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Abstract

Packing of uniform 2-factors, (existing of 4—cycles) in the complete und:-
rected graph with n verter considered. Forn = 4i, an algorithm 8 giwven which
13 considerably simpler than the existing algorithm. This case 13 modified to get

result forn =4t 4+ 2. For the cases n 4 + 1 eandn = 4t + 3, empirical

studies are done.



1 Introduction

A Steiner triple system (more simply, triple simple) is a pair (S,7), where S is
the vertex set of the complete undirected graph K, of n vertices and T'is a collection
of edge disjoint triangles (or triples) which partition the K, in to the vertex set S. The
number n = |§| is called the order of the triple system (5, 7). It has been known that
a triple system of order n exists if and only if n =1 or 3 (mod6)[1]. It is trivial to see
that if (S, T) is a triple system of order n then |7] = n(n — 1}/6.

Now a triangle is also a 3-cycle and so a Steiner triple system (S, 7) can be describe as
an edge disjoint collection of 3-cycles which partition K,, (based on S). Since there is
nothing particularly sacred about the number 3, every single question raised for triple
systems can also be raised for m-cycle systems for m > 4. An obvious definition here:
an m-cycle system of order n is a pair (S, C), where S is the vertex set of complete
undirected graph K, and C is an edge disjoint collection of m-cycles which partition
K, based on 5. Of course |C| = n(n — 1)/2m. Roughly twenty-five years ago, serious

work began on attacking a wide range of m-cycle system problems|1].

2 Existence of m—cycle systems

Certainly the place to start any survey on m—cycle systems is with the existence
problem; i.e., the determination for each m > 3 of the set of all n such that an m—cycle

system (S, C) of order n exists.

2.1 Steiner triple systems

Consider some example. In what follows we will denote the triangle

X

AN

by {z,y, z} or simply xyz in any order.

- Example 1 . The unique triple system of order 3.

1,2,3 or 123



Example 2 . The unique (to within tsomorphism) triple system of order 7.
(1,2,4) (3,4,6) (5,6,1) (7,1,3) (2,3,5) (4,5,7) (6,7,2).
A new idea has been proposed in this paper using cycles of the complete undi-

rected graph K, which is as follows.
Note. In what follows, denote the 4 -cycle

sz‘

by any cyclic shift of (z,y, z,w) or (y,z,w, z) or simply (y z w z ).

3 Packing system

Definition 1 : 2 xI—uniform k— near factor: Given a complete undirected
graph K,, with n vertices, n =1lt+k, 1 23, k=0,1,..,1 -1, for somet > 1, (
all n,l and t are +ve integers, and k is non -ve integer. ). By 2 x 1 (read as
2 by 1 )-uniform k-near factor of K,,, we shall mean a collection of vertex disjoint

t-number of cycles each of length 1 with k vertices not occurring in that collection.

Example 3 . Consider K5, t = 1,1 =4 and k = 1, then {(1,2,3,4)} is a
2 x 4-uniform l-near factor of Ks with one verter viz, 5’ dose not occur tn this
collection. Also {(2,3,4,5)} is another 2 x 4-uniform l-near factor of Ks with

one vertex viz 1’ dose not occur in this collection.

Example 4 . Consider Ky, t =2,l=4andk =1, then{(1,2,3,4),(5,6,7,8)}
i9 a 2 x4-uniform 1-near factor of Kg with one vertex viz 9’ not in this collection.

Also there are other such factors extsts.

Example § . Consider Kg, t =2,l=4 andk =0, then {(1,2,3,4),(5,6,7,8}}

is a 2 x 4-uniform 0-near factor of Ks.



Remark.

1. It is noted that, if &k = 0, then a 2 x 4-uniform O-near factor of K, is

nothing but a 2-uniform factor of K,,. So in such a case for simplicity we use only

the terminology 'factor’.

2 . For k # 0, the k vertices of K, which dose not occur in a 2 x l-uniform

k-near factor f of K, said to be left vertices of K, with respect to f.

3 . Since each vertex occurs in a collection of above type contribute 2 degree
and each cycle is of same length, that is the reason for useing the terminology

2-uniform’.

Definition 2 : Packing system: Given a complete graph K, with n = It + k for
t>1,1>3and k=0,1,....1 - 1. By a packing of K, we mean a collection P;;
of all 2 x l-uniform k-near factor of K, such that any two 2 x l-uniform k-near
factor of that collection has no common edge and it is denoted by (Piz,n). The

number of 2 x l-uniform k-near factor of K, in Pi; is said to be size (or order)
of Py, and denoted by O(’P;,t,n). |

Problem:

This paper exclusively studies for a complete undirected graph K, for
n =1t +k for | = 4. More precisely it provides an algorithm for computing

P,: when k=0 and 2 and compute the size of Py ;.

4 Existing Results.

The reader is referred to [2] for this section.

Let v be an even integer and H, be the complete undirected graph on v vertices
with the edge of a 1 -factor deleted, throughout this section. Let us denote D(m) to
be the set of all integers such that H, decomposed into isomorphic 2 uniform -factors

consisting entirely cycles of iength m.

Definition 3 . An (A k) -system i3 a set of k disjoint pairs (p,, q:) covering
the elements of {1,2, ...,2k} exactly once and such that g.—p, =7 forr =1,2,.., k.

Similarly, a (B, k) -system is a set of disjoint pairs (p,,q,) covering the elements



of {1,2,...,2k — 1,2k + 1} ezactly once and such that ¢, —p, =7 forr=1,2,.. k.

Lemma 1 . An (A, k) system exists if and only if k= 0 or 1 (mod4) and
an (B, k) system exists if and only if k= 2 or 3 (mod4).

Definition 4 :Design. Let X be a finite set of points and let B = {B; : i €

I} where I is an index set, be a family of subsets B; (not necessarily disjoint)
-said to be blocks of X. The pair (X, B) is called a design.

The order of a design (X, B) is | X| (the cardinality of X) and the set {|B;| : B; € B}
i3 the set of block-size of the design.

Definition 5 :Parrallel design. Let a design (X, B) be given. A parallel class of
blocks ts a subfamily G C B of disjoint blocks, the union of which equals X.

Definition 6 : We shall consider of length design of the form (X, G, P), where X
is a finite set of points, G is a parallel class of subsets of X called groups and P
ts a family of subsets of X called proper blocks or simply blocks . Let s,r and )
be posttive integers. A design (X,G,P) is a transversal design T(s, A\;7] if

(i) |G;| =1 for every G; € G,

(1) |G} = s,

(iii) |G; N Bj|l =1 for every G; € G and every B; € P and

(iv) every pair set {z,y} C X, such that z and y belongs to disjoint groups is
contained in exactly A blocks of P.

Obviously in this case, | X| = sr,|B;| = s, for all B; € P and |P] = A\?r.

Definition 7 : A resolvable transversal design R1ls, \;r] is a transversal design
T1s, A; 1] in which the family P of blocks can be partitioned into Ar parallel classes.

Denote R1(s, ), the set of integers r for which resolvable transversal design
RT]s, ;7| exists.

Theorem 1 . An resolvable transversal design RT(s,\) is same as a decompo-
sition of the complete s-partite graph K x,. A into tsomorphic s — 1 factors with

each component of each factor being the complete graph K,.

Lemma 2 . Let k be an even integer. If there exist v € D(k) and a

resolvable decomposition of K,, into k-cycle then 2v € D(k).



Theorem 2 . v € D(4) if and only if v = 0 (mod4).

Proof. The method is essentially Bose’s method of "symmetrically repeated difference”
from the theory of BIBD'‘s. It turns out that for the problem in question it is more often
then not convenient to take as the vertices of the complete graph the elements of the
additive group Z, of residues modulo n, with one or two additional elements o0o; and
0oz and assume our problem to have an automorphism having a cycle of length n and
one or two fixed points. The problem of obtain a solution then reduces to constructing
a "base" 2-factor R; the remaining 2-factor are obtained by developing R with respect
to the group in question.

The necessity of the theorem is obvious. Let v = 4¢,t > 1. First we show that there
exists a resolvable decomposition of the complete bipartite graph K, , into 4-cycles. If
V= ViU V; is the bipartition of vertex set of K, ,, partition each V; arbitrarily into 4-
subsets S;; (1 =1,2;j=1,2,...,t). Consider a new complete bipartite graph K, ; whose
vertices are the sets S;; and decompose it into 1-factors. From each 1-factor of this K,
we get two 2-factors has edges S1; and Sy, 7 = 1,2,...,¢t and if S;; = (ay;, b;;, 55, di;)
then the 4-cycles (ay;, az;, byj, bo;), and  (ey5, co5, di;, do;) belongs to one 2-factor while
the cycles (a5, cz;, by, do;), and (aq;, dyj, bej, ¢1;) belongs to the other 2-factor.

Now by the previous lemma, the existence of v € D(4) if and only if 2v € D(4).
Hence we only need to construct decomposition of H, for v = 4 (mod 8 ). Thus let
v = 8t+4, and let the vertex set of our complete graph be V= Z4 .1 x {1, 2} J{o01, 002}.
An element (a,?) of Z x {i} will simply be denoted by a;. Let {{(pr,q-) : 7=1,2,...,2t}
be an (A, 2t)-—-system or a (B, 2t)— system depending on whether t is even or odd.
That is ¢, —p, = r forallr =1,2,...,2t and U {pr. ¢} C {1,2,...,4t +1}. Let = and
y be elements defined by

{z} ={1,2,..,4t+1} \ U{pr o}
r=]

2t
{y} ={1,2,..,4t+1} \ U{2p, 29,}

r=1
Define a 2-factor R whose components are 4-cycle as follows:-

One component of R is

(mh I, 002, yz)

and the remaining 2t components are

((pr)1, (gr)1, (29r)2, (2pr)2), wherer =1,2,...,2t.

Then R is a base 2-factor with respect to

a = (001) (002} (01,11, ..., {4t)1) (02, 12, ..., (41)9).



The unused edges form a 1-factor
F = {[oo1, 00s], [i1, (1 + 2)2] :1=0,1,...,4t}

where z = 0 or 4 depending on whether ¢ is even or odd.

5 Improvement over the existing algorithm.

From the existing result for computing all 2 x 4 — uniform 0-—near factors of
a K, for n = 4t it is clear that if a perfect matching deleted from K,, then it is en-
tirely 2— uniform factorizable. This paper supports a simple algorithm for finding all
2 x 4—uniform factor. Also this.algurithm can be applied for K,,, n = 4t + 2 by slightly
modifying it. . .
Case 1. n = 41

Algorithm 1 .
Input: A complete undirected graph Ky with verter set (say) {1,2,...,4t}.
Output: Set of all 2 x 4—uniform factor of K.
Step 1.

Find any perfect matching of K., (call it as initial perfect matching )
say

p=1{(1,2), (3,4), ..., (4t —1,4t)}.

there are 2t edges of K, in u; denote those as t;, for i1 = 1, 2, ..., 2t.
Step 2. |
Find all disjoint perfect matching of Ko, the complete undirected graph
of order 2t. Since a complete undirected graph of order 2k has 2k — 1 disjoint
perfect matching, so there 2t — 1 disjoint perfect matching of Ko, let those be

{ﬂlaﬂm ---1.#2:—1}-

Step 3.
For each edge ab of Koy € p;, for some 1 = 1,2,...,2t — 1, if tg =
(z,y) and ty = (u,v), form the four cycle

{x,u,y,v} or {u,z,v,y}.

Since there are t edges in any p;, there are t number of 4— cycles for each p;, and
they are vertex disjoint. Since there are 2t — 1 disjoint perfect matching of K,

there are 2t — 1 , 2 x 4 -uniform factor of Ky.

7



Let us look at an illustration before a formal proof of the algorithm.

5.1 Illustration of the algorithm.

Consider the complete graph K2, of order 12, and let its vertex set be {0,1,...,11}.

One of its perfect matching is

v = {(0,1), (2,3), ..., (10,11) }
taken as initial perfect matching and let
t; = (25,2i +1), fori=0,1,...,5.

Then all disjoint perfect matching of K¢, with vertex set

{0,1,...,5} are :
p = {(0,5), (1,4), (2,3) }
pa = {(1,5), (2,0), (3,4) }
ps = {(2,5), (3,1), (4,0} }
ue = {(3,5), (4,2), (0,1) }

us = {(4,5), (0,3), (1,2) }.

Hence the 2 x 4-uniform factors of K2 are:

{(0,10,1,11), (2,8,3,9), (4,6,5,8) }

{(2,10,3,11), (0,4,1,5), (6,8,7,9) }
{(4,10,5,11), (0,6,1,7), (2,8,3,9), }
{(8,10,7,11), (4,8,5,9), (0,2,1,3) }

{(8,10,9,11), (0,6,1,7), (2,4,3,5) }.



Now it remains to prove the correctness of the above algorithm. By correctness of
the above algorithm, we shall mean that, each edge of the K, not in the initial perfect
matching g used in the 2 x 4— uniform factor one and only once and edges in the initial

perfect matching are not used in any of the 2 x 4—uniform factors.

Lemma 3 . Each edge of K, not in the initial perfect matching p of K,
occurs in the 2 x d-uniform factors of K, exactly once and edges in the initial

perfect matching does not occurs in an of the 2 x 4— uniform factors.

Proof. To prove this, recall that [3] for a complete undirected graph Kj; of even
order, the set of all perfect matchings of Ky are given as follows:
Let the vertex set of Ky be

V= Zy1 |J {0}

Let Fy = {(j,—j):7 € Z\ {0}} U{(0,00)}. Then Fp is a perfect matching of K.
The other perfect matching of Ko are

F=F4+i={G+5i—7:7 € Z \ {0}} |J {(i,00)},i=1,2,....2t = 2.

Now let (i, ) be any edge of K, not in the initial pertect matching of K,. Then
there exist integers a and b such that a # b and ¢ and j are the end vertices of edge
t, and t, respectively. Since the edge (a,b) of K3 occurs exactly once in the set of all
perfect matching of Ky, it follows that, the edge (1,7) of K, occurs exactly once in the
set of all 2 x 4-uniform factor of K.

Now it remains to prove that any edge of initial perfect matching does not occurs in
any of the 2 x 4—uniform factors of K. This follows trivially from the formation of

4—cycle from any edge ab of Kj;. N

On the basis of above lemma we can state the following theorem.

Theorem 3 . Size of packing (Pat,n), where n =4t s 2t - 1.

Proof. It follows from the above lemma that, the number of disjoint perfect
matching of Ky is 2t — 1 and each such perfect matching determine a disjoint 2 X

4—uniform factor of Ky, hence the size of packing (Pss,n), wheren=4tis 2t—-1. 1



Case 2: n =4t + 2.
In this case, if we delete a perfect matching F of K, from K,, then any edge of

" resulting graph occurs exactly once in the set of all 2 x 4-unform 2—near factors of Kn,
and the size of packing (Py, n) is 2t + 1.
The algorithm for finding the set of all 2 x 4-uniform 2— near factors are exactly

same, only the necessary changes takes place in the step 2. Instead of finding all the

perfect matching of Ky, find out all the 1—near factor {(or maximum matching ) of
Kogi1. To find out all the 1—near factor of Kj, where 1 is odd integer, add one
auxiliary vertex oo with the vertex set of Kj, find all the perfect matching of Kj4y and
then delete the edge from each perfect matching of K).1 having one vertex as 0o. The
resulting matching is a 1—near factor of Kj.

Now it easy to obtain a 2 x 4-uniform 2—near factor of K, from each 1—near factor
of Ko.1. Since each 1—near factor of Ky contains t edges of Ko 1, so from each
1—near factor of Ko;.1, it is possible to obtain a 2 x 4—uniform 2— near factor of Ky 2.
Since there are ! number of disjoint 1—near factor for Kj, when [ is odd, it follows that
the size of packing is (Py,n) forn =4t +21is 2t + 1.

Hence we can state the following theorem.

Theorem 4 . Size of packing (Pss,n) whenn =4t +2 132t + 1.

Remark.

It is noted that, the size of packing for K, for n = 4t and n = 4t + 2 whatever
obtained in above are maximum. Since in this cases the degree of each vertex is odd,
so each vertex has degree at least one after constructing the packing of maximum size.
Now the algorithm describe above construct a packing for K, forn =4t andn =4t + 2
and after that each vertex of K, in this case has degree one. Hence the size of pack-
ing in this cases whatever obtained by algorithm is maximum for the graph K, for
n=4tendn=4t + 2.

6 Computation of Size of packing for n =4t + 1 and n =
4t + 3.

It is noted that, there is a theoretical upper bound of packing size and that

( n
5 |
is |~—<] for K,, wheren =4t +k, k=0, 1, 2 and 3 . For k = 1 it becomes

10



[4'!’;&1;:1)] that is [4—2&] that is 2t. But empirically it has been seen that this is not

acheivable for n = 5, 9, 13, 17 and 21. In this case maximum size of the packing is
2t — 1.

In the case of n = 4t + 3 the theoretical upper bound is [(4”2,2): 4(:”3)] that is
(2t +1)+ |3+ 3] thatis 5 for t=1and 2t +2fort > 2ie. [Z] for ¢ > 2.

But for K7 ie. for t =1 the size of packing is 4. Since in this case degree of each

vertices is even, so after constructing packing for K7, each vertex has degree either zero
or even. Now K7 has 21 edges and so if packing size of K is 5 then one edge is remain
which is not in the packing. This edge contributes one degree to two vertex of the K7,
which is not possible as each vertex is either of degree zero or even degree. Therefore

for K7 the size of packing is 4. One of such packing is as follows:

{1(1,2,3,49)}, {(1,3,5,6)}, {(1,5,2,7)}, {(4,2,6,7)}}

For Kj;, the theoretical upper bound is acheivable. One of the packing for K is
{{(7,1,2,3), (8,4,5,6)},

{(7,4,2,86), (9,1,3,5)}),
{(9,2,5,7), (10,1,4,3)},
{(9,3,6,10), (11,1,5,8)}.
{(4,7,8,9), (5,10,2,11)},

{(4,10,7,11), (6,1,8,2)}}

For n =15 and 19 this upper bound is not acheivable which has been seen man-
ually. Instead, the packing size in this cases is 2t + 1.

Thus on the basis of above information, the following can be conjectured.

Conjecture 1. Packing size for K,,, wheren =4t +1, t >1is2t—1 for n < 21.
Conjecture 2. Packing size of K,,, wheren =4t +3, t =3 and 4 is 2t + 1.
Note.

1. According to conjecturel, the packing for the case n = 4t 4+ 1, can be obtained
by the algorithm1 i,e. as in the case of n = 4t. In this case, there is a left vertex for any
2 X 4—uniform 1—near factor of K. Let us define standard packing as: If left vertices
of any two 2 x 4—uniform 1-near factors are distinct in a packing of K,,, this packing

is said to be standard packing for K,. Now to obtain a packing for K,,, n = 4t + 1,

11



omit one vertex (say) a of K, and then algorithml is applied for the resulting graph,
which gives a packing for K3. Now to obtain standard packing for Ky, insert a to
each of the 2 x 4— uniform 0—near factors of the packing for Ky by deleting a distinct

vertex each times. The following example is illustrate this.

Example 6 . Consider Ky with verter set {1,2,3,4,5,6,7,8,9}. Leta = 9.
Then the packing for Kg 1s

{{(1,7,2,8),(3,5,4,6)},
{(3,7,4,8), (1,5,2,6}},

{(5,7,6,8), (1,3,2,4)}}.

Now a standard packing for Kg is as follows:

{{(1,7,2,9), (3,5,4,6)},
{(3,7,4,8), (9,5,2,6)},

{(5,7,6,8), (1,3,9,4)}}.

2. According to conjecture2, the packing for the case n = 15 and 19 can be ob-
tained as follows:

Example 7 . To find out packing system for K5, constder K14 with vertex
sel

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,}.

then find out the packing system for K4, by applying algorithml, which is as
follows:

{{(3, 13, 4, 14), (5, 11, 6, 12), (7, 9, 8, 10)},
{(5, 1, 6, 2), (7, 13, 8, 14), (9, 11, 10, 12)},
{(7,3,8,4), (9,1,10,2), (11,13,12,14)},
{(9, 5, 10, 6), (11, 3, 12, 4), (1, 13, 2, 14)}

{(11, 7, 12, 8), (13, 5, 14, 6), (1, 3, 2, 4)}

12



{(13, 9, 14, 10), (1, 7, 2, 8), (3, 5, 4, 6))
(1, 11, 2, 12), (3, 9, 4, 10), (5, 7, 6, 8)}}.

This is a packing system of K;is.

1t 1s not pDSsible to standardis the packing system of K35 and K9 in the sense
as defined in Notel. It is clear that, in a 2 X 4—uniform 3—near factor of K443, three

vertices are left vertices. If packing size is of 2¢ + 1, then exactly 3 x (2t 4+ 1) instances

are left. Hence 3 x (2t +1) — (4t +3) = 2t instances are occuring twice. Thus
define standard system in this case as: A packing system of Ky .3 for t > 3 is standard
packing system if exactly 2t vertices become left twice and remaining vertices are left
once. In this sence of standard packing system, one of the standard packing system for

K15 is as follows:
{{(15, 13, 4, 14), (5, 11, 6, 12), (7, 9, 8, 10)},

{(15, 1, 6, 2), {7, 13, 8, 14), (9, 11, 10, 12)},
{(15, 3, 8, 4), (9, 1, 10, 2), (11, 13, 12, 14)},
{(15, 3, 10, 6), (11, 3, 12, 4), (1, 13, 2, 14)},
{(15, 7, 12, 8), (13, 5, 14, 6), (1, 3, 2, 4)},
{(15, 9, 14, 10), (1, 7, 2, 8), (3, 5, 4, 6}},
{(1, 11, 2, 12), (3, 9, 4, 10}, (5, 7, 6, 8}}},

which can be obtained from the packing system for K4, by inserting vertex 15 of K5

to each of the 2 x 4-uniform 3-near factor, except last one in the packing system of K4

by deleting a distinct vertex each time from it.

7 Some empirical results of packing system for K, with

cycle of length > 5.

7.1 Packing size of K,,with cycle length 5 for n =25, 6, 7, 8 and 9.

The packing system for Ks;ix, k =0, 1, 2, 3 and 4 is the collection of all 2 x
5—uniform k-near factors of Ks,.«. Regarding the size of packing (Ps1,n), forn = 5,6, 7, 8

and 9 is as follows:

13



1. Packing size of Ks.
The number of edge in K5 is 10 and so the size of packing is 2 and one of
the packing is
{{(1, 2, 3, 4, 5)},{(, 3, 5, 2, 4)}}.

2. Packing size of K.
The number of edges in K is 15 and hence theoretically the packing size is
3. But degree of each vertex is 5 and hence each vertex can occuring at most two
edge disjoint cycles of length 5. Now after constructing two edge disjoint 5-cycle
at least 4 vertices become of degree one, hence three edge disjoint 5-cycle is not
possible. Hence the theoretical bound of packing size is not acheivable. Instead

the size of packing is 2 and one of such packing is
(1, 2, 3, 4, 5)}, {(1, 3, 5, 6, 4)}}.

3. Packing size of K.

The number of edges in K7 is 21 and so the theoretical packing size is 4. But
since each vertex contribute degree two for each occurrence of it in any cycle and
initially each vertex has even degree so after constructing a packing for K7, each
vertex should have either degree zero or even. If packing size is 4, then one edge
remains which is not in the packing and it contribute degree one to two vertices,

which is impossible. Hence the size of the packing is 3 and one of such packing is

{{(1!‘ 2'-" 35' 4? 5)}1
{Q, 3, 5, 6, 7},
{(2, 6, 4, 7, 5)}}.

4. Packing size of Kj.
The number of edge in K3 is 28 and each vertex is of degree odd and

theoretical size of packing is 5. But at least one degree of each vertex remains
after constructing a packing, i.e, at least 4 edges remain which are not in the

packing. Hence packing size for K3 is 4 and one of such packing is

{{1, 2, 3, 4, 5)},

{(1, 3, 5, 6, 7)},
{(2, 6, 4, 7, 5)},

{4, 2, 7, 3, 8)}}].

14



5. Packing size of K.

The number of edge in Ky is 36 and each vertex is of degree 8, the theoretcal
size of packing is 7. But after constructing a packing of this size, only one edge
remains and this contribute one degree to two vertices and all vertices are of
degree zero except those two. This is impossible and hence practically the size of

packing is 6 and one of such packing is

{1(1, 2, 3, 4, 5)},
{(1, 3, 9, 6, T)},
{(2, 6, 4, 7, 8)},
{(4, 9, 7, 3, 8},
{(2, 5, 6,8, 9)},

{(3, 6, 1, 8 3)}}.

7.2 Packing size for X, with cycle of length6forn =6, 7, 8, 9, 10, 11 and 12.

Some emperical result has been prodused for this caseforn = 6, 7, 8, 9, 10, 11 and 12.
Note In the following, {1,2,...,n} denote the vertex set of K, and (e, b) denote

the edge with a and b as terminal vertex.

1. Packing for Ks.
For Kg, the number of edges is 15 and so the theoretical size of packing is 2

and one of such packing is
{{(1, 2, 3, 4, 5, 6)},

{(1, 3, 5, 2, 6, 4}}}.

It is noted that the remaining edges form a perfect matching viz
{(15), (2, 4), (3, 6) } of K.

2. Packing for K.
For K7, the number of edges is 21 and so the theoretical size of packing is 3

and one of such packing is:

15



{{Q1, 2, 3, 4, 5, 6)},
{(1, 3, 7, 2, 6, 4)},

{(7, 4, 2, 5, 3, 6)}}].

3. Packing for Kjp.
For Kg, the number of edges is 28 and so the theoretical size of packing is

4, and one such packing is
{{(1, 2, 3, 4, 5, 6)},
{(1, 3, 7, 2, 8, 4)},
{(7, 8, 1, 5, 3, 6)},
{(8, 5, 7,4, 2, 6)}}.

It is noted that the remaining edges form a perfect matching viz

{(L 7)! (2& 5)1 (41 6)1 (31 8)} of Ks.

4. Packing for K.

For Kg, the number of edges is 36 and so the theoretical size of packing is 6.

But manualy it has been seen that the packing size is 5 and one of such packing
15
{{(1, 2, 3, 4, 5, 6}},
{(1, 3, 5, 7, 8 9)},
{(2, 7,9, 4, 8, 6)},
{Q1, 4, 6, 7, 3, 8}},
(2, 9,5 1, 7, 4}}.
5. Packing for Kiy.
For Ky, the number of edges is 45 and the theoretical size of packing is 7.
But as degree of each vertices is odd and if the size of packing is 7, then only

three edges remains which are not in the packing - it is impossible. Hence the

size of packing is 6 and one of such packing is

{{(1, 2, 3, 4, 5, 6)},
{(1, 10, 5, 7, 8, 9)},
{(2, 7, 9, 4, 10, 6)},
{1, 4, 6, 7, 3, 8))
1,
s

{(2, 9, 5,1, 7, 4)
{(3, 10, 9, 6, 8, 35)
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6. Packing for Kq;.

For Kj1, the number og edges is 55 and so the theoretical size of packing
is 9. Since each vertex is of even degree and if size of packing is 9, then one
edge remains which is not in the packing and so two vertices has degree one and
remaining vertices are of degree zero - which is impossible. Hence the packing

size is 8 and one of such packing is

{{(4,1,2,3,5,6)},
{(6, 1, 3, 4, 2, )},
{6, 2, 5, 1, 7, 3)},
{(6, 8, 1, 9, 2, 10)},
{(6, 9, 3, & 2, 11)},
{(7, 4, 5, 8, 9, 10}},
{(8, 4, 9, 5, 7, 11)
)

{(8, 7, 9, 11, 1, 10

7. Pa.cking for Klg.
For K, the number of edges is 66 and so the theoretical size of packing is

5 and one of such packing is
(1, 10, 2, 11, 3, 12), (4, 7, 5, 8, 6, 9)},
{(4, 10, 5, 11, 6, 12), (1, 7, 2, & 3, 9)},
{(7, 10, 8, 11, 9, 12), (1, 4, 2, 5, 3, 6)},
{(1, 11, 10, 3, 4, 8), (2, 9, 7, 6, 5, 12)},
{{1, 5, 4, 6, 2, 3), (12, 11, 7, 8, 9, 10)}}.

It is noted that the remaining edges are form a perfect matching viz,

{(1, 2), (3, 7), (4, 11), (5, 9), (6, 10), (8, 12)} of K.
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