ON BACKPROJECTING
SKEWED IMAGES

Nilanjan Ray
Indian Statistical Institute
203 B 'T" Road
Calcutta 700035
India

T"hesis submitted to Indian Statistical Institute
for partial fulfillinent of the requirements for
the degree of Master of 'I'echnology (Computer Science)

July 1997

Acknowledgements

The author acknowledges Dr. Dipti Prasad Mukherjee for his encouragement, guid-
ance and support. The author likes to thank Mr. Paramartha Dutta, Mr. Pinak
Pani pal and Mr. Avik Mukherjee of E.C.S.U dept. IS], without the help of whom
it would have been impossible to complete the thesis. The author conveys his grat-
itude to Prof. J. Das, Head of E.C.5.U, for allowing him to use resources of the

laboratory. The author also likes to thank the M.Tech{CS) 2nd year batch for their
co-operative spirit.

Abstract

The general imaging situation is the perspective viewing condition, where we sce
objects from an oblique viewpoint. Under such situations it is very much essential in
vision approach to get back the original shape of the objects from their perspective
views. In this thesis we have proposed an algorithm to get back the object shape
upto a similarity transformation using the object property reflectional symmetry.

Contents

1 Introduction

i.1 Imaging transformation

2 Preprocessing

2.1 Objective .“.
2.2 Implementation .L
2.2.1 Canny’s algorithm implementation
2.2.2 Editing facility e e e
23 Results.
24 Conclusion, .. e e e

3 Backprojection

3.1 Objective
3.2 Mathematical Framework
3.3 Backprojection Algorithmo,

0

¢

{1

13

5.1

3.

Conclusion

4 Future Direction

4.1

Iimplementational details

I

List of Figures

2.1 Hex spannerand Lever. &

2.2 Spanner and Lever,o ... 9
2.3 Flat spoons oL)
2.4 HKEdge image of hex spanner and lever 10

2.5 Edge image of hex spanner and lever with different parameters . . . 10

2.6 ldge image of hex spanner and lever after editing i
2.7 IKdge image of flat spoons without editing 12
3.1 Concavity entrance and exit points 19
3.2 Idge image of flat spoons o000 000 0000000 22
3.3 ldge image of flat spoons after backprojection 24
3.4 Fdge image of Hex spanner and Lever 25
3.5 Hex spanner and lever alter backprojection
3.6 Fkdge image of spanner and Lever 26
3.7 Spanner and lever after backprojection o000 0008

Al

4.1

Syminetric contours

1y

Chapter 1

Introduction

The representation and recognition of shapes by computer has vast potential; how-
ever, in most cases the computerized approach has difliculty in understanding 1m-
ages of objects which otherwise are performed at ease by a human observer. Looking
at an object from an oblique viewpoint gives rise to such a situation where the hu-
man observer can eflortlessly recognize the object even though its shape appears
to be distorted. Consider a circular object - it should appear elliptical when you
are looking at it from a non-fronto-parallel! vantage point; a rectangular table top
appears to be of trapezoidal shape. In addition, the degree of distortion depends

on the distance between the viewpoint and the object plane.

In such “general” (that is with no restriction to the position of viewpoint) imaging
situation, the degree of distortion to the original object shape could be modeled
using geometric transformations like Euclidean to perspective transformation. For-

tunately, there remains a set of parameters, commonly known as invariants which,
as the term suggests, remain constant even after the object to image transformation

has taken place.

To perform the fundamental objectives of Computer Vision such as object recog-
nition, AGYV navigation, shape description and in so many other situations it is
necessary Lo recover the object shape under fronto-parallel (i.e. non-oblique or-
thographic) view point from the images under perspectivity. The objective of this
thesis is to develop algorithms to recover such views. We define this to be a process
of “backprojection” from the perspectivity to orthography.

1That is, camera or eye plane has slant and tilt angles with respect to the object plane.

-

| e TAL T

Several techniques(|3, |6], [5]) have already been developed to do so. However we
utilise local symmetry of the object Lo achieve this backprojection. The essential
idea of symmetry is a motion [2|: “suppose you have an object pick it up, move
it around and set it down. If il is impossible to distinguish between the object
in its original and final positions, we say that it has a symmetry.” The line of
thinking encapsulated by the quotation leads inexorably to modeling symruelry
using the operations of group theory. However requiring transformed object to be
“Impossible to distinguish” {rom the original is far too restrictive both for computer
vision and [or human perception. Real objects such as faces, pears, wrenches, and
the outline of fishes ([8]) are only approximately sym metric and more significantly,

the shape only exhibit symmetries locally between segments of shape or pattern.

Within a plane symmetry can be of the following types :
Reflectional, rotational and translational and in the last case the patiern repeals

itself in the plane thereby creating symmelrics.

Our backprojection scheme exploits skew symmetry which is delinitely a planc re-
flectional symmetry when looked at from non-fronto-parallel sense. The mathe-
matical fact that the skew symmetry may be an accident of projection is evidently
discounted. Indeed, Wagemans ([9])} has recently provided evidence that skewed
symmetry is a non-accidental property of a shape that the human visual system
exploits. When a robot “sees” objects all around, it can have the real shape of the
object using the “removal” of distortion present in the object i.e. by backprojection
and for which it can use local reflectional symmetry of objects as our effort suggests.

The entire analysis is done after detecting edges of the image of 2D objects, In
reality we have used very thin objects. Canny’s edge detection scheme is used
successfully. However, from the implementation point ol view Canny’s method 1s

highly computation and memory ntensive. It is quite a challenge to implement
such an algorithm under Windows programming environment in PC.

Given this, the contribution of the thesis can be summerised into following two

major groups:

¢ implementation of preprocessing which includes implementation of Canny’s
algorithm and editing facilities. This is actually a kind of low-level processing

as found in similar computer viston approaches.

o Backprojection algorithm.

Next we present the imaging transformations based on which the backprojection
algorithm in chapier 3 is described. This is followed by the organization of the
thesis. |

1.1 Imaging transformation

Before we proceed further, we detail the fundamentals of imaging and surface ge-
ometry. Nalurally, the basic issues have been discussed many times before in the
vision literature. The plane to plane transformations describe world model to im-
age mappings and vice versa. We begin their descriptions starting from the plane
projective group.

The plane projective group A perspective transformation or projectivity, from
one projective plane Il, to another, m, is a non-singular 3 x 3 matrix acting on
homopgeneous coordinates.

(=, b tiz bz Y [X
ry | = | tyy tay tos X, | (1.1)
T3 lny Llag flan / \ Xy J
or
x = TX (1.2

The transformation matrix T has eight degrees of freedom because only the ratio of
homogeneous coordinates is significant and there are 8 ratios among 9 clements of
T.

Properties like concurrency, collinearity, order of contact {intersection. Langency,
inflections), tangent discontinuities and cusps and cross-ratio are preserved under
projective transformation |h).

The plane affine group In case of afline transformation the matrix T, as in
equation (1.2), takes the form:

[t lir s |
ey 321 JEL} 523 [1,3)
\ 4§ {) t:m

Affine transformation has six degrees of frecdom and is equivalent to the combined
offects of translation, rotation, isotropic scaling and shear (non-uniforim scaling in

some direction).

Properties like parallelism, ratio of lengths of collincan or parallel segments (e.g.
mid-points), ratio of areas, linear combination of vectors are invariant under afline

transformation {5].

The piane similarity group Thisisa specialization of the afline transformation
without shear and is equivalent to a Fuclidean transformation composed with an
isotropic scaling. This has four degrees of freedom and occurs when the world plane
is parallel to the image plane l1.e. under fronto-parallel viewing. Ratio of lengths,
angles are preserved under plane similarity transform [5].

The plane Euclidean group The Fuclidean transformation matrix is shown
in equation (1.4). Here the top 2 X 2 sub-matrix of T is a rotation matrix and
t = (&, tg)t i« a translation vector. It has three degrees of freedom.

T = 21 722 tg ([4)

l.engths, angles, areas are preserved under the Euclidean transform |5].

Organization of the thesis

We first describe the implementation of preprocessing including Canny’s approach in
chapter 2. In chapter 3 we first give the mathematical framework for backprojection,
then we have described the algorithm for backprojection, its implementation and
results in support of the algorithmic process followed by a conclusion. This chapter
s followed by chapter 4 containing an ‘ndication of future research issues In this
direction.

Chapter 2

Preprocessing

In any computer vision approach some sort of preprocessing is always needed. In
fulfilling our objective viz. “backprojection” we need to detect edge contours of
images. These contours include many false edges as well as the required symmetric
contours of the objects. Hence along with Canny’s edge detection procedure we
need to rub out false edges. After this, the actual backprojection process starts

with the said symmetric contours.

2.1 Objective

We have already mentioned in the introduction that edge or boundary ol the planar
objects is to be detected first. This is actually a preprocessing or low-level process-
ing before removal of projective distortion form planar objects. To be precise we
require only the symmetric contours of the object before actual process of backpro-
jection. Only detection of edge by Canny’s approach is found insuflicient for the
said purpose, because, after detection of edge a number of false edges (e.g. those
created by shadow of the object, those due to noise or the like.) appear. They
arc very diflicult to manage by setting parameters of Canny’s edge detector. So we
have kept an editing facility over edge images,so that we can get exactly the said
contours rubbing out others. |

oy

2.2 Implementation

In this section we give implementation of preprocessing in Windows3.x environment.

This includes implementation of Canny’s algorithm and a closer view into editing
facility. Implementational details of source code files are given in the appendix.

2.2.1 Canny’s algorithm implementation

Canny’s edge detection approach([1]) combines several good features of edge de-
tection schemes into an overall system which performs well on many images. In
addition it is supported by a thorough analysis with well stated goals which are as

follows:

e Good detection @ There should be low probability of failing to mark real edge
points, and low probability of falsely marking non-edge points. Since }::uth
these probabilities are monotonically decreasing function of the output SNR
(signal-to-noise ratio), this criterion corresponds to maximizing SNIK.

e Good localization : The points marked as edge points by the operator should
be as close as possible to the center of the true edge.

It was shown by Canny that improving (1) and {2) corresponds to maximizing

the quantity:

[J20 G(=x)f(z)dz | | [G'(z)]"(z)dz | (2.1)
noy/ 112 2(z)dz nor/ [[2(z)dz
where, f(z) = impulse response of the filter, G(z) — edge itsell, n, — mean

noise impulse magnitude per unit length, [-w,w| is the bound for inpulse
response function.

¢ =

Another additional constraint is needed which is as follows -

 Only one response to a single edge : This is implied in condition (1) but
the above mathematical form does not contain it so we need an additional
constraint on the above mathematical form. The constraint is K., = k - W,
In words, the average maximum distance between two local maxima has to be
some fraction of the spatial extent of the impulse response, and the assumption
is that this spatial extent is finite.

The edge detector has several stages:

1. Gaussian smoothing G % 1.
2. Directional derivative V(G % I) where G = Gaussian filter, I = image.
3. Non-maximal suppression.

4. Thresholding by hysteresis.

Gaussian filtering and computing directional derivatives are local operations.

Non-maximal suppression selects an edge point for which the gradient magnitude
is the maximal in the direction of the gradient requiring only local operations viz.
local interpolations.

Thresholding with hysteresis eliminates weak edges owing to noise and it also re-
duces “streaking” to a great extent. Streaking is the breaking up of an edge contour
caused by the operator output fluctuating above and below a threshold along the
length of the contour. Hysteresis was originally contributed by Canny. In this pro-
cess if any part of a contour 1s above a high threshold those points are immediately
output, as is the entire connected segment of the contour which contains the points
and which lies above a low threshold. The probability of streaking is greatly reduced
because for a contour to be broken it must now fluctuate above the high threshold
and below the low threshold.

The program has been implemented in ‘C’ in the Windows 3.x environment in order
to:

1. be able to work at ease with “.BMP” images which are taken as snapshots
from video camera attached to the PC.

2. get a good amount of memory from Windows environment through its global
memory resource management scheme. so that we can work comlfortably with
big sized gray-level images. All these implementation details are mentioned
in the appendix.

...n:..:.

e
-

i
:

=
u......n.

HorH b ,....,.Wm..m.“.h.”.ﬁ.n....n.m
Hor A e
e
: LR]
A S e e
i S
b e e
S L e -
o HEH Tttt Lty P et
RS e s ki s
A A st b s e i o
R T e et 25
FEER s,,_.,m.%%. S
T L ey
SR mn......,.,...,.,..ﬁ. i ey S

ﬁwﬂy

A T

e

e
A »

¥

S 3 A

S ¥ AR, Sy
.maa.qwfm.?..aﬁwh.m#?h"ixm#vﬂ.ﬁ?{ ..r......u.._..r......nn ...m....,_...{....

S N,.Mﬁﬂﬁf S £
S aﬁuﬁ.,w A§
R e e R e e P

e S e
B
A S
SR
HHEH
Ly
AL

i
" i) e
i, e e e
1N ; A T e A

i = e L
A S
P 2

AL

R
) FRF LN "
H S EH e L] .:..n.............. e L e R L T e
Sl e s
gH L S e T e o :
e e T s
v n.wﬁm.,ﬁa A xxﬁ?éﬁxé}?ﬁ?ﬂﬂ:ﬂ R T A s

! . y HH HH . Fr e H Lt SN o
) A e i o M...w T K#MWUW&# 2 i i ..”;.ﬂ.
H H H eyl st b -3 oy > -3
B T : R e i ey .
i .m......w..."n,,".“..x."....“.u..,.,,.. ﬁ..,........."...,.x...x”...,w.,,.,..x,..s..,.. ..,,...mw..,,....&,..... X s it
AT i %
H ﬁ.?xf».{iﬁﬂn.%?ﬁ: T, o -

A

EREAT : : o = R PR
AT T IH Aty
e R . ;

AT +#+,,.m.. ;

" s H...H... e ..n.......#ﬂ_. 3
: a . sinentata i e : R i R
R R ST H i] }...,..n.,.f....;..,.. ¥ : A e -] : ; : - =oE :
SR : e : : ; . s e ; e R
SRR : :

L u..,,.m.%.,,."m..,“.. :

- R reh el iy

SR

Figure 2.4: Edge image of hex spanner and lever

The figure shows the edge image of figure 2.1 with parameters sig—=1.0,lt=2.0,ut 6.0
and grScl=20.0. Many noises are seen along with symmetric contours.

Figure 2.5: Fdge image of hex spanner and lever with ditterent parameters

The figure shows the edge image of figure 2.1 with parameters sig=3.0,l1t=2.1,ut - 2.1
and grScl=5.0. Here noises are seen to be lowered down.

[0

Figure 2.6: Edge image of hex spanner and lever after editing

The figure shows the edge image of figure 2.1 with parameters same parameters as
that in figure 2.5 after editing.

The results illustrate that editing facility is an efficient tool along with edge detec-
tion tool for finding out symmetric contours.

2.4 Conclusion

At the end of this we get an edge image detected by Canny’s approach and subsc-
quently rubbing out the false edges by edit facility. This edge image is in the form
of a file containing the x and y coordinate values of the edge pixels.

This edge image is required in the next chapter where we describe the backprojec Lion
algorithm exploiting the reflectional symmetric contours of the objects.

i |
h
- EERS AR AN

e

m K,f’;
| ~

Figure 2.7: Edge image of flat spoons without editing

The figure shows the edge image of figure 23 with parameters sig=>5.0,1t=2.0. ut=2.1
and grScl=0.001. Here noises are scen to be completely absent.

| 2

Chapter 3

Backprojection

We have already defined the term backprojection and its significance. The key issue
of this chapter is to detail mathematical framework and implementation aspect
of backprojection. In section 2 we give the mathematical background including
backprojection theorem followed by its proof. In seclion 3 implementation aspect
of backprojection followed by results we have obtained are provided. In the next
section we give conclusion on this chapter.

3.1 Objective

Objective of this chapter is to illustrate our algorithmn for backprojection which
is based on a firm mathematical background and the results we have obtained
following our algorithrn. In this process one should also notice that the method not

only works nicely for images containing the kind of objects we have assumed but
the method can also be extended/modified {(based on the same theory) to images

containing other kinds of reflectional symmetric objects.

13

3.2 Mathematical Framework

In general case there is a projective transformation between object and image planes.
Reflectional symmetry can be shown to constrain the transformation. This Is 1llus-
trated in the following theorem -

Theorem 1 Suppose two curves v and ~', as tn figure 3.1, are the images of two
corresponding sides of a planar object with bilateral symmelry. OSuppose further
that image projection can be represented by a projective transformation. Then the

transformation between vy and ' has the following properties:

1. v and ~' are related by a projective transformation. That 15, if X 15 a point on
~ then there 1s a point X' on ' such that:

!

x = Tx (3.1}

where T 1s a non-singular 3 X 3 matriz, and x and X' are homogeneous three-
veclors. |

2. The projective transformation T satisfies the following constraints:

(a) T% == kI, where k 1s a scaler.

(b) The fized po:'nts'(jf T are: a line of fized points; and, a fized point (not
on the line) through which there 1s a pencil of fized lines.

A projection with these properties 1s a collineation of period two, also known
as a 2 cyclic homography, and a planar harmonic homology [7].

8. The matriz T has eigenvectors {e,,eq,e3}. Two of the eigenvalues, corre-
sponding to e, and e; say, are equal. The third, corresponding to e, 1s distinet
and non-zero. The syrmmelry axis ts given by the line (e; x e3). Corresponding
points, b' and b, are collinear with e, as shown tn figure 3.1. The line b'b
intersects the symmetry axis in a point b, say, and the four collinear pownts
b, by, b’ and e, have a harmonic cross-ratio.

4. The transformation has four degrees of freedom. It can be determined from

iwo correspondences.

4

Figure 3.1: v and «' are the projective images of two corresponding sides of a planar
object, I' and T respectively, with bilateral symmetry. Since projective transforma-
tion does not preserve parallelism and in particular mid-points, the imaged symme-
try line may not pass through the mid-points of ac' and bb'. Following theorem 1,
the symmetry axis is given by the line (e, x e3). The eigenvector e, is collinear to
lines joining corresponding points of the imaged bilaterally symmetric ohject.

15

Interested reader will find the proof of this theorem in |4].

Theorem 2 Suppose we have an (uncaltbrated) tmage of two co-planar symmetric
objects then the 1mage can be backprojected uniquely, modulo a similarity, provided
that the two symmetry azes are netther parallel nor orthogonal in the object plane.

Proof

First some notation for backprojections. Suppose the linear backprojection relating
the object and image planes i1s given by:

X =Ux (3.2)

where, x is the 21 image vector represented in the 31) homogeneous coordinate
frame, X is the corresponding three-vector in the backprojected planar scene, and
U 1s the 3 x 3 linear transformation matrix with det U > 0 responsible for back-

projection. Note that U defines a projective transformation with eight degrees of
[reedormn.

Referring to theorem 1, the constraints for backprojection are:

1. The intersection of the correspondence lines (@) must be at infinity for par-
allelism 1n the backprojection. This 15 expressed projectively by requiring that
e, transform to a point (q) on the line at infinity, 1.

2. The correspondence direction (ey) and the symmetry line {ey X e3) must be
perpendicular in the backprojection. This 1s expressed projectively by requir-
ing that the intersection of the four points, namely, intersection of symmeltry
line and 1, q, and the two circular points ((1,7,0)" and (1, —12,0)*) have «
harmonic cross-ratio.

The backprojection is achieved in two stages:

Stage 1. Removing the perspective distortion, leaving only afhine.

Stage 2. Removing the afline distortion.

llach stage generates a 3 X 3 transformation maltrix, and the backprojection matsix
Is the product of these two.

16

Stage 1. Removing the perspective distortion

Suppose there are two symmetries (a and b). Referring to theorem 1, the directions
collinear to the corresponding points of the bilateral symmetries a and b, are given
by e} and e} respectively. The line through these two points, say l', is given by,

I' = e} xe; = (I1,03,03)° (5.3)

In removing the perspective distortion, we find the 3 x 3 transformation matrix, T,,
which takes I' to 1. A point po, on l,, must be of the form p. (pZ,, p¥ . 0}
Note that if point transforms as p’ = Tp, then line transforms as ' -~ T lence,
T, 1s given by,

—

1 0 O
T, = {0 1 0 (3.4)
e

Stage 2. Removing the affine distortion

The affine distortion is removed following backprojection algorithm presented in j4|.
First, the transformation T, is applied to e;, e; and e3 for symmetries a and b.
Suppose, the transformed symmetry lines are given by (egl X eg') and (\e%I X (_‘egl)
and the vectors representing symmetry correspondences are given by e"l" and e*{’ for
symmetries a and b respectively. By construction, e? (and, also %) is of the form

(p,¢,0) which is a line parallel to y = (¢/p)z.

If, we express the symmetry line ((e? x e2') or (e} x e%)) and the correspondence
direction (e'i" or e*{') as 2D guiding vectors, say, m and n respectively, for any bilat-
eral symmetry, these backproject to vectors respectively parallel to and orthogonal
to the symmetry axis. In the object plane {modulo similarity), therefore, the scaler
product (T,.m).{T,.n) = 0, where, T, is the 2 x 2 transformation matrix responsible

for afline distortion. Consequently (4],

m‘T! T,n = 0. (3.5)

The matrix V = T'T, is clearly symmetric and it is positive definite. Based on the
methodologies developed in [4], let the components of V be given by:

(3.6)

<

o R

then we have from equation (3.5)

2R
4
-

(3.7)

(men, mgn, + myn, myn,)

-2

This is a linear constraint on «,3,v. Two such constraints determine the ratio
o : B :~. Referring to |4], the sign is fixed by the requirement that V 1s positive
definite, so that trace V=a + vy > 0.

Two symmetries generate two constraint equations (3.7):

I
M| 8| =0
LT
where _ 1 - o
" - m%n% m%ng +- m%% mgng (3.8)
mgn, min, +-myn, mn,

Provided the matrix M is of rank 2 this uniquely determines the ratio {a: g :~}. It
can be shown that M drops rank if any of the vectors {in',n',m* n*} are parallel,
hence the clause in the theorem. Note that parallel lines in the object remain
parallel in the image after affine transformation. []

Having determined T, and T,, the composite backprojection matrix U is given by,

U - T,.T, (3.9)

where, T, is a 3 x 3 matrix of the form

vy w2 O
T, ~ Uy, Uge ()

0 0 1

- —

I

l>\jlr\ \ ﬁpﬂuf:;:wl‘,r entrance

/r '

\ l
|

Figure 3.1: Concavity entrance and exit points

\._,f"’

concavity exit
points

'\

3.3 Backprojection Algorithm

Let us first restate assumptions more clearly:

s Objects are locally symmetric if not globally,

e there are at least two local symmetric concavities present in the image,

e two symmetric axes are neither paralle] nor orthogonal.

At this moment we have the edge image with us and we run the following algorithmic

steps on it.

Step 1: For each object in the edge image find convex hull of it and thus lind
four concavity entrance and exit points for each object, as shown in the figure

3.1.

Step 2: Determine T; (3 X 3 matrix, sce theorem 1) for each object (1, 2) from

the following 8 equa,tiuns
Al =T AL A =T - A, DB =T, By, By — T; - B!

19

These yields actually 8 equations for homogeneous coordinates of A; and we
set overall scale factor of T;, by setting T;[3,3] = 1.0 .

Step 3: Do the following substeps:

e Find out eigenvectors of T; say two eigenveclors ey and e are having
an equal eigenvalues and e;; is having a different eigenvalue.

e Find symmetry lines SL; as eg; X €y.

e I[lave correspondence point O as €.

Step 4: [Find T, (as described in theorem 2)

1 O 0O]
T,=]0 1 0
KIS

W}]EI’C, (lljlgjlg) = €11 X €12.

Step 5: Find out S1L; and C; 1 afline space, by the {ollowing formuiae,
e — T,-e;,,t-- 1, 2,731,723, and

.--jl

! & . a ck

SLY ey X ey;.
G . r

C?. ef;-

At this moment we are in afline space we can go {rom af{line to sunilanty
space through the following steps:

going
from

g left 0
not=90 to = 90

right [™

Step 6: Find out slope of correspondence axes for ¢ =1, 2 by the f[ormula
me.= e%[2]/eg[1]. for i = 1, 2.

Step 7: Have 4 points A},B; (1 = 1, 2) in affine space by

3

A's = T,- A, Bi* = T, - B..

Step 8: Find out equation of the line of correspondence through Bj* and Al
having slope m.,. Let the two lines be CL%, and C' LY, respectively.

20

Step 9: Find out intersections of SL¢# with C L3, and C L%, respectively (2 =1, 2).
Call these points as pyy, psi. Assign pa; = B

Step 10: Find out U,2 x 2 matrix and by, 2 x 1 column vector as follows -

(0,1); =U-pj; + b,.
(0,0) = U-pg; + by,
(o,0); = U-p3; + b,.

These are six equations and for U and b, we have six unknowns so we determine
U and b; in terms of «.

Step 11: Determine o from the 2nd object as follows Let P;; = U-pj + by,
7 =1, 2, 3. Now alpha is solved from the equation,

(P1: — P32) - (P33 - Pj,) = 0.

Step 12: Final unskewing matrix is obtained by,

Tupa = Ty - Tp

where, matrix T, is given by
_— U b,
01

These steps have been implemented in Mathematica.,

3.4 Results

This section contains

[. Figures with concavity entrance and exit points.

2. Backprojected images.

21

I'igure 3.2: Edge image of flat spoons

The ligure shows symmetry axis and concavity entrance and exit points detected
by convex hull detection method.

22

N Table 3.1: Table for spoons.

—_——

r =

__ Objects [Small spoon | Big spoon |
Initial angle (in degrees) 844 | 1073
Final angle (in degrees) 90.5 90.0

. e —— e — e LA ——— e —]

Table 3.2: Table lor spanner and lever.

1 Joen 2AVIE 10 o SRR el
Objects | Spanner | Lever

Initial angle(in degrees) 62_7 1__56_8
i'inal angle(in degrees) 89.6 | 90.0

—] e — —, S P —

Figure 3.2 shows a skewed symimetric object and figure 3.3 shows the result we
have obtained using backprojection algorithm. Similarly figures 3.4 and 3.5 are
one such set. We worked on another edge image (refer to figure 3.6) and obtained
its unskewed edge image in figure 3.7.

In table 3.1 we have shown the angles between symmetry and correspondence axes
before and after backprojection. two other such tables 3.2 and 3.3 are given for
other two images.

3.9 Conclusion

In this chapter we have successfully implemented our backprojection scheme from
projective to similarity space, i.e. after removal of projective distortion the aspect
ratios of the objects remain same. The size of the objects get changed by a constant
scale factor in both x and y directjons.

This backprojection scheme has great importance and scope. We have tried to
enumerate them in the next chapter.

~_Table 3.3: Table for hex spanner and lever.

Objects) Hex spanner Lever_m
Initial angle(in degrees) | /8.1 108.5
| Final angie{in degrees) 90.8 9C.0

L l N R

24

Figure 3.3: Edge image of flat spoons atter backprojection

The figure shows symmetry axis, correspondence axis and concavity entrance and
exit points. The two axes are seen to be approximately perpendicular for both the

objects.

24

Figure 3.4: Kkdge image of Hex spanner and lL.ever

The fipure shows symmetry axis and concavity entrance and exit points detected
by convex hull detection method.

Figure 3.5: Hex spanner and lever afier backprojection

The figure shows symmetry axis, correspondence axis and concavity entrance and

exit points. The axes are seen to be mutually perpendicular.
®

25

Figure 3.6: Edge image of spanner and Lever

The figure shows symmetry axis and concavity entrance and exit points detected
by convex hull detection method.

Figure 3.7: Spanner and lever after backprojection

The figure shows symmetry axis, correspondence axis and concavity entrance and
exit points. The two axes in both the objects are seen to he perpendicular,

26

Chapter 4

Future Direction

We have successfully backprojected scenes consisting of two objects under perspec-
tive viewing condition. The method we have proposed and followed can easily be
extended using least square technique to the case where the scene contains more
than two planar objects. The backprojection matrices T, and T, could be obtained
from linear least square solutions of equations (3.3) and (3.7). A similar treatment
for affine images is found in 4].

Referring to theorem 1 of chapter 3, we have obtained the matrix T from 4-poini
correspondence. Ideally the matrix T should reflect the symmetric segment A to
its counter part B, but in reality F produces A’ is produced as seen in the figure
4.1 Elements of the matrix T can be improved if we try to nunimize the disparity
between segment B and A'. And this could be achieved by least square technique.
As for example Levenberg-Marquardt method of least square can be applied here.

Our backprojection scheme exploits bilateral symmetry which restricts the projec-
tive transformation between corresponding image contours to a subset of general
projective transformation group. Similar constraints can be obtained for other ob-
ject relations (e.g. rotational symmetry}.

27

Figure 4.1: Symmetric contours

The figure shows that Symmetric contours do not overlap after being transformed
by T.

28

Bibliography

1] J. F. Canny. Finding edges and lines in images. PAMI, 8(6):679-698, 1986.

2] M. Field and M. Golubitsky. Symmetry in Chaos: A Search for Pattern in
Mathematics, Art and Nature. Oxford University Press, Oxford, UK, 1992,

3] T. Kanade. Recovery of three dimensional shape of an object from a single view,
Artificial Intelligence, 17:409-460, 1981.

4] D. P. Mukherjee, A. lisserman, and J. M. Brady. Shape from symmetry -
detecting and exploiting symmetry in affine images. 1993. Accepted in Proc.
Royal Society, Series A.

5] J. L. Mundy and A. Zisserman(Ed.). Geometric Invariance in Computer Vision.
MIT Press, Boston, USA, 1992,

6] C. A. Rothwell, A. Lisserman, . A. Forsyth, and J. L. Mundy. Canonical

frames for planar object recognition. In Proceedings of ECCV2, pages 757 772.
1992.

7] C. E. Springer. Geometry and Analysis of Projective Spaces. Freeman, New
York, USA, 1964.

8] N. J. Strachan. Recognition of fish species by colour and shape. Iage and
Vision Computing, i 1(1):2-10, 1993.

9] J. Wagemans. Skewed symmetry: a nonaccidental property used o perceive vi-

sual forms. Journal of Lzxpert Psychology: Human Perception and Performance,
19(2):1-17, 1993.

Appendix

29

4.1 Implementational details

We have developed a GUI based edge-detection scheme which can work on “.BMP”
/“.DIB” images. Basic options given to the are:

1. Loading a .BMP/.DIB image in client window and scrolling if needed.

2. Detecting edge by choosing a menu, which also creates a dialogbox allowing
the user to enter parameter values needed in the edge-detection process.

3. After detecting the edge one can save the co-ordinates of edge-pixels in a file
whose name is to be entered by him/her.

4. Alter detection of edge one also can save the displayed edges (black in white
background) in a “.BMP?” file whose name is to be entered by the user.

5. One also can “thin” the contents of a displayed .BMP/.DIB file at any mo-
ment.

6. Editing and undoing facilities are also given to the user. The user can rub the
edge image or can undo rubbing action latest done before saving his action.

The main file where all processes are actuated is “showdib.c”. Other files are
“canny.c”,“hyster.c”,“showedg.c”,“dibfunc.c”’and “thin.c”.There is also a header file
named “showdib.h”. There is one more important file viz. “showdib.rc”- a resource

file.All these are coupled through BC45’s project option in “Large” memory model.

Description of source code files are as follows:

1. “Showdib.c” :
This file contains the following functions:

(a) int PASCAL WinMain(HANDLE hinstance, HANDLE hPrevInstance,
LLPSTR. lpszCmdLine, int nCmdShow)
This is the main function which contains the message loop - an esscntial
part of any Windows program. This function registers window class as

30

follows:

client window background is white, mouse appears as an arrow, no icon
1s given, and window style is “CS_ HREDRAW and CS_-VREDRAW”i.e.,
it supports horizontal and vertical scrolling.

long AR PASCAL _export WndProc(HWND hwnd, UINT message,
UINT wParam, LONG]Param)

This is the call-back function which is actually called by Windows operat-
ing system and this is the greatest difference between dos and Windows.
Windows itself calls any application through the callback “window proce-
dure”, dos has no such capability of call-back. This procedure in our case
contains a message switch. On various options chosen by the user, control
goes to different choices of the switch. For example when one clicks the
Horizontal scroll-bar by mouse control goes to WM_HSCROLL option
and necessary action scrolling is activated. In order to redraw the client
area properly we have kept a memory device context which is nothing but
another conceptual client window where we have kept everything drawn
on our original application window. In the switch “WM_PAINT” we are
actually redrawing the invalidated rectangle of client window from the
conceptual window we have just mentioned. For example, say a .BMP
file has been displayed in the application window. Actually the itnage
has also been kept in the memory device context. Now when a pop-up
dialoghox comes over this application client window area, the covered
area 1s invalidated and when this dialoghox goes off exposing again the
client area of our application window a WM_PAINT message is generated
by Windows OS for our application and Windows OS calls our function
with WM_PAINT as the value of the parameter “message” in “Wnd-
Proc”™ and hence control goes to the switch of WM_PAINT message in
our procedure WndProc and that same rectangular zone is copied from
memory device context is pasted to the same rectangular zone of client
arca of application window. There are other message switches which are
all self explanatory in the function WndProc.

BOOL FAR _export EditDIgProc{HWND hDlg, UINT message, UINT
wParam, UINT |Param)

This is actually a pseudo call-back function for the edit dialogbox we
are crcating for the user to enter values of different parameters needed
in the process of edge detection. They are explained shortly after this.
We have called this as a pseudo call-back funclion because Windows
operating system maintains the main call-back function within itself and

this procedure is only a layer over that actual call back function.

3]

2. “dibfunc.c” :
This file contains a number of small procedures as follows

(a) BYTE huge *ReadDib(char *szFileName) :
Here the input parameter szFileName is the name of the “.BMP” file
user wants to open. This function opens the .BMP file and allocates
space for a huge pointer to unsigned char i.e. BYTE, loads the contents
of the .BMP file in this allocated space and returns the pointer to its
caller. On success return value is 1, otherwise it is 0.

(b) BYTE huge *GetDibBitsAddr{(BYTE huge *IpDib) :
Input parameter is lpDib which points to the loaded .BMP image. Qut-
put 1s the address of the actual bitmap which resides after the header
and color pallete table.

(c) WORD GetDibHeight(BYTE huge *IpDib) and WORD GetDibWidth(BYTI:
huge *IpDib) : |
Both these functions return the height and width of the .BMP mage
loaded in the memory pointed to by the input parameter IpDib.

(d) DWORD GetlnfoleaderSize(BYTE huge *IpDib)
This function returns the information header size of a .BMP lile loaded
In memory space pointed to by the input parameter IpDib.

(e¢) void DrawBitmap(HDC hdc, HBITMAP hBitmap, short xStart, short
ystart, short Width, short Height) :
This function actually draws a Bitmap (given as input bitmap handle
hBitmap) (a bitmap, is nothing but an array of bits containing picture
pattern i.e., pixels of an image), on the input device context hde and
other short type parameters specify the start and end positions of the
bitmaps and hdc.These functions use mighty “BitBit” and “Stretehidi”
functions.

(f) void EraseClient Window(HDC hd(‘;, WORD Width, WORD height)

This function simply crases the client window. Handle to the doviee
context of the window is passed as an Input parameter along with width
and height of client window.

(g) int SaveAsBrnp(LPSTR szOutFile, DWORD width, DWORD height,., 1,P-
STR TmpFile)

Here I/P parameters are:

1. szOutFile : output .BMP file name.

32

1. width and height : width and height of the image whose edges have
been detected.

1i. TmpPFile : temporary file name where co-ordinates of edge pixels.

Output value is 1 on successfully saving edgels as a .BMP file,otherwise 0.

This function simply creates a .BMP file with header size 62 (14 for File
Header structure,40 for InfoHeader structure,8 for a color pallete having

only black(0) and white(255). And then from the input ”TmpFile” it
gets edge pixel co-ordinates and loads in array either O or 1 (index of
color pallete. and finally writes the contents of the array in szQutFile.

(h) int Loadlmage(DWORD huge*huge*image, BYTE huge *IpDib):
I/P parameter is:

o [pDib : .BMP imago pointer Lo a memory space where . BMP lile has
already been loaded.

Output parameter is:

e image : 2D image array which is to be loaded by this procedure from
the input lpDib.

return value : 1-on success, 0-on failure. This tunction explores the IpDib
bitmap and loads image with RGB value as indicated by the color pallete
of IpDib. This “image” is needed by the edge detection routines.

3. “canny.c” :

This file contains several functions which collectively implements Canny’s edge
pixel detection method. The functions are given below:

(2) int input(BYTE huge *IpDib):
The input parameter “IpDib” contains the DIB(device independent bitmap)
of the image on which we want to run Canny’s edge detection rmethod.
This function allocates memory for several static global variables used
within the file. Memory allocation is done through Global memory al-
location library functions. They are called global because they allocate
memory from global heap. This function also calls “Loadlmage” function
in order to load image from the DIB IpDib. |
Return value is 1 on success, 0 on failure.

33

(b)
(c)

(d)

void FreeMem/():

This function frees up memory allocated in this file.

static float gprof(float x, float s2):
This function returns the Gaussian G(z), with s2=: twice the square of
standard deviation.

DWORD getprof(float sig):
The input parameter contains the value of standard deviation provided

by the user. This function repeatedly calls gprof and assigns the value
returned by this to an array “profile” which contains Gauss profile in 1D.
Return value is the size of Gauss protfile.

int gauss{DWORD psize}:

Input parameter “psize” is the Gauss profile size returned by getprof.
This function computes the convolution of profile with image, and stores
the result 1.e. G % I in an array named “fimagel”.

void grad():
This function computes gradient of fimagel ie. G * I and stores x-

component of the gradient in fimage2, y-component in fimage3 and over-
writes fimagel by keeping the strength or magnitude of the gradient.

int nonmaxsup{char * szOutFile):
szOQutFile is the output file name on top of which number of output
edgels or edge pixels is written by this function and next x-coordinates,y-
coordinates, magnitude and strength of the gradient are written for all
pixels by this routine. it actually does the following job:

A’ 1s output if the :::f.rnna‘r..h of gradient at A is found to be greater than

m - B
A2
A
- ——-—7. e [l
.-f"f#ﬂ-r
1 *%

-m “- T
that at Al ana AZ. Graaiehs strengtn at Al and a2 are found by linear

interpolation. In fact this fune¢tion shifts the output pixel centre by a
fraction.

This function actually creates a linked list of edgels. Each node of the

list contains the four information for edgels we have already mentioned.
For maintaining the linked list we have two more functions.

34

(h) edgel list huge* Add.Ildgel(float datal4], edgel list huge *list):
This function creates a node containing data and adds this node in front
of the node pointed to by “list.”

We actually have a pool of memory space allocated in our program from
which we have allocated the memory space for each node of the linked
list. Our programming experience says that in Windows environment
allocating a big chunk and working with it is much easier than allocating
a number of small chunks and working with it. This is why we have kept
a memory pool for creating the linked list.

(i) void huge *AllocFromPool(DWORD dwSize):
This function allocates memory from the pool we have just mentioned.Input
parameter “dwSize” contains the size in bytes of the memory to allocated
irom the pool.

(i) int Canny(BYTE huge *IpDib, fioat s, LPSTR. szOutFile):
This is the main file in the file “canny.c.”
procedures for edge detection in this file.
Return value is 1 on success and 0 on failure.

This function integrate all

4. “hyster.c”:

This file contains many edge detection supporting functions which we describe
first:

(a) int initializeStack(void);
This function initializes stack pointer to zero and allocates memory for
stack array.

(b) void DeleteStack(void):
This function deallocates memory and initializes stack pointer to zero.

(c) int pop(void huge* data, UINT dataSize):
It pops up “dataSize” number of bytes from stack and assigns the address
of the first byte to “data.”

Return value is 1 on success and 0 on failure.

(d) int push(void huge* data, UINT dataSize):
Parameter description is the same as that of pop. This function pushes
“data” on stack.

We need this stack functions because we have simulated a recursive function
“follow” by stack and making it non-recursive in nature. This is done because
in PC environment depth of recursion cannot exceed a large value.

39

Now comes the actual functions by which the process of hysteresis has been

implementéd. R

(2)

"

int inedgels(in¥hInFile):

Input parametér,“hInFile” is a handle to a input file, which is output
by canny.c file. This function allocates memory for all internal data
structures and initializes them.

Return value is 1 on success and 0.on failure.

int linkedgels(void):

This function tries to keep sufficient information for making edge contour.
It first tries to connect current pixel to the others by 4-connectivity, If
4-connectivity is not found the 8-connectivity is considered.

Return value is 1 on success and 0 on failure.

int addlink(DWORD edgel, DWORD to):

This function links “edgel” to “to” and vice versa by creating nodes
for the linked list. This function is repeatedly called by the function
linkedgels.

We now have sufficient information for realizing an edge contour. So we
run the actual process of hysteresis by means of the following functions:

int DoHysterresis(void):
and

int follow(UINT to, UINT from):

int hyster(float low, float hi, float grScl, LPSTR szOutFile):

This the main function in the file “hyster.c.” This integrates all other
functions we have described.

Input parameters:

e low: Contains the lower threshold value.
e high: Contains the higher threshold value.

e grScl: Contains another threshold value that is used by a function
outedge after the process of hysteresis is completed.

e szOutFile: Name of output file which contains the output edgel de-
scription by means of four parameters we have already described.

36

