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1 Introduction

Modelling of dynamical systems is broadly classified into two catagories,i.e quantita-
tive modelling and qualitative modelling. Currently,the most research works are based
on the qualitative analysis rather than quantitative analysis because of its dependace
on many factors such as nature of the plant(e.g.size ,co.fnpIexity,nonlinerity,time-varying
parameters,dynamic interactions),control objective and specifications, and cost consid-
erations.Graph theoritic analysis of dynamical systems,uncertain system modelling and
robust control or the qualitative analysis of interconnected systems have been fields where
qualitative, rather than quantitative, results are the main motivation of research.These
investigations try to follow the method of a control expert. Experienced control engineers
are able to solve their control task even if many details of the system dynamics are not
known or deliberately neglected, because i heir knowledge about the principal behavioural
patterns, such as the existence of oscillations, saturation effects or limit cycles, or about

the current output of the process in terms of subsets of the state space, rather than

accurate qualitative values, is sufficient for many control purposes.

One of the main problems in qualitative modelling is the conzervatism of the results.Even
for simple examples,such as mass-spring system,qualitative models yield a large <ct of
trajectories.Although it can be proved that this set includes the qualitative description of
the real system trajectory,this set also includes many beliavioural forms th:t no physically
real dynamical system can perform(spurious sclutions).The main reason for this is that
the qualitative model is based on inadequate information about the real system, because

the quality spaces used are too coarse.

To circumvent this situation is the motivation for incorporating a new transition matrix
concept which is capable of including more information about the system.This new kind
of qualitative model has the form of nondeterministic or stochastic automata.Here it is
assumed that the qualitative value [z(k)] is received by means of a direction-wise quan-
tiser. It can be shown that for a qualitatively given initial state [z(0}], the qualitative
systemn trajectory is ambiguous. As a cosequence of the ambiguities of system perfor-
mance, nondeterministic and stochastic automata are proposed as a resonable forms of
qualitative models.These kinds of models can be used to analyse the qualitative behavicur
of the system and, moreover, to design a qualitative ccntrﬁg%ri]igfﬁ t:!n;re wq?k is based
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on the design of a qualitative controller for a pole balancing problem(inverted pendu-
lum).The design procedure as well as the simulation results are discussed step by step by

considering new transition matrix.

2 Finite Automata

A finite automaton is a kind of dynamic system which,at the discrete moments of time
under consideration,satisfies the following conditions,

(a) At each of these moments of time,the system subject to an input can be in one of a
finite number of possible states.

() At these moments of time,the inputs of the system can be chosen from a finite number
of possible states.

(¢) At any of these moments of time, the state of the system is uniquely defined by the

state of the input and state of system at the previous moment of time.

Let the set of possible states of automaton be
X ={z1,29,...,Zn},
the set of possible state of input be
U={u,us...,Un},
and the set of possible of output be

Y = {yhyh-“iyq}'

The set X 1s referred to as the automaton state set,the sets U and Y are referred to as
input and output state sets,or input and output alphabet, respectively. The operation of

an automaton can be described by the recursive relationship
z(k + 1) = Flz(k), u(k)), (1)

where z € X and v € U, z{k + 1) denotes any state automaton at instant (k -+ 1),and
simillarly, z(k) and y(k),denote,the automaton state and the input at instant k respec-

tively,and F is a single-valued function that relates a definite symbol from the automaton



set and the other from the input alphabet.The automaton operates on a discrete time
scalet =1,2...k,(k +1),....This automton with n internal states is reffered to as an n
state automaton.This class of dynamic system is not described by differential equations,

nor by difference equations of the general form,but by the equations of the type given in

Eqn.1.The output states and the automaton states are related by the output function G,

y(k) i G[I(k)su(k)]a (2)

In a finite automaton,the size of the output alphabet may,but in general doesn’t,equal
to the number of automaton states. The above discussions define a deterministic finite
automaton.lt is complete in the sense that every combination of the automaton state and
the input state is considered meaningful and produces a known output and next state.lt
is stationery in the sense the transition function F and the output function G do not
depend upon the sampling instant under consideration. It is memoryless in the sense
that the present output state and the next automaton state do not depend upon the past
inputs,outputs,or automaton states. The transition function F and output function G
of an automaton are usually characterised by three basic representations:the transition
table, the transition diagram,the transition matrix.The transition table consists of two

subtables that display the functional relationships defined in Eqn.1 and Eqn.2 ,as shown
in fig 1.

The transition diagram for an n-state finite automaton consists of n circular vertices
representing the n states with directed branches connecting these vertices.Each branch
indicates the transition from one state to next and is labeled (u;/y;),where u; and y;
" represent,respectively,the present input and output during the transition.The transition

diagram of a three -state automaton is shown in fig 2.

The transition matrix of an n-state automaton is a n X n matrix whose 17th entry is the
label of the branch b} from the sth state z; to the jth state z; if the branch ' exists,and
is equal to zero if the branch does not exist. The transition matrix for the three-state

automaton is _
Uy / Ya Uz / Y1 0

0 uz/yz ul/yl
| uz/y; up/ug 0
A finite automton can also be described by the state matrix

Pﬂ(uk) — [pij(uk)]aiyj — 1:2:' .o :n;k — 1,2,...,1’?‘1; (3)
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where p;;(ug) is conditional probabilty for the automaton to go from state z; to stae z;
when the input is u. The state matrix Po(u;) consists of zeros and ones,where each row
of matrix contains one element equal to one for any u,.These matrices determine the
transitions from one state to another.If the automaton is in state z; and the input u is

applied,the next state of the automaton will be state z; provided that

Pij (u;,,) = 1.

Certain automata have the property that starting with any state z; we may transform
the automaton into any other state z; through an appropriate sequence of input alpha-
bets.Such a automaton is refered to as a strongly connected machine.Irrespetive of the
problems involved in analysis of the transition and output responses of given machine
for the purpose of information processing,automata may be considered as mathematical
models for information processing systems.Study of automata aims at the development

of improved schemes for information systems.

2 Characterization of Stochastic Automata

A stochastic automata is a kind of discrete stochastic system that resembles a finite
automaton.It possesses a finite set of internal states, can receive a set of input sysmbols,
and can generate a set of output symbols.The equations defined for finite automaton may
" be used to characterize on n-state stochastic automaton, but the transition between states
is no longer deterministic.The behaviour of the stochastic automaton is governed partly
by its input,and partly by a set of probabilities associated with the internal transition of
states of the automaton.For each input, the one step transition from any state z; to any

other state z; may have a non-zero probabilty.

The probabilties of transition from state z; 1o state z; may be specified by a set n X n

transition matrices,
P(El),P(ug), “o ,P(um)



assoclated with each of the input symbols.For input v € U, the tranition matrix is

Pi1 Pz -+- Pin
pu pu ... pY
Pu)=| 7 B

u @ LU
pnl Ppa ++- pnn

where the elements p}’; is given by the conditonal probability

pi; = p(zq, z;,u)

which represents the transition probability that input u at any instant & will cause the
automaton to go from internal state z; at this instant to state z; at instant (k + 1).If the
application of input v cannot possibly cause this transition, then p;; = 0. On the other
hand, if z; is the only state that can be reached from state z; in one step, then p;; = LIn

the general case,

Since the transition probabilities have the property that
n
> opti=1,2,...,n.
j=1

the transition matrix P(u) is a stochastic matrix, and it describes a Markov chain.The

probabilistic description of the output states y € Y also requires set of output probability

matrices,
{Q(u1), Q(u2), ..., Qum)}

associated with each of the input sysmbols. The output probability matrices do not affect

the internal states and do not enter into more than one step transition chain.

The stochastic matrix has the following properties,

(1) the elements are non-negative and not greater than one and

(2) the rows of this matrix sum to one.

It i1s noted that, if in each row of the stochastic matrix P(u), there is one only one non-
zero element, then this element is equal to one.Such a stochastic matrix degenerates into

a state matrix.In this situation the sum of these matrices,

P(uy) + P(us) + ...+ Plu,,)



can be reduced to the transition matrix of a finite automaton in skeleton matrix form,
if each of the non-zero sum terms is equal to one. In analogy to the characterization of
a finite automata, a stochastic automaton may be represented by a probabilistic tran-
sition table,a set of transition diagrams or a set of transition matrices.The probabilistic
transition table consists of two subtables that display the stochastic matrices and the
output matrices for each input alphabet.The transition diagram bf an n-state stochas-
tic automaton for specified input-output relationship can be readily be derived from
the corresponding transition matrix.Each branch is labelled with conditional probability
pi;.A stochastic automaton with m input symbols can be characterized by m transition
diagrams. With each input u, the transition is given by Eq.4.The element p;; 1s the tran-
sition probability that an input u© will cause the automaton to go from state z; to state
z;.A stochastic automaton with u input sumbols can be characterized by m transition
matrices, P(u;), P(ua),...,P({u,).The transition matrix for sequence of inputs can be
determined by matrix multiplication. If input u is applied for ¢ times, then the ¢-step
transition matrix is [P(u)]|?.A stochastic automaton with constant inputs are called au-
tonomous stochastic automaton,which can be interpreted as a Markov chain with the
same state set.A Markov chain is said be ergodic if the associated transition diagram is
strongly connected.An ergodic chain is said to be regular if there is a positive integer ¢,
such that for any z; and z; there is an arc progression from z; to z; having precisely

t arcs for every t > 15. The transition matrix for an autonomous stochastic automaton
. may be reduced to a canonical form, indicating submatrices of closed sets.The reduction

- process may be continued until the set of all irreducible states is found.

4 Qualitative state measurement of continuous vari-

able system and its characteristics

Consider a linear discrete-time continuous variable system,for which the state equation

is defined as
z(k + 1) = Ax(k) + Bu(k), z(0) = zq (5)

where z = (z1,%2,...,%,) and u = {u3,ua,...,u,) denote the vectors of the systemns
state or input variables, respectively. The prime is the symbol for vector transposition.A

‘and B are matrices of appropriate dimensios with constant elements.For every given input



sequence
U = (¢(0),u(l),...,u{T - 1})

with fixed observation horizon T, the system in Eqn.5 has the trajectory

X(z(0),U) = (z(0), z(1),...,z(T)) (6)
where -
z(k) = A*z(0) g A1 Bu(l) (7)
holds.

Now, it is assumed the state z(k) cannot be measured quantitatively but is quantised
by a direction-wise quantiser that maps the state variables into a set of intervals.The

intervals are bounded by given values.
gis (3 = 1,2,...,?’1 ;j S -F:) where E — {fiﬁafih + 15'-*1fi+}

and defined independently for all components z; of the state vector z.Hence , the state

variables z; that belongs to the same set

Q:,—(Zi) — {-?Ji/gi,z.- <z < gi,z,-+1} (3)

are qualitatively equivalent and represented by the same qualitative value [z;(k)] = 2.
The sets Q..(2;) are defined for

z€F—{f}

The quantised state vector [z(k)] is given by

z(k] = (21[k], 2a[k], .. ., zn[K])’ 9)

where [z;(k)] = 2; holds if, and only if, z;(k) € Q..(%).
The set @,,(2;) defined in Eqn.8 can be written as
Q:(z) = {zi/|z:] = z}

For all |
z€ Z,={(z1,22,...,2,) [z € F;, - {fF}} C Z"

(4



Q:(z) can be defined by

Q.(2) = Qz,(21) X Qus(22) X . X Qa,, (20) = {z/[z] = 2}

(for n = 2,z represents a rectangular area, otherwise 1t is a hyperbox of dimension n}

with x denoting the cartesian product.All these sets together cover the subspace B, C K"

R, = U Q:(2)

EEI;

For g; ;- = —oo and g; s+ = 00, the whole state space R"™ is partitioned into the sets

Qz(2) : B = U,ez, @=(2)

In the case of equidistant intervals with interval lenth g,

gi;, =(7—1/2)q;,, € Z

holds. Then Z = Z™ and R" = U,ez~ @:(2) follow.

It is further assumed that input u; can assume one of a set of given values uf
ui(k) € Z,, = {u} /7 € G;}

where G; = {g;,97 +1,...,9] }.

Therefore,the element 7 of Z,, is the qualitative value of u;(k),i.e.

[u(k)] = ([ua(R)]; [ua(k)], -, [um (K)])

where [u;(k)] = j holds if, and only if, u;(k) = u) .HEnce, {u(k)] belongs to the set Z:
z & Zu - {(zlazﬂl' "1zm)'/zi = G:} g Z"

The qualitative input sequence [U] is represented by

U] = ([«(0)], [w(1)};.. ., [u(T ~ 1)]) (10)

The qualitative trajectory of the system in Eqn.5 is given by

[ X(2(0),U)] = ([z(0)], [=(1)],- -, [=(T)]) (11)

8



But, for a given initial state =(0), the system defined by Eqn.5 has a unique qualitative

trajectory {X|.Hence the nondeterminism of the qualitative behaviour is discussed below.

For the qualitative model, only the qualitative values of [z(k)] and [u(k)] are taken into

account.The chosen initial state z(0) belongs to the set Q.(2z(0) for some given 2(0):
£(0) € Qu(#(0)) (12)
The system input is described by a qualitative input sequence
V = (v(0),v(1),...,v(T — 1))

where
lu(k)| = v(k) for £ =0,1,2,...,(T — 1) (13)

holds.

It is obvious that the system defined by Eqn.5, if starts from some z(0) given in Eqn.12
under the control sequence described by V and Eqn.13, then the qualitative trajectories

formed from the set
X(2(0),V) = {X(2(0),U)/2(0) € Q.(2(0)),[U] =V} (14)

The model has to generate the qualitative trajectories that result from the set X and
from the set [X]:
[X(2(0)),V)] = {[X]/z € X}

It has been shown that for an autonomous system i.e.Eqn.5 with u(k) = 0 and equidistant
quantisation, the set [Z] is, in general, not a singleton but has more than one element.In

order to to extend this result to the class of systems in Eqn.5 considered here, the sets

Mm(o) - Q:(E(O))
M,(k) = {Az + Bu/z € M,(k - 1),[u] = v(k)} (15)
are defined and qualitatively described by
(M (k)] = {[z]/z € M:(k)} (16)

Obviously, the system in Eqn. 5 has a unique qualitative trajectory if, only if, M, (k) C
Q:(z) for some z € Z, holds for all k =0,1,...,T.

9



5 Qualitative Modelling by means of Stochastic Au-

tomata

The non-determinisim of the qualitative trajectory of the system in Eq.5 suggests the
use of non-deterministic or stochastic automata as a qualitative model.Here the quali-
tative modelling by stochastic automaton is presented. First,the stochastic automaton
S(Z;, Zy, P, z(0),V) is considered, where 7, denotes the set of states, Z, the set of inputs,

P:Z, xZ,x 24, — R

represents the transition probability function P(z,Z%,v) is the probabilty that automaton

which has, at time k, the state z and gets the input v, goes to the state Z at time (k+ 1),
z(0) the initial state and V the input sequence.

Now it is required to define a transition function H in terms of probability probability
function P such that the automaton generates the set X of qualitative trajectories of the

system in Eq.5.In order to achieve this, the following sets are introduced.

H(z,v) = {Z/P(z,%,v) # 0} (17)
M, (0) = {2(0)} (18)
M, (k+1)={H(z,v(k))/z € M,(k)}, for k=0,1,...,(T —1). (19)

The performance of the stochastic automaton is described by the probability ¢(z, k) with

which the automaton is at time &k in state z.

Let us define ¢(k) as a row vector

(9(311 k)!Q(zh k)! 'ee :q(zr: k))

where r is the number of elements of Z,; and P(v({k)) is a r X r matrix which represents the
probability function P for a given input v(k) and is also called as transition matrix.The

following relations for the automaton that has initial value 2(0) = 2 :

¢(29,0) = 1 and ¢(z,0) = O for all z # 2,

el

- g(z,k+1) = Z q(f,k)P('z',z,v)( for k =0,1,...,T - 1)

10



In matrix form it can be written as

alk + 1) = g(K)P(u(k) (20)

and,obviously,
M. (k) = {z/q(2, k) # 0}

holds.The set of trajectories of stochastic automaton is given by

Z(2(0),V) = {(2(0), 2(1), ..., 2(T)/2(k + 1) = H(2(k), v(k))} (21)

The stochastic automaton yizlds a better characterization of the qualitative performance
of the system in Eq.5, since it generates,together with each set M, (k) a weighting function
q(z, k) that describes the probability of the state z € M, (k) being really assumed by the

system in Eq.5.

The additional characterization of the states of the qualit:tive model by the probability
g(z, k) makes it possible to reduce the set Z(z(0),V).If ¢(z, k) has a low value, the state
z can be assumed not to belong to the qualitative trajectory of the system in Eq.5, but
to spurious solution.Therefore such states can be deleted.

Considering the Eq20,iteratively,it can be written as
g(k +1) = ¢(0) P(v(0)) P(v(1)) ... P(v(k)) (22)
If v(k) is constant for all &, then
q{k] = q(0)[P)* (23)

This above formula is used for calculating the performance or state probabilities ¢(k) of
stochastic automaton with initial state probabilities specified. The evaluation ¢(k) requires
the determination of [p|*, may be specified by making use of the z-transform analysis.

Taking the z-transform of Eq.20with v{%) is constant for all k,yields
2(Q(2) — ¢(0)] = Q(2) P,
On rearranging the above equation,the z-transform of the state probability vector is

Q(2) = g(O)lI — 2 *P)”! (24)

11



Let Y(z) = [I — 27'P|™! and inverse transform of Y(z) be y(k). Then the inverse

transform of Kq.24 may be written as
g(k) = q{0)y(k). (25)
By comparing with Eq.23, we have
y(k) = [P]*,

which provides a convenient way to calculate the kth power of the stochastic matrix. The

matrix y(k) may be refered to as response matrix.The ijth entry of the response matrix
represents the probability that the stochastic automaton will go to state z; at instant &,

given that it was in state z; at time k¥ = 0.The response matrix may be broken into two

parts:the steady-state response matrix, and the transient response matrix:
y(k) = a + b(k). (26)

The steady-state response matrix ¢ 1s independent of k.For nonrecurrent and simple

recurrent stochastic automaton,the rows of matrix a are identical, and each will yield the

hmiting state probability vector of the automaton, since,

ZH:Q:;(O) =1

i=1

In the case of multiple recurrent stochastic automaton, the rows of matrix a are no longer
equal, and the limiting state probability vector is now dependent upon how the automaton
was started.If the automaton was started in the sth state, the 1th row of the steady-state
response matrix represents the limiting state probability vector.A recurrent stochastic
automaton is characterized by one with a set of persistent states that are connected in
such a way that the automaton makes jumps whithin this set of states indefinitely but
never jumps outside the set.The transient response matrix b(k) represents the transient
behaviour of the automaton.It vanishes as k approaches infinity. The sum of the elements
of matrix b(k) in each row is zero.This is true, since the elements in row may be considered
as perturbations applied to the limiting state probability vector.The elements of the :th

row of matrix b(k) determine the set of transient components of the state probability

vector if z; is the starting state.

12



6 Design of Qualitative Feedback Controller for In-

verted Pendulum by New transition matrix

Here,our main motivation is to stabilise an ”Inverted Pendulum” (shown in fig.5) by
pushing the vehicle resonably to the left or to the right i.e by designing an appropriate
feedback controller such that it can be stabilised. If the angular displacement and angular
velocity can be measured precisely, then systems theoritical approach i.e quantitative
approach to the control problem is resonable.First,a discrete-time model is set up and

the feedback controller u(k) = —Gz(k) (shown in fig.4) can be designed by the known

methods.

x(k)
=

™ X(k+ 1) = Ax{k) + Bu(k)

G ot

A lincar digital system with state feedback.

fig.4

But, this type of quantitative feedback controller does not take into account deterioration
of the closed-loop system performance in case of bad sensor information and nonlinearities

present in the system dynamics.

For the above reason, we are going to propose a method for designing a qualitative
feedback controller that stabilises the unstable system in Eq.5, taking qualitative mea-
surements of state variables,discussed in the qualitative model proposed in the previous

section.The main idea of this section is as follows.

Without loss of generality, we can assume that the equilibrium state of the system in
Eq.5 is given by z = 0 and z = [z| = 2,4. Therefore,the aim of stabilising the system is

to find a qualitative controller

[u(k)] = g([=(k)]) (27)

13



that moves the system into the equilibrium state. Since only the qualitative state [z]
is available,the system cannot be asymptotically stabilised as would be possible with a
quantitative controller u(k) = g(z(k)) where g{z(k}) = —Gz(k).Therefore the control aim
1s to hold the system in the surrounding of the equilibrium state.The control law f has to
be chosen so that the probability ¢(z.¢l, k) of the stochastic automaton, in connection with

control sequence that results from Eqgn.27 is maximised. Now the qualitative model of the

closed IOGP system 1S giV&I’l by Sf(Zz,Zu, Pf,Z(O),Z,,q;) with Pf — (pﬁj),pﬁj = p,-j(f(zf))
where p;;(vi) is the t7th element of the matrix P(vy).

Due to the severe measurement errors,the above said qualitative approach is reson-
able,where the quality of the sensor data can explicitly be taken into consideration by
using appropriate quantisation of the angular displacement and the angular velocity. The

following are the steps to design the qualitative feedback controller for Inverted Pendu-

lum.

6.1 Mathematical Modelling of Inverted Pendulum and its State

Space Representation

The Inverted Pendulum on moving cart is shown below.

Inverted pendulum on moving cart.

fig.5

14



It is observed that the motion of the system is uniquely defined by the displacement of
the cart from some reference point,and the angle that pendulum rod makes with respect

to the vertical.Hence the system has only two degrees of freedom.

Considering the potential and kinetic energy of the above system and applying La-

granges's equations, we have

(M + m)j + mlcos 06 — mlf?sinf = f
ml cos 6y — misin 040 -+ ml?0 — mglsin 6 =0

(28)

where

f=the force on the vehicle{moving cart)i.e input signal,
y=position of the vehicle,

f=angular displacement,

m=mass of the bob,

M=mass of the vehicle,

and lenth of the pole.

These are the exact equations of motion of the inverted pendulum on a cart as shown in
fig.5.They are nonlinear owing to the presence of the trigonometric terms sin @ and cos ¥
and the quadratic terms 9% and gé.If the pendulum is stabilised,however,then # will be

kept small.This justifies the approximations,
cosf =1 and sinfd = 0.

We may also assume that # and ¢ will be kept small, so the quadratic terms are negligi-

ble.Using these approximations, we obtain the linearised dynamic model

(M +m)j+mlb = f

. (29)
my + mlf —mgh =0

A state variable representation coressponding to Eq.29 is obtained by defining the state
vector

X = [3?1;3?2:-"53,234]'

Then

mlzgandmgzé

15



constitute the first two dynamic equations and on solving Eq.29,for § and 5, we obtain

two more equtions

The four equations can be put into the standard matrix form

X = AX + BU (30)

where _ ) r
0 0 10 0 |
0 0 C 1 0
A= g and B = 1
M+4m H
0 Mth O 0. | M1 d

The corresponding discrete-data model with sample and hold devices of the system given
by Eq.5is
X((k+1)T) = &(T) X(kT) + ©(T)U (kT (31)

where
T

&(T) = £7Y[(s] — A)"Y] |s=z and O(T) =f (T — 7)B dr

0
With the following parameter values

m=0.1Kg,M =1.0Kg
| = 0.5m,q = 9.81m/sec’

and the sampling period of 0.2 sec,the discrete model of Eq.30 is

1 0.02 —0.001983 0.0 ' 0.0 |
0.0 0.0  1.00425 0.019278 0.0
X(k +1) = | X (k) + Uk) (32)
00 1.0 —0.0196569 —0.0019483 0.266
| 0.0 0.0 0.4160 1.00425 —0.04

6.2 Determination of unstable poles .

In order to design a qualitative controller,for stabilising inverted pendulum,we consider

two state equations.

[ zo(k + 1) ] _ { 1.00425 0.019278 ] [ z2(k) } + { 0.0 ﬁl u(k) (33)

z4(k + 1) 0.4160 1.00425 | | z4(k) ~0.04

16



It is required to know the location of poles of above discrete-data open loop system
because its stability depends on the presence of the poles inside the unit circle in the
z-plane(z-transform).The poles are nothing but the roots of the characterstic equation
| zI — A | of discrete model.Hence for the Eq.33, the poles are 1.094 and 0.91 which
represents that the open loop system is unstable.Hence there is a requirement of feedback

controller to stabilise the system.

6.3 Determination of Quantised Working space in phase plane

plot

To define the control law,for qualitative feedback controller,the total working space (phase
plane plot) is to be represented by some quantised regions.These regions are bounded by
previously defined g, ;s’.But the value of g¢;; depends on some measurement constraint
and simulation study. Therefore some g; ; are taken as fixed values due to measurement
constraints and for others,initially,resonable values are taken.Then the control law f is

defined and the g; ;s’ are adjusted from simulation study.

Here .each state variable in Eq.33 is represented by three quantised regions. Hence 10

regions are defined by boundaries g; ;, for 7« € {0,1} and j € {-3,-2,2,3}.

Owing to the measurements insensitivity of 0.0175(1°) for 8 and 0.0175(1°) per sampling
period for 8, the bounds g;; for ¢ € {0,1} and 7 € {—2,2} are fixed :

)

“0.0175,9'0’2 — 0.0175
~0.0175,¢; 2 = 0.0175

go,-2

gi,—2

and the rest are set with resonable values to define the working space:

go—3 = —0.2,g935 = 0.2
91’H3 — ""‘0.8,91’3 = (.8.

These values are adjusted if possible from simulation study.
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Now the temporary working space which includes 9 regions, are numbered as :

2] = (_3: "3):32 == (_35“2)133 —= (_332}1
2y = (—2,~3),25 = (—2,—2),26 = (—2,2),
zr = (2,-3),2s = (2,—2),2 = (2,2).

and is shown in fig.6.

The control law f is to be defined over these regions except z1q,the outside region of the

temporary working space.

6.4 Determination of control law by New Transition Matrix

Before determining the control law,we have to know the method to determine the new

transition matrix which as follows,

Suppose, z fort = 1,2,...,n — 1, represent the region in the working space in which
the system is stable and z, represents region outside the working space, basically, an
unstable region. Then new transition matrix P(v(k)) is n X n matrix where each element
p(z;, z;,v(k)) represents the probability that system which is at the region zafter get-
ting qualitative input v{k),goes to the region 2; by one-step transition.The transition is
determined by the discrete-open loop state equations. The steps to determine the new

transition matrix are

(1) For each z{0) € z;, calculate one-step transition by

z(1) = Az(0) + Buv(k).
(2) If (1) € 2;, then ¢, is updated as ¢; « ¢; U {z(0)}, where c; represents the set
corresponds to z; region.Initially, ¢; «— ® for y =1,2,...,n.

(3)Repeat step (1) and step (2) until the total set z; gets exhausted.

(4) Calculate




NEW TRANSITION MATRIX (WITHOUT CONSIDERING A FORCING FUNCTION)

INPUT ’U’=0.000000 (OPEN LOOP SYSTEM)

INPUT ’U’=1.000000 (OPEN LOOP SYSTEM)

0.780
0.850
0.070

| 0.260
0.030

0.000
0.000
0.G00
0.000
0.000

0.000
0.050
0.050
0.000
0.040
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.870
0.000
0.000
0.000
0.000
0.000
0.000
0.042

0.000
0.000
0.000
0.660
0.070
0.000
0.100
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.840
0.050
0.000
0.040
0.000
0.000

-

0.370
0.900
0.540
0.100
0.070

| 0.000

0.000
0.000
0.000

0.000

0.000
0.000
0.050
0.000
0.000
0.000
0.000
0.000
0.060
0.000

0.000
0.000
0.400
0.000
0.000
0.000
0.000
0.000
0.000
0.077

0.000
0.000
0.000
0.400
0.930
0.470
0.050
0.040
0.000
0.000

0.000
0.0GO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

fig.7

0.000
0.000
0.000
0.000
0.020
0.780
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.360
0.000
0.000
0.000
0.007

0.000
0.000
0.000
0.000
0.000
0.000
0.880
0.000
0.000
0.050

0.000
0.000
0.000
0.000
0.000
0.030
0.500
0.960
0.420
0.007

0.000
0.000
0.000
0.000
0.000
0.000
0.020
0.110
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.030
0.000

0.000
0.000
0.000
0.000
0.000
0.170
0.000
0.850
0.970
0.000

0.000
0.000
0.000
0.000
0.000
0.140
0.000
0.000
0.550
0.092

0.220 |
0.100
0.010
0.080
0.000
0.000
0.000
0.000
0.030
0.907

0.630
0.100
0.010
0.500
0.000
0.000
0.450
0.000
0.000
0.815 |




INPUT 'U’=-1.000000 (OPEN LOOP SYSTEM)

[ 0.590
0.000

0.000
| 0.240
0.000
0.000
0.000
0.000

0.030
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000 0.000
| 0.095 0.000

CLOSED LOOP SYSTEM

0.280
0.900
0.650
0.070
0.070
0.000
0.000
0.000
0.000
0.000

0.590
0.850
0.540
0.240
0.070
0.000
0.000
l 0.000
0.000
0.000

0.030
0.050
0.050
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.280
0.000
0.400
0.070
0.000
0.000
0.000
0.000
0.000
0.042

0.000
0.000
0.000
0.360
0.000
0.000
0.060
0.000
0.000
0.005

0.000
0.000
0.000
0.360
0.930
0.000
0.100
0.040
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.050
0.000
0.000
0.000
0.000

fig.7

0.000
0.000
0.000
0.330
0.930
0.550
0.040
0.040
0.000
0.000

0.000
0.000
0.000
0.330
0.000
0.780
0.000
0.000
0.000
0.000

0.000
0.000
(.000
0.000
0.000
0.000
0.460
0.000
0.000
0.085

0.000
0.000
0.000
0.600
0.000
0.000
0.880
0.960
0.420
0.050

0.000
0.000
0.000
0.000
0.000
0.000
0.040
0.000
0.000
0.002

0.000
0.000
0.000
0.000
0.000
0.000
0.020
0.000
0.030
0.000

0.000
0.000
0.000
0.000
0.000
0.050
0.400
0.960
0.520
0.005

0.000
0.000
0.000
0.000
0.000
0.170
0.000
0.000
0.550
0.000

0.100
0.100
0.350
0.000
0.000
0.400
0.000
0.000
0.480
0.807

0.100
0.100
0.010
0.000
0.000
0.000
0.000
0.000
0.000
0.907




NEW TRANSITION MATRIX (CONSIDERING FORCING FUNCTION)

INPUT ’U’=0.000 (OPEN LOOP SYSTEM)

[ 0.860
0.950
0.080
0.260
0.030
0.000
0.000
0.000
0.000
| 0.047

0.000
0.050
0.050
0.000
0.040
0.000
.000
(.000
0.000
0.000

0.000
0.000
0.870
0.000
0.000
0.000
0.000
0.000
0.000
0.115

0.000
0.000
0.000
0.660
0.070
0.000
0.100
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.840
0.050
0.000
0.040
0.000
0.000

INPUT ’U’=1.000 (OPEN LOOP SYSTEM)

[ 0.400
1.000
0.550
0.100
0.070
0.000
0.000
0.000
0.000
| 0.045

p(u) =

0.000
0.000
0.050
0.000
0.000
0.000
0.000
0.000
0.000
0.012

0.000
0.000
0.400
0.000
0.C00
0.000
0.000
0.000
0.000
0.112

0.000
0.000
0.000
0.400
0.930
0.470
0.050
0.040
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

fig.7

0.000
0.000
0.000
0.000
0.020
0.780
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.360
0.000
0.000
0.000
0.007

0.000
0.000
0.000
0.000
0.000
0.000
0.880
0.000
0.000
0.132

0.000
0.000
0.000
0.600
0.000
0.030
0.500
0.960
0.420
0.070

0.000
0.000
0.000
0.000
0.000
0.000
0.020
0.110
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.030
0.000

0.000
0.000
0.000
0.000
0.000
0.170
0.000
0.850
0.970
0.060

0.000
0.000
0.000
0.000
0.000
0.140
0.000
0.000
0.550
0.147

0.140
0.000
0.000
0.030
0.000
0.000
0.600
0.000
0.030
0.645

0.600
0.000
0.000
0.500
0.000
0.000
0.450
0.000
0.000
0.605




INPUT 'U’=-1.000 (OPEN LOOP SYSTEM)

pu}

—
—

[ 0.660

0.000
0.000
0.240
0.000
0.000
0.000
0.000
0.000
0.147

0.040
0.020
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.300
0.980
0.660
0.070
0.070
0.000
0.000
0.000
0.000
0.057

CLOSED I,LOOP SYSTEM

0.660
0.950
0.550
0.240
0.070
0.060

0.000

0.000
0.000
0.070

0.040
0.050
0.050
0.000
0.C000
0.000
0.000
0.000
0.000
0.0172

0.300
0.000
0.400
0.070
0.000
0.000
0.000
0.000
0.000
0.087

0.000
0.000
0.000
0.360
0.000
0.000
0.060
0.000
0.000
0.005

0.000
0.000
0.000
0.360
0.930
0.G00
0.100
0.040
0.0G0
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.050
0.000
0.000

0.000
0.000

0.000
0.000
0.000
0.330
0.930
0.550
0.040
0.040
0.000
0.000

0.000
0.000
0.000
0.330
(0.000
0.780
0.000
0.000
0.000

0.000

fig.7?

0.G00
0.000
0.000
0.000
0.000
0.000
0.460
0.000
0.000
0.132

0.000
0.000
0.000
0.000
0.000
0.000
0.880
0.960
0.420
0.157

0.000
0.000
0.000
0.000
0.000
0.000
0.040
0.000
0.000
0.015

0.000
0.000
0.000
0.000
0.000
0.000
0.020
0.000
0.030

0.000

0.000
0.000
0.000
0.000
0.000
0.050
0.400
0.960
0.520
0.057

0.000
0.000
0.000
0.000
0.000
0.170
0.000
0.000

0.550

0.035 0.637

0.000
0.000
0.340
0.000
0.000
0.400
0.000
0.000
0.480
0.585

0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000 |

0.000
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for 7 =1,2,...,n
(5) The above steps are repeated for: = 1,2,...,n.

The control law f is determined by considering the transition matrix for each qualitative
input v(k).But it is not true that the working(initially chosen) ,for which the control f is

defined, is an optimal one.The final working space as well as f are set from the simulation

results.

Here,the input signal u(k) is taken to have three qualitative levels:

u(k) = 10 & v(k) = 1,
u(k) =0+ v(k) =0,
u(k) = —10 «» v(k}) = —1

i.e the force can be chosen to zero or maximum in directions.

Now considering the equations,

z-(1) = 1.004252,(0) -+ 0.019278z4(0)

(34)

P(0),P(1)andP(—1) are obtained(as shown in fig.7).By studying these three transition

matrices and taking z; as the equlibrium state,the control law f is defined as

2y — v(k) =0,20 = v(k) =0 or 1*, 23 =— v{k) = 1,
zy — v{k) = —1,25 = v(k) =1 or 0%, 26 =— v(k) = 0, (35)

z7 — v(k) = 0,23 = v(k) = 1,25 = v{k) = 1,

and * mark represents the qualitative input value which are not taken for the simulation

results shown here.

But the simulation study(shown in fig.8) shows that, if the initial point is chosen from
zy — 2y, the above control law stabilises the system.Otherwise,it oscllates around the
boundary g; _s and goes to unstable region.We can say that above contro! law could not
set the poles inside the unit circle for z; — 23.In order to set the poles in the unit circle,a
forcing function , f; = d;e ™ is used where d; > (gi ;.1 — gi ;) i.e it is taken to be greater
than the distancé between the equilibrium boundary to new unstable boundary where

the system oscillates before going to unstable regions and n (positive real number) < n.,

19
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determines the rate at which it moves towards the stable region and n., determines the
critcal value at which the system is no more stable.Here, the simulation study shows the

state variable z; is responsible for driving the system into unstable region. The forcing

function used here is
fa =0.2¢7%% n,, < 5.0.

Now one-step transition can be determined by

z2(1) = 1.00425z,(0) + 0.019278z,(0) + 0.2¢~35 (36)
354(1) = 041601‘:2(0) + 100425334(‘6) - 04U(k)

and the boundaries of the working space are determined from simulation results (shown
in fig.9 to fig.16) and they are

go-3 = —0.28,¢03 = 0.28 (37)
gi—3 — —0.869, ¢; 3 = 0.869.

The performance of the automaton (in Eq20) for £k = 500 , shown in fig.17 does not

coincides with the simulation results ie as & — oo then ¢{co) should be in either z4 or z; or

zg.But if we take 100-step transition instead of taking one-step transition for calculating

new transistion matrix, then the performance of automaton and the simulation study

somehow holds good as shown in fig.17.This indicates that one-step transition callculation

1s not appropriate for calculation of new transition matrix. We may explain it as follows:

fig.18

consider a region z;, by one step transition,each points z(0) € z goes to z; although
they would have tendency to go to z; for j # 1 because it depends on the size of the
region 2; and the maximum values,6z;s’ possible in that region.Hence by taking more

step transition instead of one-step transition,we could get better results.

et

20
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Note :The 1th row corresponds to z; as starting region for the automaton.
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The simulation result shows that the desired controller actually stabilises the inverted
pendulum,Again it has been shown in fig.19 that the closed loop system without in-
put,oscillates around the regions 2, z; and z; which can be compared with a limit cycle
of nonlinear system.The designed qualitative feedback controller incorporates severe non-
linearity of the closed loop system. It is also found that the equilibrium point cannot be

approached asymptotically, rather remains in the vicinity of this point.

7 Conclusion.

Here, we have proposed the design of qualitative feedback controller by stochastic au-
tomata which uses the new transition concept.As the determination of new transition
matrix involves, somehow directly with the dynamics of the system rather than its quali-
tative nature, the stochastic automata provide a resonable framework for the qualitative
modelling.This new form of qualitative model makes it possible to use well known results
on discrete event systems, such as manufacturing systems or computer nets.Further,we
can say,the improvement on the determination of new transition matrix,may motivate

the design of qualitative controller to some extent.
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