M. Tech. (Computer Science) Dissertation Series

SEMI-AUTOMATIC PARALLELISATION OF
ITERATIVE ALGORITHMS

A dissertation submitted in partial fulfilment of the
requirements for the M.Tech. (Computer Science) degree of
Indian Statistical Institute

By
Manas Ranjan Jagadev

Under The Supervision of
Prof. Bhabani Prasad Sinha

Advanced Computing and Microelectronics Unit
INDIAN STATISTICAL INSTITUTE

203, Barrackpore Trunk Road
Calcutta-700035

July 1997

__ REFERENCE BOOK
" (Not to be taken out of the Library)

Certificate of Approval

This is to certify that the thesis entitled Semi-Automatic Parallelization of Iterative
Algorithms submitted by Manas Ranjan J agadev, in partial fulfilment of the require-

ments for M. Tech. in Computer Science degree of the Indian Statistical Institute,
Calcutta, is an acceptable work for the award of the degree.

&(&)‘:{.“M

Date : August 4, 1997. (Supervisor)

Professor and Head
Electronics Urit
Indian Statistical Irsithita
403, Barrackpore Tv. ¢ Roa i
Calcutta - TCQO 5

JP:{H{LJTK’_:#&&L f"
=
Vo =T e u,
SRS
\" /r
. W *

Acknowledgement

My sincerest gratitude goes to Prof. Bhabani Prasad Sinha for his guldance,
advice, enthusiasm and support throughout the course of this dissertation.

I would also like to take this opportunity to thank Prof. Bhargab B. Bhattacharya,
Dr. Subhash Nandy, Prof. Aditya Bagchi , Dr. Probal Sengupta, Dr. Ritabari
Roychoudhuri, Dr. Nabanita Das, Dr. Sushmita Sur K olay, Dr. Bhabatosh
Chanda and Dr. Shraboni Mukhopadhaya for the excellent courses they have offered
in M.Tech. which helped me in this work.

Thanks to Mr. Sounak Mishre and Mr. Subhamoy Maitra who encouraged the
research by giving proper technical advice whenever required.

LY

Mr. Venkatesh Rama Murthy , Mr. Debashis Sarkar, Mr. Arunabho Ghosh
, Mr. Manoj Barua, Mr. Nirmalya Barat, Mr. Rajeev Verma, Mr. Dinesh
Pandey and Mr. Harekrishna Patel played very crucial role in contributing numerous
suggestions throughout the project. I thank them all and also my other classmates

who shared those moments of joy and frustration and made my two years stay at ISI
enjoyable.

ABSTRACT

Finding equivalent parallel algorithms for computation intensive sequential
algorithms has gained a lot of importance with the avatlability of economic mul-
tiprocessors in the last decade. In this work, an effort has been made to get this
work done with as much automation as posstble. A program has been developed
which simplifies the work of parallelization for the parallel algorithm developer.

Contents

1 INTRODUCTION 1
1.1 Need for Higher Computation Speed 1
1.2 Need for Parallel Computation 1
1.8 Parallel Computation - Past, Present and Future 2
1.4 Systolic Arrays 3

2 MAPPING OF ALGORITHMS 4
2.1 Index Sets and Data Dependencies 6
2.2 Algorithm Model 7
2.3 Ezxecution Ordering 7
2.4 Algorithm Equivalence u.... 7
2.5 VLSI arraymodel 8
2.6 Mapping Algorithms into VLSI Arrays 9

3 IMPLEMENTATION 14
3.1 Algorithms 14

3.1.1 matn 14
3.1.2 pipeline 15
3.1.8 find_data_dependence 16
3.1.4 find_Pl transform 18
3.1.5 find_S_transformm 19
3.2 Data Structures L2

SAMPLE INPUT OUTPUT 23

CONCLUSIONS 27

SCOPE OF FURTHER WORK 28

APPENDIX 29

BIBLIOGRAPHY 34

Chapter 1
INTRODUCTION

1.1 Need for Higher Computation Speed

It is a real life fact that there is no limit of our expectations and when there is a
promise of availability this expectation increases by leaps and bounds. This is the fact
in case of computer technology. Thanks to the continuous development of hardware
technologies, todays computers are much more faster and smaller in size as well as less in
cost compared to those of the last decade. There has been a revolutionary development
in VLSI technology which offers much faster CPU’s and silicon memories (RAM, ROM
and Cache). These two being the backbone of present day electronic computers, today
we have much faster computers at an affordable price. It is a fact that the number of
operations that a computer can perform per unit time has roughly doubled in every two
years for the past 40 years. But the need for the speed of computation has developed
at a much faster rate and today there are a lot of genuine applications whose need
for computational speed far exceeds the limit that the best technology can provide.
A simple example may be the weather forecasting applications, which need, such a
vast amount of data analysis for good forecasting before 24 hours itself that a super
computer like CRAY XMP-14 is required. But it is not uncommon for us expecting to
get a forecast for the next season.

1.2 Need for Parallel Computation

As described above the need for computational speed far exceeds the availability. Also it
is forecasted that the trend of improvement in electronic hardware will soon come to an
end as the ultimate limiting factor is the speed of electron in any medium. Unless there
are significant breakthroughs in present day research on technologies like Josephson
junction (based on super conductors), the power dissipation problem, as well as that
of stray capacitance and stray inductance put a limit on compaction and hence on the
decrement in length of the communicating wires and thus on the speed of devices.
There is an obvious way to get around this problem, that is to use parallelism. The
idea is, to use multiple devices for the same task, so that sub tasks can be performed
simultaneously, and thus reduce the total time requirement significantly. It is more
viable today because of decrement of production costs of mass used devices due to both

improvement of VLSI technology and mass scale of production. In fact, now it is possible
to assemble a parallel machine with a few tens to several thousands of processors Thus
we have a strong need as well as scope for parallel computation.

1.3 Parallel Computation - Past, Present and Fu-
ture

A parallel computing system consists of parallel hardware and parallel software to run
on it. As both are interdependent their development has been interdependent as well.
Previously due to technological limitations we had loosely coupled systems in which a
number of computers were networked to work together . The memory model in those
cases were, "distributed memory model", in which each processor has some memory
local to it. In this model when a processor needs to access a location in the memory
belonging to a remote processor, it will have to do so through static interconnection
networks. Such systems are named as Multi-Computers. In that case communication
was to be done between one computer to other and as such communication was slow. So
the software developed for those systems involved partitioning the task at much higher
level so that communication requirements were less. But this was a serious limitation
and parallelism in lower level couldn’t be exploited.

Due to technological advances (mainly in VLSI field) in the last decade, a number
of processors (say 1000 to 10000) could be produced and integrated on a single chip.
In this case the communication is between processor to processor using shared memory
which is inside the same chip and so it is much faster. These systems are named as Multi-
Processors. This has opened up the area of low level parallelization. But developing
software for a multiprocessor system is closely involved with the architecture of parallel
hardware, and so software development is more difficult, as ideally an algorithm should
be architecture independent. The wide variety of machine organizations makes it more
difficult as we need portability of the software as well.

Several strategies are being developed to improve this situation. One approach is
based on machine dependent parallel programming notations, which take the form of
new programming languages as is available with todays parallel computers. But this
adds to the problem of non-portability and consumes a lot of manhours in learning
languages which are complicated architecture dependent and as such complicated. The
fear of those parallel computers being replaced by better computers in near future
results in software engineers avoiding these languages which, they apprehend, may soon
become redundant . As a result many of todays parallel computers are idle due to lack
of software.

The second approach is to use problem solving environments that generate efficient
parallel programs from high level specifications. This approach is much more promising
as 1t is suitable for software engineers as the architecture dependency will be taken
care of by the environment. But this necessitates writing parallel algorithms as well as
developing powerful translators that take sequential algorithms as input and translate
it to its equivalent parallel algorithm which will be the input to the problem-solving
environment. There are several reasons why this translator is required. The most
frequently mentioned reason is that there are many sequential algorithms , which would

be convenient to execute on parallel computers. Also sequential algorithms are easier
to develop and since majority of existing computers are sequential in nature sequential
algorithm development will continue till parallel computation becomes cost effective.

Our work ultimately aims for the above mentioned translator development. To our
surprise work done in this area is either in its preliminary stage or is hidden in patent
regime so that the work done in this case may be taken as very basic in nature,

We have started our work in this area by developing a parallel algorithm gener-
ator which takes a high level sequential iterative algorithm as input and generates an
equivalent pipelined version of the same which can be implemented in systolic array ar-
chitecture. The communication links to be used as well as the geometry of arrangement
of processors are also taken care of. It also gives the option to specify target architecture
and to test whether it will be possible to execute a parallel version of the given algo-
rithm on it. In this development we have used some of the algorithms used in ADVIS
software developed at University of South California as mentioned in Moldovan(4]. Our
software is better than ADVIS in terms of input requirements as well as that of degree
of automation.

A third approach is to use machine learning, which is being developed in AI field.
If this approach becomes successful then it will be possible to feed available sequential
algorithms and the corresponding parallel algorithms for different architectures to the
intelligent computers. The machine will then study the exact pattern of development
and will try to find parallel algorithms for new sequential algorithms using the knowledge
already acquired by it. But given the fact that "machine learning" is still in its infant
stage this approach can be considered as the approach of the future.

In the field of hardware also it is expected that in future it will be possible to
develop exotic architectures economically. But today it is possible to manufacture mul-
tiprocessor chips with simple systolic array architectures only using the best available
technology, keeping chips cost effective. Hence we will concentrate on systolic array

architecture for our work and will expect that it may be extended to other architectures
in future.

1.4 Systolic Arrays

The two major problems in VLSI technology are that of limitation of number of I/0
ports and communication wire length. The first problem is due to fact that the chips
have limited perimeter, and the second one is due to increase in delay with long com-
municating wires. Systolic array architectures have been proposed by Kung [6],{7] and
others as a possible solution to these VLSI problems. In the systolic concept, VLSI
devices consist of arrays of interconnecting processing cells with a high degree of mod-
ularity. Each processor operates on a string of data that flow regularly through the
network. Neglecting the I/O problem the throughput of such computational structures
can be considered to be proportional to the number of cells.

Chapter 2
MAPPING OF ALGORITHMS

The basic structural features of an algorithm are dictated by the data and control de-
pendencies. Data dependence represents the precedence relations of memory references
whereas control dependence represents the precedence relation due to control struc-
ture of the algorithm. These two dependencies determine the execution ordering of
the program in order to compute the problem correctly. The absence of dependencies
indicates the possibility of simultaneous computations. In this work, we concentrate on
algorithms for VLSI systolic arrays, and hence we focus on data dependencies at the
variable level. The other levels in which data dependencies can be studied are:

1. blocks of computations level
2. statement { or expression) level

3. bit level

To explain data dependence , let us take a simple example
example 1: Consider the single loop
FOR1:=2TO 200 STEP 1 DO

| BEGIN
X. A1) .= B[241] + C[I] ;
y. B(2+142) := A{I-1] + C[-1) ;
Z. All-2] :=BfI+3] + 1
END

The first four iterations of the loop are as shown below

x{2). Al2) .= B[4] + C[2] ;
y(2). Bl6) := A[1] + C[1] ;
2(2). Af0} := B{5) + 1 ;

A[3] := B[6] + C[3) ;
BI8] := Af2] + C[2] ;
A(l] :=B[6] + 1 ;
Al4] := B[8] + C[4] ;
B[10] := A[3] + C[3] ;
Al2) :=B[7] + 1 ;

A[5] := B[10] + C[5] ;
B(12] := A[4] + C[4] ;
Al3] .=B[8] + 1 ;

We can make the following observations :

1.

The output variable of the instance x(2) of statement x, is an input variable of
the instance y(3) of statement y, and the value computed by x(2) is actually used
by y{(3). This pattern is repeated many times. In general, the value computed by
the instance x(i) of a is used by the instance y(j) of y, whenever i and j are two
values of index variable I such that j - i = 1. This is known as flow dependence.
In this case it is uniform as there is a constant (dependence) distance, namely 1,
such that the instance y(i+1) is always dependent on the instance x(1) whenever
1 and i+1 are values of 1. So it is static flow dependence.

. Similarly it can be found out that z(5) is dependent on y(3) due to generated used

pair-of B[8]. But in this case dependence value is I-1. As it is dependent on I
it is not uniform. This type of dependencies are also known as dynamic flow
dependence. As data dependence analysis in this case is run time dependent on
the value of I, this problem is dificult to tackle during compilation. Hence this
type of dependence analysis is not done in present work.

. The output variable of z(3) is also an input variable of ¥(2), but the value of A[1]

used by y(2) is the one that existed before the program segment started, and not

the value computed by the z{3). This makes the instance z(3) anti dependent on
the instance y(2), and the statement z antj dependent on the statement y. So in

general whenever we have a -ve distance for a used generated pair of some indexed
variable we detect anti dependence .

For value of i between 2 and 200, the instance x(i) of a and the instance z(i+2) of
2z both compute a value of Ali], such that the value computed by z(i+2) is stored
after the value computed by x(i). This type of dependence is known as output
dependence. We say that instance z(i+2) of z is output dependent on instance
x(i) of x. In this case this output dependence is uniform.

5. The fourth kind of data dependence is caused by a pair of input variables; it is

called as input dependence. As for example x(4) as well as z(5) use the same
input variable B[8]. Input dependence is a useful concept in some contexts (e.g.,
memory management). But it is not much of importance in our case.

By data dependence we will mean any one of the three particular types of dependencies:
flow dependence, anti dependence, and output dependence.But in our case we
consider only the first two types of dependencies.

2.1 Index Sets and Data Dependencies

Let us define flow dependence for a nested for loop.
FOR I' :=l! TO 4! STEP d! DO
FOR I? := u? DOWNTO £ STEP 42 DO

FOR I' := 1™ TO u™ STEP d™ DO
BEGIN

SI(D :

Sn(d) ;

END
where, I/, w/, are integer valued expressions involving the integer valued index set I'.

ooy I Vand, I = (1N RB,.. .I™ 1), and 8}, S,,... S, are assignment statements of the
form "X := E" where X is a variable and E' is an expression of some input variables.
Let I; represent an instance of J

Let X and Y be two variables using the index sets f(I) and g(I). Variables X and Y
are generated in statements S;(J;) and S;(I;) respectively.

Variable Y{g(I}) is said to be flow dependent on variable X (F(D) if

3

a. Entries in vector (f{J) — g(I)) are divisible by steps of corresponding for loops and
let after such division and multiplication by -1 in case of DOWN TO type for loop
the index set I be transformed to 7 .

b. 1; < iz { Here "<" means less than in lexicographic sense)

c. fli) = g(iz)

d. X(f(I,)) is an input variable in statement S(I;)

The vector d = i3 — 1; is called the flow dependence vector. It is convenient to
represent all dependencies D as a matrix D = [d; d; ...d,]

For our purpose it is also required to store all anti dependencies for which the above
conditions remain same except the second condition which changes to i; > i;. We
multiply the whole vector by -1 such that it becomes positive in lexicographic sense.

2.2 Algorithm Model

In order to map algorithms into VLSI array processors, we need suitable transformation
in index set keeping the equivalence of algorithms intact. For this purpose let us define
an algorithm model.

An algorithm A over an algebraic structure Sis a 5 tuple A = (J*, C, D, X, Y) where:

J*, index set, is a finite index set of A | J* is a subset of set of n-tuple of +ve integers.

C’ set of computations, is a set of triples (7 v,t) where 7 € J*, v is a variable generated
at 7 and ¢ is a term built from operations of S and variables ranging over S. Any variable
appearing in t is called a used variable.

D, set of dependencies, a set of triples (j,v,j) where 7 € J*, the instance of index
set at which v, a variable, is used and d, is an element of set of n tuple of integers with

at least one non zero entry, is the dependence vector.
X, is the set of input variables for A.

Y, is the set of output variables for A.

2.3 Execution Ordering

For completeness of description of an algorithm, along with algorithm model we need
to define execution ordering defined by,

1. the specification of a partial lexicographic ordering O on J* (called execution

ordering) such that for all (d,v,7) € D we have d greater than zero in lexicographic
sense.

2. the execution rule until all computations in C have been performed, execute

(7° v, t) for all 7% > J (in lexicographic sense) for which (7, v,t) have been termi-
nated.

2.4 Algorithm Equivalence

Two algorithms A = (J*,C, D, X, Y) and A= (j"", C, _f), X, Y) are said to be T equivalent;
if and only if :

1. Algorithm A is input-output equivalent to A: A = A.

2. Index set of A is the transformed index set of A: jﬂ = T1{J,) where T is a bijection
and a monotonically increasing function.

3. Any operation of A corresponds to an identical operation in A and vice versa.

4. Dependencies of A are the transformed dependencies of A, written D = T{D).

We are interested in transformed algorithms for which the ordering imposed by
the first coordinate of the index set is an execution ordering.The motivation is that
if only one coordinate of the index set preserves the correctness of computation by
maintaining an execution ordering, then the rest of index coordinates can be selected
by the algorithm designer to meet some VLSI communication requirements. Let us find
out how a transformation T can be selected such that the transformed algorithm can

be mapped into a VLSI array. To understand VLSI communication requirement let us
define VLSI array model.

2.5 VLSI array model

It is assumed that the computational resource consists of a mesh connected network of
processing cells.

A mesh connected array processor is a tuple {57!, P) where 7! is a subset of n — 1
tuple of non -ve integers, is the index set of the array and P is an element of set of (n-1
* r) dimensional matrices of integers , is a matrix of interconnection primitives.

For sake of generality, we consider that VLSI arrays are (n-1) dimensional. The
position of each processing cell in the array is described by its Cartesian coordinates.

The interconnections between cells are described by the difference vectors between the
coordinates of adjacent cells. The matrix of interconnection primitives is :

P=[p,py...,Ps

where p; is a column vector indicating a unique direction of a communication link.

Consider, for example, the array shown in FIG. 1. ; Its model is described as (J,, P)
where,

J2 = {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}

P='—1~1-1 0 0 1 1 11]jy
-1 0 1-1 1-1 0 1[}j

-l

@ 12 22

FIG.1. A square array with 8 neighbour connections.

The structural details of the cells and the timings are derived from algorithmes which
are mapped into such arrays. For simplicity, it is considered that all cells are identical.
If an algorithm requires an array with several different types of cells, then the model

can be easily modified to describe the function of each cell in index set J,_;.

2.6 Mapping Algorithms into VLSI Arrays

A transformation which transforms an algorithm A into an algorithm A is defined as

I1
T = 5 where,

IT is a m dimensional row matrix of integers, (m being the level of nesting of FOR
loops in the Algorithm) which maps an index tuple J™ to J', an integer (considered
as time) ,

Sisa (n—1xm) dimensional matrix of integers, which maps an index tuple J™ to
Jlan—1 tuple of integers (J*=!is considered as the Cartesian coordinate representing
position of the processor).

Thus the set of algorithm dependencies D (e D={d),dy,..., d}, each d; being a
(m x 1) column vector) is transformed into D = Tx D. The mapping IT is selected such
that the transformed data dependence matrix D has positive entries in the first row.
This ensures a valid execution ordering, and can be written as follows:

Id; > 0, forany d, € D,1<i <k,

By doing the above we get the advantage that we can regard correctly the first
coordinate of the transformed algorithm j, as the time coordinate. Thus, a computation

indexed by 7; (a m tuple of integers) in the original algorithm will be processed at the
time ;

3!'. = H.-?-i:
in the transformed algorithm.

So, the total running time of the new algorithm is usually ¢ = max; j,- — min; ;'1- + 1.
This assumes a unitary time increment. In general, the time increment is given by the

smallest transformed dependence, i.e. minimum T * d;. Thus the execution time of the
parallel algorithm is given by the ratio

b l.nlax,H(_}';~3[f)+-l-'
_ miny [1d,

for 71, jy, any two valid index sets and d; any dependency vector .

Here it may be noted that maz (3, - Jy), is same as RS —— fm,-n][, where 3,

and 7, may be considered as maximum and minimum index tuples respectively, being
divided by steps of respective for loops.

Let’s take an example to explain [] transformation and running time of transformed
algorithm.

Example : (matrix multiplication (pzpelined version))

BEGIN
FORi:=1TO2DO
FOR j:=1TO 2 DO
BEGIN
cli, 5,0] = 0,
FOR k:=1TO 2 DO
BEGIN
blk, j, i} := blk, 3,1 — 1];
ali,k, j| = ali,k, 7 — 1],
cli, j, k] := cli, 5, k — 1] + ali, k, 3] x [k, j,1];
END;
END:;
END;
Here nesting levelm =3 ;
J={(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1) , (2,1,2), (2,2,1), (2,2,2) } ;

D = {(1,0,0),(0,1,0), (0,0, 1)} ;

If we choose [] as (1,1,1) then,
Hdl = 11Hd2 — lsndii = 1,

J'=T1J=1{3,4,4,54,5,5,6)}

Hence total execution time required for the transformed algorithm is,
¢ . ['ﬂlaxl HGI’";,{)"“l“
T min; I1d;

= [5] =4

The transformation S can then be selected such that the transformed dependencies

are mapped into a VLSI array modeled as (j’*"lj P) to our suitability. this can be written
as

J'7!'=8D = PK

where the matrix Pis (m —1 x (3™ ' — 1)) dimensional, 7 being the maximum level
of nesting in the algorithm.

Each column in P contains a m —1 tuple of 1, -1 or 0 but at least one entry non zero,

10)

which represents a direction of communication possible in systolic array architecture.
Thus P represents all direction of communication possible.

K is a ((3™~! — 1) xn) dimensional matrix of non -ve integers, n being the number of
dependency vectors listed in D. Each column represents the utilization of connectivities
(listed in P) being utilized for a particular dependency.

The constraints for K matrix = [k;] is such that

ki >0 - (1)
>, ki < 1d;. . (2)

These constraints mean that, there can’t be -ve utilization of connectivities (as it
is meaningless) and the use of connectivities should be dope within the time taken for
present computation, as there will be need of input output communications as soon as
the next computation begins.

Let us take the above example to explain § vector and resulting communication
pattern obtained.

In this case,
S ={(0,0),(0,1),(0,2),(1,0),(1,1),(1,2), (2,0), (2, 1), (2,2)}

p _|-1-1-1 0 0 1 1 11|}
L1 0 1-1 1-1 0 1y

One possible S may be,

1 0 0
g {010
For this S we get,
J* = 8D
1 0 0 100
=(0 1 ol*|0 1 0
: lo oo 1
1 0 0
10 1 0
0 0 0°
0 0 0
0O 0 0
l.e. K = 000 -
O 1 0 fﬁﬂCAL#; [
0 0 O R L
1 0 0 : t .
- 0 0 U -‘ i ©23781

T

CALCUTTA
11 | .

We can check that this satisfies the constraints for K and so it is a valid transfor-
mation. The architecture with this P and X is as shown in hg. 2.

Here it may be noted that most often many 5 transformations can be found out, for
the best possible I1, and each transformation leads to a different array. This flexibility
gives the designer the possibility to choose between a large number of arrays with
different characteristics, it also complicates the task of choosing best S matrix. In case
of big set of choices designers intuition may be used, and this is the point why we call
this transformation semi automatic . Further, the possibility of finding not a single
S matrix for a given IT matrix may not be ruled out. In that case we have 2 choices

1. Iteratively find the next best IT matrix until at least one suitable S is found out.

2. For the § found out within some limit of T d, (constraint) find a new IT such
that the constraint is satisfied.

The above is an optimization problem in integer domain and requires further dis-
cussion,

This problem may be formulated as below

Find a T(m * m) matrix whose first row is considered as IT(1 * m) matrix and rest
as S(m — 1 * m) matrix such that

t= [0

1S minimized.

7 is a (m * 1) dimensional matrix of +ve integers is given and,

cfi(m *1} € D, Vi,1 <1 < n, are given, each d, being a m tuple of integers, not
all zero, and first entry in each such tuple is non -ve.

The constraints are,

Ild; > 0 Vi, 1 <i < n. {1
The solution to the diophantine equation S* D = Px K exists, . (2)
where:
P, a (m — 1% (3™ ~ 1)) dimensional matrix, whose entries are 1, 0 or -1, is given,
K = k], a ((3™ ' - 1) ¥n) dimensional matrix, whose elements are non -ve integers,

satisfying the constraints,

il

ki > 0, Vi, 1<i< (3™ —1),1<5<n, .-+ (3)

and

EJkJISHd—H VI,].S],{_:H -.(4)

12

For the above problem following algorithm was proposed by D. 1. Moldovan(4].

Step 1 : Heuristically, find a transformation IT, such that Ild; is greater than zero
for all d;’s and,

_ rmaxII{('-#4)4+1
b= [-_E‘imi(;:ﬂi—) -'

18 minimized.

Step 2: Generate all possible k matrices K = [k;;] where each k; is an integer, and
k satisfies the following conditions :

1} ks >=0 and

Step 3: Find all possible transformations S (n-1 * n) whose elements are integers
and which satisfy the following conditions:

1) diophantine equation SD = PK can be solved for S and
2) matrix transformation

7= 1

S
1s non singular.

L

Following the above algorithm, we may obtain some valid transformations 7. If no
S can be found to satisfy all the above conditions, then either we compromise the fast
execution time by selecting another II in step 1, or we compromise the locality of data
communication by selecting another set of primitives P.

Step 4: From all the possible transformations select the one that minimizes time.

Step 5: The mapping of indexes to processors is as follows: each index point § € J*
1s processed in a processor whose i’th coordinate is 3} =TI, 7.

13

Chapter 3
IMPLEMENTATION

3.1 Algorithms

3.1.1 main

PROCEDURE main (fname.dat)
(* fname.dat is the input filename %)

BEGIN
check syntax of input ;

IF syntax is wrong THEN
STOP ;

ELSE

BEGIN

pipeline all broadcasted variables

)

find out date dependencies for all variables embedded in innermost

DO LOOP ;
find out [] transformation for minimum time ;

find out § transformation for best geometry and interconnection

taking suggestions from user ;

END { else }

END { main }

14

3.1.2 pipeline
PROCEDURE pipeline (table, fname.dat)

table is the table of information about all variables and for loops,
made during syntax analysis; fname. dat is the input filename.

output : the pipelined version of the input in fname.con and 1implicit
storing of the dependencies of the pipelined new variables

BEGIN

WHILE ((b_var = find_broadcasted_variable()) # NULL)

BEGIN

find all occurrences of b_var with same index set

FOR all index variables not used by b_var DO

BEGIN

FOR all generated instances of b_var DO

include the index variables missing ;
FOR all used instances of b_var DO

BEGIN

FOR each missing index variable ;_var DO

BEGIN

IF the for loop corresponding to z_var is DOWNTO type
THEN

include "i_var + STEP"

(*x STEP is the step of the for loop *)

ELSE

15

3.1.3

BEGIN

include “i_var - STEP" ;
END { for }
END { for }
END { for}

IF b_var is used at least once THEN

do initialization for each missing index ;
(% i.e. initialize for the first instance of pipelining *)
add dependency due to b_varin dependency vector list.
END { while }

END { pipeline }

find_data_dependence
PROCEDURE find_data_dependence {)

finds data dependency for variables which are not broadcasted but are
embedded in innermost for loop

input : details about indexed variables generated during syntax analysis

output : adds dependencies as well as anti dependencies in
dependency vector list

WHILE((d-var = find_candidate variable) # NULL)
(%

a candidate variable has both used as well as generated occurrences
~and has not been pipelined already

*)

16

p— TR RS L a2 e

BEGIN

FOR all used occurrences of d_var,d_var; DQ
BEGIN

FOR all generated occurrences of d_var; starting from
first occurrence DO

BEGIN

subtract indices used in generated instance from that of
used instance and store the resultant vuple in result ;

multiply the entries in result by -1 for DOWNTO type for loops ;
divide the entries in result by respective STEPs of for loops ;
if there is remainder for some entries in the above division
continue ; (* i.e. don’t consider this generated instance)
IF¥ the first non-zero entry in result is -ve THEN
store the result as anti dependency ;
ELSE

IF all the entries in result are equal to ZERO

BEGIN

IF the generated variable appears in a line
before the used vartable THEN

store zero for dependency due to d_var; ;
ELSE
continue ;

(* i.e. don’t consider this generated instance *)

END { if }

17

3.1.4

ELSE

IF the result is lexicographically less than dependency
till yet obtained due to d_var, THEN

store it for dependency due to d_var;

]

END {for }
IF dependency due to d_var; is not zero THEN

add dependency due to d_var; in dependency list;

END {for }
END {while }

END { find_data_dependency }

find_PI_transform

PROCEDURE find_PI_transform()
(*

Input : inputs are numerous and through global table data structure .

output : it trys to find out best of the [] transforms for certain

heuristic ; in case it fails to find any [] transform it reports
failure.

BEGIN

FOR counter := 1, TO counter := maximum_level_of_nesting, DO

BEGIN

find all [T's whose sum of absolute values is equal to counter :
FOR all the []’s which satisfy the constraint of +ve time, [];, DO

IF T]; gives less total execution time than the best I]
available yet THEN

18

3.1.5

store [, as the best [available

END

IF a valid best [] 78 available THEN
report it ;
ELSE

report failure ;

END { find_PI transform }

tind_S_transform

PROCEDURE find_S _transform()
(*

Input : inputs are numerous and through global table data structure.

output : the user is given the option to choose a good S matrix until
he wants to try. If a valid § transform is found for users input
success 1s reported. Else if he chooses to have all valid S
transforms then all valid S transforms existing satisfying the

time constraint are found out. The task of choosing good S among
these is left on the user.

note : this leaving the task of choosing best S among many valid S
transforms makes this software SEMIAUTOMATIC.

*)
BEGIN

WHILE { not end of user’s choices) DO

BEGIN
read user’s input ;

test validity of the user’s S ;

19

IF user’s S is valid THEN
BEGIN
report success;
report the final architecture and interconnection pattern:
END { if }
END { while }
IF the user wants all valid S transforms THEN

BEGIN

ask for the dimension of the systolic array to be used;

FOR all communication pattern’s possible with the given dimensional
systolic array DO

BEGIN

find the SD satisfying the communication pattern :
(* SD is the resultant geometry after transform *)

check for validity of corresponding S;
IF it is valid THEN

BEGIN

add 5 as well as the resultant architecture to the
existing list of valid S transforms :

END { if }
END { for all communications ... }

END { if the user wants ... }

END { find_S_transform }

2()

3.2 Data Structures

Various data structures used for implementation of the algorithms are as described
below.

| ind_st] This is a linked list with a string of length 20 in its data field.
This is used to store the index variables used in the algorithm.

| ind.str2 | This is a similar data structure as above. But it has a
character pointer in its data field (aliasing). This is used to list the indices used with
each indexed variable.

[ind _str3] This is a linked list storing pointer to ind_str2 data structure.
1t is used to store for.loop indices so that it can be used during pipelining broadcasted
variables.

| for_type] This is used to store the data about each for_loop. It is a
linked list having fields to store index variable, line no., flag to know whether DOWN TO
is used, from_string storing the from eTpTession, to_string storing the to expression
end_line_no storing the line number where the statement of the for loop ends and step
storing step by which increment or decrement is done.

| var_type] This is used to store all use/generate information about one
indexed variable. It is a triply linked list linking,

1. all indexed variables with same name,

2. indexed variable to its left,

3. Indexed variable to its right,

(left right mean top to bottom in left to right manner)

| updata] This is a linked list used in pipelining. In each node it stores
the pointer to original variable as well as the new set of indices to be used.

| ind_type | This is used to store make a table of all indexed variables,
It is linked list storing in each node, a variable name and root of the linked list storing
all uses of that variable.

| int_str | This is a linked list to store dependency vectors. It stores a
dependency vector as well as anti dependency flag in each node.

| depend_type] This is a structure storing information to link depen-
dency vectors and the variables in which it is found. In each node it stores the root of
dependency vector list, the root of the list of variables due to which these dependencies

are found (in matching order), and pointer to the innermost for loop in (nested) set
of for loops.

| var_list_type | This is a linked list storing a link to var_type data
structure as its data. It is used to create lists of used and generated variables of same

21

variable name. It is useful in finding data dependency.

| addline | This is a circular linked list with each node containing a
string of 134 characters representing the line already present in the file and pointer
to a linked list of strings representing the lines to be added below the original line.
This is required for typical string manipulation operations in a FILE to pipeline the
broadcasted variables.

| int_list | This is a linked list to store parametric part of generalized
solution for a variable as a result of solving Diophantine equations. Each node contains

parameter number as well as its coefficient. It is used in soln_type data structure as
explained below.

[soln_type | This is a linked list storing the parametric solutions of
variables, used to return solutions of Diophantine equations. In each node it has constant
(an int) as well as root of linked list representing the parametric part.

22

SAMPLE INPUT OUTPUT

We take a simple example to show how the program works. Let the following
algorithm be written in a file say inpl.dat.

(* MATRIX MULTIPLICATION)
BEGIN
FORi:=1TO n DO
BEGIN
FOR 7:=1T0O n DO
BEGIN
cli, 5] :==6;
FOR &:=1TO n DO
BEGIN
cli, j] == cli, j] + ali, k] x blk, jl;
END ;
END :
END

3

END ;

We may use a command as {ollows :

/user /mtc9512/project> parallelize inpl.dat

23

output :

Following is the dependency matriz found out. after pipelining

variable — > b33 a$3 c$3

I index steg_:igpéndency dependency | dependency | for_type |
I ‘[1] 1 0 | 0 1 to
| 1 | 0] 0 to

| k& | 1 0 0 1 to

lineno. 3: FORi:=1TO n DO

value of limit variable n is [100] 7 5 <—

line no. 5: FOR 3:=1TO n DO

value of limit variable n is [100] 7 5 <—

lineno. 8: FOR k:=1TO n DO

value of limit variable n is {100} 7 5 <—

The [] matrixis ([111];

Do you want to give S matrix [y! 7 <—

Dimension of systolic array [2] 7 <—

S[1,1] =[0) 7 1 <—;S[1,2] =[0] ? <—;8[1,3] = [0] 7 <— ;

S[2,1] =[0] 7 <—-:S8[1,2] =[0]? 1 <—:S[1,3] = [0] ? <— ;

showing transform and resultant dependency :

1 1 1°

1 0 0O

01 0

1 1 17 TIME

1 0 0

0 1 0| GEOMETRY

Do you want to give S matrix [y] ? n <—

24

Do you want all solutions [n] 7 y <—

Dimension of systolic array [2] 7 <~

As a result of pipelining we found the following file inp1.con

(* MATRIX MULTIPLICATION #)
BEGIN
1= 1;
FOR j:=1TO n DO
FOR k:=1 TO n DO
b33k, 3, i — 1] := blk, j];
FOR i:=1TO n DO
BEGIN
Ji=1;
FOR k:=1 TO n DO
a$3i, k,j — 1] := ali, k] ;
FOR j5:=1TO n DO

BEGIN

c83(i, 5, k] := c83[i, 5,k — 1] + a$3[3, £, j] x b3k, 4, i;
END ;

C[i, j] == C$3[i, 7, ﬂ]?

END ;

L

END ;

?

END ;

Also a file named inp1.trn was created giving all valid transforms. It was
found out that we have 576 valid transformations in this case.

The architecture and communication pattern corresponding to the trans-
form due to user’s S, found as above, is shown below.

Fig. 2. Systolic Architecture for matrix multiplication.

26

CONCLUSIONS

We have implemented and enhanced the algorithm, developed by Moldovan{4], to con-
vert sequential algorithms into its equivalent parallel form. The results obtained from
the software, are same as results obtained by applying various other techniques for
mapping algorithms into systolic array architecture manually.

We have found out that the algorithms for finding optimum transforms are expo-
nential in time, but are still applicable in practical cases where number of iterations
may be high, but level of embeddings and number of dependencies inside the innermost

loop should be limited. But for theoretical, general cases the algorithm would be much
time consuming.

we have also found out that the main problem in fully automating the process, is

that of finding a goodness criteria, to compare different systolic architectures with
different communication patterns. In absence of any human intuition, (i.e when our
program is run in fully automatic mode) a large number of valid § transformations (
S transform determines the resultant processor geometry and interconnection pattern)

are found. Choosing the best architecture (manually) among this big set of possible
architectures is tedious.

In a similar implementation, in a software named ADVIS, developed at the Univer-
sity of Southern California, as mentioned in Moldovan({4], the input requirements were
algorithm index set, dependence matrix, and the matrix of permissible interconnectjons.
Finding these in a big algorithm is time consuming for a user. In our software we have

overcome this problem, as we need only the high level algorithm as input. This has
veen made possible by writing a syntax analyzer as well as finding correct algorithms
for pipelining and for determining data dependency.

In course of implementation, we have generalized the algorithm for pipelining broad-
casted variables, and the algorithm for finding data dependency, for a general casc
of do loops allowing non unit steps and -ve steps as well .

27

SCOPE OF FURTHER WORK

Finding a criteria to compare two systolic architectures can be taken as the immediate
next step in this course of work.

Finding transforms for other regular architectures, besides systolic array architec-

tures also remains open. Although we have done some work on 1t, it is yet to be
completed.

In this work we are finding the induced redundant ordering on iterations by depen-
dency analysis and trying to remove it by suitable transformations. But the task to find
and remove induced dependency by operators, by operation analysis remains to be done.
It is obvious that without this we may not reach for those good parallel algorithms like,
matriz multiplication in cube architecture, by our automated method. So this task
also remains to be done.

We have concentrated on static dependency only. Finding out values of dynamic data
dependencies characterized by variables in dependency values, at run time is another

related problem. It is important as many real life algorithms contain static as wel] as
dynamic dependencies.

Last, but not the least, we will have to allow control structures like JFF THEN and
GO TO , before this semi automatic parallelization method can be said to be robust.
At present the user has to rewrite the high level algorithm converting IF THEN’s to

equivalent DO loops and avoiding GO TO’s before teeding it to our parallelizers. But
this is tedious and needs to be automated.

28

APPENDIX

Diophantine Equations

An equation or a system of equations in one or more unknowns, which is to be
solved in an integer domain (bounded or unbounded) is called a Diophantine equation
or system of Diophantine equations. A simple example is

2z + 3y = 10;
Theorem : Integer solutions of the equation ayx; + a2xy + ... + a,x, = a, where

the a;’s are integers, aiaz,...,a, # 0, exist if and only if ged of ay,a3,...,a, divides a

This condition is obviously necessary and hence without loss of generality we may
assurne that the equation is already divided by the gecd of coeflicients in left of the
equation, such that gcd of a,,a,,...,a, is 1.

Case 1: Now suppose that n = 2.
LE., ALy + a3y = Q, c v (1)

where we may suppose that, gcd of ar,ay is 1, a; > 0,a2 > 0 on writing —x, for z, if
need be.

The solution can be given by following algorithm which is equivalent to Euclidian
algorithm of finding gcd of a; and a;.

1. Choose the greater of a;, and a; (say a;). We may write,
az = qia; +r, - {(2)
where 0 < 7; < ay, ged of 71, a; is 1 and ¢, is an integer.
Then substituting (2) in (1) we get,
a1z, + qra1x, + r1¢2 = a, .. {3}
substituting z1, = x; + ¢ T2 we get,

T F Ty = 4, . (4)

29

where z, = 1, — q 2. ... {5)
Next we may 2write, a; = ¢r) + 7y, ... (6)
where 0 < r3 < 7y, ged of 3,77 is 1 and ¢; is an integer.
Substituting (6) in (4) we get,
Q2T T + Ty + 11Xy = a, AT
substituting s, = z; + gox;; we get,
r3%21 + T = a, ... (8)
where 17 = z9] — quz1; .. (9)

Continuing this process, we have a decreasing set of positive integers r,,7y,... .7
until we come to a stage where,

11}

w1 + Ty_1T9; = a, where r,, = 1.

Then T1is T2js 151> L2,5-1, T14-2, T2, - .-, T3, T; are successively given in terms of
T2j, T3; can be taken as a parameter for the general solution.

If one solution (p, q) is known, all the solutions are given by x| = p+tay, zy = q—ta,,
where t is an integer parameter.

Case 2: Now suppose n > 2.
i.e., QX +ﬂ.2:13‘2+...+t1nﬂin = (1 - (1)

Here we choose the coefficient with minimum absolute value, say ai and rewrite the
equation as,

(aymoda;)x;, + (agmoda)xy + ... + aixi; + ... + (apmodai)x, = a, ... (2)
where,
T, = ((11/{11;)331 4 ((Lg/ﬂ.i)mg + ..+ (ai/ai)mi + ...+ ﬂ:n/a,‘iﬂn .o (3)

It may be noted that the absolute value of all coefficients are less than or equal to
a; NOw,

Coatinuing the above process, and thus decreasing the absolute value of coefficients
we will end up in the following condition,

one of the coeflicients say of z;;, the jth substituted value of x;, 18 non zero and all
other coeflicients are zero. (We may note that if the above theorem is satisfied this

30

coefficient will divide a, otherwise it will not divide and there will not be any integer

solution to the above diophantine equation). So we get the value of the T;; as an
integer.

Now back substituting this value in the substitution done before we will get a para-
metric solution of z; ;..

Continuing this process of back substitution finally we will get the parametric solu-
tion of L1y, T2, T3y crvy Ty,

Let’s take the following example to show the functioning of the above algorithm.

Example :
45:131 +35$2+30$3 — 5, (1)

l.e., 15x; + 0%y + 3014, = 9,

where z3) =z, + z, + x3, ... (2)

i.E!., 01171 - 5:1321 +- 011331 — 5,
where L9 = 333] + Xy + 6:1331, R (3)

i.e., Ty =1, ... (4)
Substituting (4) in (3) we get,
Ty = 1 — 3uay — 6x3, ... {5)
Substituting (5) in (2) we get,

Ty = X3 —xy — 1 +3£B1 +6:1331,
Le., ©3 = Teg + 22 — 1; ... (6)

Thus considering z; = t,, and z3; = ¢, as two parameters which may take any integer
value we get the general solution of the above as,

T =1,
Lq = "*3t1 — 6t2 +].,

Iy — 2t1 +7t2— 1,

It may be noted that in our case it is expected and also is seen that the number of
parameters 1s one less than number of variables.

31

Case 3: Now suppose n >= 2 and we have a system of equations, a,1T; + @y +
o+ QppTp, = ap, (r=1,2,...,1),i < n.
In this case our algorithm will be extension of last case.

1. Choose first equation and solve the it (by the algorithm described in last case).
If it couldn’t be solved report failure, else we have expressions for x;, x,,...,x,
using at best n — 1 parameters.

. Substitute the solution for first equation in the rest of equations and reduce to a
system of i - 1 equations with n-1 variables.

ii. Continue the above process in the reduced system of linear equations. In case the
system of equations is solvable we will finally find a single equation with n-i+1
variables. So we can solve it using the method described in last case, and the
variables can now be expressed with at best n-i parameters. Back substituting
the above recursively till we reach the original variables we get the generalized
solution with at best n-i parameters.

Example :
45z, + 353 + 30z; = 5, ... (1)
10z — 3z — 623 = 7. ... (2)

Solving the first equation as described in the last case we get
T1 = 11,2y = —3t; — 6ty + 1,23 = 2¢; + Tty — 1.

Substituting these in 2nd equation we get.
108, — 3(~3t; —6t, +1) - 6(2t; + T8, — 1) =7,

le., le 7Tt —24t, +3 =7,

le., l.e Tt — 24ty =4 ... (3)
We solve this using algorithm of case 2.

Substituting 11 = 1) — 3o, C (r},)
we get,

Tt — 3ty = 4 . (4)

Substituting oy = ly — 2t11, C (b)
we gelt,

t“ - 3t21 = 4, - (5)

'SlletitlltiIlg t1p = tiy — 3t21, c ({I)
we get,

32

Back substituting value of t,, in (c) we get,
t11 = 4 + 3i,,. - (7)

Back substituting value of ¢;; in (b) we get,
t2 =131 + 2(4 + 3ty),
ie, ty = Tt + 8. Ve (8)

Back substituting value of t, and ¢, in (a) we get,
t) = (4 <+ 3t21) -+ 3(7t21 ~+ 8),
i.&., t) = 24¢, + 28. Ce (9)

Back substituting value of ¢;,#, and ¢. in the solution of Z, 9, T3 as obtained from the
i’th equation we get,

T =1 = 24t21 28, e (10)
Lg = —3t1 = ﬁtg +].,

i.e., Lo = —3(241‘521 + 28) — 6(7t21 + 8) -+ 1,

l.e., Tq = —114¢,; — 131. . (11)

g = 2t1 +7t2 — 1,
Le., T3 = 2(24t + 28) + 7(Tty + 8) — 1,
i.e., z3 = 97ty + 111. ... (12)

As we have a single parameter t,,, writing it as a single parameter ¢, we can exXpress
the general solution to the system of equations taken in this example as,

Il = 24t -+ 28,
Ly = —114¢ — 131,

z3 = 97t + 111.

33

Bibliography

1.

10.

11.

12.
13.

14.

15.

Manish K. Singh, "Semsi-Automatic generation of parallel programs and par-
allel architecture” M.Tech. thesis, I.S5.I Calcutta, July 19985.

. Dan 1. Moldovan and Jose A.B. Fortes, "Partitioning and mapping algorithms

into fizred size systolic array” , IEEE Transactions on Computers, vol. C-35,
No. 1, jan. 1986, pp. 1-12.

. Dan I. Moldovan, "On the design of algorithms for VLSI sysiolic arrays’” |

Proceedings of the IEEE, vol. 71, no. 1, Jan. 1983, pp. 113-120.

. Dan 1. Moldovan, "On the analysis and synthesis of VLSI algorithms" | IEEE

Transactions on Computers, vol. C-31, no. 11, Nov. 1982, pp. 1121-1126.

. Utpal Banerjee et al., "Automatic Program Parallelization” , Proceedings of

the IEEE, vol. 81, no. 2, Feb. 1993, pp. 211-243.

. H. T. Kung, "Let’s design algorithms for VLSI systems” , Proceedings of

Caltech Conf. on VLSI, Jan. 1979, pp. 65-90.

. H. T. Kung, "The structure of Parallel Algorithms" , Advanced Computing,

vol. 19, 1980, pp. 65-111.

. B. P. Sinha et al., "Fast parallel algorithm for binary multiplication and their

implementation on systolic architectures” , IEEE Transactions on Computers,
vol. 38, no. 3, Mar. 1989, pp. 424-431.

. B. P. Sinha et al., "A parallel algorithm to compute the shortest paths and

diameter of a graph and its VLSI implementation”, IEEE Transactions on
Computers, vol. C-35, no. 11, Nov. 1986, pp. 1000-1004.

Chien-Min Wang et al., "Efficient processor assignment algorithms and loop
transformations for executing nested parallel loops on multiprocessors” |
IEEE Transactions on Parallel and Distributed Systems, vol. 3, no. 1, Jan. 1992,
pp. 71-82.

L. J. Mordell, "Diophantine Equations” , New York: Academic Press, 1969 ,
pp. 30-33.

Kai Hwang, "Advanced Computer Architecture” McGraw-Hill Inc., 1993.

Kai Hwang and F.A. Briggs, "Computer Architecture and Parallel Processing"

, McGraw-Hill Inc.,1989.

M. J. Quinn, "Designing Efficient Algorithms for Parallel Computers”,
McGraw-Hill Inc., 1988.

Selim G. Akl, "The Design and Analysis of Parallel Algorithms", Prentice
Hall, 1989.

34

