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Chapter 1

Introduction

1.1 Motivation

Commercially successful database packages are usuallly based on Codd’s re-
lational data model[l]. The conceptual model of the Codd’s system uses
two dimensional table. It provides operators which can logically relate two
tables or take a subset of an existing table. Facilities are also available to
create new tables and to alter existing tables. Relational model, however
provides limited facilities for numerical and statistical computation. The
data produced by such operations are also not stored in the database.

However there are certain application areas like the census of a country, large
socio-economic surveys etc. where extensive statistical analysis is done on
the data. The users are also not interested in the raw data, rather queries
are made on the summary data only. It is not very advantageous to cre-
ate such an environment under relational framework. A new data model is

needed.

1.2 Statistical Database

Statistical database handles applications where the users prefer to do sta-
tistical computation over the stored raw data to generate summary data.
Storage, updation, retrieval etc. are done on the summary data instead of
the raw data. For example, in case of a country wide census, the users are
mainly interested in the summary data like average population per state, per
capita income etc. and not about data related to individual citizen. For this



purpose statistical functions like Total, Count, Mean, Standard Deviation
etc. are applied on the stored raw data (also called micro data) to generate
the required summary data (also called macro data or statistical object).

1.3 Salient Features of SDB

1.3.1 Multi-dimensionality

While statistical computations are done over one or more variates (called
attributes in relational system), other features or attributes (called category
attributes) associated with the variates define the universe of such computa-
tion. The result of the computations creates a new attribute called summary
attribute. For example a country wide census collects data about each cit-
1zen of the country. Now if we want to know the total number of citizen
against each unique combination of values of religion, state and profession
recorded during the census, then the new attribute population generated by
the computations is the summary attribute and religion, state and profes-
sion are the category attributes. These category attributes associated with
a summary attribute thus define a multi-dimensional space which cannot
be represented effectively in the two dimensional structure of the relational
tables.

1.3.2 Classification Hierarchy

Similar to generalization/specialization hierarchy present among the at-
tributes and relations, “is_a” relationship may also be present among cate-
gory attributes. The extensions of relational model proposed so far for mod-
elling SDB could not take care of this property. However “Graph Oriented
Model” of SDB can effectively handle multi-dimensionality and classification
hierarchy.

1.3.3 Intermediate or Meta-Data

In the process of computing a summary attribute, one may come across cer-
tain intermediate functions which cause additional summary attributes to
be created. These intermediate functions may be stored for ease of future
computations.

For example, SUM(X), SUM-OF-SQUARE(X) and VAR(X) are created
and stored when VAR(X) (variance of X) is computed on variate X. Later
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they may be used for future computations of other summary attributes. The
set of category attributes for such computations should, however, remain un-
altered.

1.4 Previous Work

Substantial amount of work has been carried out in the field of statistical
database during the last one decade. Different data models have been pro-
posed to understand the fundamentals of statistical database management
systems. The data models proposed so far follow either of the two following
methodologies.

1.4.1 Two dimensional tabular representation

This work [2] was done under the influence of the relational model. Here
the summary data is represented by two dimensional tables again. One
possible 2-I) table representation of population against State, Religion and
profession is shown in the fig 1.1. State has two values S1 and S2, Religion
has three values R1, R2, R3 and Profession has three values P1, P2 and P3.

The above representation of statistical database has the following limita-
tions, |

¢ The concept of multi-dimensionality is distorted
Because of 2-D representation, the multi-dimensional space is squeezed
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into two dimensions. This is typically done by choosing several of cat-
egory attributes as rows and columns. Since the category attributes
around a summary attribute define the multidimensional space, a 2-
D representation with the loss of multidimensionality makes query
processing diflicult. In the table shown in fig-1.1, a query on Reli-
gion within a State can be processed more easily than a query on
State within a Religion. In general, the 2-D representation of a multi-
dimensional statistical object forces an arbitary choice of rows and
columns. But the proper model should retain the concept of multi-
dimensionality and represent it explicitly. The table of fig-1.1 uses
a very simple function like “Count”. If more complicated functions
are used under this 2-D representation, some queries may even need
run-time computation.

The classification relationship is lost .

In the 2-D representation, classification hierarchies are representad in
the same manner as the multi-dimensional categories. Conaider, for ex-
ample, that “Professions” are classified into “Profisssional Categaries”
as shown in the 2-D table of fig-1.2.

As can be seen from the figure, there is no diffevence in the repre-
sentation of “Sex” and “Year” and the represemgation of “Profession”
and “Professional Category”. However it is obvieus from this example



that the values of average income are given for specific combination of
“Sex”, “Year” and “Profession” only. Thus “Professional Category”
Is not part of the multi-dimensional space of this statistical object. As
can be seen from the above example, there is fundamental difference
between category classification relationship and muitidimensionality.
Only the lowest level sub-class in the classification relationship par-
ticipates in the multi-dimensional space. This fundamental difference
should be explicitly represented in a semantically correct statistical
data model.

o Lack of meta-data level

A 2-D represtation requires that the category names as well as the
category instances be represented together. There is no separate de-
scription of what the statistical database is about (metadata). For
example, the meta-data for the above table consists only the “Average
Income” by “Sex”, “Year” and “Profession”, and professions are clas-
sified in “Professional Category”. However it is represented together
with the values of the category attributes. Consequently, the 2-D rep-
resentation becomes very large for tables with high dimensionality, or
when the categories have a large number of instances. Such represen-
tation cannot comfortably fit on a page or screen. In such cases, the
representation spreads into multiple pages or screens. For example if
we add another dimension, “State” to the above table we may need to
represent each state on a separate page. This confuses the understand-
ing of the statistical object. It is therefore desirable to separate the
representation of the categories and the category instances in order to
achieve compactness of the semantic description of the database.

1.4.2 Graph Oriented Representation Model

Graph Oriented Statistical Object Representation Model (STORM) as pro-
posed by Rafanelli & Shoshani3] arranges the statistical objects in a directed
tree. The summary attribute and each of the category attributes are repre-
sented as nodes of type S and C respectively. The root of the tree is always
the node S. In addition, another node type is used, denoted as A node, to

represent an aggregation of nodes pointing to it. In most cases the nodes
pointing to a node will be C nodes, but it is possible that an A node may
point to another A node. An example of a STORM representation of the
SO (statistical object) “product sales” is given in figure-1.3.
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Another possible representation of the same example is shown in the fig-
1.4, which illustrates the possibility of an A node pointing to another A

node.

The two representation of the Statistical Object “product sales” given in
the above two figures have radically different meanings. In the first figure
the implication is that the sales amounts are given for each product (e.g.
chair, table,...) and that products are grouped into types (e.g. metal, wood,

other
given

n this example product may belong to more than one type. On the

hand in the second figure the implication is that the sales amounts are

or each type-product combination. Thus, the sales figures are given

for “metal chairs”, “plastic chairs” etc. Some of these figures may be zero
or “‘non-existing”.

However the major disadvantage of the above model is that there is no
way to determine which representation is the desired one from the original
description of the Statistical Object.

10
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Chapter 2

HISTO Model

2.1 HISTO - A Statistical Database System

The Graph-Oriented STORM model can effectively handle multidimensiona.-
lity and classification hierarchy. Statistical Relational Tables proposed by
S.P.Ghosh [4] can incorporate meta-data. But on one side none of the Graph
Oriented Model can exploit meta-data and on the other hand 2-D model can
not incorporate multi-dimensionality.

In order to exploit the facilities of both types of representations, a new
SDB model HISTO has been proposed [5]. In this section the HISTO model
hass been discussed. Next section would deal with the implementation.

The earlier statistical data models have considered a very small set of sim-
ple statistical functions like Total, Count, Mean, Median etc. However in
practice, when statistical analysis is done on any survey data, more complex
functions are used. These statistical functions can be placed in a hierarchy
called the Functional Hierarchy as shown in the fig-2.1.

So a function f when placed in the Functional Hierarchy, is assigned with a
level value and is specified as a tuple
< function_name, level_value >

As shown in the figure, functions Total and Count are required to generate
the Mean which in turn generates Standard-Deviation. Variance is again
created from Standard Deviation. So, the summary attributes generated by
these functions on the same variate with the same set of category attributes
should also maintain the same hierarchy:.

12



¥igure 2.1: Functional Hierarchy with function levels
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[n HISTO (Hierarchy of Statistical Objects) model a statistical object type
S,‘ is defined as,

S; =< N,C, L;'Sj. fi > where

S; : a statistical object type.

N :  name orid of ;.

C  :  set of category attributes associated with S;.
V' the variate on which f; has been applied.

fi : the statistical function applied on V to create S;.
S; ¢+ set of statistical object types used to generate S;.

Here 1 in f; signifies the level at which f; has been placed in the functional
hierarchy.

If 5; € S; and 3; has been generated by the function Ji then 7 < 4. That
means, the function f; is placed at a level lower than f; in the functional
hierarchy.

Let us consider that a company database offers the following attributes for

13



the employees :

{ Employee — no., Name, Age, Salary, Dept — Name}
The employee have been classified into four age groups in years,
({20 — 30}, [31 — 40], [41 — 50], [Above50]).
There are three departments,
(D1, D2, D3)
in the company.
A query demands,
Mean Salary of employees against Age and Dept — Name.
So here,

S; = Mean Salary

C = {Age, Dept — Name}

V= Salary

fi = Mean

S; = Total Salary, Count of Employees

In the above example, the function ‘Mean’ uses the function ‘Total’ and
‘Count’ to create the statistical object type ‘Mean_Salary’. ‘Total’ and
‘Count’ on the other hand create the statistical object types under S;. In
other words, the statistical object types under S; are accessed to generate
Si. So the hierarchy among the statistical functions automatically maps
onto a corresponding hierarchy of the statistical object types. So according
to this hierarchy S; is a supertype of all members of S;.

Each statistical object type has a number of instances. Each set of value
combination of the category attributes alongwith the corresponding value
of the summary attribute provides an instance. So in the above example,
since there are 4 Age_Group and 3 Dept-Name, S; or Mean_Salary will have
12 instances.

Now in the definition of the statistical object type S;, the subtype set S;
may be null. That means, 5; is getting created from the raw data. Cate-
gory attribute set C can also be null signifying that S; is accessing the Root
of the Category Hierarchy. Now, if the statistical function f; is also null,
then the statistical object type may have only the variate V. This would be
equivalent to the creation of a query on raw data similar to a query made

14



in relational or any such standard data model.

Besides the functional hierarchy, the statistical object types can also be
placed in another hierarchy according to the set of category attributes asso-
ciated with them. We call this the Category Hierarchy.

Again from the above example we get,
Mean Salary against {Age, Dept — Name)
but we should also be able to retrieve the marginals like,
Mean Salary against {Age} irrespective of Dept — Name
and
Mean Salary against { Dept — Name} irrespective of Age
We should also be able to retrieve the Mean Salary for the total set of em-
ployees irrespective of any category attribute.

Let’s consider that a function fis applied on variate V. The environment
has four category attributes {C1,C2,C3, C4}. Two different statistical ob-
ject types S1 and 52 have been created such that,

St =< N1,{C1,C2,C3},V/ f> and

52 =< N2,{C1,C2,C4}, V[ f >
For the same function fand variate V] if all the marginal types for the above
two statistical object types are created and stored in the database, we get
the hierarchical structure shown in fig-2.2. This hierarchy is called Category
Hierarchy.

The hierarchical structure shows that two different statistical object types

may have common marginal object types. Object types involving category
attributes {C1, C2, C3} and {C1,C2,C4}, for same f and V, have the com-
mon marginal object type with category attributes {C1, C2}.

The two main problems of 2-D representation as discussed previously can
be solved with the help of the above two hierarchies as explained later.

15



Figure 2.2: The Category Hierarchy
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Chapter 3

Implementation of HISTO
model

In this dissertation a methodology for implementation of statistical database
have been developed following the HISTO model.

3.1 Salient Features

The SDB has been developed as a shell above the relational database. The
relational environment provides the management of raw data. It consists
of only one table, with all the attributes of the system, such a relation is
called Universal Table. The raw data can be accessed by the usual SQL
language. It has been assumed that the interface between the SDB shell
and the relational database is developed using PRO*C (Oracle 7.0) or simi-
lar languages. Development of such interface is permissible in any standard
RDBMS available in the market (e.g. Oracle, VAX-RDB, INFORMIX etc.).
Standard SELECT statement has been used to access the raw data in the
Universal Table. These commands are available in any RDB having ANSI
SQL or its extension as its query language. So the proposed methodology
for development of SDB shell on RDB is totally system independent. The
major assumptions made in the development of SDB are discussed below.

3.1.1 Assumptions

1. No change in micro datatypes and instances.

17



2.

Instances of a statistical object would always be numeric.

3.1.2 Properties

1.

Functional hierarchy for the creation of Statistical Object (SO) is
uniquely defined, and runtime function definition is not permissible.

. 50s may be generated dynamically during query processing.

. All the SOs generated during processing of a query may not be stored

permanently.

. Any SO instance returning zero should not be used for further com-

putation in a hierarchy.

. Intermediate SOs used to create a new SO must have same set of

category attribute instances.

. For creating a new SO, any other SO lower in the hierarchy may appear

more than once during computation.

3.1.3 Condition for Object Instance Creation

1.

An SO is created if and only if lower order SOs in the hierarchy are
also created.

. Any SO accessing any other SO in the hierarchy is only concerned with

the instance of such SO and not with its structure.

. An S50 can, therefore, be created as an Abstract Datatype.

3.2 Data-Structure

3.2.1 Attribute Dictionary

The information about the attributes of the SDB will be stored here. The
attribute information that should be stored in the attribute dictionary for
running the SDB shell are as follows,

Attribute Name The attribute name may be anything. It is used only for

external user interface.

18



Attribute Type The attribute type may be Category (e.g. hobby, sex,
...}, Variate (e.g. salary, number of dependants, .. .} and Both (e.g.
age may be age group meaning category and also age may be a variate).

Variate Number This property of an attribute is valid for the type variate
and both only. Each variate in the SDBMS is mapped to an unique
integer internally. For all the internal processing a variate is identified
by its Variate Number. This can be any natural number starting
from 1. For category the value is stored as 0, signifying that it is not
to be considered for computations.

Category Number This property of an attribute is valid if the attribute
is of the type category or both only. Each category in the SDBMS is
mapped to an unique integer internally. For all the internal processing
a category is identified by its Category Number. This can be any
natural number starting from 1. For variate the value is stored as 0.

3.2.2 Category Instance Dictionary

For each category its instances are stored for use in the SDB. The informa.
tion stored for each attribute of type category or both are as follows,

Category Number This is the same number as stored in the A#tribute
Dictionary.

Instance Number The instance number of a category or both type at-
tribute gives the number of instance of the attribute in the SDB.

Instance Type The instance type may be numeric or alpha-neumeric. Age
attribute has numeric instances. Numeric category instances are basi-
cally numeric ranges. So Numeric instances has two part,

o Lower Limit

¢ Upper Limit

Instances For Numeric Category Instances the instances are set {lower_-
limat, Upper limit}. For Alpha-numeric Category Instances, the in-
stances are stored as strings.

19



3.2.3 Function Dictionary

For each function defined in the SDB, the following information are stored,

Function Name Function name is the name of a function defined in the
SDB, this is the name by which a user will access a function.

Function Number Each function defined in the SDB is mapped to a natu-
ral number. All internal reference to the function is done through this
number. This number will start from 1 and it is generated internally.

Security Level This is the level in the functional hierarchy in which the
function belongs. This security level will be used for implementing the
Authorization Model as discussed later.

Set Of Subfunctions This will contain the Function Number of func-
tions on which the current function depends directly in the functional
hierarchy. Clearly the subfunctions should be entered in the dictionary
before.

3.2.4 Object ID

Every object type in SDB has an unique OBJECT ID. This OID will be
later used to get information about the object types and its instances. Any
query on the SDB will basically access the instances of such an object. So
any user given query will be internally represented as the Object Id whose
instances are to be accessed. We will discuss about the algorithm for creating
a unique object id.

3.3 Algorithm

Three data are globally available by all the algorithms, they are

1. no_of_func This gives total number of statistical functions available
in the SDB

2. no_of.cat This gives total number of category er both type attributes
in the SDB

3. no.of.var This gives total number of variates or both type attributes
in the SDB

In addition, all the algorithms can access the database dictionary described
above.

20



3.3.1 Creation of Object ID

Input
¢ Set of Category C

e Variate_Name

e Function_Name

Output
o Object ID oid
BEGIN CREATE_OBJECT_ID

anC_id « Function _Name— Function_No—1

var_id — 2Vnrint£_Nnme—rVnrinte_Na—l

catid «— O
for each c € C

begin

cat_id +— cat_id v 2¢—Category_No-1

end
id — func_id v 2re-ef-func « nat id
\/ 2(na_nf_func+na_af_mt) < var. id

refturn 1d

END CREATE _OBJECT_ID

3.3.2 Find Status of a Object Type

The Object type whose instances have been already created and stored in
the SDB need not be created again. So we keep a table of OID of object
types, already created. The table is indexed first by the variate_number

(var_id) then by the category set (cat_id) and lastly by the function_number
(func_id) The table will only contain the OID of the object types which have
been created already. OID of an object whose instances are to be created

will not be in the table.

Input

21



e 0id, Object ID of the Object referred by the user’s query
Output

o Status of the Object Type

Return 1 if object instances have already been created

Return 2 if variate and category combination have been accessed

previously, but not the function. So object instances have not
been created

Return 3 if variate has been accessed previously but not the category
combination.

Return 4 if variate hasn’t been accessed

For 2, 3 and 4 object instances have to be created.

BEGIN CHECK_STATUS_OF_OBJECT

var_id +— retrieve from oid
search OID table
if ({FOUND)
begin
return 4
end

cat_id «— retrieve from oid
gearch OID table
if ({IFOUND)
begin
return 3
end

func_id «+ retrieve from oid
search OID table

if ({FOUND)

begin

return 2

end
return 1

END CHECK_STATUS._OF_OBJECT

22



Figure 3.1:

Summary Data of SALARY by Hobby, Sex & Age

| HOBBY | SEX | AGE [ TOTAL | COUNT | MEAN
| reading | male | 10-20
reading male | 20-30

S

| gossiping | female | 90-100

3.3.3 Storage Structure of Summary Data

The summary data for each variate and unique category combination are
stored in separate flat file. The filename is generated internally by conca-
nating variate name and cat_id. All the summary data with same variate
and category combination are stored in the same table as shown in fig-3.1.
This makes the system efficient during development of functional hierarchy.

Values of the lower level functions required to calculate some higher level
function are available at the same row.

In fig-3.1 we give example of such a table for variate salary, category com-
bination hobby, sex, age and functions mean, total and count.

3.3.4 Object Instance Creation
For each query made by the user to the SDB the following things happen,

1. The query is initially transformed into a object ID oid, as described
above.

2. Search is made for the oid in the object ID table by the module
CHECK_ STATUS_OF_OBJECT.

3. If the return value by step 2 is 1, just query processing is done on the
corresponding table

4. If the return value by step 2 is 2, the required summary data is calcu-

lated and the corresponding summary column is added to the existing
table.

5. If the return value by step 2 is 3 or 4, the summary table is created.

23



Figure 3.2:

Summary Data of SALARY by Hobby, Sex & Age

| HOBBY | SEX J[ AGE | TOTAL

reading | male | 10-20

reading male | 20-30

-

r

gossiping | female | 90-100

For new object creation two modules are defined,

o CREATE_TABLFE If summary table for a variate v does not exist
for category set {C} then this module is called. For the functional
hierarchy this module will be called during creation of level 1 object,
such as < {C}, v, total >, < {C},v, count >.

Typical structure of the summary table after creation is given in fig-
3.2.

e APPEND SUMMARY_COLUMN For creation of objects with -
higher level functions, this module will be called. This will add corre-

sponding summary data as a new column to the appropriate summary
table.

The CREATE_TA BLE module require to generate the combinations of the
instances of ¢ € {C} (the query category set). Say, {C} = {c1, 2}, the ¢; has
4 instances and the ¢o has 5 instances, then the CREATE_TABLE is re-
quired to generate 20 combination for the category columns of the summary
table. For this purpose we use the following CREATE_COMBINATIONS

sub-module.

Input

o The array cat_instanceli], itself an array of instances of the i'? cate-
gory, terminated by NULL. Typical structure of the array is given in
fig-3.3.

e query.cat_no The number of members in the query category set {C}.

24



Fi_gure 3.3;

Category no Instances
| gossiping stamp_collection reading singing NULL |
2 male female NULL
3 0-30 31-60 61-90 NULL
Output

e The combinations of the category instances.

BEGIN CREATE_COMBINATIONS

Jor i=1 to query_cat_no step 1

begin
mli]

end

1

CF « query_cat_no
while( (CF==1 &§& catanstance(CFm[CF)| ==NULL) )

begin

if( CF == query_cat_no )

begin

/¥ output one possible combination ¥/
for j=1 to query_cat_no step 1

beg

n

print cat_instance[j][m[j]]

end

- end

m[CF] « m[CF] + 1
tf( cat_instance[CF[m[CF|] == NULL &6 CF I=

1)

begin

m[CF) — 1

CF— CF-1
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end
else
begin
CF « query_cat_no

end

end

END CREATE_COMBINATIONS

3.3.5 Development of Category Hierarchy

We develop an algorithm to create all the lower level objects in the category
hierarchy before creation of the object type mentioned in the query. This
module recursively checks whether all the lower level objects exist or not.
If does not exist then the object is created. If an intermediate object exist
then all the sub-objects under it also exist, so the recursion stops at that
level. The detail algorithm is given below.

Input
o 0id, OID of the object, to be created if it does not exist.

BEGIN CREATE_CAT_HIERARCHY

var bit — retrieve from oid

func bit «— retrieve from oid

cat_bit «+ retrieve from oid

status «— CHECK_STATUS.OF_OBJECT(cid)
if( status ==1)

begin

return /* object exrists, no creation necessary */

end /* object does not exist, check lower level objects */
fori=1 to noof_cat step 1
begin

if( { 2* Acatbit ) !I=0)
begin
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temp +— 0
Jor j =1 to no_of_cat step I

begin
if( 1 1= j)
begin
temp «— temp VvV 2
end
end

t_cat_bit — temp A cat_bit

sub_oid — func_bit v 2no-of-func y ¢ cot bit v
2(no_nf__func+na_nf_cut) X var._bit

CREATE.CAT_HIERARCHY (sub_oid)

enc

end
create the object oid /* all its sub-ordinates exist ¥/

END CREATE_CAT_HIERARCHY

3.3.6 Development of Functional Hierarchy

We develop an algorithm such that if an object type is created, then all the
object types for intermediate functions with same variate and category set
are also created. The algorithm explicitly uses the Function Dictionary.
The Function Dictionary for the functional hierarchy of fig 3.4 is shown in
fig 3.5. In this section we describe an algorithm, such that if a request
is made to create an object type, then before creation of the object, check
13 nade whether all the objects created by the subfunctions exist or not.
Those objects must be created before the creation of the required object.

Input
o oid, OID of the object, to be created if it does not exist.
BEGIN CREATE_FUNCTIONAL_HIERARCHY

cat_bit «— retrieve from oid
var_bit «— retrieve from oid
funcno «— retrieve from oid
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Figure 3.4:

Standard Deviatiation level 4
Variance level 3
Mean level 2

Tutaz/\

Count level

Micor or Raw data level
Figure 3.5:

Function | Function Security Set of
Name Number | Level | Subfunctions (F)
TOTAL 1 1 o
COUNT 2 ] o
MEAN X 2 {1,2}
VAR 4 3 {2,3}
SD 5 1 {4)
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Vfe funcno— F

/* F i3 set of subfunctions */
begin

sub_oid «+ Create from cat_bit, var_bit & f

status = CHECK_STATUS_OF_OBJECT (0id)
if( status /=1 )
begin

Create the object type sub_oid
end

end

END CREATE FUNCTIONAL_HIERARCHY
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Chapter 4

Authorization Model for
HISTO Model

In this section we describe the security aspect of the HISTO model as pro-
posed by Kundu & Bagchi [6). This autorization model controls the access
rights of a user at the attribute level. Access rights to statistical object can
also be restricted. We will show how the hierarchical arrangements of sta-
tistical objects provides a better prevention against database compromise.

4.1 Basic Assumptions

1. Different users may have different types of authorization.

In a hospital a doctor may have access to the data related to indi-
vidual patients, whereas a research scholar or social worker will get
access to summary data only.

2. Same user may have different types of access right for different at-
tributes.

A user who can make queries about the Hobby of an employee, may
not have access to the Salary attribute.

3. In HISTO, an attribute can be of three types - Category, Variate and
Both as mentioned earlier. If a user is authorized to use an attribute
as a variate, he can also access it as a category for a set of pre-specified
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value ranges. However, if a user can access an attribute as a category,
he may not be authorized to access it as variate as well.

4.2 Basic Definition

4.2.1 Authorization

An authorization in HISTO model is defined as a 4-tuple (u, a, f1,t) where
vel

13 the set of users in a system. For a particular authorization ‘“u’ may rep-
resent a single or a group of users.

aec A

is the set of attribute in a system. For a particular authorization ‘a’ may
represent a single attribute, a set of attributes or all the attributes in the
database. ‘fI’ is the function level. For a particular authorization the con-
cerned users can access all the functions at that level in the Functional
hierarchy.

If ‘fU is 0, then the concerned users are allowed to access the raw data
stored in the database for the attributes specified in the authorization.

‘t’ is the attribute type which can have one of the three values, Category
Variate or Both. If an authorization specifies ‘t’ as Category, all the at-
tributes involved in that authorization can be accessed as Category only
even if some of them are originally defined as Both in the system.

Starting from a single user and a single attribute, one authorization specifi-
cation can cover all the users and the attributes associated with a system.

An authorization specified as (u, a, fI,t) can have two values True or False.

4.2.2 Authorization assignment

Only DBA assigns authorization to any user or group of users. A user can
not pass his authorization to any other user.
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So a user or a group of users ‘u’ gets authorization on an attribute set ‘a’
with function level ‘fI’ and the attribute type ‘t’ by the 4-tuple (u,a, fI, t)
by the DBA.

DBA can ‘Grant’ authorization to or ‘Revoke’ authorization from any user
/ users against some attributes and functions.

4.2.3 Implicit Authorization

It is an authorization that can be derived from other authorizations. Some
implicit authorization rules can be derived directly from the structures of
Functional and Category hierarchies.

Rule-1 When DBA grants an authorization (u, a, f1, t),
‘u’ will have authorization on ‘@’ with same ‘t’ for any functions at
any levels > fl.
‘v’ will not have authorization on ‘a’ with same ‘t’ for any function at
levels < fi

So if a user has explicit authorization to access ‘MEAN’, he will have
implicit authorization to access ‘SD’ or ‘VAR’ but he can not access

“‘TOTAL’ or ‘COUNT".

Rule-2 When DBA grants an authorization (u, a, fi,t) for same ‘t’ and ‘ f’,
‘u’ will have authorization for any o', where ¢’ C a.

So, if a user has explicit authorization for attribute combination {C1,
C2, C3}, he will have implicit authorization for the subsets {C1, 2},
{C2, C3} and {C1, C3} etc. moving upwards along the Category
hierarchy till the root.

Rule-3 Let's consider that an attribute ‘a’ is defined as type ‘Both’ in the
system. Now,

e If an explicit authorization has t = Both, the concerned user ‘u'
can access ‘a’ as Category or Variate.

e If an explicit authorization has t = Variate, the concerned user
‘u’ can access ‘a’ both as Category-and Variate in the same object
type S.
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o If an explicit authorization has ¢t = Category, the concerned user

‘u’ can access ‘a’ only as Category for a set of pre-specified value
ranges even if ‘a’ is of type Both.

Rule-4 If an attribute ‘a’ is defined either as Category or Variate in the
system, an authorization on ‘e’ will be valid if it assigns ‘t’ with the
same value as defined in the system. So, if the explicit authorization
conflicts with the attribute type defined in the system, an error is
flaged and the authorization is ignored. However, if ‘a’ is defined as
Both in the system, ‘t’ can either be Category or Variate or Both.

Rule-5 If en explicit authorization conflicts with an implicit authorization,
explicit authorization will override the implicit one.

Rule-6 Let AN be the total set of authorization explicitly issued by DBA

for user or a group of users in a system. The authorization of the user
for a particular statistical object type will now be computed from the
members of an AN and the implicit authorization derived from them.

If a user has certain authorization to access a statistical object type,
he will have the same authorization to access all the instances of that

type.
Rule-7 If there is an explicit authorization
(u,a, fl,t) € AN

and there is an 1mplicit authorization (u, al, fll,t) such that

(u,a, fl,t) — (u,al, fll,t)

then
(u,al, fll,t) € AN

This is the Nonredundancy property of authorization. So if an autho-
rization can be implied from an explicit authorization, it can not be
specified explicitly any more.
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Chapter 5

Conclusion

HISTO, is a recently proposed statistical data model. Breaking the bound-
ary of 2-D representation, this new model places a statistical object into two
hierarchies, Functional and Category. These two hierarchies remove the lim-
itations of 2-D representation and make the query processing simpler. These
hierarchical structures also help in storing statistical objects created by com-
plex statistical functions. The future works would include on development
of suitable query language for accessing the SDB. In this work, we have as-
sumed raw data to be static one. Dynamic data should also be considered.
In that case the stored summary data have to be updated accordingly with
the updation of raw data. Classification and aggregation hierarchies should
also be considered. Implementation of authorization model is to be consid-
ered in detail. In the authorization model instance level access control can
not be done, future work can be extended in this direction as well. The
HISTO model needs to be extended for set and tuple type attributes.
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