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Chapter 1

Introduction

Class and class hierarchy play a very important role in the database schema design. As a modeling tool
class provides a generic concept and instances of such concept are the members of the class. Inter-class
relationship is represented by the class hierarchy. Usually a data model does not provide the flexibility
of inter-node relationships present in a knowledge representation tool like semantic network. It only
takes care of IS-A relationship by inclusion dependencies and PART-OF relationship by complex
objects. In most of the application areas the intention of the internal description of a class and the
class hierarchy for the domain are fixed beforehand. The class of an instance is specified during its
insertion to the system and it also strictly conforms to the internal description. However, in a real life
situation such rigid class description and hierarchy may not always be able to accept all instances. For
example, the class description of Person may have Address as an attribute. Now, a Vagabond does
not have an Address, nevertheless he is a Person. There are several ways to tackle this situation:

1. Mark all the instances of Vagabond as exceptions to Person.

2. Remove Address from the description of person so that it does not remain an essential feature
for the concept of person any more.

3. Break the class Person into two subclasses; one with the Address where the existing instances
will be placed and the other without the attribute Address where new instances of Vagabond
will be placed.

The standard data model do not provide any of the above features. However, in order to handle a real
life application properly, a data model should have the facilities to:

1. Flag exceptions to the class.
2. Change the internal description of the class.
3. Create new classes and reorganize the class hierarchy.

So it is evident that internal class description would contain less and less information as the number
of instances increases. A class description should contain only those essential attributes which are
common among all the instances. Such identifying feature set may again vary with the appearance
of exceptions and the class hierarchy may have to be reorganized. In a real life situation, therefore, a



class description will always be approximate and the class hierarchy may have to be dynamic.

In some application areas like Anthropology, Archaelogy etc., the classification of instances and
class hierarchy are not very well-defined. New instances are often found for which the class descrip-
tions and hierarchy need to be changed. New classes may have to be created. The system may start
with an incomplete class hierarchy and initial class descriptions and may keep on modifying them as
new instances are inserted. Thus the schema design process would behave like a learning system. One
such conceptual clustering algorithm for approximate schema design has already been proposed by
Beck et. al.[7]. Their proposal is based on Ezplanation Based Learning and efforts have been made
to update class hierarchy after every instance received as exceptiion. In an application domain where

the number of attributes as well the number of instances are sufficiently large, such an approach may
not be very helpful.

This dissertation starts with an incomplete class description. A set of unambiguous learning ex-
amples are taken where targeted classes are known. These examples are used to learn the identifying
attributes for each class. During actual insertion of new instances the class description, i.e. associated
feature set and class hierarchy may be augmented. New classes may be created. An instance may be
classified as an exception to an existing class. Depending on the application domain and under the
advice of domain experts, when the number of excepiions exceeds a threshold, a class may be broken
into two subclasses or a new class may be added.

An application domain like Archaeology may give rise to instances where incomplete set of at-
tributes may be available. Since an Archaeological material (e.g. a stone statue or a terracotta
sample) may be found broken during excavation, insertion of such an instance with some attributes
unavailable has also been treated in this dissertation. Different criteria have been defined to identify

the best possible match among the existing classes. Such classification would not only be approximate
but may be incomplete as well.

1.1 Salient features of the proposed system

1.1.1 Initial Assumption

1. Incomplete class hierarchy available.

2. Complete set of attributes available.
3. Attribute values are True(1), False(0) or Unavailable(X).

4. A set of unambiguous learning samples are available that cover all the classes specified in 1.

1.1.2 Expected Output

1. A class hierarchy that covers (classifies or flags as exception) all examples (instances) received.
3. Each class is associated with updated set of tdentifying attributes.

& Under classification property indicated.



4. Examples with unavailable data maximally matched.

1.1.3 Additional Features

1. Exploring the possibility of unique classification even with unavailable data.

2. Improvement in classification if some unavailable data are made available.

It should be noted that this system will only work over the identifying attributes. The methods
described here will never consider the non-identifying attributes as the features of the classes. So

throughout the discussion the terms attribute and identifying attribute will carry the same meaning.

The case is also same for supervisor and domain expert. We also never allow multiple inheritance in
the class hierarchy.

The organization of the document is as follows. The next chapter will talk about some existing
results and concepts. Chapter 3 will be on learning and verification techniques. Chapter 4 describes
the classification technique when all the attribute values are known. The very next chapter considers
classification again, but with some unknown attribute values. The last chapter presents a few database
application possibilities based on our algorithms and direction towards future research.



Chapter 2

Present Scenario

This chapter would discuss about some background materials to be used in this dissertation. Basic
ideas about classification and knowledge representation have been covered. Conceptual clustering as
a technique for database schema design has also been discussed. In this dissertation some concepts of

graph theory have been exploited. The necessary background material for that purpose has also been
furnished here.

2.1 Classification and knowledge representation

2.1.1 Classification

Classification is the process of assigning, to a particular input, the name of a class to which it
belongs(14]. The classes from which the classification procedure can choose may be described in
many of ways. Their definition will depend on the use to which they will be put. Classification is
an Important component of many problem-solving tasks. In its simplest form, it is presented as a
straightforward recognition task. Before the classification, the classes should be defined. So it is

required to isolate a set of features that are relevant to the task domain. Each class is defined as a
structure composed of a subset of those features.

2.1.2 Semantic Nets

In a semantic net, information is represented as a set of nodes connected to each other by a set of
labeled arcs, which represent relationships among the nodes(14]. The power of semantic net les in
the ability of the programs applied to manipulate it to solve problems. One of the early ways that
semantic nets were used was to find relationships among objects by spreading activation out from each

of two nodes and see where the activation met. This process is called intersection search. Semantic
het is also used in conceptual dependency and concept learning.

2.2 Decision Trees

The ability to learn classification is fundamental to intelligent behaviour(8]. Concept-learning algo-
rithms can either be incremental or nonincremental. In the second one, the algorithm infers a concept

once, based on the entire set of available training instances. On the other hand for incremental case,



the algorithm revises the current concept definition, if necessary, in response to each newly observed
training instances. Formally a decision tree can be defined as either:

1. a leaf node (or answer node) that contains a class name, or

2. a non-leaf node (or decision node) that contains an attribute test with a branch to another
decision tree for each possible value of the attribute.

Quinlan’s ID3 program induces decision trees of the above form. Each training instance is described
as attribute-value pairs. The instance is labeled with the name of the class to which it belongs. It is
assumed that an instance belongs to one of the two classes: the positive instances, which are exam-

ples of the concept to be learned (the target concept), and the negative instances, which are counter
examples of the target concept.

Schilmmer and Fisher[1986] has developed an algorithm named ID4 to address the incremental con-
struction of decision trees. But there are many concepts that are not learnable by ID4, even though
they are learnable by ID3. Utgoff[8] proposed an algorithm called ID3R, which guarantees to build

the same decision tree as ID3 for a given set of instances and also uses incremental learning tasks.
The ID5R decision tree is defined to be either of:

1. a leaf node (or answer node) that contains
(a) a class name, and

(b) the set of instance descriptions at the node belonging to the class

2. a non-leaf node (or decision node) that contains

(a) an attribute test, with a branch to another decision tree for each possible value of the
attribute, the positive and negative counts for each possible value of the attribute, and

(b) the set of non-test attributes at the node, each with positive and negative counts for
each possible value of the attribute.

2.3 Database Schema Design

Beck et al[7] presented a conceptual clustering algorithm based on current theories of categorization.
The algorithm is used to generate and maintain a database schema containing classes that more accu-
rately represent category structures. The algorithm is based on a trade-off between reasoning about
the class description (explanation based learning) and reasoning about instances (case-based reason-
ing). An instance can be added to a class either because it satisfies an intentional class description or
it is similar to other instances in a class. An exception condition is raised when an instance is similar

to other instances in a class, yet it violates an intentional description of the class. In such a case, the
class may be modified to accommodate the new exception. The input to the algorithm are,

1. An existing database schema containing classes and instances arranged in taxonomy
2. A new class or a new instance
and the output is:

1. A modified version of the database schema which incorporates the new class or new instance.

It is reported that a database management system based on the conceptual clustering algorithm is
implemented, though the computational complexity of the algorithm has not been studied formally.



2.4 Vertex Connectivity - A Concept from Graph Theory

This section describes some important graph theoretic results from [5], which will be used for the
break algorithm in chapter 4. Let G = (V E) be an undirected graph and let a,b € V be such that
(2,b) € E. Set S C V- {a,b} is an (a,b) vertex separator if every path from a to b passes through a

vertex of S. In other words a and b belong to different connected components of G — S. The minimum
cardinality of any (a,b) vertex separator is denoted by N(a,b).

Lemma: Let G = (V E) be an undirected graph and let a,b € V be such that (a,b) ¢ E. Then
N(a,b) can be computed in time O(n%e).

The vertex connectivity ¢ of an undirected graph GG(V E) is the minimal connectivity number of
any pair of unconnected vertices. More precisely,

e M 1 if G is complete
| min{N(a,b);(a,b) € E} otherwise

Theorem: Let G(V E) be an undirected graph and let ¢ be its vertex connectivity. ¢ can be
computed in time O(cn%e) = O(nie?).

2.5 Remarks

In our system the schema will always be approximate and dynamic. For learning we could not use the
decision tree methods(8] as that forces each class to contain strictly one attribute. In our idea each
class may contain one or more than one identifying attributes which will be similar to database classes,
and the initial class hierarchy will be supplied by the domain expert. Again the concept described in
[7] changes the schema at the insertion of each instance, if required. We, however, change the class
structure only when the number of exceptions crosses some threshold value depending on application.
Though we do not differ much from the standard concepts of classification, the algorithms used in our
approach and the corresponding tools are new.



Chapter 3

Learning and verification

The domain expert provides a lattice structure of classes (i.e. a tree structure with classes as the ver-
tices and is-a relationships as directed edges) and some learning instances (each one is attribute-value
pair set with the class it belongs). The purpose is to find a solution for complete categorization of the
attributes among the classes, available in the lattice structure. It is to be noted that contradictory
learning instances should not be given as input. Verification algorithm should be run after the learning

stage which would take care of completeness, uniqueness and of subtle changes required for better
classification.

3.1 Learning

In this section it is described how the identifving attributes are allocated to the classes in the tree

structure. We give the algorithm, discuss its correctness and then consider an example for better
understanding.

3.1.1 Data Structure

With each class we keep information about its <i> parent class, <ii> leftmost chiid class and <iii>
nearest peer class in the right direction. Multiple inheritance is not allowed. Also with each class
there exists a boolean flag new or old and a set of attributes. Initially the flag is new and attribute
set 18 empty for each class.

3.1.2 Algorithm

To describe the algorithm we use the following notations:-
The attribute set of a class C is 4.

. The instance attribute set is I4.

TEMP, and X 4 are two temporary sets.

Phe iflag is the flag for checking intersection possibility.
Mow we describe the algorithm:-



Mark all the classes new:
For each learning instance
Begin
1. Get all the classes on the path from the root to the class
mentioned in the given instance and make tflag off;
2. For each class C on the path starting from root

2.1. If Cis marked new

2.1.1. Cy = I4;
2.1.2. Mark C old;
2.2. Endif

23. Xa=I4NCy;
24. TEMPy =C4 — Xy;
2.5, Uyq = Xy;
2.6. T4 = 14— Cy;
2.7. It TEMP, is not empty
2.7.1. If C is not a leaf class
2.7.1.1 If all the children of C are old
27111, Cp=CoUTEMP;,:
2.7.1.2. else (if all the children classes of C are not old)
2.7.1.2.1. For all the old children CH of C
2.71.2.1.1. CHy =CHy4 UTEMPy;
2.7.1.2.1.2. Make iflag on;
2.7.1.2.2. End For
2.7.1.3. End If
2.7.2. else (if C is a leaf class)
2.721. I, =I,UTEMP,
2.7.3. End If
2.8. End If
3. End For
4. If 14 is not empty or iflag is on
9. Begin
0.1, U4 =C4 U Iy
9.2. P = Parent of C;
9.3. While there exists more than one children of P and
Xa(= intersection over all the children of P) is nonempty
9.4. Begin
0.4.1. P4 = Py UX,4:
5.4.2. For all the children CH of P
0.4.2.1. CHA - CHA — XA;
9.4.3. P= Parent of P,
5.5. End
6. End
End

10



3.1.3 Correctness of the algorithm

To prove the correctness of the algorithm we have to prove that (i) in each step any of the attributes
belonging to the instance and any of the classes will not be lost, (ii) each attribute of an instance
targeted towards a class will always exist in one of the classes on the path from the root to the target
class and (iii) the algorithm is order independent with respect to the instances applied to the system.
To prove the first postulate we find that throughout the step 2 we do not loose any of the attributes.
From the steps 2.3 to 2.6, the attributes taken out of C4 are kept in TEMP,, and the attributes taken

out of I4 are kept in C4. In the next stage the attributes of TEMP, are properly distributed to the
old children classes if those exists or kept in itself as in step 2.7.1.1.1., otherwise those are added to

the 14 for the step 5 where the attributes are added to the leaf class itself. The intersection algorithm
in the step 5 also never removes any of the attributes present in the tree structure, rather it sends the
common attributes towards the parent.

For the second postulate we find that if some attributes are pushed from a class downwards for its
children class,it is pushed only towards the old deserving candidates as stated in step 2.7. Also from
step 2.3 a class can have those attributes only which are at least once targeted towards each of its
children classes. Hence an attribute not targeted towards a class can not exist in any of the classes
on the path towards the root class. But again from the first postulate we find that the attribute is
not lost out of the class hierarchy. Hence each attribute of an instance targeted towards a class will
always exist in one of the classes on the path from the root to the target class.

For the third postulate it should also be noted that step 5 is always checked for common attributes
among the sibling classes and they are sent to the parent class. So the above two results reveal we
find that the learning algorithm gives the same output irrespective of the order of insertion of the
instances. That is, the algorithm places the attributes in relevant classes in an order independent way.

3.1.4 Example

Here we give an example for the learning algorithm. Let us consider the following class hierarchy.
We write the learning examples as target class and corresponding attribute set. The universal attribute
set is {1,2,3,4,5,6,7,8, 9}. The examples are D{1,2,3,6}, F{1,4,5,8}, G{1,4,5,9}, E{1,2,3,7},
D{1,2,6}, D{1,2,3,6,9}. Now we trace the algorithm corresponding to insertion of the examples
with the figure.

1. The path is ABD. A= {1,2,3,6}, B=¢, D=¢

2. Path ACF. A= {1}, B={2,3,6} as B is the old child of A. C = {4,5,8}, F = ¢.

3. Path ACG. A remains same. C = {4,5}, F = {8} as the old child of C. G = {9}.

4. Path ABE. A= {1}, B={2,3}, D = {6} being the old child of B. E = {7}.

5. Path ABD.A remains the same. B = {2}. Since D, E are both old children of B, attribute 3 is
again added to the class B. So the structure remains the same.

6. Path ABD. A, B remain the same. After considering the class D once with attribute set {6}, the

11



attribute 9 remains in the instance. So for step §, the attribute will be added to the class D).

"=

(™
N
C

After 2nd step

After 3rd step After 4th, 5th and 6th sf[ep

0:old, n:newand 1,2,3,4,5,6,7.8.9 are the attributes.

Figure 3.1
3.2 Verification

The verification algorithm will check three important aspects of the distribution of identifying at-
tributes to the classes. -

3.2.1 Completeness

Each attribute should be present in at least one class. It can be defined as the completeness criterion.
Traversing once through the tree structure of classes and taking the union of the attributes present in
those classes we can get the attributes which are present in at least one class. This set should be the
same as the universal attribute set. If those sets are different, i.e. some of the attributes are still not

included in any class description then we need more learning examples to run the learning algorithm
again.

Also, we have to check that the learning instances should be such that after the learning algorithm

no class should have the flag new. That is all the classes of the tree must be accessed at least once in
the learning phase.

3.2.2 Uniqueness

All path expressions should be unique. From each leaf class we can get exactly one path upto the root
as multiple inheritance is not allowed. The universal identifying attribute set being of cardinality n,

12



we can consider about n bit binary numbers associated with each leaf class. This number is called
path identification number. Let us order the n attributes as Ay, A1, ..., Ap-1. the union of all
the attributes lying on the path from root to that leaf class. So corresponding to total leaf attribute
get we get an n bit binary number, with 1 at the ith position if the attribute A; is present and 0 if
absent, which is the path identification number. We calculate the decimal integer corresponding to
this binary number called decimal path identification number. Now we should check that decimal
path identification number of any two classes should not be equal. If the learning examples are
unambiguous then the learning example itself will take care of the uniqueness of each path. But if
this uniqueness is found disturbed then we should go for a new set of learning examples.

3.2.3 Checking with examples

At the verification stage we can also take some more examples (which we may call as verification
examples) targeting towards subtle changes if required. Those instances may not match with the
given class behaviour. Let us consider the following example. Say, we have seven classes as follows:-
The root class C with attribute ay.

Two children classes ', C; of parent C. C; has attribute a1, ap and C» has a3, a4.

C11 child of C; with attribute as.

Cha child of 7 with attribute ag.

(5 child of Cy with attribute a-.

(99 child of (' with attribute as.

Now let us consider that one verification example is inserted present value for the attributes {ag, a1, az,
as,ag} and its target class is C1;. So the verification algorithm will flag it as an example which is not

matching exactly with the Cy; and will propose the following alternatives for the domain expert:
1. Ignore the instance

2. Add ag as an attribute of Cyy
3. Create one child Cy;1 of 3 with attribute ag

4. Create one child Cy1) of C1 with attribute as and another Cy13 of Cyy without any attribute.
Now it is very well understood that if most of the verification instances do not match with the classes
they are targeted for, the class structure will need a substantial change from the initial structure. Also
we have to take care of different types of mismatch. The change in class structure is always supervised
by the domain expert. In our discussion we defer the changing of class structure to the classification
stage where we will discuss the relevant algorithms,

3.3 Remarks

Let us consider, the number of classes = Ng, the number of leaf classes = N1, the number of attributes
= N4, the number of examples = Ng and the maximum depth of the tree = D. In worst case for
the learning algorithm we have to update the attribute set of each class in the tree for each instance
which needs O(N¢Ng) set operations. For completeness O(N¢ + Np) time is required. For checking
uniqueness we have to check all the paths from each leaf to the root which takes O(N D) operations.
Depending on the generated structure of the tree we will go for classification of the instances in the
next chapter.

13



f.

Chapter 4

Classification

This chapter discusses how an instance can be placed in a given schema after insertion. Here those
instances are considered where each attribute is either present or absent ( value 1 or 0 ) and there is no
unavailable data. Firstly the instances are compared with leaf level classes for ezact match. If it is not
found, top-down search is done from the root for approximate classification. In this case matching

may be possible only upto some intermediate class or a partially classified leaf and an exception may
be flagged.

In this method a lot of exceptions may get accumulated in each class. If the number of such exceptions
exceeds the application specific threshold value for that class and matched instances of the class
becomes minority, the semantic purpose of existing class structure is defeated. Now the lattice needs

to be restructured. However, such restructuring is usually done under the supervision of the domain
expert.

4.1 Different matching concepts

This section discusses different matching procedures for the insertion of an instance to a class.

4.1.1 Path identification and exact match

We again talk about path tdentification concept considered in the previous chapter. The universal
identifying attribute set being of cardinality n, we can consider n bijt binary numbers associated with
each leaf class. This number is named path identification number. Since multiple inheritance is not
allowed, there exists only a single path from the root to the leaf node. Let us order the n attributes as
Ao, Ay, ..., An_1. Now we define total leaf attribute set attached to a leaf class as the union of all
the attributes lying on the path from root to that leaf class. So corresponding to total leaf attribute
set we get an n bit binary number, with 1 at the ith position if the attribute A; is present and 0 if
absent, which is the path tdentification number. We calculate the decimal integer corresponding to
this binary number called decimal path identification number. We sort these numbers in ascending
order. Since our assertion is that the total leaf attribute set of all the classes are different (as multiple
mnheritance is not allowed), The difference is also there for path identification numbers as well.

Now given an instance which contains only 0 and 1 values, we can generate a decimal number
eorresponding to that instance and use binary search to check whether it matches with any of the

14



dectmal path identification numbers. If it matches then we can directly decide the membership of
the instance. If it does not match with any one of the leaf classes then we have to start checking from
the root for approximate classification. It is obvious that if there are L leaf classes then this operation
needs O(logz L) comparisons. We call this exact matching. For exact matching with a leaf class Cy,
the instance is obviously a member of all the classes on the path starting from root to Cy since classes
other than C; on that path are superclasses of Cy.

4.1.2 Perfect match

In this section we take care of those instances which fail to have eract match with any of the leaf
classes. We call these instances as exceptional instances or in short exceptions. Now we will give the
definition of perfect match. The definition will go by induction. We consider that all the instances
coming in the schema are in the application domain, i.e. each of the instances will be a perfect match
for the root class at depth 0. If any instance is not a perfect match with the root class then it does
not belong to the application domain. So an instance is defined to be in perfect match with the root
class if all the identifying attributes of the root class are present in that instance. Now an instance
will be in perfect match with a class C at depth i > 1 if,

1. 1t is a perfect match with a class C, at depth i — 1.
2. C} is the parent of C.
3. All the identifying attributes of C are present in the instance.

4. Let A" = Union of all the identifying attributes of the classes which are children of C, except
the attributes of C. For all the members of A’ the instance has to contain a value 0.

The term perfect match differs from the exact match in the sense that a perfect match of an instance
is its exact match with a class at an intermediate level of the class hierarchy and not at the leaf. So,
the algorithm for approximate classification proceeds as follows:-

Input : An instance I which is not exactly classified.

Output: The class upto which perfect match is found.

Start Algorithm
Cp = The root class; i = 0;
if I is not a perfect match for C, then report that
I does not belong to the database and exit;
flag = true;
while (flag)
flag = false;
T =14+ 1;
if there exists a perfect match with a class C among
the children of C, at ith level then

flag = true;

Cp = C

Mark the attributes which are matched;
Endif
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if there does not exist a perfect match then report the

classification upto C, and record the instance as an

exception of C,.
End Algorithm
So we can classify an instance upto some depth in the tree. We call it under classification. We keep
an under classification tag with the class which contains at least one such exception.

4.2 Break

The purpose of this section is to present a partitioning mechanism of a class belonging to the hierarchy.
The class hierarchy considered here is dynamic because the internal structure of the classes and the
interrelationship among them may keep on on changing as new instances are inserted to the system.
i . one class can be broken into several classes. Thus, a class initially defined by the domain expert
may be broken into several classes to equip the system for subtler classification of instances. The
problem generated is mapped to graph theoretic domain and deterministic polynomial time algorithm
is proposed for this purpose.

4.2.1 Restricted vertex connectivity

Let G(Vy U V,, E) be an undirected bipartite graph and let a,b € V1 be such that there does not exist
any vertex ¢ € V; so that both (a,c),(b,c) € E simultaneously. We define set Sgp € V1 — {¢,b} as a
restricted vertex separator if every path from a to b passes through at least one vertex of Spg, i.e. a
and b belong to different connected components of (¢ — Sg. The minimum cardinality of any restricted
(a,b) vertex separator is denoted by Ng(a, b).

From G we construct a new graph G' = (4, E") where E’ = {{a,b);a,b € V1,c € V3, and(a,c),(b,c) €
E}

Lemma: If Sp is a minimum cardinality restricted verter separator set of G(Vi UV, E), it is
also a minimum cardinality vertex separator setof G '(Vi, E’) for a,b € V; and vice versa.

Proof: We will prove the lemma by contradiction.

Let us consider temoval of Sg does not separate a,b in G '(Vy, E ). Then there exists at least one
path p' = {a = ap,a1,..., a, = b} in G ’. Now, for each edge (a;,a;+1) € E', there exists some v; € %
such that (a;,v;), (vi,ai+1) € E. Hence there exists a path p = {a = ag,v0,81,v1, .-, V-1, = b} in
G. Hence we land in a contradiction.

To prove the other side let S be a minimum cardinality verter separator set of G (W1, E ") for
a.b € Vi. Let the removal of S$in G(V1 U V3, E} does not separate a,b. Then after the removal of §

there exists at least one path p = {a = @p, v, @15v1, -+, Vk-1, 0k = b} in G. Now from construction
¢ ={a=a0,01,...,0 = b} is a path in G ' even after removal, which contradicts the definition of S.
(proved).
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So, from the discussion in Chapter 2, we can calculate the restricted verter gseparator between

two vertices of a bipartite undirected graph in time O(née), where e is the number of edges in the
transformed general undirected graph, i.e.,, e =| E' |.

The restricted vertex connectivity of a bipartite graph G(V;UV5, E), where we remove the vertices
from V7 is

oo = | V1| -1 if G is complete bipartite
E= min{Vg(a,b);a,b € Vi, c € V3, simultaneouslya, c), (b, c) ¢ E} otherwise

Calculation of cg also takes polynomial time as it is equal in order to find the verter connectivity of
the transformed general undirected graph.

4.2.2 Problem Description

A class C consists of a set of identifying attributes 4. An instance is defined by an instance iden-
tification and value 0 or 1 corresponding to each attribute depending on whether the attribute is
absent or present respectively for the instance. As example, let us consider a class with attributes

ay,asz, a3, dy, as in the given order and some instances with instance id’s 11,22, 13, 14, 25, 75 described as
follows :-

3y = 11100
10 = 11100
13 = 10011
14 = 10011
i5 = 11111
tg = 10011

To clarify the concept, attributes a,, az, ag are present but attributes a4, a5 are absent in id 71, again
all the attributes are present in id i5. Only i5 is a perfect match for the class C, others will face
exceplion at the parent class of C.

Now it is interesting to watch that if we do not consider the instance is, the situation is as follows:-
11 = 11100

19 = 11100
13 = 10011
14 = 10011
1¢ = 10011

8o, we can now consider three classes C; with attribute ay, Cy with attributes ay,a; and C3; with
@4,as5. We find that all the instances are members of class Cy, i1, i2 are members of C2 and i3, 14, 76
are of 03.

This gives an idea to break a class C into three classes which offers better classification of the instances
considered. Here Cy and Cj are the children of class C).

A very natural question is that whether all the instances will be of some well structured form so
that a class can be divided periectly. The answer is obviously no. Because if we consider is then the
. class C ceases to break. Now if we break the class C into Cy, Cq,Cy then the instance 35 will be an
exception to class () because after getting a perfect match upto class C; it will not get the same
in the lower level. So in case we go for breaking a class in this way we have to minimize the number
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of exceptions generated. It is interesting to note that in the example all the exceptional instances
become perfectly matched and the perfectly matched instance is is turned to an exception after
breaking. So now the exact problem is to decompose one class into several classes (at least three, two
children along with the parent class) by creating minimum number of exceptions.

First we identify those attributes which are present in all the instances of the class (as the a;
attribute in the example). We construct a parent class with these attributes and all the instances of
the original class will be the members of this class. If there is no such attribute exists, then there will
not be any parent class. The class with remaining attributes and all the instances of the original class
is the candidate for break, and let us define it as residual class. The remaining attributes of residual
class are to be divided to more than one classes with generation of minimum number of exceptional
instances. Now if a class C is considered for break in the class hierarchy, it must be a leaf class,
otherwise multiple inheritance may occur. Let C, = parent of C. Now after breaking the generated
classes are C, (3, Cy say. If generated parent class C; exists, it will be the parent class of the children
(3, C3 created through break and child class of Cp. But if C) does not exist, C, will directly be the
parent of the generated children classes Cy, C3. The graph theoretic modeling enables us to decide
how the attributes and the corresponding instances will be distributed in the children classes.

4.2.3 Mapping

The residual class is mapped to the following undirected bipartite graph: G = (IU A, E), where
A = the attribute set of the residual class.

I = the instance set of the residual class.

E = {(a,i);a € A,i € I and instance ¢ has attribute a present in it}. (a,1) is unordered pair and hence
the graph G is undirected and it is also bipartite.

So the problem of decomposing one class into several classes by creating minimum number of ezcep-
tional instances reduces to the following graph algorithmic problem :

Given an undirected graph G = (JU A, E), A and I being the bipartitioning, to find the minimum
cardinality set Sg, such that Sg is a subset of I and removal of vertices of Sg makes the graph dis-
connected. So we land into the problem of restricted vertez connectivity in an undirected bipartite
graph and it can be done in polynomial time deterministically. The instances of Sr will be the excep-
teons of the generated parent class and the two disconnected components of the graph will construct
two children classes. So if the disconnected components are G; = (ILUAy, Fi) and G, = (I, U A,, E)),
then one of the children classes will contain the attribute set A; and instances I;, the other A, and
Is.

So if we consider the example in the previous subsection we find that J = {i1,32,13,14,%5,76}, A =
{a1,a2,a3,a4,a5}. After the break algorithm the parent class will have instance set {11,72,13,%4,5, 76}
and attribute set {a;}. For the two children classes those will be {11,942}, {@2,a3} and {i3,i4,15},
{as,a5}. For the parent class i5 will be an exception as it will not be a perfect match with any of its
children classes.
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4.3 Fuse

In this section we will consider fuse of more than one classes which are children of same parent. It will
change the parent-child relationship of some classes, which basically changes the semantic structure
of the tree. The syntactic structure of each path of the tree remains the same. The possibility of fuse
will be reported to the supervisor who has the sole discretion of accepting or rejecting the operation
depending on the semantic is-a relationship among the classes at different levels.

Let us consider we have two children classes C; and C; of same parent C. Let C; has attributes
a1,ap and C, has attributes ay, as, a3, as. Such a situation may arise when Add is executed to create
new class for classifying some of the exceptions. So we find that from the consideration of attribute
set 1 C (3. Let the children of €7 are Cyy,...,Cy, and those of Cy are Cyy,...,Ch.. Now we do the
following thing:-

1. Remove the parent-child relationship between C and Cs.

2. Remove the attributes a1, ay from Cs.

3. C3 becomes a child of Cy along with Cyq,...,Ci,.

So we find that all the path identification numbers of all the leaf classes remain undisturbed due to
this operation, keeping the syntactic structure of each path same.

The relationships among the children classes of the same parent are to be found. In worst case
it takes O(n?) set operations for this purpose. But since the subset relationship is transitive we may
reduce some operations in actual case. For three classes A, B,C, if A C Band B C C then A C C.
So if we keep the relationship between A and B, and between B and C then we don’t have to go for
any set operation between A and C. So some set operations can be saved keeping a table of set relations.

4.3.1 Role of Domain Expert

In the example of the previous subsection we may get another class C3 which has the attributes
as,aq4. so we get C3 C C7 and also C3 C Cs. So, it is undecidable which relation should be taken for
restructuring. So here the discretion of the domain expert comes. We may consider the example of
an archaeological database. It may have two classes; one idols of human figure(Cy) and the other of
elephant (Cg). Now the identifying attributes of Cy are two hands and two legs and those of Cf are
trunk and tail. Let the parent of Cy and Cg be C. Now if we find many instances of Ganesh with
all the four attributes present, a new class Cg may be generated in add procedure. Now Cy, Ce or
CE, Cg can be jused from the attribute consideration, but from the domain knowledge it is clear that
the class of idols of Ganesh Cg should not be fused with Cy or Cg and the domain expert should
prevent the system from such fusion. Similarly the class Man may have a set of identifying features
which is the subset of the set of identifying features present for the class Centaur. Same situation
may occur for the Horse. However, Centaur can not be a child class of either Horae or Man.

4.4 Add

If a class accumulates very large number of ezceptions which crosses the supervisor defined threshold,
then restructuring of class hierarchy may be required. New classes may be generated adding new

19



branch to the class hierarchy for this purpose.

Let us consider two children classes (7, (2 of parent C. Let C; has the attributes a1,a; and Cy
has a3, a4. Now if number of instances come with all the attributes a;, a3, a3, a4 present and perfectly
matched upto the class C, all those will become exception to class C. Now if there were some class
C3 with attributes aq, a2, a3, a4 as a child of C, then these exceptions would not be generated. So if
the number of exceptions exceeds the prescribed limit in a class C, we have to create at least one new
child class of C so that the number of exceptions becomes less than the threshold value for C. So it
1s better to generate a single class first such that the number of exceptions decrease maximally. So
we have to find the pattern of attributes which generates the maximum cardinality. We push the part
of exceptions of C, which will not remain its exception after creation of Ca, to Cj.

So to generalize let us consider a class C with children Cy, Cj,...,Cr with attribute sets A,
Ag, ..., A, respectively. Let A = UA;Vi. C has exceptions above the threshold value, We have to find
S C A such that there exists maximum number of ezceptional instances at class C having present
value for the attributes in S and absent value for all the attributes of A — S. We will construct a class
Cn41 with attribute set S and add it as a child of C along with Cy, Ca,...,C,. Also if generation of

class C,11 gives any subset type of relationship with its peers, fuse algorithm may be used under the
supervision of the expert. We declare class C, 1, as a partially classified leaf.

First we order the attributes of A as a1,a9,...,a,;. So corresponding to each exceptional pattern
we will get an m-bit binary vector. Each vector will correspond to a decimal number. So only one

scan through the erceptions will give the counts against each vector type and the time required will
be linear.

4.4.1 Partially Classified Leaf

The class created by add operation (Cyx say) does not have any child class. So Cy is a leaf. But
the class is not properly classified in the sense that the instances coming to this class from its parent
class may contain many other attributes except the attributes which define Cnx. Now considering
the instances in Cl, it may be possible to find certain pattern for breaking the class. The partially
classified class i not added to the list of the leaf classes for exact matching. Now after break we
will get classes at one level lower to Cy. These classes will then be considered partially classified and
may be the candidates for break again. Cy will then become intermediate. It is the responsibility of
the domain expert to decide how long the recursive break will continue. After that it is also the duty

of the expert to declare some of the partially classified leaves as leaf classes and insert them in the
leaf class list so that they can be considered for exact matching later.

4.5 Tree Restructuring

After the application of the algorithm for approximate classification, If number of exceptions exceeds
threshold for the underclassified class, we go for the following steps. All the steps are under the

control of a domain expert, i.e. the expert can accept or reject any of the steps considering the
application domain.
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1. Add a new child class C'x of the underclassiﬁed class C.

2. Push the part of ezceptions of C, which will not remain its exception after creation of class Cy,
to Cly. |

3. Break Cy recursively if possible.
4. Explore the Fuse possibilities of Cy with any of its peer class and restructuring the hierarchy.

5. Transform some partially classified leaves to leaf level classes.

4.6 Example

In this section we consider a class structure and some restructuring on it depending on the input
instances. We consider the attribute set A = {ay, a1, a2, a3, a4, as, ag, by, by, ba, b, by, bs, bg}. We
have seven classes in the hierarchy Cy, Cy, Cq, C3, C4, Cs, Cg and C7 as shown in the figure. Now
let us consider we got exact match the for 500 instances initially, 100 for each of the leaf class. Then
we found 10 instances with attribute set {ao, bo, b1, b3, az, a4}, 100 instances with {ag, by, b1, b2,
b3, by, a3, a4}, 100 instances with {ao, by, by, by, b3, by, as, ag}, and 10 instances with {ag, by, by,
b, b3, by, a3, as}. So we get all these 220 instances will be exception to the class Cy. Initially we
got 300 exact matches for the classes C5, Cg and Cy, which are all children of C4. Let us consider
the 220 exceptions cross the threshold value for the class Cs;. So we need to create a new class so
that the number of exceptions in the class Cy decreases. The union of attribute sets of Cs, Cg and
Cy is {b1, b2, b3, by, bs, bg}. Now we find that by, by, bz and b; are those attributes which are there
in 210 exceptional tnstances. So we form a class (3 with those attributes and corresponding 210
instances. The 10 instances with attribute set {ag, by, b1, b3, a3, a4} still remain exzceptions to C,
after the creation of Cs. Now if we run break on the class Cg we find that two children classes Cy and
(1o are generated under Cg with attribute sets {a3,a4} and {as, ag} respectively with 100 instances in
each, and 10 attributes stays in the class Cg as exceptions. Again fuse may be applied either between
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Cs, Cg or (g, Cg under the supervision of the domain expert.

12 (© 5 (%
&

B O &
b'% lglh«tl b5b5

R
AR
-
A

Figure 4.1

4.7 Remarks

As claimed earlier, this chapter reveals that the schema is really dynamic. However, since the learning
is supervised, any mistake on the part of the domain expert may cause an erroneous augmentation of
the class structure.
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Chapter 5

Classification with some of the
attribute values unknown

When some attribute values are unavailable { value marked as X } for some instances, we try for a
match ignoring the attributes with X values. If a match at leaf level fails we go for a top-down search

either ignoring the X valued attributes or assigning 1 or 0 in place of X and try for a maximal match,
1.e. a perfect match to an intermediate class at the maximum depth possible.

5.1 Forced match

If an instance contains some X values, one way to classify the instance is to neglect the X values. For
each leaf class we compare the attributes of the instance which do not have X values with those of the
leaf class. If there is no mismatch with the 0 or 1 values at the corresponding attributes then such an
exact match is called a forced match.

Three cases may occur:

1. There exists only a single class at leaf level which is a forced mateh with the instance. Here we
classify the instance in that class with a forced flag.

2. There exists more than one classes at leaf level which offer Jorced match with the instance. Here
we go for mazimum-1 match. Here, that class is chosen as most suitable where maximum num-
ber of 1-valued attributes (i.e. present) match with the instance. Even then also if we get more
than one classes, we can report the list of all those classes for supervisor’s choice. If supervisor

fails to give a decision we name this situation as multiple forced match. Top-down search is
applied in this event.

3. There does not exist any class which is a forced match with the instance. We call this failed
Jorced match. In this case top-down search should be applied.

As example of case 1, let us consider 9 attributes a¢ to ag for a schema as shown in the figure. Let
one leaf class C3 has total leaf attribute set {ao, a1, aq, as}. An instance [ has 1 value at ag, a4, as,
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X value at ag, ay, and 0 value at a3, a4, ag, ag. If we do not consider the attributes a; and g7 in
matching, for other attributes the instance I matches with Ca. So I is a forced match with C3. For
the case 2 if we consider an instance with 1 value of ag, a3, ay, X value at a7, ag, and 0 value for other
attributes then it will be forced match for both the classes Cs and (s, and it needs domain expert’s
interference to break the tie. To consider the third case if we consider an instance with 1 value at ag,
a1, @s, a7, X value at a3, and 0 value at other attributes, it can not be forced matched with any of
the leaf classes and top-down approach should be applied.

5.2 Best match

Here we define best match. The definition goes more or less in the line of perfect match. An attribute
I will be a best match with root class if all the attributes of root class are present or unknown in that
instance. An instance will be a best match with a class C at depth i > 1 if,

1. It is best match with a class C, at depth i — 1.
2. C), is the parent of C.
3. All the identifying attributes of C are 1 or X in the instance.

4. Let A" = Union of all the identifying attributes of the classes which are children of C, except
the attributes of C. For all the members of A’ the instance has to contain a value 0 or X,
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o. If there exists more than one classes among the children of C, which satisfy the first four con.

supervisor’s interference.

The algorithm for approximate classification in presence of some unavailable attributes proceeds
as follows:

Input : An instance I which is not exactly classified.
Output: The class upto which best match is found.
Start Algorithm

Cp = The root class; i = 0;

if I is not a best match for C, then report that

I does not belong to the database and exit;

flag = true;

while (flag)

flag = false;

t=1+ 1;

if there exists a best match with a class C among
the children of C, at ith level then

flag = true;

Cp = C;

Mark the attributes which are matched;
Endif

if there does not exist a best match then report the
classification upto C, and record the instance as an
exception of Cp,
End Algorithm
Hence with the concept of best match we can classify an instance upto some depth in the tree. This

is also considered as under classification for which a. tag 18 attached with the class which contains at
least one such ezception.

9.3 Iree Restructuring

The tree restructuring is a little bit different from the concept of the previous chapter though the basic
steps are same. After running the algorithm for approximate classification, if number of exceptions
exceeds threshold for the underclassified class, we go for the following steps. As in the previous
chapter all the steps are under the control of a domain expert, i.e. the expert can accept or reject any
of the steps considering the application. But here the expert has some more informatjon to supply.
We write the same steps written in the previous chapter along with the additional requirements.
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1. Add a new child class Cn of the underclassified class C. { For the add algorithm the X’s should be
assigned either 0 or 1. So, we have to list the attributes which had X value in any of the exceptional
instances. For those attributes before the invocation of add algerithm the expert should assign 0 or 1
value. If that is not explicitly decided, then for k such attributes 2* possible combinations should be
checked, which is very large for large k, and could not be used for practical purposes. In that event
the system may once consider all the X values to be 0, and then 1 for another case and report the
domain expert both the ocutputs. Though the 0-1 assignment will be used for running the algorithm,
the instances will contain the same X values in the system for the corresponding attributes. }

2. Push the part of exceptions of C, which will not remain its exception after creation of class Cly,
to Cn considering the assignments in step 1.

3. Break Cy recursively if possible. { Here also we have to take care of the same consideration as in
1. }

4. Explore the Fuse possibilities of Cy with any of its peer class and restructure the hierarchy.

5. Transform some partially classified leaves to leaf level classes.

5.3.1 Breaking of leaf level class

Now we consider another concept of tree restructuring apart from the previous points. In a leaf level
class many of the instances may be forced matched. The leaf class inherits number of attributes from
the parent classes upto the root and it also have some of the attributes for itself. Now for the leaf
class(C) attributes we can construct an attribute versus instance table. If we check the parent class
C, of C, we may find some exceptions which are created only due to the class C. The concept is as
follows:-

Let A; be the attribute sets of classes C; which are the children of parent class (. So, C is Cy for
some attribute set Ag. Let A = UA,Vi — A;.

Now among the exceptions of class C,, there may be instances which contain 0 value for all the
attributes of set A and 1 value for at least one of the attributes of set A;. Those instances may not
remain as exceptions to class C, if the structure of the class C; changes. We also add these instances
in the table. So we get an attribute versus instance table where the attributes are from attribute set
Ai, and the instances are the instances of Ci and some of the exceptions of Cp. Now the entry of the
elements of the table will be 0,1, X. Now assigning proper 0 or 1 values in place of X as discussed
in the step 1 of tree restructuring we can apply the break algorithm to the class Ci. If the number
of exception generated after the break is less than the threshold value, the expert may accept the
breaking of class Ci, and in that event we will get two children classes of Cr. Hence we will get better
specialization in the structure. In that event Cr will get out of the leaf class list, and two new classes
will enter there with proper path identification values.

5.4 Remarks

In this chapter we have discussed tree restructuring with some of the attribute values unknown for
some of the instances. The application of 0 or 1 in place of X extensively depends on the application
domain and knowledge of the expert. Dependency among the attributes may also play some important
role which takes care of interpretation of a set of attribute values in response to assignment of another
set of attribute values in the schema.

26



Chapter 6

Application and Future possibilities

6.1 Database Applications

In the preceding sections we discussed different techniques to organize and maintain database classes.

The algorithms help to get database classes that more accurately reflect the real classification among
the attributes and instances.

1. Schema Geaneration and Evolution. The techniques described in the previous sections are
applicable to schema generation and maintenance and can be used to help the database designers.
Specifically the hierarchical structure of classes gives a direct resemblance with Object Oriented
Schema. The system being incremental, new classes can be added to the schema at any time

along with the instances. The process is open ended, leading to more complex and accurate
schema as more information is added to it.

2. Schema Integration. Given different hierarchical structures of classes for different domain of
applications, we can generate a global dummy root class, and the root classes of all the different
applications will be the children of that. The union of universal attribute sets considered for all
the schemas will be considered as the universal attribute set of the integrated schema. Synonyms
and homonyms should be properly renamed to avoid conflicts.

3. Query Processing. In the proposed system, each instance has instance identification number.
Hence for any query regarding an instance we can easily find whether the instance is properly
classified or not, and the classes where the instance is present. Again a query asking for the
list of instances with some specific feature combinations can be answered considering the union,
Intersection or some other set operations on the attribute set of the present classes. For this
type of query, exact match with some specific class at leaf level may not be found. In that event
ezact match may be found upto an intermediate class and such incomplete class specification
will be presented.

4. Automatic Generation of Views. If we consider universal table using the universal attribute
set of the schema, the classes generated will work as views on that table. The augmentation of
the class structures would also alter such views and new views may also be introduced.
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6.2 Future Work Direction

1. We have considered the attribute values to be 0 and 1 only. Extending the work towards general
quantitative and qualitative value domain will be an interesting field of study.

2. For the classification with some of the attribute values unknown{X) we have either neglected
them or expected that the domain expert will assign 0 or 1 value for those. One possibility is
to consider the real space [0, 1] and to assign application specific fractional values to unknown
attributes and try for some new classification algorithm. This type of algorithm will be able to
solve a considerable amount of item 1.

3. Some coding techniques may be used for approximate classification. Concept like Hamming
Distance may be explored for this purpose.

4. Assignment of weight for each attribute and dependency among them may reduce the interference
of the domain expert. For any application specific design of this type of evolutionary schema
these considerations may produce more accurate classification.

6.3 Conclusion

As classification is a general problem, the description of the problem always becomes application
specific. We have tried to state the problem and its solution mostly in application independent way
so that any application can be developed over this skeleton. We feel the system can successfully be
used as an intelligent front end engine to any database.
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