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Abstract

A new LV(Q model has been proposed and listed here. It’s performance
tn relatton to other existing models has been studied experimentally

with the help of artiicial data set as well as TRIS data. Finally the
proposed algorithm is applied on a satellite image data. The perfo-
mance of the proposed model has been found satisfactory.
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Chapter 1

Introduction

Clustering is an important technique used in discovering the inherent
structure present in the set of objects. Clustering algorithms attempt to
otganize unlabelled pattern vectors into clusters or Ynatural groups” such
that the points within a cluster are more similar to each other than to points
belonging to different clusters. Vector Quantization is essentially a clus-
taering process which attempts to subdivide a random set of vectors into
subsets, or clusters, which are pairwise disjoint, all nonempty and repro-
duce the original set of vectors via union{3].

Let the set of patterns X be {x),%2,...,%;,...,Xn} Wwhere x; is the ith
pattern vector, X C R?,X is finite. Let the number of clusters be k. If the
clusters are represented by Cy,Cy,...,Cy then

i) Ci#¢ fori=1,...,k
i) CiNCij=¢ i1#7J
) UL, G =X
where ¢ represents null set and k > 2[2].
The goal of clustering is therefore to. minimize the sum of squares of within

cluster distances, i.e.: |
k
E Z % — v “2
1==1 xel;

where x is the input vector. The set of vectors V = (vy,va,...,vi) is called
the codebook. v; is the representative vector for class C;. Thus class C;

is quantized by the vector v;. The process of designing the codebook is



called Vector Quantization. Many techniques of vector quaniization nse
clustering approach|[9].

Neural Networks have been employed in many clustering problems.
Among the existing models, the Self Organizing Feature Map of Kolio-
nen [11},{4] find the topological structure hidden in the input data. Koho-
nen’s Learning Vector Quantizer (LVQ) [10] network can perform clus-
tering when the number of clusters present in the data set is known apriori.

In the following sections, we deal with unsupervised pattern classilica-
tion using neural network approach. In the unsupervised algorithms, no
information concerning the correct class is provided to the nets. Each new
pattern is presented only once and the weights are modified after each pre-
septation. We assume everywhere that the number of clusters, k is known
apriori. The learning process used is known as Competitive Learning
Scheme. The basic idea underlying what is called competitive learning is
roughly as follows:

Assume a sequence of samples of vector x = x{t) € RP, where l is
the time coordinate, z(n + 1) = :t:(;'t) and a set of variable reference vectors
{vi(t) : vi € RP,i =1,2,...,k}. Assume that v;(0)’s have been initialized
in some proper way(random selection will suffice). If x(t) is compared with
each v;(t) at each successive instant ¢ (taken here to be t = 1,2,...) then
the best matching v;(t) is obtained by some distance measure d(x(t), v.(t)).
If 4 = ¢ be the best matching reference vector then

d(x(t), v,(t)) = min d(x(t). v,(t))

Then v.(t) is to be updated, so that it moves closer to x(t). In the neural
network model the neighouring cells in the output layer compete in their ac-
tivities such that in the process, vectors tend to become specifically "tuned"
to diflerent domains of the input variable x [5].



Chapter 2

Emstlng Algorlthms

2.1 Learning Vector Quantization

In the VQ the objective has been to find vectors vy, va,..., v (k2 2)

such that,
Z f (xivi)
xeX

is minimized. Here v; is closest to x and f(x, v;) is a function of the distance
between x and v;. In the neural network based LVQ models, where at any
gingle instant only one input vector x from X is under consideration, the
researchers have tried to achieve the stated aim by modifying the vectors
Vi, V2,..., Vs 8t each instant taking help of f(x, v;) |[where v; is the winning
prototype for x| and f(x,v,) [where v, is the non-winning prototype for x]|.

LVQ has been associated in literature with a neural network architecture
that has been shown in Fig.1 . If X = {xy,x3,...,X%,} € R? denocte the un-
labelled data, k denotes the number of clusters, then the input layer of the
network contains p nodes and the output layer contains k nodes. The input
layer is connected directly to the compaetition layer or the output layer. The
ith node in the output layer is associated with a weight vector v;. The p
components {v;} of v; are often regarded as weights or connection strengths
of the edges that connect the p inputs to the node i,

The prototypes V = (vi,va,...,vi),vi € RP for 1 < i < k are the
unknown vector quantizers we seek, In this context learning refers to find-
ing the values for the {v;}. When an input vector x is'submitted to this



network, distances are computed between x and each v;. The output node
¢ in the output layer is the distance between x and v;. The output nodes
compete, 8 winner node (minimum distance) say c is found, and the corre-
sponding v, is then updated using an update rule.

The LVQ algorithm is given below:

step 1. Given unlabelled data set X = {x;,x3,...,%x,} € R? and number
of clusters k.

Fix N = maximum number of updating steps, and ¢ > 0 where ¢
is the terminalion condition.

step 2. Initialize Vg = (vy0,...,Vko) where each v;g € R?, and learning
rate ap € (0,1).

lort=1,2,..., N

For 7=1,2,...,n
a. Find
min [1x; ~ Vg1 (1)

Let v (-1 be such that ||x; — vee1]] = ming|x; — vio ]
b. Update the winner v;_y:

Vet = Veit-—1 + oy -~-1(xj = vc,t—l) (2)
Next 7
step 3. Compute
r k
By = Z Z |’Uh-,t ~ Vgt -1
=] r=1

step 4. il F; < ¢ stop;Else adjust learning rate oy, — ap(1 - {/N).



Next t.

step 5. For each x in X if

% = Ves-1ll = min lix = vl

and mark x with label ¢

The update scheme used for modifying the winner has a simple gecometric
interpretation which is shown in Fig.2 .

The winning prototype v.;—1 is moved along the vector (x; — v ..\)
towards x;. The amount by which v.,_q is shifled to arrive at v, depends
on the value of the learning rate parameter ., where oy € [0, 1).

2.1.1 Initialization

Vo = (V10,V20,..-,Vko) € R? have to be initialized. There are several
initialization schemes. An initialization scheme used in the existing algo-

rithms, and also in the proposed method is described below:

For dataset X = {xj,x2...,%,} € RP. Let data point ¢ and the initial
prototype i be X, = (%14, Taq,-..,%pg) and vi = (i, v2i...p) respic-
tively. Compute the feature ranges :

Minimum of feature

7 ﬂ'l,j:mjﬂ{qu}: 1=1,2,...,p (3)

Maximum of feature

jio M;=max{zs}: j=1,2,...,p (1)
q

with this compute the jlh component of the ith initial prototype vj; as:

M;—mj

vi = my+ (i - )(——

) i=1,2,...,k; 7=1,2,...,p (5)

Formula (4) disperses initial prototype values uniforinly along each feature
range.



2.2 GLVQ

LVQ attempts to minimize an objective function that piaces all its em-
phasis on the winning prortotype for each data point. This is refllected in
eqn.(2) which alters only the winner. This, however ignores global infor-
mation about the geometric structure of the data that is represented in
the remaining (k — 1) distances from x to the non-winner prototypes. In
this section Generalized Learning Vector Quantization algorithm is
discussed. The algorithm is associated with the same neural network archi-
tecture, where the feature vectors x provide the inputs to the map and the
weight vectors play the role of the prototypes v;. 'The lecarning rule associ-
ated with GLVQ is obtained by minimizing a cost function which mecasures
a locally weighted error of the input with respect 1o the winning prototype.
Mathematically this is explained below.

Let » € RP be an input vector. Let J be the cost function which
measures the locally weighted mismatch of x with respect to the winner.

k
J(X;Vy, .., Vi) = Z .'_f»h-l|""~_"""r"2 (6)
| r=1
1 | ifi = ming ||x —- vl . ~
gi = t L otherwise lsisk (7)
2 X5l '

Where X = {x1,...,X,} i3 a set of inputs. The objective of the GLVQ
is Lo find a sct of k v,'s, sy V = {v,}, such that the locally weighied crror
functional 7 is minimized.

The update rules for solving eqn.(3) based on minimization of J [6] are:
for winner prototype 1,

D? — D+ |Ix — vi, -1II")_(

D;. X — \","t_,l) (81’1)

Vie = Vigp + ogog

and for non-winner node 7,




where x is the current input vector and

k
D = Zlix-—vr,mllz
r=1

Tables 1,2 show the result of T'= 500 iterations of GLVQ with the initial
learning rate og = 0.6 on IRIS and TRIS /10 respectively, where in IRIS/10
the feature vectors of IRIS are scaled by a factor of 10.

The resullts show that the GLVQ algorithm doesn't work properly lor
the normalized data. For some scaling of data, it may happen that the
change in the winner prototype is less than changes that are made to the
other (k—1) prototypes. So the non-winner protolypes will be pulled towards
the data more strongly than the winner prototypes. This results in all
prototypes migrating to the same point in RP, as they did for IRIS/10

[6]:[7]-

2.3 Fuzzy algorithms for learning vector quanti-
zation

The algorithms are based on the minimization of a fuzzy objective func-
tion, formed as the weighted sum of the squared euclidean distances between
cach input vector and the prototypes. Assuming that x is the input vector,

v; is the winning prototype, and k is the number of clusters, the update
equation for the prototypes can be derived by minimizing,

k
J == Z Uiy "x‘_vr”j {t})
rax]
where u;, = uj(x),r =1,2,...,k is a set of generalized membership func-

tions, which regulate the competition between the prototypes, v, , r =

1,2,...,k for the input x. The term generalized membership functions is
used to indicate that their form can be selected apriori according to some
intuitively reasonable criteria {7).

The development of genuinely competitive learning vector quantization
algorithm requires the seclection of the generalized membership functions



assigned to the protolypes. A fair competition among the prototypes is
guaranteed if the generalized memberhsip function sssigned Lo each proto-

type:

¢ is invariant to the magnitude of input vectors.
¢ is equal to unity if the prototype is the winner.
o takes the value between 1 and 0 if the prototype is not a winner.

o approaches zero if the prototype is not a winner and its distance from
the input vector approaches infinity [7].

Some fuzzy algorithms for LVQ are described below.

2.8.1 FALVQ

Assuming X is the input vector and v; is Lthe winning prototype, i.c.,
“X T \’1”2 < ”)C - Vr||2 Vv, # Vi

the above mentioned conditions are satisflied by the objective function de
fined by eqn.(9) with

1 if r =1

&
I

1 : : 10)
ivqr r#a (
=L

According to this definition, u;. decreases from a value close to -21* to 0 as
|x - v.]|* increases from a value slightly higher than ||x — v;||? to infinity.

The objective function J is, therefore:

k
! _
T = lx=vill* + ) (—z=m)lix = vl (11}
A 4 v
SAE P

The FALVQ updation rules are derived by minimizing the above objective
function using the gradient descent method [7]. If x is the input vector, the



winning protolype v; can be updated by :

k
Avi = a(x-vi) (1 + ) (1—-uy)®) (120)
r#i

While the non-winning prototypes v; # v; can be updated by :

Av; = o (x—v;) ufj (120)

The adaption of the prototype during the learning process depends on the
learning rate &« € [0, 1), which is a monotonically decreasing function of
the number of iterations ¢ defined as a = a(l) = w1 — t/N), where ag
is the initial value of the learning rate and N the total number of iterations,
predetermined for the learning process.

2.3.2 Other Fuzzy Algorithms

As seen in the previous section, u;. = 1 il v, = v;, where v; is the
winning prototype, that is, f|x — v;||* = Miny v [|X — vill2. Il v, # v,

then H:;::H; > 1 Vv, # v; and therelore u;, < % Since u;, € (0, %) Vr # i
the function u;. described in eqn.(10) favours rather strongly the winning
prototype and hece there is a bias inherent in the definition of u;,. towards
the winner. So, the weight of ||x — v, || in .7 lics between 0 and % In other
words, the contribution of ||x — v, ||? towards 7 is restricted, reducing the

campe_l;itive effect of the non-winner.

The non-winning prototypes can be made more competitive by introduc-
ing a new sel of generalized membership {unctions such that, if v, # v,
uir takes the values in the interval (0, 8,), where 3, 2 -%

This is done by introducing a new set of generalized membership functions

of the form

] il =i
o ] : . .
Uy = 5 il r £ 1 (13)
EX-V,
1+n(x,\rj£€r}
where D(x,v; € V) is a dillerentiable function of ||x — vi||*, v, € V sudl
that D(x,v; € V) 2 miny v [[x—vj||* where ming cvilx = v;il* = |x-

10



vill%, if v; is the winning prototype. ;. in eqn.(13) can also be writlen as,
{ 1 if r=1
_ 1 - -
Ujp = VB " if r -',ié 1
X—-Vy X-V
LT Boev e V3

Thus the value of 3, depends on the ratio of _,}}i";;%

The three existing algorithms [7] using this concept are discussed helow:

Harmonic FALVQ

1 - 1 — 1 k 1
Here pavieV) = Dativy) = * L=t v

The updation rule obtained using the same objective function as (9) arc:

Av; = a (x - v;) (1+’_°,.Z:?¢, U, — 7)) (14a)
for the winning prototype and
2 , 1 : 2 X =vel® 2
Av; = o (x—vj) (u); + A > ui — Vj||2) ) (14b)

rai
for the non-winning prototypes v; # v,.

Geometric FALVQ
Here D(x,v; € V) = Dg(x,v; € V) = ( HL} Ix — v;i)? )é

The update equations are :

| k
Avi = afe-v) (1 + 3 >l ) Ly s
for the winner prototype and
2 I o Ix — v, |°
Avj = afx-v;) (u; + = Y w1 - uir) P— 5) (15b)

for the non-winner prototype v; # v;

il



Arithmetic FALVQ

Here D(x,v; € V) = Dy(x,v; € V) = ]1; ?1 llx — Vj||2

The update cquations are:

k
1
Av; = ofx~v;) {1 + P D (1 = uir)?) (16a)
ri
for the winner prototype and
;| k
&vj == u:(x—-vj) (U?j + E Z(l — u,—r)z) (]fih)
r £y

for the non-winner prototype v; # v;

The analysis of the algorithms using harmonic, geometric and arithmetic
mean are done in {7]. In both the cases of Harmonic FALVQ and Geomectric
FAIVQ, updation equations are such that, if ||x — v¢||? > [lx — v}l the
updation of the winning prototype towards input x is increased, while on
the other hand if ||x — v, || = ||x — v;||? the effcct of the input z on the win-
ning prototype is inhibited i.e, the updation of the winner towards z is de-
creased. Again wu;.(1 —u;.) in eqn(15a) is an increasing function if 0 < u;, < 1
and decrecasing function il u;,. > % Since in the gecometric FALVQ u;,. > ;
when [|x — v, ||? is sufliciently close to f|x — v;||2, i (1 — u;,) decreases as the
non-winning prototype v, approaches v; ,while u?_ in Harmonic FALVQ is
monotonically increasing function of u;,.. Thus the non-winning prototypes
close to the winning prolotype v; results in stronger inhibition of its adap-
tion when the Geometric FALVQQ is used and so Geometric FALVQ results
in stronger competition. In Arithmetic FALVQ, though each input x has
a stronger eflect on winner than the non winner(updation of the winning
prototype is greater than the updation of non-winner prototype), however
difference between u?; and 1 is not significant, so Arithmetic FALVQ1 can't

L4
discriminate between prototypes which are similar.

12



Chapter 3

Proposed Method

'The generalized membership functions used in the algorithms HFALVQ,
GFALVQ, AFALVQ are of the form shown in eqn.(13), where the value of

w;, lies between (0,0,) for r # i and 8, > 1. The value of 8, depends on

2
the ratio of H% However, the ratio varies {rom problem to problem

and cannot be made equal to zero. So, the value of 8, cannot reach 1 and
hence there always exists a bias, inherent in the definition of wu,,.. Infact u,,
13 not a continuous function in all these cases. Again, it was experimentally
found that these existing algorithms, though work sufliciently well for the
IRIS data set , where there are 3 equal classes of 50 data each, they fail
for the data set where unequal sized classes present. For these cases the
cluster centers produced by the algnrlthmﬂ arc very much dillerent from the
physical cluster centers.
So a new algorithm has to be deve]crped that works aqually well for the data
set having equal sized classes and at the same time, for unequal classes pro-
duce a better cluster centers which are close to the physical cluster centors.
'To remove the bias in u;- completely a new set of generalized meme-
bership {unctions is chosen that satisfies the four conditions for a genuincly
cornpetitive iearning vector quantization. The new generalized membership
function is : | |

Ix = v, ||2
Uy = Emp(] Tlx""vl 2) (1?)

This is a continuous function in (0, 1].

The objective function J is taken to be same as before:

13



k
g = Z‘M’itr""‘v':_’lr'v-"2

=]

where vy, v3,..., vy € RP are the set of prototypes, k is the number of clus-
ters and kK > 2

The update equations for the winning prototypes and the non-winning proto-
types are derived by minimizing 7 and using the u;, as given in the eqn(17).

The derivation of the updation equation for the winning prototype:

k k
T = Yuelx=vilf = lx=will?+ 3 uilix - vell?

r=1 r#1

Differentiating, .7 with respect to the winning prototype v; gives

8 = —2(x—vi)+ g (Sl wirllx — Vi)

~2(x = vi) + Lo planirllx — vell)

_ 2
~2(x — i) + k4 tir (3 (~ B Dlix — v |’

~2(x — v¢) + Torgs thir (55 (— e I = vl
~2(x = Vi) = Loy tie Tt IIx = vell*

~2(x = vi) — 2T s war(Eudr )2 - vi)

-2(1 + Thy wir (v x - i)

I

14



Derivation of the updation equation ofthe non-winning prototype:
Differentiating J with respect to non-winning prototypes v;, j # i,gives

k
B = B(llx = vill? + 2k wirllx - viJ2)

a—\a;;(“ij”x - 1"".sr'||2 + Ef;éi,j wirf{x — v, J|*)

(v i)l = V117 + wiz - (llx — v,11%)

— |
ui5(av; i) 1% = Vil — 2uis(x — v;)

2uij e 1% = VI = 2us(x = ;)

= tij(x - Vj)(HEE%ﬂ; —1)

So,the updation equation of the winning prototype is:

vi{t +1) = v;(t) + Av;

where 57
. r— ’._._....
Av; o Bv. -
or, |
k 2
Avi = o/(1 4+ 3wy (X =Vrllyny e (18a)
2" =il

The updation equation for the non-winning prototype is:

Vit +1) = vy(t) + Av;

where 8.7

Av; =o' —

e Ov;

Here, the sign is taken positive to make the updated v; move closer to x.
So,

— v:lI2
Av-=a'u,~(”x il 1)(x — vy 18b
j = elug(E ) (180
where @’ = %, and o is the learning rate.

15



The comparison belween the updation equation of the winning and the
non-winning prototype is based on the observation that,

X—V: 2 XV r ?
g () < () + 58w (Pl )
X—v||? r
= uij(H‘fEﬂb) < eru “"(H :
X-— : k - — ¥y 2
> wi(fod) —wi < T () +1

—v,li3 _vrl?
= w1 < 1+ e (Eudy? (19)

Clearly, eqn.(19) indicates that the input vector = has a more signifi-
cant eflect on the winning prototype i.e. the updation for the winner is
greater than the updation for the non-winner.

The adaptation of the winning proiotype v; can be investigated by study-

ing the term Z,.# u,,("x v “2 )2 in eqn.(18a) which represents the effect of
the non-winning prﬂmtypm Assume that v, is the non-winning prototype
such that f|x — v,[|* > |x — v;||%. According to the defn. of w;, in this

case, when r # 1, u; — 0. llence H‘T(H::ZIIII;) — 0. 5o, Av; given by
eqn.(18a) is small. However, if |x — v, ] = ||x— v}l?, then u; — 1. So, Av;
increases. In summary, the presence of v,, such that |[x — v,||? = |[x -- v;]?
increases the updation of the winning prototype towards the input x, while
the presence of v,, such that such that {|x — v,.||* > ||x — v;||*decreases {1l
updation of the winning prototype towards x. This method of competition
is intuitively reasonable.

16



The algorithm can be summarized as folows:

1. Select the codebook of size k; fix ag, V; sct. L = 0;
randomly generatle the initial set of prototypes V == (v, vq, ..., vi)

2. Calculate a = ag(1 — %)
3. Ior each input vector x :

o find [lx = vill? = miny, v (1% ~ v, 12}
e evaluate u;,. according to eqn.(17).

¢ update winning prototype v; and the non-winning prototypes
v; # vi according to eqn.(18a) and (18D) respectively.

4. ikt <N ,thent =1t¢+41 and go to step 2.

-t

The performance of the of the existing algorithms for the data set hav-
ing unequal sized classes is poor (chapter 4). 'The cluster centers pro-
duced by them are away from the class mieans. This is because the up-
dation for the non-winner prototypes for these methods, given by equation
(12b),(14b),(15b),(16b) are comparatively large. So, in the initial phasc
of the learning process the total updation for the prototype vector of the
smaller class, as the non-winner(when x _belonging to the larger class is
processed) is much larger than the total updation, as the winner(when x
corresponding to the smaller class is processed). So the prototype corre-
sponding to the smaller class is being pulled away from the physical class
mean, towards the larger class.

We show below, that the non-winner updation {or the proposed method
is comparatively smaller than those for the existing methods, thus reducing

the displacement of the cluster center for the smaller class from its physical
class mean.

For the proposed method uif(w — 1) in eqn.(18b) with u;; specificd
by eqn.(17) has maximum value of % ~ (.36.During the initial phase of the
learning process, ||x — v, = {lx — v;]|* and so, in this phase the value
of u; for Harmonic FALVQ, Geometric FALVQ and Arithmetic FALVQ
will be greater than 3. So, in Av; given by eqn.(14b),(15b),(16b) the term
ufj > ;} = .25. S0, in many cascs, it happens that for these algorithms,
the value of the term contributing for the updation of the non-winnmer is

17



greater than .36 or approximately ﬁ, that is, Av; [or these is greater than
the Av; for the proposed method. Due to this, the non-winner prototype
will be pulled more towards x by these algorithms than the proposed one,
In FALVQ uir € (0,3). So, uZ < 1. Hence the difference hetween Av,
for FALVQ and the proposed method is not very significant. ITowever, aw
alrcady said the bias present in the definition of u;, of FALVQ detoriorate:
the perforinance of FALVQ.

The proposed method is also not aflected by scaling of data. lence this

is scale invariant in the sense of the following proposition.

Proposition :

Let X = {x1,X2,...,%,} C R? and

let Vg = (v1,0,Vv20,...,Vk0), Vig € RP be a sct of initial prototypes.

Let 7 be fixed positive number and define sets of scaled data and initial
prototypes by:

Y ={y,vy2...,¥yn} =X = {mx1,m0,...,17%,} and

Wo = (w10, Wa0,...,Wko) = Vo = (TV10,7V20, .- -, TVi0)

Then applying the proposed method to X, initializcd by Vy, is equivalent.
to applying the proposed method to Y, initailized by Wy, in the sense that

Wit = TV, :j=1,2,.,.,,&'1"1?‘1-({!,:{},1,...

Proof:We initially show thal the membership values {u,.} for X and Y are
identical, because they involve ratios of norm values, so the scaling factor
cancels out,just as in

2 2
}'““Wr T"X— Wr
expl(] = exp(1
( y_wig) p( mmwig)
”x“"" Vruz
= exp(1 )
||1‘(--"b*'1i||2

We usc induction to prove the proposition. T'he result holds for ¢ = 0
by hypothesis. We now assume it to hold for arbitrary t — 1, and show, it
holds for .
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By eqn.(18a)

, Y — Wil
Wit = W1 +a(l+ Z“ir( ’

7 )2)(}' — wi,t—l)

for the winner prototype.

S0,
wig = Wigr+o/(1+ TEu (Rl )2y (o - 7v;, )
= W1+ a'{l+ E,?g, u,,-(”i :": :”5)2)’?'(}( — Vit—-1)
= TV + o' {1+ Zf?t, “«ar(“i_::f :H?)z)(x —= Vit-1)
= tfvig-1 + 0/ (1 Db ue (i )2 (x = vig)]

since u;, is independent of =

Wit =TV

By eqn.(18b)

Y — Wy-i

f
Wit = Wy 1+ oty — 1
It Ht—1 t_;l(
Y— Wit 2
for non-winner prototype j # i
So,
L | tyy . f ITX=TV ] |
Wit = Wit olug ”Tx**\’u 1”L b)(mx -
X-v

= TYjt-1 + & TL;’}T(HH‘E—:-"’ (x —

— * for. (H X Vi 1|I

- T{v.‘htul + & u‘:.?(”x_t.\r{! 1“ 1)(x o

19

Wy — Wj,t~1)

Wj,twl)
Vii-1)

Vit—1)]



since u;; is independent of 7
wir =TV for j#i

So, for cach t,

Wit = TVt

I

W e =TVjy J#£1

Hence the proposition.
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Chapter 4

Experimental Results and
Comparison

In order to judge the performance of the algorithms, we have used the
following measures:

e number of misclassification.

e a measure Z (named as "total distortion") and it is defined as,

k
4 = X Xu,-,.”x — v, ||*

xeX r=1

( Note that uy, = 1 for r = 4 for all the algorithms. When » # 9 cacl,
algorithm provides its own value of w;,.)

4.1 Results on IRIS data

The GLVQ, FALVQ, Harmonic FALVQ, Geometric FALVQ, Arithmetic
FALVQ and the proposed algorithms were tested using Anderson’s IRIS data
set, which has extensively been used for evalualing the performance of the
pattern classification algorithms|1]. This data sct contains 150 feature vec-
tors of length four, which belong to 3 classes representing different IRIS
subspecies. Each class contains 50 feature vectors. One of the 3 classes is
well seperated from the other two, which are not easily seperable due to the
existence of similar vectors. The performance of the algorithms, tested on
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this data set is evaluated by counting the number of the classification errors,
i.e.,, the number of feature vectors that are assigned to a wrong cluster by
the algorithms(6),[7].

The raw IS data wero classified by the GLVQ, dillerent FALVQ al-
gorithm.;, and the proposed algorithms with N = 500 and different inilinl
vajues of the learnimg rate. Table 1 shows the corresponding results.

The GLVQ, FALVQ, Harmonic FALVQ, resulted in 16 or 17 classification
error when they are applicd on the raw IRIS data set. This is typical when
the IRIS data set is classified by the unsupervised aleorithms. The proposcd
method also has 16 or 17 classification errors, with the data set.Cleometric
FALVQ has a slightly betier performance, as it misclassified 12 feature vee-
tors. The Arithmetic FALVQ algorithm is clearly inferior to the othors,
since in this case it has a classification error 23.

Scaled IRIS data(IRIS/10) is also used for testing the algorithms. 1'he
GLVQ algorithm being sensitive to scaling of data, resulted in 50 classifica-
tion errors with a == 0.6. While the FATVQ, Harmonic FALVQ, Ceomet.ric
FALVQ, Arithmetic FALVQ are scale invariant. ‘['he proposed alporitlin,
as already proved is also scale invariant, lence their performance is 1o
allected using scaled I1RRIS data |

The performance of these algorithms are also tested using data set con-
laining unequal sized classes. From the IRIS data set, 3 classes are [ormed,
where class 1, class 2, class 3 conlain 50, 30, 10 leature vectors respectively
taken from the corresponding class 1, class 2.class 3 feature vectors of the
IRIS data set. So the number of feature vectors in this data set, is 90. The al-
gorithms are tested on this data set of unequal sized class with N = 500 and
ag = 0.05. Proposed method along with FALVQ gives the best performance,
as 1t misclassified only 2 feature vectors. Harmonic FALVQ misclassified -
feature vectors. The performance of the Arithmotic FALVQ is worst since
it misclassilied 26 feature vectors. Table 3 shows the correspondin g results.

4.2 Results on Artificial Data Sets generated in
«RZ

~ The performance of the algorithms are also tested using
Artificial Data sets. The artificial data set contains two classes which are of
unequal sizes. Two classes are gencrated using 1000 points. The points are
uniformly distributed in each class. The class 1 has an apriori probability
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of 0.8, wiile the class 2 has an apriori probability of 0.2, So class | has
larger number of points than the class 2. The number of points in class 1
1s 790, whereas in class 2 it is 210. Figures 3, 10, 17 shows the two o)asses
with interclass distances 0.5, 0.2, 0.01 unit, rospectively. The class 1 has a
radius of 2 unit with center at (0,0). Class 2 has a radius of 1 unit with
center at (3-+interclass distance,0). The pliysical class means of the classes
are therefore, their centers.

The performances of the algorithms on these data scls are shown in ta-
bles 4, 5, 6, with IV = 500 and ag = 0.005. ¥or interclass distance=0.5, the
proposed method classified all feature vectors correcily. Also for interclass
distances 0.2 and 0.01, the proposed method gives thie best performance by
misclassilying 4 and 22 feature vectors respectively. As can be seen from the
tables 4, 5, 6 numbers of misclassification by the proposed method is much
less than thosc of the other algorithms. Tor all these data sets, the next
best performance is given by FALVQ and the worst performance is given
by Arithmetic FALVQ. Tables 7, 8, 9 show the list of the cluster centers
obtained by the algorithms for the artificial data scis. with N = 500 and
ap = 0.00L. Figures. 24, 25, 26 give the graphical representation of the same
cluster centers. In the graph, cluster centers produced by an algorithm is
marked by a number. The left position of the number represents the center
for the class 1, wihile the right position is the center for ¢lass 2.

It can be scen that, for the existing methods the cluster center lor class
2 has been pulled towards the larger class, while the proposed algorithm
obtains the cluster center for class 2 closest to its cliss means.

The performance of the algorithms are also tested using the distortion
measure Z. Table 10 shows the total distortion obtained by different algo-
rithms on dilferent data set. The values are obtained after N = 500 and
with a9 = 0.005. The distortion obtained using the proposed algorithm is
minimum among all algorithms, for each of the data set.

4.3 Results on IRS Imagery

The performance of the proposed algorithm is tested on IRS lmagery.
IRS stands for Indian Remote Sensing Satellite. The data used for this work,
is taken from the satellite IRS-1B. The satellite is equipped with 2 dilferent,
sensors-LISS 1 and LISS 11, Data used for this work is from LISS Il scnsor.
LISS I1 has a focal length of 324.4 meter with a spectral range between 0.45
-U0.80 micrometer.- The whole spectral range has heen divided into 4 bands,



namely Blue (0.45~0.52 um), Green (0.52—0.59 o), Red (0.62—0.68um),
Infrared (0.77 — 0.86m).

'The scene used for evaluating the performance of the algorithm is Cal-
cutta scene. 256 x 256 image for each of the four bands are taken. Figures
27, 28, 29, 30 show the corresponding Band 1, Band 2, Band 3, Band 4 im-
ages. The region primarily consists of 6 different types of landcovers. The
6 classes are Clear water, Turbid Water, Concrete Structures, Iabitation,
Vegetation and Open space.

The constituents of these classes are described below.

1. Pure Water: This class contains pond watcr.
2. Turbid Water: This class contains rivers.
3. Concrete: This class contains buildings, railway lines, roads.

4. Habitation: This class basically consists of suburban and rural habi-
tation i.c. concrete structurcs but comparatively less in density.

5. Vegetation: 'This class represents the crop area and the forest area.
6. Open Space: This class contains Barren land |, sand.

The proposed algorithm is used for clustering the pixels in this IRS image,
with number clusters k taken to be 6,5,4 and 3. The best results are obtained
with k = 3. Reconstructed image with k == 3 is shown in the fig.31. Each
of the 3 classes in this image is shown seperately in Figures 32, 33, 34. It
has been possible to label 2 clusters among 3 clusters in the images. These
2 classes which can be clearly identified are Water and Land, with the third
class consisting of very few pixels (noise pixels). The results with k = 4,
k=9, k= 6 are however not satisfactory.
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Chapter 5

Conclusions

lere we have presented a new fuzzy learning vector quantization algo-
rithm. The algorithm uses a membership function which is continuous on
(0, 1] and hence, unlike the other algorithms it removes the inherent bias
towards the winner. This helps in increasing the competitive eflect among
the prototypes. The large non-winner updation, that were present in other
slgorithms, is also eliminated. Hence the performance of this algorithm {or
~ a data set having unequal sized classes is much better. The algorithm is
tested using different number of iterations, and also dillerent learning rates.
It is also tested with different initialization. The results obtained in all these
cases are same. Total distortion obtained by this algorithm is also the Jeast.
The proposed algorithm assumes that the number of clusters present in the
duta set is greater than=2. Experiments are done with data sets which are
non-overlapping, where the algorithm performs better than all other existing
methods. Unlike the previous algorithms, the proposed algorithm requires
slightly more computations as it requires to compute exponential member-
ship functions.

A possible way for the improvement in all these algorithms is to find
thé concrete mathematical setup with theorems and proofs which judge the
performance of the algorithms and use the results for Turther modifications.
This however ig a diflicult task.



Chapter 6

Tables and Figures

Algﬂrft.hm [ oo l_;(]fasiﬁ cation Iirrors
GLVQ 0.5 17
0.6 17
0.05 | 17
FALVQ 0.05 | . 17
: 0.005 | 16
Harmonic FALVQ | 0.05 | 16
~{0.005 16
Geometric FALVQ | 0.05 12 B
) 0.005 | 12
Arithmetic FALVQ | 0.05 23
| 0.005 | 23
Proposed Method | 0.05 17
. 0.005 | 16
TABLE 1: Performance of the algorithms on the 1iUIS data set, N=500.
Algorithms ag | Classification Errors
GIVQ 0.6 | 50
TALVQ 0.005 | - 16
HFALVQ | 0.005 16
GFAIVQ 0.005 12
AFAIVQ | 0.005 23
Proposed Method ) 0.005 17

TABLE 2: Performance of the algorithms on the scaled IRIS
| data(IRIS/10), N=500.
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Algorithms | Classification Error
“GLVQ 2
FALVQ | 2 L
~Harmonic FALVQ | T4
| Geometric FALVQ 18
Arithmatic FALVQ | 6
| Proposed Method ' 2 |

TABLE 3:Performance of the algorithms on 3 unequal sized classes, with
feature.vectors taken from IRIS data set, N=500
class 1 contains 50 vectors,
class 2 contains 30 vectors,
class 3 containg 10 vectors.

g = 0.05
- _A]gt_;ithma Classification Errors
GIVQ 22
FALVQ 22
Harmonic FALVQ | 32
Geometric FALVQ 62
Arithmetic FALV®Q | 128
Propoﬂ__e_t_i Meothod 0

TABLE 4: Performance of the algorithms on artificial data set with 2
classes of unequal size, interclass distance = 0.5, ap = 0.005, N=500.
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"~ Algorithms Classification Errors
GLVQ A7
T FAIVQ 45
Harmonic mVQ 53
[ Geometric FALVQ 09
Arithmetic FALVQ 150
B Prop med@hod 4

TABLE 5:. Performance of the algorithms on artificial data set with 2
classes of unequal size, interclass distance = 0.2, ag = 0.005, N=500.

F Algorithms | Classification Errors
GLvQ | 92
- FALVQ 74
Harmonic FALVQ 89
Geometric FALVQ 11
i_ﬁithmetic FALVQ 167
Proposed Method | 22

TABLE 6: Performance of the algorithms on artificial data sct with 2
classes of unequal size, interclass distance = 0.01, ag = 0.005, N=500.
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L

“Cluster centers
cluster 1 cluster 2
_ GLVQ  [(-0.038,0.027) | (3.24,0.027)
| FALVQ (-0.064,0.014) | (3.27,0.028)
Harmonic FALVQ h (-0.119,0.011) | (3.164,0.029) |}
Geometric FALVQ | (-0.058,0.002) | (2.62,0.026) |
Arithmetic FALVQ | (0.14,-0.003) | (1.628,0.051)

" o

Proposed Method | (0.}_?,9.02) (3.81,0.022)
| Actual Class Center (0,0) (3.5,0) |

'Algorithms

‘Table 7 : Actual dass centers and cluster centers produced by dilferent
algorithms on the arlilicial data set with inter class distance = 0.5,
N = 500, ag = 0.005

Algprithm; Cluster centers ]
cluster 1 cluster 2
GLVQ (-0.087,0.013) | (2.81,0.037)
FALVQ | (-0.108,0.011) | (2.88,0.033)

Harmonic I'_'mQ (-0715,6.0158) (2.79,0.03)
" Geometric FALVQ | (-0.086,-0.004) | (2.25,0.044)
Arithmetic FALVQ | (0.10,-0.004) | (1.49,0.050)
Proposed Method (0.18,0.02) [ (3.48,0.002)

— s i - $
| Actual Class Centers (0,0) (3.2,0)

Table 8 : Actual Class Centers and cluster centers produced by different
algorithms on the artificial data set with inter class distance = 0.2,

N = 500, ag = 0.005

_i
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" Algorithms —] Cluster centers

cluster 1 cluster 2
GLVQ (-0. 168..0. 021) ﬂ(2.44,0.{]85)
“FALVQ (-0.154,0.002) | (2.6,0.052)

__Harmonic FALVQ_ | (-0.18,0. 003) | (2.53,0.04)

Geometric FALVQ | (-0.09,-0.007) | (2.07,0.05)
Arithmetic FALVQ_| (0.07,0.005) | (1.404,0.036)
Proposed Method | (0.131,0.019) (3.13,0.010)

Actual Class centers r (0,0) (3.01,0)

Table 9 : Actual class centers and cluster centers produced by different
algorithms on the artificial data set with inter class distance = 0. 01,
N"""500 0'0--—[]005

[ !ﬂgﬂ}ithms [T IRIS ] Artificial data set
§=05]6=02 [§=0.01 |
GLVQ " 225.4 | 2073.06 | 2033.79 | 1997.93
__FAIVQ | 216.48 | 2131.24 | 2065.13 | 2010.04

1

Harmonic PALVQ | 369.21 | 2648.21 | 2527.72 | 2438.23
Geometric FALVQ | 752.97 | 3446.47 | 3157.055 | 297892
Arithmetic FALVQ | 1162.73 | 4024.84 | 3620.17 | 3382.2&
Proposed Method | 102.88 | 1360.21 | 1409.49 | 1432.13

Table 10: Distortion produced by different algorithms, N=500, og = 0.005,
6 is the interclass distance between two classes (unequal sizes) in the
artficial data sct.

Algorithms Number of Iterations, N
N=300.1 N=500 | N=800
GLVQ {22 22 | 22
FALVQ 22 22 22
Harmonic FALVQ 32 | 32 32
| Geometric FALVQ | 62 | _651 62
Arithmetic FALVQ 128 128 128
Proposed Method | 0 | 0 0

Table 11: Number of misclassification produced by dilferent algorithms on
~ different. number of iterations, oy = 0.005
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A]gorﬁ;‘hms. |1 ~ learning rate, o
ap = 0.003 | ap = 0.005 l:aT-. = 0.007
~ GLVQ 22 22 22
| FALVQ 22 22
H;rmonFFALVQ _ 32 32 : 32
" Geonetric FALVQ 62 62 62
Arithmetic FALVQ 128 128 128
I_‘_’}'apus_e_(_:l:f\dethnd _ 0 0 0

Table 1% Number of misclassification produced by different algorithms on

diflerent learning rates, N = 500

“Algorithm | Trial
i #1 [ #2 [ #3 ] #4 | #5
Proposed Method | 0 [ 0 | 01 0] 0
Table 13: Number of misclassifications on difTerent initialization, N = 500,
ag = 0.005,
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Fig 22:Performnance aof arithnetic FALVG algoritbhn.

interclass distance = 0.01
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