found are appended to (i to obtam the new praph )
] ] 2] Blea]

. Euler circuit in cach component of (7 is constructed.

(a) Using the assignment problem approach inward and outward edges of (7 are
matched. (b) Form the circuits arising from the match- ups m step 2(a) and paste

them Logether to get a Buler Circuit in eacl componant of (7.

. Lank together the components of G-only if (7 is not connected.

(o) Find the approximate shortest ronnd-trip distances between the components of (07

() Using the distances in step 3a) dind a nimbal spanning tree for the component,
grapli.

(¢) Find the shortest path(in both directions) joining the closest pair of nodes in each
pair of components linked in the minimal spatning tree.

(d) Use these shortest paths to unite the tours of each component ol ¢ to get the

desired grand tour which covers all the cdges of & with minimal length.

Breaking up the grand tour.

(a) Break up the grand tour into subtours of feasable lengtlh{this part was done man-

ually for the model developed by "Tucker and Boding.



Chapter 3

Analysis and Computational
Complexity of the Problem

3.1 Introduction

In this chapter we have carvied out a mathematical formulation and and analysts of the street
sweeping problem, and show that it helongs to the class of NP-Complete problems. In order
to carry out the analysis, frequent veference to the Chinese Postiman Problem will he madde,

since the problem bears a strong rescmblance to it.

The first. work on this problem appeared in a Chinese journal which called the problem the
Postiman Problemi. This is from where Lhe problem derived its name. I'he problem may he
stated as {ollows -

Before starting his route, a postiman must pick up his lebters at the post-ollice, then he mnst
deliver letters along cach block in his route, and finally he must return to the post-oflice to

return undelivered letters, covering bis route with as 1iti]e travellimg as possible.

3.2 Mathematical Formulation

The problem can be viewed from twe perspectives:
(a) The street sweeping time has been fixed. We are required to find out the minimn
number of sweeper vehicles needed to do e job, and the paths of these vehicles.

(b) The number of sweeper vehicles is fixed. To find out the routes of thie vehicles sueh that
the time taken is minimum.

We assume that there are fawvo Lvpes of velueles.
Type A licre, the vehicle has the mechanical broom attached to onty one side ol 1, So i

one pass of a street, be it divected or undhrected, only one side is cleanced.

Type B This is of unproved quality in that it has its mechanical broom attached to hotl

sides of it. So in oue pass of a street. directed or undirected, the entire street i cieaned.



‘e A Counterintuitive Observation

Theorem 3.1 If a single vehicle is groen to sweep « voud nelwork. then the problem is

polynomially solvable if the vehicle is of Type A and NP-Complete if it s of Type B.

Proof:

The problem reduces to the case of Chinese Postman Problem for directed graphs if the
vehicle is Type A. This is because tliis type of vehicle can clean only one side of a street in
asingle pass. So cach street is 1o be traversed twice to cleanit. As a result, each directed ed ge
of the given graph ¢ has to be duplicated and cach undirected cdge has to be duplicated and

dircction imposed - one opposite to the other. et the resultant graph be called ¢ Solving

the Chinese Postman Problem on (7 is equivalent to the street sweeping problem, which is

known to be O(n?) (Refer Rdmonds J.[5]). :

lfthe vehicle is Type B. then the problem s equivalent 1o the Chinese Postman 1’roblem {or
mixed graphs because the vehicle cleaus both curbs in oue pass for both directed as well as
undirected cases. Chinese Postman Problem for mised graph is polynomially transformable
to the 3SAT and hence is NP-Complete( Refer Papadimitriou C.19]). (3

We now give a proper formulation of the problem.

Given,

l.aonetwork V{V, 1),

2. amapping 1 : IJ — A
. a distinguished node vy,
4. sweeping time T,

3 2 Iy <m-T

we are required to find out if it is possible to sweep the entire network in time at most equal

to T, using 1n trucks of type A.

In other words, the graph is to be divided into m connected subgraphs, {A;,. .. A, 1, each

subgraph having the following propertics:

Loan edge starting from vy is present i cvery subgrapl,
' L]
2. every edge appears in at least one stubgrapl

=~ R : .
J. Z i f(f":’) < T VAL b = by f denotes the !I'(.E(.'[i]{‘.]']{'.j-' of occurance of {‘{lg{? C;
i€d,
m Ag.

‘)




Figure 3.1: The street sweeping instance from PARTITION instance

3.3 The Computational Complexity of the Problem

Proving NP-Completeness for vehicles of Type B is trivial, as has been proved in theo-
rem 3.1.

It will now be shown that the FARTITION problem, which has already been shown to be
NP-complete, reduces to street-sweeping problem in polynomial time.

The PARTITION problem is defined as follows:

Given a set S = {a;,a,,... , 2, } of n integers such that Y a; = 27" where T is an mteger,
Does there exist a set ® C S, such that

Zﬂl’: Zai:'r?

a; €N o, ¢ R

From an instance of PARTITION we can produce an instance of the street SWeeping
problem in linear time as follows:

Let there be n+1 nodes vy .., u,, v, being the starting node. For each integer a, construct
a bi-directional edge between vy and » and name it A;.

Define the mapping ¢t : £ — A as HA) = a; 2
If PARTITION instance has a ‘yes’ answer, then

Za,-: Z{I,’ZTF.

a,ell (I.'E{R

Without loss of generality we can assume that
R={aj,ay, .. a1} and K = {agy,, ... Ly}, where { = S — R.

10



We claim that the street sweeping problem will also have an allirmative answer, as is evident
below.

For the first vehicle, let the route traversed be

{—Fi—-—i-i-—

A1,A1,A2,A2,. .. :Ec:ﬁ_ﬁ:}
For the second vehicle, let the route traversed be

{ﬂ’k+]1Ak+lﬁﬂk+21A’k—[—23 SR uqnaAﬂ}
5o the cost incurred by the first and the second vehicle is equal to 7" and the vehicles start
and end at vy.

On the other hand |, if the street sweeping instance has an affirmative answer, then there
must be two schedules

R={aj,as,...,a:} and K = {8ty .y 0.}
each edge traversed twice in opposite directions by each vehicle. An edge occuring 1 It

cannot appear in K as that would imply that the time taken would be more than 7"
In this case,

a; €1t a; €1

thus proving that the PARTITION instance will also have aflirmative answer.

1]



Chapter 4

On the Formation of the Grand Tour
with Type B vehicle

The formation of the grand tour happens to be the first phase i the “Tour-first Cluster-
second” method. Tucker and Bodin(2] have used vehicles of Type A and thus dealt witls
only directed graphs. So the grand route obtained was optimal. DBut we know from that

lortnation of the grand tour nsing vehicle of LType B is NP-complete(reter theorem 3.1).

[n this chapter we have studied the problem of formation of the grand tour with Type B

vehicle. In order to do this, we consider three clagses of rraphs separatoely:

L. Undireclbed Graphs
2. Directed Graphs

3. Mixed Graphs

4.1 Type B traversal in undirected graphs

Here, the given graph is (7 = (X, F) where the edges can be traversed in either divection,
To analyse this, we cousider two cases separately.

Lo Graph (s even.

2. Covaph (705 not eren

The total number of edges incident to a node i a eraph is defined to be the degree of the

node. If all the nodes of the graph arc even, the graph is said to be even.

12



4.1.1 Even Graph

In this case, an optimal solution to the 7 ype BB vehicle is an Euler Tour, i.e., no edge is to be
repeated. The Fuler tour can be done in the following manuer. Let the stay Lng vertex be v,
Any edge (v, ) is traversed frst. The process ol traversing unused }dges is repeated 1il] the
starting vertex vy s reached. T'he process eusures that vertex vg is reached: for every vertex
1s even degree and every visit to a vertox leaves an even number of unused edges incident to
that vertex. Hence, cvery tine a vertex is entered, there exists an unused edge for leaving
that vertex. The traversed cdges constitute a cyele . If all the cdges present, in the graph
are traversed in Oy, then the process is stopped, otherwise another cycle (7, s generated
with the unused cdges. The process of generating cycles Cy, Cy. Lo is contined Lill all the
edges are used up. Next, all the cycles Cy, Cy, ... are spliced togethet into one cycle € that

contains all the edges of (. Cycle (7 contains all the edges exactly once and lLence is an

optial solution. Splicing together two cycles is possible only if they share a common vertox.
Let (', and (75 be two cyeles having a common vertex @ and are to be spliced. Iraversal
along any edge of Cy is commenced il vertex 2 s reached, Theu a detour is made and all
the edges of Cy is traversed when node wis reached again. Finally, the remaining edges of
are traversed and the starting point oy is reached. FPhis procedure is extended 1o splice all

the cycles.

4.1.2 Graph is not even

In any vehicle voute; the nnmber of e Lhe vehicle cnters a vertex cauals the mnnber of
times the vehicle leaves that vertex, Consequently, if a vertex z is not of ever degree, then

at least one edge incident to the vertex Las to be repeated.

Let f(z,7) denote the number of thnes an edge (2, 7) 1s repeated by the vehicle.- Fodge (2, 7) 15
traversed f(7,7) + | timnes by the vehicle. Of course, J{7,7) must be a non-negative integer.
Note that f(z,7) contains no information about the direction of travel across cdge (1, 7).

T

A new graph (;* = (X, 1) 1s constructed, that contains T, 1)+ 1 copies of each cdge (2, )
in graph . Now, f(2, 1) is to be sclected so that
(a) Graph G* is an even graph

(b) a1, 1) f(2,7), which is the tofal length of repeated cdges, 1s 1hinimized.

If vertex o 1s an odd degree vertex i graph () then an odd numnber of edges ncident to
vertex o must be repeated by the veliteley so that in graph (% vertex @ has cven degree,
Similarly if & is an even degree vertex in the graph, then an even number ol edges meident, to
the vertex @ must be repeated by the vehicte, so that in graph G vertex o has even degree,
If a chain of repeated edges is traced out in the graph, starting lront an odd depree vertex,
this chain must necessanily end at an odd degree vertex. Thus, the repeated edges form
chains whose initial and terminal veprtices are of odd degree. One or nore of its intermediate

vertices may, however be of even degree. So, the following decisions must be taken:

13



o which odd-degree vertices will be joined together by a chain,

e Lhie precise composttion of each such cha.

By performing either the Floyd[8] or Dantzig(6] algorithms, the shortest chain between each
pair of odd-degree vertices can be calculated.

Which patrs of odd-degree vertices are to be joined by a cliain of repeated edpes, is decided as
[ollows: Coustuct a graph (7 = (X', ") whose vertex sel consists of all odd-degree vertices
in (7 and whose edge set contains an edge joining cach pair of vertices. Lel the weight of
each such edge equal a very large number nunus the length of the shortest path between the
corresponding two vertices in the graph as has already been calculated. Next, a maximum
werghit matching for the graph 7 is done. Since graph 7 has an even number ol vertices
and cach pair of vertices in 7 is joined together by an edge, the maximuin-weight matching

f

will cover cach edge exactly once. This matching matches together odd-degree in the graph

joining a matched-pair of odd-degree vertices should be

G. The edges 1n a shortest chain
repeated by the vehicle. Sinee this matching has maximum total weight, the resulting route
must have minimun total length.

4.2 'I'ype B traversal for Directed Graphs
In the case ol directed graphs, the procedure of finding the optimal solution is exactly
identical Lo that of Type A vehicle. 1f d{x) = 0 for all vertices z in the given graph, the

optimal route does not vepeat edges. The process of Ginding an optimal ronte has been

discussed 1 detail i Chapter 2, so it 1s not bemng repeated herve.

4.3 Type B traversal for Mixed Graphs

It has been shown in Theorem 3.1 that traversal with Pype B in this case s NP -Complete.

For ease of analysis, two cases are being considered separately.

[. The mixed graph (7 1s synunetric
2. (s not, symimetric

4.3.1 Symmetric Mixed Graphs

Theorem 4.1 [f the given muxed graph 1s symmelrie and even, then il is possible for the
vehicle of Type B to performm its voulc withouwl vopealing any edges, divected or wndirected.



v ¥ _ “T'Vj

Figure 4.1: Example to show that for symiuetric non-even graphs edges may have to be
repeated

Proof:

Starting with any dirceted arc, a crcuit of directed ares is first done. This is possibile becanse
of the symmetric nature of the graph. This process is repeated till all the directed 4res have

been used. This can be done because the unused arcs always form an even, symmnietric graph.

Now, the undirected cdges also form an even graph. So ecircuits of undirected cdges are
formed till all undirected edges have been used up.

Next, all the circuits are spliced together, thus forming a grand tour without repeating any

edge.

If, however, the graph is symmetric but not even the above theorem does not holed This s
evident from the figure 4.].

4.3.2 Non-Symmetrc Mixed Graphs

In this subscction, we deal with two cases separately:
o Graph (& is even and non-symmetric

o Graph (¥ is neither even nor syminef ric

% Even and Non-synunetrice

~Minieka E.[3] has presented an optimal algortthm to handle this case. We will now present
the algorithi and its proof.



Algorithm: Optimal Routef: for Llven Mixed Graph

Given any even, mixed graph ¢ = (X, A) the optimal route can be found as follows:

Let U/ denote the set of all undirected arcs in graph G. Let V' denote the set of all directed
arcs in(&. Tentatively, select a direction for each arc in /. Call the resulting directed graph
(ip. For cach vertex ¢ in (g, caleulate

deg(r) = d~ (1) — d*(2)

Wdeg(r) < 0, then vertex 7 s a sink with demand cqual to —deg(e). 1f deg(2) > 0, then vertex
118 a source with supply equal to deg(r). If deg(i) = 0, then vertex 7 is an intermediate
vertex.

If all the vertices in ), are mtermediate, then the graph 15 an cven, symmetrie directeod

graph; the method of its solution has already been presented.

Otherwise, construct a graph G = (X, A’} as follows:

(a) For each arc (1,5} € V, place an arc (#,7) in A" with infinite capacity and cost cqual 1o
the length of (7, §).

(b) For each arc (1,7) € U, create two directed ares (v,7) and (7,2) in A", Let cach of these
arcs have mfinite capacity and cost equal Lo the length of (7, ).

(¢) For cach arc (¢,7) € U, create a directed arc (7,2)1 m A" whose direction is the reverse
of the dircction assigned to this arc in (7. These ares are called arlificral arcs. Assign cacly

artificial arc a zero cost and capacity equal Lo two.

Using the source supplies and sink demands defined above tor graph Gy, apply Lhe wisnimum
i 24 {3y APy

flow algoritlun to find a minimum cost flow in graph (7 that satisfies all sink demands.

If no such flow exists, then no optimal route exists. Otherwise, let f(z, ) denote the nnmber
of low units sent throngh arc (7, 7) in &7 iu the minimum cost low produced by the mintmnm
cost flow algorithim.

Next, create a graph (* as follows:

(a) For cach nonartificial arc (4,7) in ¢ place f(2,7) + 1 copies of are (4,5) in graph ¢*

(b) If the flow in an artificial arc is two units, then place one copy of this arc in graph ¢4
{c)  the flow in an artificial arc is zero, then reverse the divection of this are and place one
mpy of this arc in graph (/*.

{iraph G* is an even synunctric divected graph. By the method described for sneh a case,

the culer tour of graph ¢/ can now be found.
':1_'

“Theorem 4.2 (Minieka) The Iuler tour of G corresponds Lo an oplimal roule of the
priginal graph (/.

Pmof:

In the ideal case, we would obviously like to assign a direction to all the nndirected ares in

LE)



such a way that the resulting directed graph 1s symmetric. Then the solution techmigue for

even, symmetric graphs can be used to find the find the luler tour ol the sraph.

However, such an orientatjon may not exist. In this case, some of the arcs{(direcled or

undirected) must be repeated. The route s to be such that the total lengths of tle repealed
ATCS IS INntmu.

This algorithny seleets a tentative direction for each undirected are to obtain a directod oraph
called (i'y,. T'he method for linding the grand tour for the directed grapiis can then he sed,
The optimality of the resulting solution depends on the direction that has been imposed, It

s quite possible that the tentative direction in G will result in a nonoptimal solution.

This algorithm generates a graph (7 and using the same sonree supplics and sink demands

as in graph (/p finds a mininwm cost flow that satisfies all the sink demands
There are three kinds of ares in N

(a) Arcs corresponding to directed arcs in €7 (these-arcs lave non-zero cost and infinie
capacity ).

(b) Nonartificial arcs corresponding to undirected ares in (3 (these arcs also have NON- ZCro
cost and infinite capacity).

(¢} Artificial ares correspouding te undirected ares in (4 (Lthese ares have zero cost and

capacily equal to two).

The number S, 7) carried by an are of type {a) or (b) in the minimum cost low cquals the
number of times the corresponding are is heing repeated. Thus, the velnele will traverse each
arc (z,7) € V' f(2,7) + [ times and traverse each arc (7)€ U7 f(a,7)+ [(J, 1)+ 1 thmes. As
shown later, cach artificial arc carrics cither zero or two flow units. If an artificial are (;, 2
carries two flow units in the mininuun cost [low, this arc decreases the supply at 7 by lwo
units and increases the supply at @ by two units. This same effect could llave been achiieved
by sclecting the reverse tentative direction for this arc 1n graph Gp. Hence the algorithim
reverscs the tentative direction of this arc.

It an artificial arc (7,7h carrics no flow units in the minimum cost flow, then this are has
no effect on the supplics at vertices ¢ and 7- This is equivalent to retaining the tentative
direction given this are i graph (/1. Hence the algorithin retains the tentative direction
given this arc.

From the nunimum cost flow vahies [(7,7) for the ares in sraph G, the atgorithm enerales
UAREW. Hral . B B
‘a directed gl‘:.i.[_)h (™. _N{m-*, we are to show that

(a) Graph (7* 15 even and symmeoetric.
(b) An Buler tour of eraph (/* corresponds Lo an optitnal vehicle route of graph ¢/

Ac) If the minimum cost flow algorithim cannot find any flow that satistied all sink demands
.m graph G, then no vebicle voute exists [or graph (/.




Proof of (a):

Since graph (/p) is an even graph, dH(7) } d™(2) 15 an even number, for all vertices 7 in €4,
Thus d*(z) and d7 (i) must cither be both odd or both even. In eithor case, deg(1) must
be even. Consequently, all supplies and demands in graph G/ arc even munbers. Also, all
arc capacities are even wnbers. Henee, the minimum cost flow algorithm will produce an

optinal low in which all flow values are even numbers. Thus, low units in a minummn cost
flow will travel in pairs.

The value of d(z) in (7 equals the value of d(i) in G plus the number of flow units that cnter
or leave vertex + along non-artificial arcs. Since all flow units travel in palrs, it follows that

d(2) is even in graph % Thus (* is even.

Now we are required to show that graph G* is synunetric. A pair of flow units arriving at
vertex 7 via a non-artificial arc increase d=(¢) in G* by two flow units and a pair of flow units
leaving vertex ¢ via a nou-artificial arc increase d* () in G* by two flow units. A pair of flow
units arriving al, vertex 2 via an arlbificial arc cause the tentative direction of this arc Lo Lo
reversedwhich has the cffcct of increasing d*(:) by two units. Thus, cach flow unit arriving
at vertex @ wucreases 47(2) by one nnit, and each flow unit leaving vertex 7 increases d* (i)
by one unit. Since the minimuin cost flow satisfies

TilfG ) = [0.0)] = degli)

for all vertices i (/) it [ollows that the graph (* is synmimetiic.
Proof of (b):

Suppose the resulting route is not optimal. Then there exists another ronte whose dupheated
arcs have a smaller total tength. This route must correspond to a fow in graph ¢ willy
even lower cost than the flow gencrated by the minimum cost flow algorithm, whicly 15 a
contradiction.

Proof of (¢):

Since 37 d7 () = 3T dM () inany graph (), the total of the source supphes m G nost
equal the total of the sink demands in (7. Thus, all source supplhies must be shipped out,
m order to satisfy all sink demands. If graph ¢ contains an are from i to 7, then graph
G' contains an arc with infinite capacity from ¢ to j. Stuppose that the minimum cost flow
algorithm terminates without satisfying all the sink demauds. Let S denote all the vertices
that were colored after the last iteration of the minimum fow algorithim, From the flow
augmenting aigorithin we know that all ares from a vertex in S tp a vertex not in S must
carry a full capacity flow. This is imipossible since some of these arc capacitics are infinite.
Thus, no such arcs can exist, and all ares with one colored cudpoint are directed mnto set S
Consequently, once the vehicle reaches set S it cannol Teave set S and no rounte is possible,

This completes the proof. (]
* Non-even and Non-synmmetrice

“No optimal solution techuique is possible in this case as this problem has Leen shown to he
NP-Complete by Papadimitriou CL9]




Chapter 5
Partitioning of the Grand tour

In this chapter we take up the latler part of the “ronte first-cluster second” method: i.e.
breaking up the grand tour obtained into subtours of feasable length, minimizing f,Vi € A,

This part had been done manually for the routing system used in the New York City. In this

b

chapter we devise an algorithm wlich partitions the grand tour into subtours and which can

give the total time that would be required in the worst case.

We shall be using {the following notations:

Vit The sth veliele.

M The total tiime required by single
vehicle to clean up the grand tour.

¢ The ratio of the deadheading speed
the cleaning speed.

vy @ The starting point. of the vehicles.

9.1 Case of T'wo Vehicles

Consider two vehicles V) and V, of LType B. ln an ideal case, the tine required to clean up

the entire network would have been AT/2, e af bwo edge disjoint equidistant paths /7 and

P, exist from vy to some point tid Stteh that all the edges are covered and the veliicles V,

and V5 are made Lo fraverse along ) and 1, res ectively.

The principle followed by our algorithon s to subdivide the grand tour into paths sucli that
- the vehicles commence at the same time iustant and stop cleaning simultaneously. In other
ix,words, we are required Lo select an intermediate point o, such that V) cleans the eule-
nian path between (ng, ... inter ) and VY cleans the latter part of the enlerian path betlween

(Vinters - - - . 1) such that both vehicles start sinubtancously at vy, V) comnicncing cleaning in-

-t

stantaneously and V) travelling at deadheading speed to vy, and then commencin g cleaning

B
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. and both of thamn terminating deaniug sinmltancously, Vi at vy, and V; at vg.

~Inorder that both vehicles stop ab the same time, V) has to clean some extra distance from
Umid tO Vinger, the cleaning tne (a4, Viner } being equal to the time required by 1, to armive

Uinter b a deadheading speed. This extra tiine is denoted by e.
Time traversed by Vo A /2 4 ¢,
Time traversed by V5 1 -ﬁjfﬁ A2 - e

Since their tune of traversal 1s the same,

Mi2+ e
11[/2 _P [ S — "——----/—-—~—-—-—u-—=— --.[- JII\]/L) e
- C
- of,
1719
5y - M2+ ¢
C
o,
M/?2 |
¢ == . (:}_ l)
2 — 1
Therelore, 1., is located al the point on the Euler Cireunt which would require a time —:n“[—‘—

Moot deadheadine speed.

at cleaning speed and 75

i

5.2 Generalised Case

- Let us now deal with the generalised case. Given k vehicles Vi, 2 = L, ..k, we are reqmired
- to find out the time required to clean up the given network and the amount of time each

“vehicle V: deadlicads and then cleans or vice versa.

Let the entire route be broken up into £ equal intervals, each of the intervals requiring a
- cleaning time equal to A/L.

" Let ; be the extra tine the sth-vehicle is required to clean in order that all the & vehicles

stop cleaning at the same instant.

Time travelted by Vyo== A+ L
ML+t

Time travelied by Vi, = ML~ 1+t

B
. . . I - l )Jﬁ! l{ﬂ —"" f’i--
Tlnle tl'&‘\."{'?”ﬂd b_}f "fl' gy S.-h - __/ . l .--!- “1]/!- — fl -1 i ‘f'?
s -
(AN A
Time travelled by Vi, = f—/—h BV S S
C
o ) ‘ I VAL ket di e ]
Time travelled by Vo - _[_ l/ e } + MLy

FAY:



Since,

; time travelled by Vo tine travelled by b, .

we get,

(e — DYM/E+1,, + cM/h — ety + ct; = el L oMk — ot 4 o

or,
(20— Dty = Mk 44,1 (c — 1) + ety

Thus, we formulate the lotlowing recurrence relation:

———
- [

[ (1 - Mk + r;_:!__t-_+_l + (e — 1)t

and Ly ==t = 0

So,for i = 1,2,... (k- t)

Y

Cligy = (20— Dt 4 (e~ Dtiy = -M/k

Multiplying throughout by »*
cligia — (2= 1Ja' 4 (e — Do = S

Therefore,

or,
1 : ; 1 . — A
(G =) Qe O bate = 1) (Gla) -ty o) = ez
or,
- -
(7 ¢, " Mar(l -~ %
() N (2¢ — 1) 4 (e ]J = __}.Tl B boly + (e — 1)

! .
- 2{:"“ ] - ~, f{)?*'ﬂ = 1, 2, PR (A -

l

)

(5.2)
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or,

A
F(r) = |~ (2°

7 — gkt W1+ a4 T+ .

— ]
(1 gy O (1 o h---I_))
(. i

on both sides of above,

Comparing coeflicients of 22

AMe—1)  (2¢— 1){c — 1)
ck ¢

1{2:

Now, we know that

(2 — L)ty — M/
1{2 - - . -

¢

Substituting equation 5.6 in equation 5.5,

(2e =l = Mk = (e = )Mk~ (2 — 1)(c — 1)

or,

50, the total time(7') traversed by cach vehicle s

Mk + e

Thercfore,

. 2Mec
T = -
(2¢ — DYk

Let us now formalise our algorithin to break up the

length,

22

(5.6)

grand tour up into subtours of feasahle



Algorithm: Break up towr into k& subtowrs

Given & trucks, we are required to find (& — 1) intermediate points vy, vy, ..., v sueh that

vehiele V) ocleans (vg, v))

vehiicle 'V, cleans (v, 1)

vehicle Vi cleans (v, v;)

V(.‘l_] TRt ‘I {T.l{'fi'.l.“ﬁ (’”k ~ 19 ”,.l;)

and all the vehicles start at the same instant and end their cleaning together.

e ['ind out v. vy is at the point which would take time T(as in equation 5.8} via the
|

grand tour from », at cleaning speed.

o lor 2= 2,..  (k — 1) determine v, »; would take time K; via the grand tour path

from v, al cleaning speed, where

t— 1

/1:1. e 71 —- L !{Lr;
foo ]
, ALY
Ny = e

(2¢ — 'll)/c-

e
AL
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