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ADbstract

It has been known that shuffle-exchange conncction provides efficient inter-
connection scheme for parallel computation of many problems. In our work both

dynamic and static Shuffle-Exchange networks have been studied.

Firstly we have considered dynamic shuffle-exchange network. A single stage
Shuffle Exchange network is an interconnection between N inputs and N outputs
with N/2 2%2 switching elements having a shuffie interconnection at the input.To
realize any N*N permutation from N inputs to N outputs i passes may be needed
through this single stage shuffle exchange network (single stage multipass tech-
nique) where 1 < i < 2n-1,n = log, N.In our work we have characterised the
set of permutations realizable in i passes (1 < i < 2n — 1) through a single stage
multipass shuffle exchange network and given any permutation the above charac-

teristics are made use of to find the minimum number of passes required to realize

the permutation.

We have also studied static shuffle network topology where given any
number of nodes N,we have tried to find out the most suitable arrangement of
it as n * k Shuffle-Exchange network,where n=2" is the number of nodes in a

stage and k is the number of stages to give the lowest possible diameter. We have

simulated the values of diameter and average diameter for a given value of N with

different n.
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Chapter 1

Introduction

Parallel processing is a technique used to achieve high speed computing.In this

technique a number of processors and memory modules are linked together through

an interconnection network.

Multistage Interconnection networks{MINs) are used to implement the re-
quired communication between processors and memory modules. A MIN is imple-
mented by 2 * 2 switching elements with a number of stages. Each stage having

N/2 switching elements with switches being set etther in the cross state or m the

straight state.

The desired communication between the resources is essentially a one -to -one
mapping and can be represented by a permutation.If the N resources on either side

are identified by integers from 0 to N-1,then an interconnection can be represented

by a permutation|0,1,......,N-1].

Shuffle-Exhange networks provide an effective interconnection scheme for par-
allel computation of many problems. The Omega network by Lawrie[1] consists of
n = log,N Shuffie-Exchange stages.It can reahize only (2N e N hermutations of

the possible NI

So an economic way to realize the permutations would be to use single stage



multipass technique.Parker[2] has shown that 3n passes are sufficient to realize all
permutations and Wu and Feng (3] have shown an upper bound of 3n-1 passes.

2n-1 passes are necessary for N < i < 8.Akram Abdennadher and Tse-yun-Feng 4]

have shown that a 2log,N-1 stage Shuffle-Exchange network is rearrangeable(All

permutations are realizable).

The class of multistage cube-type networks(MTCN) refers to those MINs

which are topologically equivalent to the Generalised Cube including Omega,Indir-
ect Cube.A N*N permutation is said to be admissible to an MTCN if N conflict-
free paths defined by the permutation can be established simultaneously This 1s
PA (permutation admissibility) problem.A closely related problem is:If a given per-
mutation is not admissible how should N pairs be divided into a mimmum no.
of groups(passes) such that conflict-free paths for all pairs within a group can be

established simultaneously. This is the MP(minimum pass) problem.

A k-Extra stage MTCN(K-EMTCN)is obtained by adding k more stages in
front of an MTCN which provides 2* disjoint paths between any pair of source and

destination.

The admissibility of an arbitrary permutation to a N*N MTCN was studied by
X .Shen,M.Xu and X.Wang [5].X.Shen in [6] has shown an admissibility algorithm
for 1-Omega(1-Extra stage Omega Network) which can be extended to any 1-
EMCTN’s. (1 Extra stage MTCN) .The MP problem was first raised by Wu
and Feng in [3].Raghevendra and Varma solved the MP problem for BPC(Bit
Permute Complement) permutation on 0-Omega[7].Shen [8] extended the result
to k-Omega network.Q.Hu ,X.Shen and W.Liang in [9] solved the MP problem for
LC(Linear Combination And Complement permutation for k-Extra -Stage Cube-

Type Networks.

A Shuffic Exchange network with log N stages{Omega ncetwork)can reatize
& & 24 24

ouly (2”"2)'“9” of the total N! permutations. It is known that a 2n — 1 stage Shuftle-



Exchange network is rearrangeable,and not all permutations need 2n — 1 passes to

realize it ,so an economic way to realize any permutation would be to take a sin-

gle stage multipass Shuffle-Exchange network. A permutation realizable in k-Extra
stage network may need less than k stages if we use single stage multipass Shuffle-
Exchange network(1<=no of passes <=2n-1) thus reducing the delay. The ecarlicr
works have considered special classes of permutations{BPC and LC] but we have
considered any permutation. We have studied the characteristics of permutations
passable in i-stages of a Shuffie-Exchange network where 1 <1 < 2n — 1. We have
taken up the problem of ,given any permutation to find the minimum number of

passes of the single stage multipass Shuffie-Exchange network required to route it.

We have also considered the static shuffle exchange network topology and stud-
led the characteristics with varying number of stages. The classical definition of a
Shuffle Network (p,k) has N nodes (N = kp*) where p is the node degree of the
network and k is the number of columns. The p* nodes are lincarly arranged in a
column and two adjacent columns are connected in a perfoct shuffle by unidirec-
tional links. The last column is wrapped around to the first column in a cylindrical
manner.In this arrangement of N(N = kp*)the rcalizable values of N are very

sparse and many of the intermediate values of N are not realizable,

5.W.5e0,P.R.Prucnal and Hiasachi Kobayashi in [10] have used a new defini-
tion of Shuffle Network (N=nk) where n(n=2") is the number of nodes per stage
and k 1s the number of stages. The nodes in adjacent stages are connected in perfect
shuffle by unidirectional links. The last stage is wrapped around to the first in a
cylindrical manner. This definition makes it possible to realize a shuffle network in
a variety of different ways with a given N.In their paper they have calculated the

expected number of hops for different n with a particular N.

In our work we have considered a static ShufHe-Exchange Network topology

with N(N=nk) nodes with n (n=2") being the number of nodes in cach stage



, the nodes between adjacent stages connected in a perfect shuffle by bidirec-
tional links. The last stage is wrapped around to the first stage in a cylindrical
manner. The network is degree bounded. We have considered the various values of
Diame;er and Average Diameter for various values of n with a given N and tried
to find the most suitable arrangement for a given N. The results show that for

most values of N it is possible to find a n * k(n = 2")configuration of N nodes

where maximum diameter D < [log N .



Chapter 2

Preliminaries

As a way of achieving high computing power ,computer systems built upon a
large number of processors and memory modules are becoming increasingly impor-
tant.Interconnection networks provide the communication paths among processors
and memories.If the N resources on either side are identified by integers [0.1,...... N-
1},then a permutation is any one-to-onc mapping of N resources on input side to
N resources on the output side. If we consider the interconnection between N pro-
cessors and N memory modules,thenfor N=4 the permutation {0,3,1,2] can be used
to represent the interconnection of processor 0 to memory module 0, processor 1
to memory module 3,processor 2 to memory module 1, and processor 3 to memory

module 2.

2.1 Interconnection Networks

" The interconnection networks can be classified into the 2 categories static and

dynamic based on network topologics.

" Static Interconnection Networks:There are static (dedicated jcommunication
_ links among PEs so that the interconnection has a distinct topology.Linear array,

mesh, ring star systolic array ,hypercube,cube-connected cycles are popular static



interconnection topologies.

FIGURE 1 shows some static network topologies.

Dynamic Interconnection Networks:Since it may be required that any pro-
cessing element be able to access any MM ,the data paths need to be dynamic. This
can be achieved by Interconnection Networks which have programmable datap-
aths so that a path can be dynamically established between a pair of input-output
lines.The dynamism of datapaths is achieved by using programmable solid state
switching elements (SE) grouped together in one or more stages.

Single Stage Interconnection Nctwork:It is composed of a stage of switching
elements cascaded to a link connection pattern. The Shuffle-Exchange network 1s
a single-stage network based on perfect-shutlle interconnection.

Multistage Interconnection Network( MIN’s):It consists of more than one stage
of switching elements and is usually capable of connecting an arbitrary input ter-

minal to an arbitrary output terminal.

2.1.1 Properties and Classification of MINs

The number of stages ,interstage topology and switching elements of SE charac-
terise a8 MIN.The simplest switch is 2 * 2 switch having 4 possible input-output

routings.Most MINs use 2 * 2 switching clements and restrict their valid states to
straight (S-mode) and cross(X-mode) only.

Figure 2 shows a switching clement with its 4 possible states.

MINs can be classified as

Blocking networks:Simultaneous connections of more than one terminal pair may
result in conflicts in the use of network communication links. Example: Base-

line,Omega.

Rearrangeable nonblocking network:If a network can perform all possible connec-

tions between inputs and outputs by rearranging its existing connections so that

§



a connection path for a new input-output pair can always be established. Example

Benes network.

Nonblocking network: A network which can handle all possible connections without
blocking is called a nonblocking network.Example : The CLOS network.

Figure 3 shows some of the Multistage Interconnection Networks.
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Figure 5 shows a single stage Shuffle Exchange network and Omega network. The
Omega network can realize only (2Y/2)%Y permutations out of the total N! per-

mutations due to conflicts in the communication paths.

Simultaneous connection of more than one input and output may result in
conflicts in the communication paths and so not all permutations are realizable in
a single pass.We have considered a single stage multipass shuffle exchange network
and tried to find the restrictions on the permutations realizable in an.i-pass single

stage shuffle exchange network where (1 <4 < 2n — 1).
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Chapter 3

Permutations and Number of stages in a

Shuffle Exchange Network

Here we study the characteristics of permutations realizable in an i (1 <i<2n-1)

stage shuffle-exchange network ,i.e the permutation capabilities of different stages.

Definition 1:

Input Groups:For a N*N Shuffle Exchange Network the inputs arc grouped into
different levels.Each input is represented by an n-bit binary number s,

8 = {5081.... 8,-28,_1} where sy is the MSB ,n = log N,

any input group at level i{1 < i < n) consists of 2! clements, those mputs form a
group which have fixed values for positions {s;,s;.,.... s, } and with all possible
combinations for {sg, s1,... s;_1}. The input groups at level 0 consists of a single
element ,their being N such groups and a single group at level n consists of all
elements (0,1,2,......... ,N-1).

Figure 6 shows the input groups for N==8.

Let g;(z,t) denote a group at level i ,x being the number obtained by taking
the decimal value of the the binary number {88541 munnn S 1} ({9i8i41-.-5, .1} being

the fixed bits in the binary representation of the inputs in the group.)

Example 1




LEVELS

3 €0,1,2,3,4,5,6,7)
-
> (0,2,4,6) (1,3,9,7>
{ 0,4) (2,6) (1,57 (3,73
1 T "
0 0 4 C & 1 9 3

Fig &. The Input groups of a 8 x 8 shuffle exchange network,




For N = &:
91(0’0):0 gi(gro) =2

g:(4,0)=4

9:(0,1)=(0,4) 9:(2,1) = (2,6)
9:(1,1)=(1,5) :(3,1)=( 3,7)
g:(0,2)=(0,2,4,6} g:(1,2)=(1,3,5,7)

9:(0,3)=(0,1,2,3,4,5,6,7).

Definition 2:

Output Groups:For a N*N Shuffie Exchange network,the outputs can be grouped
into different levels.Each output is represented by an n-bit binary number d,
d = {dodq,..ccreennnnn. d,, _»d,_Ywhere dyis the MSB, an output group at level 1 (1 <
i < n) contains 2* elements ,those outputs form a group which have hxed val-
ues for bit positions {dy, dy,......... d, ; 1} and with all possible combinations for

{d i ecoeerydn 1} The output groups at level () consists of a single output their

Figure 7 shows the output groups at different levels for N =8.

Let go(z,i) denote an output group at level i, x being the number obtained by
taking the decimal value of the binary number {dyd,........ di 1} ({do,dy.d, i 0}

being fixed bits in the binary representation of the outputs in the group)

Example 2:For N=8:

g (0,0) =0 7.(1,0)=1

9.(0,1) = (0,1) 9.(1,1) = (2,3)

g.(2,1) = (4,5) 9.(3,1) = (6,7)

9.,(0,2) = (0,1,2,3) 9.(1,2) = (4,5,6,7)
9.(0,3) =(0,1,2,3,4,5,6,7)

11




LEVELS

3 ¢0,1,2,3,4,5,6,7)
> 0,1,2,3) (4,5,6,7)
1 ¢0,1) (2,3} (4,5 (6,7)
1 |
0 0 1 2 3 4 5 &

Fig 7. The output groups of a 8 X G shuffle exchange network,




3.1 Permutation Capabilities for various stages

of a shuffle exchange network.

In a single stage multipass shuffle exchange ncetwork, for passes i(1 < i € n) there
exists a unique path in the network between every pair of input and output. For
i = 1, each input can access either of 2 possible outputs.For ¢ = 2 cach mput can
access any of 4 possible outputs. At the n th pass the network possesses the property
of Full Access (An input can be connected to any output).At pass i(1 < ¢ < n)

(2V/2)! permutations are realizable.

For i > n the network is Full Access network (At pass i (1 = n + k), there
exists 2*disjoint paths between a input and a output.Also different switch settings

may realize the same permutation.

So we are to consider the two cases differently. Permutations requiring passes

1. 1 <1 < e
For these values of i the network will be referred to as reduced stage shuffle

exchange network.

2. n<1<2n—1:
For these values of i ,we refer to the networks as extra stage shuffle exchange

network.

3.1.1 Permutations realizable in reduced stage shuflle ex-

change networks

Here we consider i-stage Shufle Exchange network where 1 <@ < log N. There

are two types of restrictions to be considered.

12



1. The possible outputs which an input can access.

2. There are restrictions among the outputs to which a group of inputs can be

connected (without conflict).

a) The possible outputs which an input can access

The possible outputs D(i) to which an input i at pass j can access (7 = 1 to n)are
27 in number and the possible outputs are :
D() = (i # 27)mod N to ((i * 2)mod N + 27 — 1) for 0 < i < N/2

=((2i — N)*2"1) mod N to ((2¢ — N) * 2 'mod N+2/ — 1)

for N/2 < i < N where mod denotes remainder after division,

At stage k,(1 < k €< n) the input groups at level k, ¢,(x, k) can access possible

outputs from the output group g.(z,k),(0 < = < N/2%) ,their being N/2* such

input and output groups at level k.

Let the set of realizable outputs at stage i (0 < ¢ < n)for an input group
g:(z,1) be R(x,i)
The elements of R(x,i) are the elements of g (x, 1)
Example 3:For N=8.
For i=1(pass 1)
R(0,1)( Realizable set for 0,4) = ¢,(0,1) = ( 0,1)
R(1,1)( Realizable set for 1,5) = g¢,(1,1) = ( 2,3)
R(2,1)( Realizable set for 2,6) = ¢,(2,1) = ( 4,5)
R(3,1)( Realizable set for 3,7) = ¢,(3,1) = { 6,7)
For i=2(pass 2)
R(0,2)( Realizable set for 0,2,4,6) = ¢,(0,2) = ( 0,1,2,3 )
R(1,2){ Realizable set for 1,3,5,7) = ¢,(1,2) = ( 4,5,6,7 )
For i=3(pass 3)
R(0,3)=Realizable set for 0,1,2,3,4,5,6,7) =g4.(0,3)=(0,1,2,3,4,5,6,7)

13



b)Restrictions between input output pairs

For the i th pass: 1 <1 <logN
if i=1
Consider the restrictions on the possible outputs only
else
For pass-no =i
Consider restrictions betwecn outputs of clements in the
input groups from levels 1 to 1-1
Let number of input groups at level i be No-Group = N/2'
For x = 0 to (No-Group)-1
For j =1toi-1
Fork=0to 27 -1
{For inputs in the group} - > {Their outputs
gi(x+No-Group*k,j) } should belong to distinct.
g (x * 2 +mi— j)
where 0 < e < 2/}
(i.e outputs belong to 2/

distinct output groups}

Exampile 4:For N=8:

Restrictions on permutations realizable in 1 (1 < i < 3)passes
i=1(1st pass)

The realizable set of outputs for inputs in the group

g:(x, 1) is g.(x,1) where 0 < @ < 4.

i=2(2nd pass)

The realizable set of outputs for inputs in the group

9:‘(3312) 18 gc_.(:r,,Q) where § < x < 1

14



For each k(k=0,2)inputs in g;(k, 1) should have outputs belonging to

distinct g,(x,1) where 0 < z < 1

For each k(k=1,3)inputs in g;(k, 1) should have outputs belonging to

distinct g,(x,1) where 2 < x < 4

i=3(3 rd Pass):

The realizable set of outputs for inputs in the group

:(0,3) is g.(0,3).

For each k(0 < k < 4),inputs in g;(k,1)should have outputs belonging

to distinct g.(x,2) where 0 < o < 2

For each k(0 < k < 2),inputs in g;i(k,2)should have outputs belonging to distinct

g, (x,1) where 0 € ¢ < 4

So for reduced stage Shuffle Exchange Network, at the ith pass first the out-
puts are to be checked to see if they are Realizable outputs and then the restrictions

between the input output pairs in various groups are to be checked.

3.1.2 Permutations realizable in extra stage shuffle exchange

networks

Here we consider the permutations realizable in i passes (n <1 < 2n—1). Aninput
can individually access all outputs(Full Access) ,so the Realizable set consists )
all outputs.

For pass-no =i (n <i<2n—1):

Let i=n+k

Forj=k+m1<m<n—k

For x = 0 to (N/2? — 1)

{ For inputs in the group g:(=,j)} —>{Ekach g,(y,n-m) should

have 2° outputs



where 0 < y < N/2"" ™}

So for the (2n — 1)th pass :

{ For inputs in the group ¢;(0,n)}->{N/2 outputs beclong to
7,(0,n-1) and N /2
outputs to g,(1,n-1)}

This confirms the fact that a 2n-1 stage shuflle exchange network is rearrangeable.

Example 5:For N=8&:
The permutations realizable in i pass(4 < i < 5)extra stage shuffle exchange
network

i=4(=n + 1)

{For each k(k=0,1)} inputs in g;(k,2)}-- >{2 outputs belong to each of

90(x,2) where 0 € & < 2}

i=5(=n 4 2)
{For inputs in g;(0,3) }--->{4 outputs belong to each of
7.(x,2) where 00 < & < 2}

This is always true for any permutation.

3.1.3 Algorithm

Input: The permutation.
Output: The minimum number of passes required to route the permutation
pass-no=1;

Check the permutation against the restrictions given for

pass-no{l < pass — no < 2n — 1),rules formulated carlier)

if any restriction is violated

16



pass-no =pass-no+1.
check for next pass.

else

permutations require pass-no to route it.

Complexity
For pass-no =i
At level 0

Outputs of N inputs are checked to see if they are elements of the realizable set
for that pass.This involves checking an cutput against the lower and upper limits
of the Realizable set.

Considering input groups from level 1 to i-1

At level 1:N/2 pairs of inputs in groups at level 1 arc checked to see if their outputs
lie in two different output groups at level i-1.This requires N/2 comparisons.

N/2 comparisons and atmost N/2 exchanges required so pairs of outputs for
inputs in the group being checked are kept in increasing sorted order.

For e:{ample checking for i=3 (pass-no ),N=8,at level 1 inputs in the group ¢;(0,1)
and ¢;(2,0) should have outputs in distinct g,(x,2) 0 < x < 2.The lower numbered
of the outputs being compared in a group is kept stored in a lower location in the
array storing the permutations.

For input groups at level 2: For groups at level 2 :N/2 pairs of input are to be
checked to see if in the input group at level 2 , the 4 outputs belong to 4 different
output groups.For this only comparisons between those pairs of outputs which
were in the same output group at level i-1 need be made. This involves N/2 com-
parisons.

Again N/2 comparisons and at most N/2 exchanges required to check so that pairs

of outputs being compared arc kept in increasing sorted order.

17



For example for i=3,N=8,the inputs in the input group ¢;(0,2) should have out-
puts belonging to different ¢,(x,1)(0 < = < 4),for this only those outputs need be
compared among themselves which were in the same output group at level 2 For
example those in either g,(0,2) need be compared among themselves and likewise
those in g,(1,2) need be compared among themselves and the lower numbered out-
put 1s stored in a lower location in the array storing the permutations.

Similarly till level i-1 checking is carried on

Complexity for the ith pass:(O(N * i))

Complexity for O(log N) passes :O(N(log N)?)

Scope for parallel algorithins

N/2 comparisons in a level can be done in parallel but checking for different levels
must be done sequentially and each pass must also be checked sequentially. Hence
a it 1s possible to have a parallel algorithm with a complexity of O((logN)*?) with

N/2 processors.

18



Chapter /4

Generalized Shuffle Exchange Topology

We have previously considered the characterisations of permutations realizable in
i passes (1 €< i < 2n—1) of a single stage dynamic shuffle exchange network. Next

we consider the static shufflc network topology.

A N(=kp*) node shuffle-exchange network is characterised by two parameters
p and k and is represented as a {p k) shuffie -exchange network,where p is the node
degree of the network and k is the number of columns.In a (p,k) shuffle network p*
nodes are linearly arranged in a column and two adjacent columns are connected
in perfect shuffle by unidirectional links. The column is wrapped around to its first
column in a cylindrical manner .Having all the nodes arranged in a single column

is known as the single stage shuffle-exchange network.The shuffle network is a

regular network.The realizable values of N here are sparse,

4.1 Earlier Works

S.W.Seo,P.R.Prucnal and Hiasachi Kobayashi in {10} have used a new definition

of shuffle network N=nk. The tight relationship (N = kp*)between the number
of stages (k) and the number of nodes per stage(n=2"} is removed.The network

is more flexible allowing two independent paramecters n and k whose product is



a constant.This allows larger number of values of N to be realized.In their paper

they have calculated the expected number of hops for different n with a particular

N.

4.2 Configurations for minimum Diameter

Here given any value of N,we have considered different n * k shuffle exchange
configurations where n is the number of nodes in a stage and k is the number of
stages. If the nodes in a stage are numbered 0...... n-1in a stage,2 nodes u and v
in adjacent stages have a link between them if

a)v is obtained by the left cyclic shift of the bits in the binary representation of
u(shuffle operation).

b)v is obtained by the left cyclic rotation of the bits in the binary representation of

of u followed by the complementation of the LSB of the resultant binary number.

(shuffle-exchange operation).

The last stage is wrapped around to the first stage in a cylindrical manner.

Fig 8 shows the arrangement for N=16,n=8k=2.

We have assumed the links to be bidirectional and used shortest path routing to
find the Diameter and the average Diameter. the algorithm for which is discussed

below.

Algorithm 2.

Input:The total number of nodes N and the number of nodes n in a stage.
Output:The Diameter and average diameter.

List<— keeps a list of nodes whose neighbours (neighbour of a node :those nodes
in adjacent stages which have a link between them) have not yet been visited.
Each node has a variable m to show whether it has been visited and marked

Each node has also a variable distance associated with it which is the number of

hops of the node from the source node.
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Let i be any node in the network,the distance of all the nodes from it are tound.
i <- start node

Repeat steps 1-3 until all the nodes in the network arc visited and marked.

Step 1 :From i visit all its neighbours and mark them as visited,

their distance as (i->distance)+1.

Step 2:Put the neighbours at the end of the List.

Step 3:i<-The node at the head of the list

Go to step 1. After all the nodes are marked and their distances found,the Diam-

eter and average Diameter are calculated.

Lemma:For a particular arrangement n * & of N nodes the diameter(maximum)

has a range from logn + (k/4] < D <logn + |k/2].

Proof: Let the variable k' denote the number of stages in a conventional shuffle
network with n nodes/stage (k'=logn).The source can access every other node in
two stages {sw,s¢) reached after logn hops The two stages sy and sy are reached
after traversing log n hops through the stages from the source node in the forward
and backward directions.

If the two stages sy and sy reached after log n hops are such that they divide the
total number of stages k into cqual partitions(k/4) then the maximum distance of
a node from another node in the sy s, stages would be |k/4] .Thus the maximum
distance of the source node to any other node can be logn + |k/4| hops. The
upper bound is attained when the nodes are so arranged that there exists a node

that is at a distance of |k/2] hops from a node in the stage s, 5.

4.3 Simulation Results

We have simulated the values of average Diameter and Diameter using algorithm
2. Table 1 shows the average number of hops for various values of n for a particular

N using unidirectional links [10] and also the average diameter from our simulated
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results. It is seen that the average diameter is less considering the links to be

bidirectional.

22



* Expected Number of Hops for different n'sconsidering unidirectional links.

TABLE 1

# Average diameter for various n's considering bidirectional links.

n=2 4 8 16 32 64 128 | 256 | 512
N=8 *| 2286 | 2.000 | 2.107
# | 1.25 1.5 1.75
N=16 * | 4.267 | 2.933 | 2.730 | 2.833
# | 2.125 2 2.25 | 2.5
N=24*| 6.261 | 3.913 | 3.261
# | 3.083 | 2.1667 | 2.2917
N=32* | 8258 | 4.903 | 3.742 | 3.565 | 3.603
# 140625 1 25 | 2625 | 3.00 |3.3475
N=64* | 16.254 | 8.889 | 5.714 | 4.635 | 4.511 | 4.595
# | 80312 | 425 | 3.156 | 3.375 | 3.844 | 4.203
N=128* | 32.252 | 16.882 | 9.701 | 6.614 | 5.635 | 5.380 | 5.512
C#116.015 | 8.125 | 4.528 | 4.141 | 4.203 | 4.703 | 5.125
N=160* | 40.252 | 20.881 | 11.698 | 7.610 | 6.069
# | 30.0125 | 10.100 | 5.463 | 4.212 | 4.312
N=256* | 64.251 | 32.878 | 17.694 | 10.604 | 7.561 | 6.923 | 6.708 | 6.834
# | 32.001 |16.0625 | 8.289 | 5.070 | 5.070 | 5.125 | 5.625 | 6.047
N=384* | 96.251 | 48.877 | 25.691 | 14.601 | 9.556 | 7.536 | 7.892
# | 48.005 | 24.05 |12.193 | 6.713 | 5.33 | 5.442 | 5.690
N=512* | 128.250 | 64.877 | 33.691 | 18.599 | 11.554 | 8.532 | 8.031 | 7.648 | 7.965
# | 64 32.03 | 16.414 | 8.535 | 5.742 | 5.8125 | 6.0313 | 6.547 | 6.99
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Table 2. shows the Diameter for various n for a particular N.It 15 seen the
Diameter has a large range of values.For n = N it becomes a single stage shuffle

network with a diameter D = log .
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TABLE 2

Diameter for different n's

* Those values of n for which [N - nlogN | is least.

n=2] 4 | 8 |16 32 64 |128] 256|512 | 1024 | 2048

N=8 | 2 | 3* | 3 |
T N=16 | 4 | 4 | 4* | 4|

N=24 | 6 | 4 | 4* 1

N=32 | 8 | 4 | 4* | 5 | 5

N—64 | 16 | 8 | 6 | 6%| 6 | 6
N=128 | 32 | 16| 8 | 8 |6* |7 |7

N=160 | 40 | 20 | 10 | 8 | 7*

256 | 64 | 32 | 16 | 8 | 8 | 8 | 8 | 8

384 | 96 | 48 | 24 |12 | 10 | 9* | 8

_512 | 128 | 64 | 32 |16 | 10 |8 | 8 | 9 | 9 )
"N=640 | 160 | 80 | 40 | 20 | 10 | 10 | o*

N—768 | 192 | 96 | 48 | 24 | 12 | 12 | 9* | 9

N=896 | 224 | 112 | 56 | 28 | 14 | 12 | 10¥

N=1024 | 256 | 128 | 64 | 32 | 16 | 12 |10%| 10 | 10 | 10
N=1280 | 320 | 160 | 80 | 40 | 20 | 12 |10* | 10

N—1536 | 384 | 192 | 96 | 48 | 24 | 12 | 12 | 107 | 10

N=1792 | 448 | 224 | 112 | 56 | 28 | 14 | 14 | 10*

N=2048 | 512 | 256 | 128 | 64 | 32 | 16 | 14 |12*| 10 | 11 | 11
N=4608 | 1152 | 576 | 288 | 144 | 72 | 36 | 18 | 16 | 13*
| N=10240 | 2560 | 1280 | 640 [ 320 [ 160 | 80 | 40 | 20 | 18 | 15% | 12
N=22528 | 5632 | 2810 | 1408 [ 704 [ 352 | 176 | 88 | 44 | 22 | 20 | 167

20




Some experimental results:

case 1: D > log N

N=32 n=2k=16

D=8, log N = 3§

n == 2, logn =1

After 1{=logn) hop we rcach stages sp and s, (All the nodes in these 2 stages can
be accessed from the source node.The total number of stages is 16. The maximum
number of hops between nodes in any other stage and in the the stages sy and sge
is 7.850 to reach a node in the stage which is 7 hops from sy or s« would require a

maximum of 741 =8 hops from the source. This confirms the experimental result.

case 2:D=log N

a>N = 32.n=16k =2

D =5, log N =5

n = 16, logn = 4

The total number of stages is 2.The stages spand syrreached after 4(= logn) hops
from the source are the same. So to access a node in the remaining stage would

require another hop since it is known that the source can access all the nodes in

the stages sp,8;» in maximum &' hops.Hence the result.

b> N=64n =8k =28

D=6, log N = 6

n==_§, logn=3

The stages reached after 3 (=logn) hops from the source sp and s are separated
by a distance of one stage but there oxists stages which are 3 hops from spor 8,070
access nodes in those stages 3 hops from spand sy« would be required ,thus a total

of 3+3 hops will be required from the source.

case 3:D < log N N=32n=8k=4

D=4, log N=§

n==,, logn =3

The stages sy and s reached after 3(=logn) hops are separated by one stage and

the maximum number of hops of any other stage from fro sg or spr is 1.50 D = 3
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+ 1 =4,

As seen from the tabular values a wide range of Diameters are got for different
arrangements.The arrangement should be so chosen that D is less.For higher values

of k in a n*k arrangement of N nodes , higher values of diameter are got,so the

arrangement should be such that values of k are less.

From the results a conjecture can be made that if the arrangement n*k is so

chosen that |N-n logn | is low for a given N ,then a low value of diameter can

be got.The values are shown in Table 2.In almost all such cases it is seen that

D< [log N|.As N becomes larger this bound is exceeded.
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Chapter 5

CONCLUSIONS

It is known that a 2n-1 stage shuffle exchange network is rearrangeable, not all
permutations need 2n-1 stages for realization. The permutation realizable by an k-

extra stage Omega network may need less number of passes if single stage multipass

technique is used.We have considered the case of single stage multipass Shuffic
Exchange networks and characterised the permutations realizable in i-pass Shuffle
Exchange network (1 < i < 2n —1). An O(N (log N)?*) algorithm has been used to
find the minimum number of passes nceded to realize any arbitrary permutation.
For passes i, 1 € i < n,a unique path exists between cvery source destination
pair and the routing can be done by destination tag routing but for passes >n the
nath is not unique,its routing needs to be considered. Also here only realizability ot
permutations{one-to-one-mapping) using 2 states of the switch straight and cross
have been considered,the restrictions existing in case of broadcasts also needs to

be considered.

We have also considered a shuffle topology with N nodes (N=nk,n = 2™ ).The
realizable valucs of N are larger than when N=kp*. We have studied the change in
characteristics of this topology with variations in the arrangement.An arrangement
with Diameter < [logN] can be obtained for almost all N. Also it is observed that
as the values of N become larger the bound on Diameter < [log N| is not always
valid. This topology needs to be studied in more detail and its routing for the

optimal arrangement needs to be examined.
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