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Chapter 1

Introduction

The Burgers equation and the Korteweg de Vries equation popularly called the KdV
cquation are two of the most well known equations in the study of solitary waves. The

Burgers equation which may be considered as nonlinear diffusion equation reads as

T "o T o

This equation was first formuiated by Burgers (1948) in an attemnpt to model turbulent
flow in a channel. The KdV cquation was founded by Korteweg and de Vries (1895) in
Lheir stady of two dimensional motion of weakly nonlinear long waves . This equation is
widely applicable. Benney (1966) applied it to inertial waves in a lBtating fluid and to
internal gravity waves in a stratified fluid.

Two other important applications are in jon-acoustic waves in a plasma (Washimi and
Taninti, 1966) and to pressure waves in a mixture of gas bubbles liquid (Wijngaarden,

1968). The KdV equation is in its original form, reads as

a 2 or 3
where « 13 a constant and ¢ = 1h3 - %I‘- where T being the surface tension, 8 being the

density of the liquid, & the height above mean level and g accleration due to gravity.

1



2 CHAPTER 1. INTRODUCTION

This equation initially described the solitary wave, first observed by J.Scolt Russel in
1831 on the Edinburgh to Glasgow canal. Since the discovery of the scattering method
by Cardenar, Green, Kruskal and Miura (1967) tremendous interest was shown in Kdv
equation as it yields soliton solutions which are related to the scattering problem of Sturm-
Lionville tvpe, which in {]llll.lltll;ll theory is known as the Schrodinger equation. In this
respect. we shall employ numerical techniques to study the Shock wave and Solitary wave
solutions for the Burgers and KdV equations.

In real life however the exact, Burgers equation and exact KdV equation may not deseribe
the actual situation. Hence perturbed form of these equations are of interesi. in both
mathematical studies and applications (Karpman and Maslov (1978)). Tlowever here we
shall limit ourselves to a perturbation of the form eu, ¢ being a small paramcter.This will
also help in understanding the stability of the equation.

Our main focus will be on KdV equation and its soliton solutions. The plan of this
report is as follows.

In chapter 1, a brief history of the Burgers equation and the KdV equation is given.
In chapter 2, we discuss the basic concepts about solitary waves.
in chapter 3, we discuss some mathematical properties of the KdV equation and Burgers
cqualions,

In chapter 4, a brief review of the numerical techniques involved in solving differential
eepusalion in giwn with g‘llphﬂﬂiﬂ on Crank Nicolson method, which was employed in this
work. |

In chapter 5, the algorithm for solving the Burgers and KdV equation are given. The
results are also included in form of tables.

IYinally chapter 6 is kept for discussion.

In appendix, we have included the original code of thé program, which is written in Iligh

level language C.



Chapter 2
Basic Concepts

2.1 Solitary waves

Solitary waves are waves, which never crest nor dissipate, they propagate without changing

shape, Solitons are solitary waves with the remarkable feature that when two or more of
them collide, they do not scatter but emerge with same shape and velocity. Zabusky and
Kruskal (1965) coined the term soliton to indicate this remarkable feature i.e a soliton
is a localized nonlinear wave of permanent fortn which may interact strongly with other
solitons, so that when they sep.a.rate after the interaction they regain thier original shapes.
The solitons are also known as Non-dissipative waves. To compare them , with the ordinary
dissipative waves one has only to consider the common example of dropping a stone into a
amall pond. As soon as the stone is dropped a dissipated wave is formed which gradually
dies away from the source. For dissipative wave , energy gradually decreases with space
coordinates and the shape of the wave does not remain constant. But solitary waves
do not, die out. from the source as the distance ftltzrnaﬂrrﬂ which proves non-dissipative
characteristics. Their shapes remain the same.

Solitons are formed in a medium, when the effects of dispersion and nonlinearity are
- balanced. In the absence of nonlinearity, dispersion can destroy a solitary wave as the

various components of the wave propagate at different velocities. Introducing nonlinearity

3



CHAPTER 2. BASIC CONCEDPTS

without. dispersion again rules out the possibility of solitary waves because the pulse
energy is continuously injected into high freqency mode. But with both dispersion and
nonlinearity present formation of soliton is possible.

As mentioned before in 1845 John Scott Russel, a British naval architect, first saw a
single isolated solitary wave on the water surface of a channel. By studying the nature of
waves, he claimed that the propagation of isolated wave was a consequence of the property
of the medium rather than the circumstances of the wave generation. Since then it took
ralther a long time to establish that some spatial nonlinear wave equations admit solutions
consisting of isolated waves that can propagate and undergo collisions without loosing their
respect identities. Korteweg and de Vries (KdV) explained in 1895 the phenomena
for the propagation of waves in a shallow water. Later on numerical simulations on wave
propagation ( Perring et al. (1968), agreed with the Scott-Russel’s observation that the
existance of wave like excitation which rather than disperse their energy, maintain a stable
shape. Zabusky and Kruskal (1965) made a computer study of KdV equation. They
observed that a single solitary wave behaves like a particle in their interaction with each
other. They also observed that under certain conditions any initial pulse can hreak up
into a number of solitons which can move in a plasma with different phase velocities. Also
the solitons interact with each other and after the interaction they emerge out without
any change in their shape or velocity. To study soliton in a multicomponent plasma is
also important. In the laboratory frame work and in tonosphere, plasma is a collection of
several electron and ion species. Some important nonlinear equations which give rise to
solitary waves in plasma are KdV equation, Modified KdV equation, nonlinear Schrodinger

equations.

2.2 Solitary waves in Plasma

A plasma contains a wide variety of waves because of its fluid like behaviour and also

because of its long range interaction between particles in it. It is well known that plasma



2.3. MATHEMATICAL REPRESENTATION OF SOLITON , 5

is a dispersive media. Again from the study of plasma oscillation it is obvious that plasma
can propagate in a dispersive medium. So in a plasma medium plasina pacticles and wave
can coexist and they can interact with each other and oscillation of plasma can occur. In
a plasma two types of oscillations are theoretically possible, first oscillations of electron
which are too rapid for the ions to follow and second the oscillations of ion which are so
slow that the electtons continuously satisly the Boltzmann law. It was Langmuir (1928)
who first discussed the cleetron oscillation in plasma. In plasina, electron oscillations arise
due to the property of plasma to try to remain neutral. When electrons are displaced
in a uniform background of ions, the clectric field will build up such as to restore the
neutrality ol plasma by puiting the electrons back to their original position. Because of
their inertia the electrons will overshoot and oscillate around their eqquilibrium position

with a charecteristic freqency namely plasma freqency.

2.3 Mathematical Representation of Soliton

AL . . . ! . . .
IFirst mathematical representation of soliton was given by 1).J.Korteweg and H.I).Vries in
a paper published in Philosophical magazine in 1895. They showed that solitons can exist

due to nonlinear wave motion in hydrodynamics. The KdV equation is of the forin

oufzx,1) Ou(z,t)  Pulz,t)
1 { I == {) 2.1
If we linearize the above equation, we get
Su Su u
—— } == [} 2.5
ot + Or  Ox? (2.2)

For this linearized equation any solution can be represented as a superposition of Fourier

components. So the solution is of the form

u = cexp(i(kz — wt)) (2.3)

It follows {hat



G CHAPTER 2. BASIC CONCEPTS

w=k—k | (2.4)

This is the dispersion relation which gives the freqency w as a function of the wave

number k. From it we deduce the phase velocity vp as

vy = — =1 — ko? o (2.5)

x| &

which gives the velocity of the wave fronts of the sinusoidal mode. we also deduce the

proup velocity,

Vg = —— =1 — 3k (2.6)

which gives the velocity of the wave packet i.e a group of waves with nearly the same
length 27 /k. From the expression of v, and v, we can easily conclude v, < vy <1 and
v, = vp = 1 for long waves(i.e for k=0). A short wave has a negative phase velocity c.
Packels of waves of nearly the same length propagate with the group velocity, individual
component moving through the packet with their phase velocity. It can in general be
shown that the energy of a wave disturbance is propagated at the group velocily, not. the
phase velocity. Long-wave components of a general solution travel {aster than the short
wave components, and thereby the components diﬁperse. Thus the linear theory predicts
the dispersal of any disturbance other than a purely sinusoidal one. Looking at equation
(1), we see that the effect of dispersion comes from the term k? in the expression of w and

. :
from the term %‘% in the equation (1).

I

In contrast to dispersion, nonlinearity leads to’concentration of a disturbance. To
observe this effect , neglect the term % in the KdV equn. above and retain the non-

linear terin. Then we have

——-—+(1+u)§“~=0 (2.7)
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The mothod of charecteristice may be used te ehow that this equation has the elementary

sojution

w = f(z — (1 + u)t) (2.8)

for any dilferentiable function f. This shows that disturbances travel al. the character-
istic velocity (1 + u). Thus the highers parts of the solution travel faster than the lower

parts. ‘This catching up tends to steepen a disturbance untill it. hreaks and a discontinuity

or Shock wave is formed.

L] L] ¥ 1 L
For a solitary wave, the dispersive effects for the term %E‘{r and the concentrating effects
of the term u% are just in balance.

From the above discussion we can conclude that soliton is a solution of a nonlinear

equation or system which

(i) represents a wave of permanent form.
(ii) is localized, decaying or becoming constant at infinity.

(iii) may interact strongly with: other soiltons so that after the interaction it remains ils

shape form, almost, as if the principle of superposition valid.

From now one we shall take KdV equation in the standard form

Ju e  u
— — bHu

N an o

0 (2.9)



Chapter 3

Properties Of Burgers and

Korteweg de Vries equation

3.1 Burgers equation

The standerd [orm of the Burger equation is

a'u 315 ;ﬂnx
P + Y ——— =

5 e o

This equation is almost similar to the KdV equation, where instead of u,; we have w,,,.
llowever Burgers equation differs significantly from the KdV equation in its properties.
Unlike the KdV equation the Burgers equation has no soliton solution. Instead it has

shock wave type solution viz,

(z — ct)
2

|

u(z,t) = e[t — tanh

By the transformation v, = 2= (Bicklund Transformation), Burgers equation becomes

the diffusion equation

oal
2

?_v..—l;
at_
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3.2 KdV equation

(i) KdV equation is invarient. under Cialilean transformation

The Lransformation

r = -+ ugl V=t and v = + up

where ug i8 a constant, reproduces the original KdV equation.

(i1) If u(z,1) is a solution of the KdV equation

Ou BBU +83u__0
a Yo or3

then u(-x, -1} is also a solution of the above equation.

(iii) Solitary wave solution :

The solitary wave solution of (one soliton solution) KdV equation is given as

u(z,t) = P]Hﬁf‘h.g(f‘g(iﬂ — 1))
where ¢y > 0 and ¢y > 0 are constants.

(iv) Conservation laws :

Suppose T and X are function of u, the spatial derivatives of 1, x and t, so that

o’ X ~ 0
3/} dr

when u(x, t) is a solution of some KdV equation. Then the above eqation is called
a conservation relation with density T and flux X. Il T and X arc integrable [or

-00 < x < 0o then
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80,
Es's
/ Td:r = ronstand

these idea can be applied to KdV equation as.

Bu " O N P 0
o or  drd

or,
u 8,
-(:)T ~+ 5‘; —J3u -+ “:I::T::r':) = (}
If
T = u
and
;Kr = Upq - 31”(2
-t oo
then [ udx = constant.
r— 00
Similarly it can be shown that,
+-00

[ u? dx=constant

-0

3.2.1  Initial value problem for the Korteweg de Vries equation

Now we shall discuss the remarkable role of solitons the initial-value problem for the KdV
equation over the interval (—oo, +00). Let u(x, t) be a solution of the KdV equation over

the interval —o0o < £z < +oo and for t > 0 .where'

u(z, ) = g(x)

for a given function g. Here we uiscuss the solution u(x, t) for sech?z potentials i.e one

seeks the solution for the initial value function

g(z) = —vsech’x
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for various values of v.

[\ is found (Drazin 1983),

If » < 0, There is no solitary-wave component of the solution as { tends to oco. Instead
there i1s one set of decaying dispersive wave irain.

If v = 0, then of course Lthe solution is w(e, t) = 0 for all 1 and .

[f v > (), then from Scattering theory [where u(z,1) behaves as potential wall], it is
found, if v i3 of the form v =n(n + 1) where n =1,2,3,. .- ,then there are n of solitary
waves and no dispersive wave.

For example, If v =2 = 1(1 + 1) then g(x) = ~2sech?z there is single solitary wave and
no dispersive wave train, If v =6 = 2(2 + 1) then there arise just two solitary waves and
no dispersive wave train.

so if v = n(n + 1) then there exist n of solitary waves, corresponding to n bound states
with cigen states —n?, —(n —1)%, —(n - 2)*,.--, -1

Il n(n — 1) < v < n(n + 1) then there arise n number of solitary waves with a dispersive
wave in the limit as t tends to oo.

If2 <v<6ie2(2—-1) <v <224+ 1) then there arise two solitary waves with a disper-
sive wave. Lel v =4 then g(z) = u(z, 0) = —4sech’s then there arise two solitary waves
and one dispersive wave.

M6 <v<12ie 33 -1) <v <33+ 1) then there arise three solitary waves together
with a dispersive wave train and so on.

n the present work, we have considered the one and two soliton Hﬂlutiﬂl’h{ i.e v = 2&6.




Chapter 4

Numerical Approach

4.1 NUMERICAL TECHNIQUES FOR SOLVING THE
PARTIAL DIFFERENTIAL EQUATION

Partial diffcrential eq;mtiﬂnﬁ occur in many branches of applied mathematics, for example,
in hydrodyanamics, clasticity, quantum mechanics, electro-magnetic theory. The analyt-
ical treatment of these equations is a rather involved process and requires applications
of advanced mathematical methods. On the other hand, it is gencrally easier to produce
sulliciently approximate solutions by simple and efficient. nminerical methods. Several nu-
mefical methods have been proposed for the sohutions of partial differential equation, but
the finite difference methods have become popular and are more gainfully employed than
others. So we will solve the nonlinear partial differential equations by finite difference
methods.

Partial differential equations are classified into two types : Linear and Nonlinear. Qur
field of interest is in the nonlinear partial differential equations. At first we shall discuss

in brief, the linear partial differential equation, then I shall discuss the nonlinear theory.

The general second order linear partial differential equation is of the form

Augzz + Bugy + Cuyy + Dugy + Euy + Pu =G (4.1)

13
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where A, 13, ¢, D, E. .G are all functions of x and y. and

B

5r2 oz

&%

Sy Uy

. -
Br  °

clc.

Now consider equation number (4.1), T can be classified with respect to the sign in the
discriminenmt A, = 132 — 4AC in the following way,

If A, < 0 at a point in the (z,y) plane, the equation is said to be Elliptic.

If A, > 0 at a point in the (z,y) plane, the equation is said to be Hyperbolic.

If Ay, =0ata p()il’lt‘; in the (z,y) plane, the equation is said to be Parabolic.

Parabolic and Hyperbolic problems are classified as Initial value problems whereas the
elliptic problems are classified as Boundary value problem.

Initial value problem can further be cla.qsihed into 2 types as Pure Initial Value problem
and Initial Boundary Value probilem. l .

In nonlinear equation, the coefficients A, I3, C, D, E, I’ and (7 are not on ly the function
of 2,y but also function of u. We will now discuss the details of the special form of
nonlinear parabolic partial differential equation, but before that we will discuss the finite
difference methods. We will assume that a steady state solution does not exist and one
of the indepnedent variable y is replaced by t, has role of time. We solve the differential
equation in an arbitrary region Rx{0,7] with suitable initial and boundarv conditions
where R=a <z < band 0 <t <T. We superimpose on Rx[0,7] a rectangular grid with

erid lines parallel to co-ordinate axes with spacing h and k in space and time directions

respectively. The grid points on Itx[0,7] are given h'y
l, =nkn=0123-- N

tm=a+mhm=01,23,.-- M
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where 2o = a, 2y = b and M = Q?F) N = i:- T'he speciat nodes on n-th time grid consti-

tite the n-th layer or level Lot the soluticn valie (@, 1,) he denoted a3 1], Then we

have,
! u o —ul)
Uy = "’"'Uh ™+ O(h)
' 71 n
ult - ut
Uy == 7 T~ + O(h)
T 7l
U1 Uy g 7 |
Uy = 0 === + O(h*)
80,
Upr ] = '21;3}1 + Uy, 9
Upy = > - O(h*)
h
Similarly,
TL mn n (4}
Uy g~ Ju +3ul - u,,
Wy = mt-2 m 1 - m m- | +()(h3)
i3
ctc. In similar fashion,
un-l-l —yh
Uy = — L = + O(k)

There are various methods of solving Partial {iffermntial equation, mest effectively used
method is Crank-Nicolson method. In 1947, Crank and Nicolson proposed a method
according to which %‘} is replaced by the average of its Finite Difference Approximations
on the n-th and (n + 1)-th time row. So, A

ni1 a..nil nt+l
Uy — LU, T U

; (] N n
BFu  ulh g 2uy up L kT
202

or? 2h2

*

So, in Crank-Nicolson method the Heat Conduction equation

o Fu |
ot Ox? .
can bewritten as \
gt " n )0, 17t ntl o o nil nt 1
My  — Uy _ Hm ' ‘)'um + LA + u’m-! 1 _‘_Z”m -+ U 1
k - 2h? 2h?
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which gives on vearranging

!
*—.:\H-:H ! + (2 -+ 2,\)“”+I —_ Au”“ parns /\H::L . -+ (2 - 2’\)”:’:1: + ’\”::H |

it -} £i) m. {1

where )\ = ;‘:5; is called mesh ratio parameter The left side of the above equation has
3 unknowns and on the right side all the 3 quantities are kunown, this inplicit scheme
is called Crank Nicolson formula and is convergent fm: value of A < % If there are N
inlernal mesh points on each row, then above formula gives N simultancous equations for
N unknowns in terms of the given boundary boundary values. Simillarlj,f_internal mesh
points on all rows can be calculated. Qur main task in the project is to solve the Burgera
equation and KdV equations (in absence and presence of perturbation} numerically by
linite difference method. At first, we shall describe general form of second order nonlinear

oqgnation of the form

Py = 1y + f{z, L, u, uy) | (4.2)

where ‘p' is a positive constant and a < 2 < b and boundary conditions are n{n, ) =

] (f),

u(b,t) = go{t) A general two level finite difference approximations to equation number

(11) is given by,( at (z,,,,1,,)) is

2,n/ ntl __.n
TANA 7S Tl Uy

where
' n't
u‘.l"ﬂ

f::: = f(mi_*ﬂ-! t:;'.t unmf, &2:1:_"2'5"

t:a = 0,1 -+ (l — ﬂ)tﬂ

for0<8<1

7 r 41 1
Unig = i (1~ Quy,.,
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where g = —1,0, 4-1
Dzt = wh ) —um = [0up! ) + (1 = O)up ] - [0,y + (1~ Oy, ]
For 0 =1,
n_ruil_}‘(l )nﬁfrnl
TS VAN

— P |
So for g =0,u", = u)),

il

!
for = - 1, ”::l 1 = Uy, )

i _ antl
for q = +1,u" ' =ul'

ntf_ nt ] il
&25"” = Uyt T Uy
Then equation (11) become as,

A_,zru::]*' ! ul! I ul,
p —
h?, k

nil TR
11 -—
}- 1 UL m— 1
+f(mm +-1 ””
'R 1 2’L )

-

This is analogus to Laasonen melhods. In Laasonen scheme | solution value at

(Zyn, tuy1) on (n 4 1)-th level is dependpnt on the solution values at the neighbouring

points on the same level and one valile on n-th level. It is stabsle for all values of mesh

ratio parameter A. So such st‘ﬁkeme is unconditionally stable scheme. But we will solve

our probem by Crank-Nicolson method.

0 =1/2 corresponds to the Crank-Nicolson method. Then,

! -’u + r'u |- 1

by = 5

n+ ]
7L 4 Tﬂ- +q + TLH‘I* g
u’m—l—q T )
s0, for ¢ =0,

n+1 ) .

. Uy, T Uy |

m 2
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mofor g =1, I
: RN ]
jf'ln, | + ”TTL ]

F o
L 2
go for q == +1, g
| nt n
11 _ “‘fni] + um'l‘l

So

- ! f !
DNozuy, =, — Un

For Crank-Nicolson method equation (10) become

TRR T 1t ] )
pé‘2 (u’m + i, — Uy,  — Uy,
I
2h? k
+1 ntl rt
+f($’ by + Ly u:':’l* +H:’1 um+l—1‘l'm——l+u:1¥l _u:'l-l)
w7 2 ‘ 4h

We solved the Burgers equation and KdV equation in absense and presence of pertur-

bation by the above method.

4.2 Burgers equation in absence of Perturbation

I3urgers equation is the nonlinear diffusion equation

Ut + ULz = C1 Uy,

where ¢ is the constant. The Analytical solution of the above equation is of the form

u(z, t) = c[l — tanh((z ~ ct)/2c1)] for all values of 'c’. We solve the above equation
numerically by Crank-Nicolson method. The initial and boundary condition are given
from analytical solution.

Initial eondition :

w(x,0) = e[l —tanh(x/2c;)]

Cora <z <
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Boundary condition :

na.t) = c[1 — tanh{{s - ct)/2e1)]

and

w(b, 1) = c[1 — tanh((b — ct)/2e1)]
The nodals points are given by,

T =mhm=012..- M

t, =nk,n=012.-- N

where b = &8 k= L We write the given differential equation (Burgers equation) as,

w10 , O*u
Tt o U = Oy
or 20z Ox?

The Crank-Nicolson type method gives the system of equations

nt | n
Um ~ m oy 15: ? = A2y
k 2 h he 7
For better approximation u is replaced by
h W= wpt ',
2
Burgers equation bhecomes,
n+1 n nil n 2 it Tt
Uy = U + iam(um +um) _ O p2Um + Uy,
| k 2h 2 he " 2

Since it is 2 set of nonlinear equations it can not be solved by matrix-inversion method.

For this, we linearize the equation in the following way. We substitute,

n+l __ _..n n
U, = U, + Yy

where v} tends to zero. So we get,
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TJ:; ] " n Cy 2 n )
Let f = ¢ and fg = A I'inally, We get
ciA cul C C1A
ol (O Sty (1)) ol (G s = 5) = e\ — 200,

r‘ ) 2
-} ;il(”:; )= Q) ]

From initial condition, we find the value of ¥@, at the 0 label. Then we find the value

of ul from the value of ul, and vy, After that we find the ul as ul = b + ),

4.3 Burgers equation in presence of perturbation
In presence of perturbation Burgers equation takes the form as

e hi P
+ U— = C}—x + U

Ot O Oa:2

Where the term en comes from the effect of perturbation. If we transform the above

cqualion in numerical field, we get

1 - 2
H::j - H::l ) &I 2 — Cl&m

k ToR Y T TR

cu.

For better approximation, we substitute

n+ 1 n
Uy, + U
2

U =

we got,

1+ 1 n 141 n \2 2 ,,nt1 n n+l Tt
uh — +A1(um +uy)” _ abdiup +u R
 k 2h 4 h? 2 2

To linearize we put
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So we get,

A cup ¢ W Ol CIA
ot (B2 Tl (L ed = )+ (SR o) = o1 [

n n
9 +1 _2“‘m +“‘m—F1]+

(u, )2~ (up )’
(uz:l 4 ﬂ[ rm y m | ]

- Where e < 1

4.4 KdV equation in absence of perturbation

KdV equation is almost similar to Burgers equation except the fact that it's a third order

differential equation.

'I'he general form of KdV equation in absence of perturbation

) Ou  Pu
—— = BU—— +

o~ ox  8rd
By Crank-Nicolson difference method, if we transform the above equation, we get

-1 "
u - H .
m m ut 4+ —=u=10

k h h?

For botter approximation u is replaced by =

So we get,

} 1 11
2 ﬁ's u,“ + H
(uﬂ+1 I uﬂ) E m TH,

h? 2

wrtl — w34,
k 4h

={

To linearize the nonlinear equation, we substitute

ntl _ 1 n
u’m "H.'m+vm

So,
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1”:1 3 AL 2ut + " 2 + ﬁlﬂ" (211" 4 ‘UH) e ()
Y Y qp3rTm o

l.et % = ¢ and f—’:‘f = \

inally we get,

" A u -1 3A 7 3\ 3%21_“ 7 A
Um*'l(m§+3c ﬂ; )+1}:1(1+ 9 ) ﬂm+1("§'+ 9 )+Um+2"2_:
7 .M 1 1 Je ] 2 n 2
_A["*m 42 “”m 1 + BHm — Uy . I] + ? Vit = Mmoo ]

We solved the KdV equation numerically in absence of perturbation for two cases.

(lase(T): When number of soliton is one. The analytical solution for One soliton case is
u(z, 1) = —2acch™(x — At)

(ase(11); When number of solitons is two. Then the analytical solution of the KdV

equation is of the form

3 + 4cosh(2z — Al) + cosh(4x — 611)
(3cosh{z — 28t) + cosh(3x — 64 1)

u(z,t) = —12

The initial and boundary conditions were fixed from the above analytical solution.

!

4.5 KdV equation in presence of perturbation

I'he physical situations that give rise to standard soliton equations tend be highly idealized.
Inclusin of effects of that are present in more realistic experimental situalions, espoecially
various forms of diﬂﬁipation, leads to equations that differ from standard eqquations. If the
additional terms in the equations are small in ﬂumel sense , we may expect that at least for
some interval of time, their effect on the various phenofnena considered previhuﬂly may be
small. Now we consider the perturbed KdV equation which differ from the original KdV
equation in having extra term.

The perturbed KdV equation is of the form
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1)!

uy — Butig + gz = cJi{u)

where € << 1 and R(u) is some specified function of the solution u(x,t).

“We transforme the above equavion to Crank-Nicolson numerical equation a8

un-H —y"

n-t 1 n \2 3 ..nt+l n n+l 7n
U, + um) &:r: Uy + L3 . (”m +"m

A + hd 2 | 2

We linearize above equation by substituting,

u:,:l” e 4 v,
Finally we get,
X 3¢, I . . 3% 3eul A
”:n_l(':f + “2‘“;-1) + V(1 + 5 - g) — ’-”m+1(-2"- +— e R ‘2‘*) =

3c f
—f\(“:«.+2 — 3“;1,-1 + 3up, — Uy, 1)+ €y, + '2“[(“:L,+ ] ? — (“::1.---1)2]
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Chapter 5

Algorithm & Results

5.1  General algorithm for solving Burgers and KdV equa-

tion

I. Declare three 2-dimensional array u[N}[M] , v[N][M] , inverse[N}[M] and one 1-

dimensional array ¢|N].

2. Initialize the matrix Inverse[N][M| by ‘making ii the diagonal matrix(i.e all elements
exceptl the diagonal elements are zero and value of cach diagonal clements is made
to 1). Initialize the elements of u[0][M] by using the initial condition. Enter all the

boundary condition in u{N]{0] and u[N][M-1].

3. Using the Couse-Jordan method find the inverse of the matrix u[0][M] from where

we find the v{0][M] by matrix multiplying the u[0]{M] and c[N]. By knowing the vatue

of u{0}[M] and v[0][M] at level 0 we find u[1}[M] using the cquation umt! = 4 +o®
4. Repeat the step 3 untill all N level is finished. In this way we find the u[N][M] for

all valve of N. (By iteration)

We tested the algorithm for :

lower-x-value = 0.0
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highor-x-value = 10.0
time-level = (1.5

M = 20.0

N = 5H0.0

5.2 Results

The Results are given in table 1-4 and flgures 1-8 In following table for resuit
we use the symbols u(z, 1) for solution for ¢ = 0, ul(z,t) for solution for ¢ = 0.001,

u?(x, 1) solution for € = 0.01

5.3 Discussion

In this report we applicd numerical techniques to obtain solitary wave solutions of the

Burgers and KAV equation both with and without a perturbation {erm of the form cu.

'I'he numerical solutions of the KdV cquation have been attempted before by several
authors (for a complete treatment see R.K. Dodd ct.al (1982)).

[lowever, as mentioned earlier for many realistic situations pure KdV and Burgers equa-
tion may noi. describe the physical ﬂll,uaﬁun. And though perturbation of KdV equation
was discussed analytically through approximate solutions simultaneous treatment of the
Burgers equation and the KdV equation with the eu terms were not fmmd in the literature

to the best of the author’s knowledge. For weakly nonlinear care the following realistic

equation viz

A.6u M odu e, FPu  Hu
[ ‘ + u F 3.0 ] — ‘ 1. .7 s 2)
{1z dz 2 dr 2 hi i

L el B ——

0z
was used to study the stability of the solution in the form of one dimensional soliton
hy Kadomstev and Petviashvili (1970), as a first. step towards the study of the stability of

the KdV equation.
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Table 1

| Nl;;mﬁrical Solutions ol Burgm_'s Fquations for £ = 0.1
X w(x,t) ' ul(z, 1) u?(z, 1)
0.0 | 0.503125 | 0.503 25 . 0.503125
0.5 | 0471737 | 0.475934 0.515551
1.0 | 0.410623 | 0.445022 0.186649
1.5 | 0.409945 | 0.414075 0.453171
2.0 | 0.379953 | 0.383780 | (.420040
2.5 | 0.350853 | 0.354300 0.387860
3.0 | 0.322827 | 0.326080 0.356881
3.5 | 0.206023 | 0.299000 | 0.327245
1.0 | 0.270560 | 0.273286 0.299092
£5 | 0.246525 | 0.249008 0.272510
5.0 | 0.223974 | 0.226230 0.247586
5.5 | 0.202936 | 0.201972 0.224326
6.0 | 0.183410 | Q.185257 0.2027:39
6.5 | 0.165937 | 0.1670412 0.182803
7.0 | 0.148798 | 0.150296 0.164474
7.5 | 0.133618 | 0.134963 0.142693
8.0 | 0.119782 | 0.120987 0.132397
8.5 | 0.107423 | 0.108503 0.118725
9.0 | 0.099675 | 0.100659 0.100967
9.5 | 0.120465 | 0.130466 0.139903
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Table 2

| Numerical Solutions of Burgers Bquations for 1 = 0.3

| X u(x,t) ! ul (z, 1) u?(z, t)
0.0 | 0.509374 | 0.509371 (2.509371

L 0.5 | 0.477725 | 0.488239 0.595980
1.0 | 0.446299 | 0.459170 0.593350
1.5 1 0.415255 | 0.427880 0.560397
2.0 | 0.384863 | 0.396671 0.520811
2.5 | 0.355352 | 0.366269 (0.481011
3.0 | 0.326913 | 0.336955 0.442510
3.5 1 0.299707 | 0.308909 0.405611
1.0 | 0.273R58 | (1.282263 (0.3706 11
4.5 1 0.249549 | 0.257111 0.337536
5.0 | 0.226570 | 0.233517 (0.306519
5.5 1 0.205221 | 0.211510 0.277593
6.0 | 0.185414 | 0.191091 0.250763

| 6.5 | 0.167128 | 0.172246 0.225999
7.0 | 0.150328 | 0.154929 0.203951
7.5 | 0.134997 | 0.139127 0.182490
8.0 | 0.12141R .[}.1‘25]‘25 0.161042
8.5 | 0.111924 | 0.115295 0.150631
0.0 | 0.118694 | 0.121953 0.155910
9.5 1 0.182862 ; 0.186231 0.220670
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Table 3
Numerical Solutions of KdV Iiquations for { = 0.1
| x | (x,t) ul(z,t) u?(x, 1) |
"" 0.0 —2.000572 1 -2.000 72 -2.0005H72
.o | -2.8155063 | -2.815715 -2.837367
1.0 } -3.741162 | -3.7T1 1488 -3.611392
1.0 | -6.250241 | -6.218R7H -6, 1R(OEEK
2.0 | -7.854316 | -7.932220 -8.096113
2.0 1 -05.143560 | -5.255033 -6.347138
3.0 1 -1 A3RD73 | -1.486115 -1.9969H9
3.0 | -0.190862 | -0.197163 -(1.268173
4.0 | -0.026590 | -0.027164 -0.033326
4.0 | -0.006166 | -0.00R247 -0.007064
0.0 | -0.001978 | -0.001999 ~0.(0)2202
9.0 | -0.000703 | -0.000710 -0.000778
6.0 | -0.000256 | -0.000259 -0.000283
6.5 { -0.000094 *Q.OOU{]QE | -0.000104
7.0 | -0.000035 | -0.000035 -().00003K
7.5 1 -0.000013 | -0.000013 -0.000014
8.0 | -0.000005 | -0.000005 -0.000005
8.5 | -0.000002 | -0.000002  -0.000002
9.0 | -0.000000 | -0.000000 -0.000000
9.5 | -0.000000 | -0.000000 -0.000000
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Table 4
Numnerical Solutions of KdV Equations for ¢ = 0.3
X u(x,t) u!'(z, 1) ' u(x 1)
0.0 1.345319 | -1.345319 -1.345319
0.5 | -2.381620 | -2.384593 -2.403789
1.0 | -2.723250 | -2.740460 -2.842774
1.5 | -2.791832 | -2.810653 -3. 198895
2.0 | -2.445207 | -2.522205 -3.216412
2.5 1 -1.395237 | -1.969345 -2.788339
3.0 | -1.512204 | -1.553121 -2.174997
3.5 1 -1.522773 | -1.509320 -1.729572
4.0 | -2.143284 | -2.041510 -1.620994
4.5 | -3.761751 | -3.541175 -2.023901
5.0 | -5.955281 | -5.883580 -3.440566
5.5 | -5.634232 | -6.053969 -6.564178
6.0 | -2.552378 | -3.033682 -R.170043
6.5 | -0.478381 | -0.625148 -4.859722
7.0 | -0.048794 | -0.065148 -1.103634
7.5 | -0.004309 | -0.005662 -0.103399
8.0 | -0.000378 | -0.000485 -0.007466
| 8.5 | -0.000034 | -0.000043 -0.000524
9.0 | -0.000002 | -0.000002 -0.000019
9.5 | -0.000001 | -0.000001 -0.000002
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To starl, with one can take extra terms like ¢ R(u). The form of R{u) will depend on the
physical problem. However, detailed study of the perturbation, apart formm the linear form
of R(u} is out side the scope of this report. We took R(u} = u, to perturh the KdV and
the Burgers equation. For small € the equations retained the soliton solutions. However
as ¢ increased the solutions differed significantly from the solitary wave type solution as
can be seen from the numerical solutions. This study is just the first step towards the
perturbation of the KdV and the Burgers equation and (hat is why ils aim was rather

humble. However, one hopes these techniques can be applied to more realistic situations,
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APPENDIX

Source Code of the Program



#include

#include
kinclude
#include
#include

ﬁStdiO.hs ?
<math.h>
<dos .h>

<process.l»

#include

#include
#include
#include
#%Pclude

#define
#idefine
fdefine
#define
fdefine

vaid*;p;

<alloc.ha |
<stdlib.h
<ctype.h>
<fentl.h> |
<graphics.h>
<ctype.h>

N 55

ESC 27

ENTER 13
LEFT 75
RIGHT 77

int. ascii, scan;

volid write_matrix(matrix, order)
float matrix|[] [N]l; - |
int order; |

{

int row, columr;
for(row=0; rowqorder; ++row) —

}

{

}

for {coluim=0;column<order; ++coclumn)
printf ("%£ ", matrix[row] [column]) ;
printf (*\n\a"); -

void exchange_rows (matrix, inverse, rowl, row2, order)
float matrix][] [N], inversel[] [N];
int rowl, row2, order;

{

int column;
float temp;
for (column=0; column<order; ++column)

{

temp=matrix[rowl) [column] ;
matrix[rowl] [column] =matrix{raw2] [column] ;
matrix {row2] [column] =temp; |
temp=inverse [rowl] [column] ;
inverse{rowl} [column] =inverse [row2] [column]j ;
inverse [row2] [column] =temp;

}

int invert_matrix(matrix, inverse, order)
float matrix[] [N], inverse(] [(N];
ﬁnt order;




{

int row,column, current, singular=0;

float ratio; !
for {row=0;:row<order && !singular;++row)
if (matrix[row} [row])/*if diagonal elements are not zero*/

for (current =0 ; currentc<order; ++current)
if {current==row)

{

ratio=matrix[row] [row] ;
for {column:=0:column<order; ++column)

{

matrix|[row] [column] /=ratio;
inverse [row] [column] /=ratio;

}
}

else

{

ratio=matrix{current] [row] /matrix [row] [row];
for {column=0:column<order; ++column)

{

matrix[current][column]—=ratio*matrix[row][column];
inverse[current][column]-=ratio*inverse[row][column];

}
}

else

{

singular=1; | | .
for {(current=row+1; (current<order) && singular;++current)
if (matrixicurrent] [rowl])

{

singular=0; | | .
exchange_rows (matrix, inverse, current, row, order} ;

--YOW;
}
}

return(!singular) ;

}/*end of fnction inverse*/

float c[N]:

multi(a}b,c,order)
float al[] [N],b[N],c[N];
int order; .

{ P

int 1,3.,k;
for(i=0;i<order;i++)

{
c[i)=0.0;
for (k=0;k<order;k++)
clil=cl(il+afi] [kI*b[k]; [HrAkkkk ko [k] [J]rrxr*/
} ' .

}
main{)
{

int option,dl;
float B,C,B1,C1,B2,C2,Bm, Cm; |
int v1,i,5,1;/*dl*//*vl-~--used for generate the no of soliton*/



float matrix([N] [N], inversge [N] [N], coeff [N],u[N] [N],v[N] [N];
float lamda,d,k,h,b,a,neu,din, neub,dinb,result, T;
int m,n; /*number of nodal points along X--axis and t--axis
is m+l -and n+l respectively */
/*spacing along X-axis is h={(b-a'/m */
/*spacing along t-axis is k=T,a */
/*lamda---~->mesh ratio parameter*/
/* here d=k/h is used in place of c=k/h in book*/
int choicepMgm,gd=DETECT; % /*constant used fcr*/
int resultl; /* giaphics mode*/
size_t area;
printf (" ___ o . \n") ;
prlntf("enter the valuea of “nwer(=a} and upper (=b) llMltB"),
printf ("\n");
scanf ("$f %f",&a,&b);
printf ("value of a = %$f\nvalue of b = $f\n",a,b):
printf ("enter the time interval T\n");
gcanf ("$£", &T) ;
printf ("Number of time label = %f\n",T):

printf ("enter the values of m and n\n") | *
scanf("¥4d %d4v,&m, &n) ;

printf ("value of m = %d value of n = %d",m,n);

Printf ("\N----m e mm e e oo -- -\n") ;

printf ("spacing along space and time axis are\n");
h=(b-a)/(float) m;
k=(float) T/ (float)n;
printf ("spacing along X-axis h= %f spacing along t-axis k=%f",h,k)
- printf("\n");
- /* lamda=k/ (h*h*h) ; */
/* d=k/h;*/
printf ("enter the values of lamda and d\n") ;
gscanf ("%£f %f", &lamda, &4) ;
vrintf("value of lamda = %f \n value of d = %f \a", lamda,d);
Printf (M \N-- - e o e e i eaaaaa o \n") ;
printf ("How many(1/2) no soliton want to generate?\n") ;
scanf ("%¥d4", &option) ;
_sw1tch(op*10n)

{

case 1:

forfi=0:i<=n;i++)/*Store,result for first boundary+*/
neub=(2/(emp(-4*i*k)+exp(4*i*k))):
neub*=neub;
@11 (0] =(-2) *neub;
}v[i][O]—( -2) *neub;
for(i:O;i{=n;i++)/*store’result_ﬂbr 3econd%boundary*/
{ -
neub=(2/ (exp (m*h-4+*i*k) +exp(4*i*k-m*h))) ;
neub*=neub:
uli) [m}=(-2) *neub;
}v[i][m]=(—2)*neub;
for(i=1;i<m;i++)/*store result for initial condition*/
{
neub= (2/(exp(1*h)+expu( 1) *h)));
neub*=neub; -
ulo] [1]=(- 2)*neub,

}




| break;
case 2: - |
/*store the result in the first boundary*/
for(?=0;i¢=n;i++)
neub=3.0+4*cosh(-8*i*k) +cosh(-64*1*k) ;
dinb= (3*coah( 28*i*k) +cosh (- 36*1*k))*(3*cosh( 28*1*k)+cosh( 36*irk) ) ;
ulil} {0}=(-12*neub) /dinb;
}v[1][0]-( ~12*neub) /dinb;

/*store the result for second boundary*/
for(%=0;iﬂ=n;i++)
neub=3.0+4*cosh(2*m*h-8*i*k)+cosh(4*m*h-64*1*k) ;
linb={3*cosh{m*h-28*i*k) +cosh{3*m*h- 36*l*k))*(3*COQh(m*h 28*1*k) +cosh(3*m*h- BQ
uli] [m]=(-12*neub) /dinb;
vii] [m]={(-12*neub) /dinb:

}

/*store the values of initial condition in u([N] [N]*/
for{(i=1;i<m;i++)

{

neu=3,0+4*cosh(2*i*h) +cosh(4*i*h) ;

din= (3*cosh(1*h)+cosh(3*1*h))*(3*cosh(1*h)+cosh(3*1*h))
ul[0] [i)=(-12*neu)/ (din) ;

}
break;
default:

printf ("Enter either 1 or 2,Try agaln\n"
break;

}/*end of gswtich*/

for(l=0:1c<n;l++)

{

for{(i1=0:1<{m-1) ;i++)

{

for(j=0;j<(m-1);j++)

if (i==9)
{

matrix[i] [J]1=21.0+((3. 0)*lamda)/(2 0);
invergse{[1] [j]=1.0; |

}

else if(j-i==1) | '
matrix{il [j)=(-1.0)*({(3.0)*lamda/2.0)+({(3. 0)*d)/‘0)*(u[1] [§+1])

elge if(i-j==1)

matrix[i] [j)=(((-1. 0)*1amda)/2 0)+(((3.0)*d)/2.0)
else if(j~i==2)

matrix[i] [j]l=(lamda)/ (2.0} ;
else

matrix[i] [j1=0.0;
if(i1=7) *
inverse([i] [1]=0.0;

(wull} [J+1]);

}

) .
Bl=(-1.0)*lamda*{(u[l] [3])-3*u[l] [2])+3*u([l] [1]-ul[l)I[O]);
Ci=(3.0)*{(d/2.0)*(ull) [2)*u[[l}) (2] -ull] [O]*ufl][O));
coeff [0} =B1+C1-(vi1][0}*(((-1.0)*lamda)/2.0+(((3.0)*d)/2.0)*ufl][01));

B2={(-1)*lamda* (u[l] [m]-{(3.0)*ufl} m-1)+(3.0)*u[l] [m-2]-wu[l] (m-3]);
C2=(3.0)*(d/2.0)*(ufl] (m-1)*ufl] [m-1]-u[l] [m-3]*u{l] [(m-3]);




coeff[1]1=B2+C2-v[1l] [m]* (lamda/2.C} ;

Bn=(-1.0) *lamdax* (u[-lj m+1]1-{(3.0)*u (1) m]+(3.0)*ufl] (m-1}-~ull] (m-2]);
Cm=(3.0)*(d/2.0)*(u[l} [m}*a([l]) [m] -ufi] tm-2]*u(ll] (m-2]);
coeff[m-2] =Bm+Cm+vil] (m]*(((3.0)*lamda/2.0)+((3.0)/2.0)*d*ul] [m]);

for{i=1;1<m~-3;1++)

{

B=(-1.0)*lamda* (u[1l]) [i+3]-3*u[l] [i+2)+3*u[l] {i+1]-ull} {x]};
C=(3.0)*(d/2.0)*{(ufl] [i+2]*ul] [142]- ﬁ[l][ll*u[ll[ll)
coeff{i] =B+C;
}/*find the coefficient matrix*/
if (! invert_matrix{(matrix, inverse,m-1))

{

?rintf("matrix is singular,Not possible to find the solution");

multi (1nverse,coeff,c,m-1);
for{(i=1;i<m;i++)
v[l][1] =c[i1-1]; /*find the v[N] [N] matrix*/
/*find u at the next time lavel with the
help of u and v at the present lavel*/

for(i=1;1i<m;1++)

{

) S
}/*end of 1--for loop*/
dl=(n)/5; *
for(l=0;1l<=n;)
[
for(j=0;j<=m;j++)

{

Printf (M-~ occmme i m e e e \n") ;
printf ("The solution at %d-th level at %d-th point is--\n",1,3j);
printf ("%£f\n*,ul) [3]);

)
1=1+d1;

ull+i]) [1}]=u(l] [1]+v([1] [1];

\ }
/*detectgraph (&gd, &gm) ; */
#* initgraph(&ad, &gm, "c:\\tc");
resultl=graphresult () ;
if(féﬂult1!=gr0k)
closegraph() ; |
printf ("Graphics error %s \n",grapherrormsg(raﬁaltl))
printf ("Graphics Device Driver files not present 1n\n“).
printf (" directary %s \n", "c \\tc\\bgi ) ;
}exlttl),
area=imagesize (220,165,420,315);
p=malloc {(area) ;
ipr==NULL)
ouptextxy (24,104, "Insufficient memory ! press any key to exit") ;
fflush(stdin) ;
getch) ;
closegraph() ;
restorecrtmode () ;
exit (0);



identity () ;

mainscreen{) ;

clearviewport{);
rectangle (0, 0,getmaxx(),20);
rectangle(U,O,getmaxx().20):
getcolor (YELLOW) ;
rectangle(o,so,getmaxx(),getmaxy()):

setcolor (LIGHTCYAN) ;
rectangle(320-100,240—75,320+100,240+75);

getcolor (GREEN) ; |
rectangle(320~100—5,240—75-5,320+100+5,240+75+5):

while (1)

{

setcolor (YELLOW) ;

display () ;
choice=getresponse(“LDSPX",51;
awitch (choice)

{

case 1:

case 2:
draw() ;
-settextstyle(TRIPLEX_FONT,HORIZ_DIR,0);
break;
cage 3:

gavel);
settextstyle(TRIPLEX_FONT,HORIZ#DIR,0);

break;
\ case 4:
print () ;
Settextstyle(TRIPLEX“FONT,HDRIZ#DIR,0);
break;
cage 5:
clogegraph{) ;
regstorecrtmode () ;
exit (0);

}

identity(i
int maxx, maxy;
maxx=getmaxx () ;
maxy=getmaxy () ;
getcolor (LIGHTCYAN) ;
rectangle(0,0,maxx,maxy);
settextstyle(TRIPLEX_FONT,HORIZ_DIR,O);
settextjustify(CENTER_TEXT,TOP_TEXT);
outtextxy(maxx/2,4,"VISION ASSIGNMENT") ;

outtextxy ( (maxx/2)-8,40, " --PROGRAM CREATED BY--");
setcolor (RED) ;

out textxy (maxx/2,maxy/2, "SUBIK BANDYOPADHYAY") ;
sleep(3); - .

clearviewport () ;

}



choice=1;
if (choice==0)
choice=count;

}
else
{ y

1f {ascii==ENTER)

return (choice} ;

if {(ascii==ESC)

return (ESC) ; .

len=gtrlen(hotkeys) ;

hotkeychoice=1;

ascii=toupper(ascii);

while {*hotkeys)

{
if (*hotkeys==ascil)
return (hotkeychoice) ;
else
{

hotkeys++;
hotkeychoice++;

}
if (choice==cbunt)
hotkeys=hotkeys-len;
printf ("\a") ;

}

}

int ?etkey()

union REGS i, 0;
while(!kbhit ()} ) ;
i.h.ah=0;
int86 (22, &1, &0) ;
ascii=o.h.al;
scan=0.h.ah;
return 0 ;

load ()

{

char fname[30];

int area, in, retvalue;

settextstyle (DEFAULT_FONT, HORIZ_DIR, 0);
outtextxy (40*8,6*19, "LOAD THE FILE FROM DISK....");
sleep(2);

cleartext (0) ; |
outtextxy(40*8,6*19, "PRESS ESC KEY TO EXIT...");
sleep(3);

cleartext (0) ;

outtextxy (30*8,6*19, "ENTER THE FILE NAME...");
retvalue=getgstringl (fname) ;

1f (retvalue==ESC)



mainscreen(i

int maxx,naxy,1in,area;
maxx=getmaxx () ;

- maxy=getmaxy () ;
setcolor (RED) ;
rectangle (0, 0, maxx, maxy) ;
settextstyle(TRIPLEX_FCNT;HORIZ_DIR,0);
settextjustify (CENTER_TEXT, TOP_TEXT} ;
outtextxy (maxx/2,10, "IMAGE EDITOR");

outtextxy(maxx/2+15,maxY/2r"pRESS ANY KEY TO CONTINUE..... ")
fflush(stdin) ;
getch () ;
clearviewport () ;
}
displ?y()
getcolor (LIGHTRED) ;

outtextxy (72,19, "LOAD") ;
outtextxy (200,19, "DRAW") ;
outtextxy (328,19, "SAVE") ;
outtextxy (456,19, "PRINT") ;
outtextxy (584,19, "EXIT").;

int getresponse (hotkeys, count)
char *hotkeys ;
int c?unt;
int col,choice=1, hotkeychoice, len;
whi%e(l)
col=(choice-1)*(79/count) +1;
setcolor {LIGHTMAGENTA) ;
outtextxy((col+8}*8,(3*19),"::");
getkey () ; | '
if(as?ii==0)
setcolor (getbkcolor());
outtextxy{ (col+8)*8, (3*19),"=>");
setcolor (LIGHTMAGENTA) ;
switch {scan)

{
case RIGHT:
choice++;
break;
- case LEFT:
choice--;
} break;

if (choice>count)



return;

outtextxy (50*8,6*%19, fname) ;

in=open (fname, O_BINARY | O_RDONLY, 0x0000} ;

if(i?::-l)
cleartext (2) ; |
outtextxy (40*8,371, "UNABLE TO OFEN THE FILE ! PRESS ANY KEY TO EXIT")
fflush(stdin) ;
getch() ;
cleartext(2) ;
return;

-
area-imagesize(220,165,420,315);
read (in, p, area) ;

cloge{in)

putimage (220,165, p, COPY_PUT) ;
cleartext (2) ;

we ()

{

char fname{[30];

int out, area,retvalue;

delete({); |

settextstyle (DEFAULT_FONT, HORIZ_DIR, 0) ;
outtextxy(40*8,114,"SAVE THE FILE IN DISK");
outtextxy(40*8,371, "PRESS ESC K&Y TO EXIT"),;
sleep(2);

cleartext (1) ;

outtextxy (40*8,371, "ENTER THE FILE NAME :-");
retvalue=getstringl (fname) ;
outtextxy (50*8, 371, fname) ;

1f (retvalue==ESC)

return;
out=open (fname, O_BINARY|O_CREAT|O_RDWR, 0666) ;
if{OUC==il)

sleep(2) ;

cleartext (1) ; R
outtextxy (40*8,371, "UNABLE TO STORE THE FILE ! PRESS ANY KEY TO EX

fflush(stdin) ;

getch() ;

gsleep(2);

cleartext (2);

}return;
getimage{220,165,420,315,p);
area=imagesize(220,165,420,315):
write (out, p, area);
close(out) ;
cleartext (2} ;



grint ()

char ¢h;

union REGS i, o0;
delete() ;

cet textstyle (DEFAULT_FONT, HORIZ_DIR,0);
cleartext (2) ;

setcolor (YELLOW) ;
outtextxy (30*8,6*19, "PRINT THE IMAGE. . ... ")

outtextxy (40%8,371, "PRESS ESC KEXY TO EXIT...");

gleep(3) ;

cleartext (1) ; |
Outtextxy(30*8,37l,"SET UP THE PRINTER AND PRESS ESC KEY TO EXIT");
gleep(3) ;

cleartext (1) ;

fflush(stdin) ;

getkey () ;

ch=getch () ;

cleartext (0) ;

if {ch==ESC)

return;

int86 (5, &1, &0) ;

f

draw ()}

{

int i,poly[lOO],no,retvalue,color;

char temp[10],ch;

delete(} ;

settextﬁtyle(DEFAULT_FONT,HORIZ_DIR,O);

cleartext (0);

outtextxy (40+*8,6*19, "HOW MANY POINTS IN THE POLYGON"} ;

while (!kbhit()); |

retvalue=getstringl (temp) ;

if (retvalue==ESC)

return,

no=atoi (temp) ;

outtextxy (50*9+20,6*19, temp) ;

while (!kbhit()) ;

cleartext (0) ;

outtextxy(40*8,37l,"ENTER THE SCENE COORDINATES"} ;

for%i=0;i{ 2*N0;1i++)

retvalue=getstringl (temp) ;

if (retvalue==ESC)

return;

{poly[i]=atoi(temp);
if (i< 10} -
outtextxy(BO*i+50,400,temp);
else if (i»>=10 && 1<20)
outtextxy (30+*i-300+50,420,temp) ;
else |
Guttextxy(30*im600+50,440,temp);'

} .



if((1%2) ==

elge

0)
poly[i] =220+ (int) ((5*poly(il) /16};

poly (1] =165+ (int) ((S*poly[i])}/16);

}

cleartext (1) :
cleartext (3) ;

drawpoly (no, poly) ;

cleartext (0) ;

outtextxy (40*8,114, "PRESS ESC KEY TO EXIT");

while (1)

{

ch=getch{)} ;

if (ch==0

) .

continue;

il (ch==ENTER)
continue:
if{Ch=='\b')
continue;

if (ch==ESC)

return:

if (ch<32)
continue:

cleartext {(int n)

{

int i,9;
int color;
switch (n)

{

case (;

——

color=getcolor():;

setcolor (getbkcolor(});

for (1=105;1<=125;1i++)

for(j=10;3<80*%8-10;j++)
outtextxy(j,i,"a");
setcolor (color) ;
break;

case 1l:

case 3:

color=getcolor() ;

setcolor (getbkcolor()) ;

for{(i=365;1<=385;i++)
forfj=10;j<80*8-10;j++)-

}

setcolor(color) ;
break;

outtextxy(j,i,"a");j

color=getcolor () ;
getcolor (getbkcolor());
for{i=395;1<=455;i++)
for{j=10;j<=80%7;7++)
outtextxy(j, 1, "a"};: °



setcolor (color) ;
break;

case 2:
cleartext (0) ;

cleartext (1) ;
break;

delete ()

{

int color,i,J;
color=getcolor() ;
setcolor (getbkcolor () ) ;
for{(i=50;1<=60;1++)
for(j=10;3<640-10;]++)

outtextxy(j,i,"a");

gsetcolor{(color) ;

}

int getstringl (str)
char *str;

S

int 3=0;

char c¢ch;

while (1)

{
fflush({stdin);
ch=getch(} ;

if {(ch==0)

getch{) ;
continue;

)

if {ch==ENTER)
{
str(jl="\0";
break;

)

else if (ch==ESC)
return (ESC) ; .
else if (ch=='\b' && Jj>0) /*1f backspace is pressed*/

J=-3
continue:

else if(ch<32) « /*If control charecter is pressed*/
continue; | , |

else str{jl=ch;

J++;

if(j==30)

str(jl="\0";
break;

}
)

return(O);





