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Abstract

There exist various methods for function forecasting and function approxi-
mation in the Statistical disciplines. Nowadays various powerful mathematical
techniques and also some adaptive techniques have been established in this
domain.In the present work a conventional model and secveral recent mod-
els are investigated. Out of the adaptive models , the Wavelet Network
model combines the wavelet transform method with a Backpropagation-type
learning algorithm for its purpose.This model is then modified to incorporate
multiple mother wavelets and shown to yield better results.Finally an al-
together new evolutionary technique using Genetic Algorithms and wavelel
decomposition is proposed and implemented. This model is then further im-
proved using a penalty-based GA model.

1 Introduction

Time series is a sequence of observations taken sequentially in time {or some other
independent parameter). Applications of time series can be found in diverse fields
such as economics , business , enginecring , the natural sciences(especially geo-
physics and meteorology ) , and the social sciences. An intrinsic feature of a time
series is that,typically adjacent observations arc dependent.This dependence among
observations is utilised to develop various models for forecasting and function ap-
proximation.

Generally in time series prediction there are two classes of models. One class
of models are mainly concerned with long-term prediction. These models are used
to predict various types of trends such as annual trends , seasonal trends , cyclical
trends , etc.As a consequence they use various trend — prediction mechanisms for
their purpose. They are comparatively simpler in nature.

The other class of models are concerned with short-term prediction |, such as the
daily fluctuation of stock prices , the hourly fluctuation of chemical concentration
in a mixture , etc. The time series themselves being very complex the models of
this class are also complex in nature. They range from the relatively simple Moving
Average (MA) model through the Autoregressive (AR) model to the compound
ARMA and ARIMA models.A survey of most of these important models can be
found in [Tere’90).

Other than these conventional models there are several unconventional ones
based on recent techniques such as Artificial Neural Networks |, Fuzzy Logic and
Genetic Algorithms. Nowadays much emphasis is being given on such techniques.
Models based on such techniques have been proven to be very powerful in function
approximation and forecasting of extremely complex time serics. Their power comes

from the inherent non-linear nature of Neural Networks and the evolutionary nature
of Genetic Algorithms.

In this work several models from the latter class arc investigated. The first
model discussed is the well-known Autoregression model[BoxJ'70]. It is a well
established Statistical model and is best-suited for processes whose characteristics
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( i.e., the parameters involved and their number ) do not change throughout the
series of observations ( that have been made } and the forecasts ( that will be made
). However it can as well be applied to processes which do not exhibit these qual-
ities. Among the recent non-conventional models discussed , is a recent method
based on Wavelet Transforms |[Zhan’92]. This model is investigated in detail and
its drawbacks and limitations arc then highlighted. Then a modified version of this
model is proposed and experimented. Finally an altogether new evolutionary tech-
nique is developed which combines the power of Genetic Algorithms with wavelet
decomposition for function forecasting.
The organisation of the article is as follows :

In section 2 the Autoregressive model is discussed. In this section two separate
methods for estimating the parameters of this model are discussed. Finally the
Akaike Information criterion is discussed in the context of model selection crite-
ria. The Wavelet Network model is introduced in section 3. A brief introduction
to wavelet transform methods and Necural Networks is first given. The Wavelet
Network model is then explained and then the learning algorithm is explained. In
section 4 the Multiple Mother Wavelet Network is explained. In section & criticism
of the Wavelet Network models is given. In scction 6 the two GA-based models
are discussed. An introduction is given to genetic algorithms. The problem of
function approximation is then stated in the context of genctic algorithms and a
method for it is proposed. In section 7 the above GA-based model is modified to
introduce a penalty term and the corresponding model is explained. In section 8
an innovative algorithm for function forecasting is discussed which uses the idea of
a Green function as used in Theoretical Physics. Finally the experimental results
are disscussed in section 9 and the conclusion is given in section 10.

2 The Autoregressive (AR) model

In this model the current value of the process is expressed as a finite | linear aggre-
gate of previous values of the process and a "shock" ;.

Let us denote the values of a process at equally spaced times tt-1,6-2, ... |
by Z,,2,.1,2;.4,..., respectively.Also let Z.Z 1.7, o, ..., be deviations from the
mean u . For example :

Z, = 2, — l. | (1)
Then,

Zt = (f)]Z; 1 + (ﬁ'zzt-u.g + e (Ii‘FZp P + fLy (2)

is called an Autoregressive ( AR ) process of order p.
The variable Z is regressed on previous values of itself. Hence it is called an
Autoregressive model.



We shall employ extensively the Backward Shift Opecrator B defined by

BZ; — Z;-u] — BmZt — Zt-—m.- (3)

The inverse operation is performed by the Forward Shift Operator

F=DB". (4)

Another important operator is the Backward Difference Operator 6. It can be
written in terms of B as

621 _ Zt - Zi...] —_ (1 == B)Zt (5)

= § = (1 — B). (6)

Thus coming back to our AR model we have

Z, =¢]BZ£+¢2B221 + ---+¢FBFZ¢ + . (7)

This again can be written as

(1-¢1B—¢B*—-- — $,B?)Z, = a,. (8)

Or economically as

(I)(B)Zt = ;. (9)

This model contains p+2 unknown parameters g, @), ¢3, . . ., ¢y, o> which in prac-
tice have to be estimated from the data.The additional parameter o? is the variance
 of the white noise process a,. Note that inverting (9) we can write as

—

Zt = ‘I’(B)ﬂ-t. (10)
Where,

¥(B) = & '(B). (11)

Autoregressive processes can be such that their characteristics do not change
throughout the time series. Loosely speaking these type of processes can be called
"stationary". However Autoregressive processes can also be "nonstationary” in
nature. For the process to be stationary,the ¢’s must be chosen so that the weights
U, Y, ...in W(B) = &7 1(B) form a convergent scries. The necessary requirement.
for stationarity is that the Autoregressive operator

®(B)=1—-¢,B— ¢pB*— - —¢,B", (12)
considered as a polynomial in B of order p must have all roots of ®(B) = 0

greater than 1 in absolute valuesi.c : all roots must lie outside the unit circle.
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21 Estimation of the parameters of the AR process

There are various methods for estimating the parameters of a purely autoregressive.

They are :

method of estimation may be obtained by

e Ordinary Least Squares (OLS)
f the form of the standard linear regression

solving a system of linear equations O
model normal equations.

L

east Squares Estimates using Yule-Walker

he identification stage , but can differ ap-
hood Methods 1n some

o Method of obtaining Approximate L

equations. These estimates are useful at t
preciably from the estimates obtained by Maximum Likeli

situations.

9 2 Ordinary Least Squares Estimates (OLS) of the AR Co-

efficients
p. We are given a set of

mean autoregressive process of order
, Oy, We need to solve

We assume a zero-
he parameters ¢1, ...

N+1 observation points. To estimate t
(according to (2)) N+1 equations of the form

?t = d’lzt#l + ¢ﬂzt-+2 Rl 5 ¢pZt—p
Zt+1 = QSIZI +¢'ZZt—-1 ++¢pzi ptl (13)

Zt+N = ¢’IZt+N—1 ﬁb?ZHN—Z + -0t ¢’pZt-+-N-—p
e form of matrix equations as

The above equations can be written in th

2N-+-1}(1 — ZN+1xp‘I)px1 (14)
where,
Z,
- L1
ZN F1x1 — :+ (15)
ZI+N
Zt—l Zt—2 Zt P
A Z; Ztl . e Zi i
ZN+1xp = : :F+ (16)
ZHN l AT, ZyiN p
and,
¢
P2
Ppx1 = | (17)
dp



We wish to minimise the mean squared error

N+1
18
N +1 t,:l (18)
If we differentiate e w.r.t the parameters ¢; we get an estimate of ¢,,..., @,
which can be written in terms of the above matrices as
®ox1 = (ZpxN11ZN+1xp) YZoxN+1 ZN+1x1 (19)

‘The above equation gives the Ordinary Least Squares cstimate of the parameters
of an AR process. The main problem with estimation using OLS estimates is that

it fails miserably in the presence of noise in the data. OLS estimates are highly
susceptible to noise.

2.3 Yule-Walker Estimates

A common method of obtaining estimates c;;j of ¢; is by means of solving the Yule-
Walker equations.The Yule-Walker equations are as follows :

Let the autocovariances be calculated as,

p NIk
=N 2 (Ze1k — ~ 1) (20)
Where,
1 N
—ﬁga _ | (21)

There are of course, other methods for estimating the autocovariances , but the
estimator (20) has the attractive property that its mean squared error is generally

smaller than that of other estimators [Jenk’69]. The Yule-Walker equations can
then be written as :

RO =r (22)
where,
p(0) p(l) ... Alp—1)
P ng) p(0) ... Mpfm (23)
plp—1) pp—2) p(0)



and,
p(1)
p(2
o (. ) (24)
p(p)
Equation 22 can then be inverted to get the AR coefficients ¢1,...,¢,. In par-
ticular,the estimates for first- and second-order autoregressive processes are

AR(1) ¢;1 = (25)

S STO R ) IS S
A = , = )
R(2) 1= —— Z =1 (26)

2.4 Model Selection Criteria

In the previous sections it was assumed that the order p of the AR process was
known. However the value of p may be very different for different processes and
optimal values have to be found out for each process. If the value of the order |
p used in the model is less than the optimal value of p for the corresponding time
series then the model is incomplete and will give erroneous prediction. If the value
of p used is larger than the optimal value then theoretically the extra coefficients
should be zero ( or at most negligible ). However in practical cases they result in
an overhead in computation time. The method of determining the order of an AR
process is called model selection.

An approach to model selection is based on the use of certain information
criteria such as the Akaike Information Criterion (AIC) proposed by Akaike
Akai’74] and the Bayesian Information Criterion (BIC) proposed by Schwars
Schw’78]. In the implementation of this approach , a range of potential AR models

is estimated by Maximum Likelihood methods,and for each a criterion such as the
AIC (normalised by sample size n) given by :

~ —2in(Maz.Likelihood) + 2 f
AIC, = (Ma zne“oo ) +2r ~ In(6°) A 2: - const. (27)
BIC = in(5?) + ™). (28)
7

is evaluated,where &_ denotes the Maximum Likelihood Estimate of ¢2,and r =
p+1 denotes the number of parameters estimated in the model, including a constant
term.

In the AIC criterion above,the first term essentially corresponds to — < times
the natural log of the maximun likelihood while the second term is a penalty factor
for the inclusion of additional parameters in the model. The constant term in the
approximate expression for the AIC varies according to various interpretations of
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the Akaike Information Criterion . The model corresponding to the minimum value
of the AIC is taken as the most suitable model for representing the time series.

One immediate disadvantage of this approach is that several models have to be
estimated which is computationally very time consuming and expensive. Hannan
and Rissanen [Hann'82] proposed another model selection procedure.

At the first stage of the procedure,one obtains estimates of the random "shock”
series a,,by approximation of the unknown AR model by a (sufficiently high order)
AR model of order m*. The order m* of the approximating AR model might itself
be chosen by use of the AIC (or BIC) selection criterion above.From the AR(m")
model selected one obtains residuals :

m-l
Ay = Wy — E :¢m*jwt-~j
j=1

In the second stage of the procedure,one regresses iy on wi_i,...,W; p and
G¢_y,-..,08,_, for various values of p , i.e., one estimates approximate models of
the form :

p
EDICHIEE (29)
j=1

by Ordinary Least Squares regression , and let &ﬁ denote the estimated error
variance(uncorrected for degrees of freedom).Then by application of the BIC (or
the AIC) above , the order p of the AR model is chosen as the one that minimises
In(6?) + pin),

The appeal of this procedure is that computation of Maximum Likelihood Esti-
mates over a wide range of ARMA models is avoided. Such procedures and use of
information criteria in model selection have been useful but they should be viewed
as supplementary guidelines to assist in the model selection process.In particular
they should not be used as a substitute for careful examination of characteristics
of the estimated autocorrelation and partial autocorrelation functions of the series.
Critical examination of the residuals «,, @, for model inadequacies should always be
included as a major aspect of the overall model selection process.

3 The Wavelet Network Model

This is one of the recent methods for function approximation which utilises the
adaptive nature of Neural Networks on one hand and the principle of decomposition
of Wavelet Transforms on the other hand.In this section first the theory of wavelet

transforms will be introduced. Then a brief description of Feedforward Neural
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Networks will be given.Finally it will be shown how these two tools can be integrated
into a single system for the purpose of function approximation and forecasting,

3.1 Wavelet Transforms

Wavelet theory is a unification of similar ideas from different fields. It is built on a
strong mathematical foundation based on the idea of looking at signals at different
scales and resolutions . We consider the Continuous Wavelet Transform ( CWT )
and the Discrete Wavelet Transform ( DWT ) separately .

3.1.1 Continuous Wavelet Transform

In the continuous case the wavelet tarnsform is constructed from a single function
y(z) called the mother wavelet.

wa,r(m) — "‘“‘*’““"10( ) (30)

where |
o is a scale , or dilation , factor ,

7 is the translation ,
7’; is a constant that is usced for energy noMhalisation.
The definition of the continuous wavelet transform ( CWT ) w.r.t a particular

function f(z) is then

W(r.0) = 5= [ F@w(E=")ds (31)
Nz o
The wavelet transform can be seen as projecting the function f(z) onto a set of
basis functions , {1,,} . From a mathematical point of view it would be preferable
to have an orthogonal basis to minimise redundancy and interference between dif-
ferent wavelets. This assures that it is possible to reconstruct the function from its
transform by summing up inner products as

flx) = . W(r, o), {x) d;: (32)

7

Surprisingly enough this holds even though the wavelets v, () are not orthog-
onal {Daub’90]. The requirements on the wavclets are :

1. ¥(z) should be of finite energy , i.c.




2. ¥{z) should be of the bandpass type , meaning that the reconstruction scheme
in (32) is only for the function f(z) , the DC-component cannot be recon-
structed. This means that ¥(x) are all zero mean functions.

8.1.2 Discrete Wavelet Transforms

A natural question to ask is if it is possible to find an orthogonal wavelet basis by
a careful sampling of ¥ and 7. The answer is that it is possible but it depends
critically on the choice of ¥)(z). There is a trade-off between the orthogonality and
the restrictions on the wavelet. If the redundancy is high , there are mild restrictions
on ¥(x). But if the redundancy is small then the choice of the mother wavelet is
very constrained [Daub’90].

The coefficients w; ; in the discrete wavelet transform ( DWT )} are given by

— b,

w; ; = \;Eff(-"?)"ﬁ(w 5, Jdr =<, ;, f > (33)

where |

IE—tij
S

]
and the s; and ¢, ; are the scaling and translation parameters respectively.
The inverse transform in terms of the coeflicients w; ; is given by

%‘,j -~ '%f’(

f(z) = i i w; ;9 (= ;ti'j) (34)

i=0 j=)
To analyse the behavior of the DWT | the notation frame from Daubechies

[Daub’90] is an appropriate concept. The frame bounds, c,.;, and ¢q, Of the wavelet
transform are defined according to

CminlFIZ S DM < iy £ 1P =D JlwislI° < cmacll £I° (35)
1,] 1,]
independent of all functions f € £* Then ;; is a frame if ¢, > 0 and
Crnar <~ 0.

These frame bounds balance the demand on the wavelet. If all the ¢, ; are
normalised the following terminology is used.

Conin = Cmaz = 1 == Orthonormal basis.

Cmin = Cmaz > 1 ==> Tight frame, the number ¢, is aneasurcof the redundancy.
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i, ™ Crmag == Snug frame, theinverseis well — behaved.

3.2 Wavelet Decompositions as Universal Approximants

In this section we will discuss how wavelets can be used for approximating any
function whose functional form is unknown. We are interested in finding some ap-
- propriate function

P R — RN

with the following property :
There exists a denumerable family of the form :

O = {det(D"*)Y[Dex — ) : te € R, Dy = diag(dy), di € Rk € Z} (36)

( where the t;’s are translation vectors and the dy's are dilation vectors specifying
the diagonal dilation matrices Dy ) satisfying the frame property :

There exists two constants C... > 0 and ¢ne. < 0o such that, for all f in L(R")
the following inequalities hold :

Cmm“fHQ < Z <y, f >1*< ﬂmm:”fuﬂ (37)
ped
In this sum < . , . > denotes the inner product in £*(R") and the sum ranges
over all elements of the family &.
The diag() refers to an arrangement where the elemnts ot an n-dimensional vec-
tor are arranged as the diagonal elements of a square matrix of order n.Hence here
the D,’s and the di’s are related as :

d 0 ... 0
0 & ... 0
D, = | (38)
0 . 0
0o 0 ... di
where d.,...,d} are the components of the n-dimensional vectors dy.
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It is a consequence of (37) that the family ® is dense in L£*(R"),and the quality
of the best approximation for fixed number of terms in the sum depends on how far
from 1 the coefficients ¢, and cmq: are.Hence the collection of all linear combina-
tions of elements of the frame & of the form :

N
g(z) =) wigp(z), ok € P, (39)
k=1

is dense in L*(R").

From this it also follows that the collection of all finite sums of the form :

N
g(:r:) - Z widet(Di)Ww[Dim — ti] (40)
i=1
where the ¢:’s are arbitrary translation vectors and the d;’s are arbitrary dilation
vectors specifying the diagonal dilation matrices D; is also dense in £2(R")Since it
contains in particular all finite linear combinations of elements of the frame $.There
are obviously more degrees of freedom in class (40) than in class (39) since trans-
lations and dilations are not constrained to belong to the denumerable families
specified in (36). This additional flexibility can be used to fit those dilations and
translations to a particular function.
It remains to exhibit families @ as above. The Wavelet theory will be used for
this purpose.
Using the Continuous Wavelet Decomposition : The continuous wavelet de-
composition allows us to decompose any function f(x) € L3H{R") using a family of
functions obtained by dilating and translating a single wavelet function :

Y R — R (41)

To build such a wavelet we proceed as follows.Consider first a scalar wavelet 1n
the Morlet-Grossman sense [Daub’90], i.e., a function

YR — R (42)
with a Fourier transform v,(w) satisfying the condition
0o | af 2
C‘f’. = [ l wb(W) I dv < 0. (43)
Jo (W)
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Using this scalar wavelet 1, we build the desired wavelet ¢ : R — R by setting

P(x) = ¥, (x1) .. . Ys(z,) for o = (1,22, ..., T,) (44)

and we also introduce

Cy = Cy,.

Then the following continuous wavelet decomposition formulae hold :

f(z) = -(:_,1; /mm | A W (1) (det D)/*y[D(w — t)|didk (45)

W(d,t) = fw f(x)(det D)'*¢{D(x — t)]dc where,asbefore D = diag(d) (46)

In these formulas d and ¢ are the dilation and translation vectors,respectively. This
result is classical for one dimension and easily extends to the multidimensional
case.lt is also shown in [Daub’90] that the denumerable family :

V. (o, B) = {a**yp (afx — Bl) : k,l € Z) (47)

for commonly used wavelets such as the "Morlet" wavelet for instance, yield ¢,
and ¢, very closeto 1 fora =2,3 =1,

Finally there is even no need that the synthesis and decomposition formulae
((45) and (46),respectively) use the same wavelet v . Different wavelets in duality
can be used as well. To summarise,the continuous wavelet transform theory in
the Morlet-Grossman sense provides with considerable flexibility in designing our
networks.

Referring to our objectives we may state the following at this point :
¢ The universal approximation property is guarantced for finite sums of the form
(40) if ¢ is chosen as an appropriate wavelet according to the discussion above.

3.3 Neural Networks

Fig. 1 depicts a so-called ( 1 + 1/2 ) layer Neural Network. Recently the ability of
. such Neural Networks to approximate continuous functions has been widely studied
[HecN '89]. In particular,the following result has been proved.

If o(.) is a continuous discriminatory function, then finite sums of the form :



N
g(z) = Z w;o{aiz + b;) (48)
im1

are dense in the space of continuous functions defined on [0, 1]* and any € > 0,
there is a sum g{x) of the form (48), for which | g(z) — f(z) |< € for all z € [0, 1]".

Any bounded and measurable sigmoidal function is discriminatory. In partic-
ular,any continuous sigmoidal function is discriminatory.In the construction of the
Wavelet Network we have the following objectives in mind :

¢ Preserve the "universal approximation property",i.e.,provide a class of net-
works exhibiting the same density property as the class (48).

e Have an explicit link between the network coeflicients and some appropri-
ate transform.This will be extremely useful in guessing good initial values for the
backpropagation-like algorithm.

e Possibly achieve the same guality of approximation with a network of reduced
size.

We shall discuss in our conclusion how far these objectives have been achieved.

3.4 Wavelet Networks and Their parametrization

Based on the previous discussion , we propose a network structure of the form :

N
g(z) = Z: w;y[D;(x — t,)] + 7 (49)

‘where the additional (and redundant) parameter § is introduced to help deal
with with nonzero mean functions on finite domains.Note that this form (49) is
equivalent to the form (40) up to the constant § since the dilations and translations
are adjustable.Furthermore,in order to compensate for the orientation selective na-
ture of the dilations in (49) we combine a rotation with each affine transform to

make the network more flexible. Qur Wavelet Network structure is thus of the
following form :

N
g{r) = Z w D Ri{x — ;)] + 7 (50)

where,

e the additional parameter § is introduced in order to make it casier to approximate
functions with nonzero average,since the wavelets used are zero mean wavelets.,

e the dilation matrices D;’s are diagonal matrices built from dilation vectors,while
R;'s are rotation matrices.This network structure is illustrated in Fig. 2.
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3.5 Learning Algorithm for the Wavelet Network

In this subsection an algorithm for adjusting the paramecters of the Wavelet Net-
work is discussed [Zhan'92]. The learning algorithm is based on a sample of ran-
dom input-output pairs {x,f(x)} where f(x) is the function to be approximated. A
stochastic gradient type algorithm is used for this purpose.lt is very similar to the
Backpropagation algorithm used for Neural Network learning. More precisely, in the
sequel we are given a sequence of random pairs {zy,ye = f(xi) + ve} where {v;} is
observation noise,

3.5.1 Principle of the Stochastic Gradient Algorithm

All the parameters §, w's, t's, Dis and R.s are collected in a vector € and gg(x) is
used to refer to the network defined by (50) with the parameter vector 6. The ob-
jective function to be minimised is :

C(6) = 5 B{lgo() - yl") (51)

Off-line gradient or Newton methods could also have been used but the compu-

tation of the gradient or the Hessian matrix is generally very heavy.The Stochastic
Gradient algorithm modifies the paramecter vector 8 after a set of measurements
(called a pass), in the opposite direction of the gradient of the functional :

1 f
(0, xp, ) = 5__[93(517;:) — i) (52)

3.5.2 Handling the Dilation Parameters

Up to now the dilation parameters have been denoted by -

D; = diag(d;) = diag(df, co,d)

where d; measures the inverse of the scale of the concerncd wavelet. Another pos-
sible choice is D; = diag(sr, ..., =). The related vector s; = (s!,...,s")7T directly
measures the scale of the concerned wavelet.If we compare the partial derivatives
of the functional (52) w.r.t d; and s;,

Jc _

gd: — fﬂk?ﬂidlag{Ri(fEk — t,:_)]’QEJI[DI'Ri(mk - fl” (53)
Je - |
*5';-:' = EkﬂJiDi dZ(Ly[Ri(.'ﬂk — ti)]‘di [D.,;R.,;(:E;; - f,,)] (54)

! diyfz . . .
where ¢'(x) = dE: ) and ¢, = go(i) — Yk, we observe that the partial derivatives
in (54) are smaller for larger scales,i.c., larger s;’s,a nice property which is not
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satisfied by (53). In order to make the Stochastic Gradient algorithm more cautious
for larger scale wavelets,the form (54) is preferred.

' 3.5.3 Calculating the Stochastic Gradient

Explicit formulae for the partial derivatives of the functional (52) w.r.t each compo-
nent of the parameter vector 8 are now listed. From these formulae the calculation of
the gradient follows immediately. For convenience, the following notations are used :

d
,wf(m) — 11;(::)1

Cp = 99(33&) — Yk

and
2 == D;‘R;’(.’Bk - ti)

The partial derivatives of the functional ¢(, xx, yi) w.r.t w;, t; and s; are respec-
tively given by :

g; = € (55)
dc :
S ext( 2;) (56)
dc T I
a9t —eyw; R; Dy (z;) (57)
dc 2 1 !
Te. —epw; D diag(Ri(xr — ¢,)|¥' (%) (58)

At this point we are ready to implement the Stochastic Gradient algorithm. Ad-
ditional work is however required.As is the case for Backpropagation algorithms for
Neural Network learning, the objective function (51) is likely to be highly convex,so
local minima are expected.To improve the situation,careful initialization of the net-
work is performed and appropriate constraints are sct on the adjusted parameters.

While no theoretical investigation is available which may guarantee convergence |
drastic improvement was exhibited.The unconstrained Stochastic Gradient usually
diverged but the modified algorithm performed well in all the experiments. A
similar such situation is also encountered in Feedforward Neural Network training.
The corresponding additional features are now presented.

3.5.4 Setting Constraints on the Adjustable Parameters

Let f: D — R be the function to be approximated, where D C R" is the domain

where the approximation should be made. The following constraints on the param-
eters arc introduced :
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1. To keep the wavelets inside or near to the domain D, sclect another domain
& such that D C £ ¢ R", and require :

t;e&, i=1,....N (59)

In other words , we choose a subspace £ of R containing D in such a manner
that the value of the wavelet functions are appreciable within £ and negligible
outside it. This is necessary to calculate the wavelet transform coefficients (
though the forward transform equations are not used in this model ).

2. To avoid excessive compression of cach wavelet, scleet € > 0 and require ;

D/'>el, i=1,...,N (60)

This is necessary to keep the number of wavelets required for approximating
the function properly , as low as possible,

3. To prevent the total volume of the wavelet supports from being too small select
a V > 0 and require :

f:(dﬂt DY '>V . (61)

=1

This is necessary for the same reason as 1.

It is to be noted that the wavelets used are not necesarily compactly supported
but are always rapidly vanishing, so the notion of support used in the third constraint
should be used in an approximate snse.A formal definition for the notion of support
in such a case was given by Y.C Pati and P.S Krishnaprasad in [Pati’93]. To
satisfy these constraints .a projected stochastic gradient procedure is implemented
as depicted in Fig. 3.

3.5.5 Network Initialisation

This is where the link to wavelet decomposition can be used. More precisely,an
initial guess for the network parameters can be derived by using the decomposition
formula (46) ( recall that in contrast the network structure mimics tne synthesis
formula (45). The idca is the following : using noisy input-output measurements
{x,f(x)}, we can get some rough estimate of W(h,t) in (46) by replacing the integra-
tion by an appropriate averaging of the observations. The initialisation procedures
cited below are only simple heuristics of this idea.

1. The One-Dimensional Case : For the sake of simplicity, the one-dimensional

case is considered. It is assumed that the function f(x) is to be approximated
over the domain D = |[a, b| by a nctwork of the form :
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r —-ti, .
g(z) = Y wip(—) + 3.
i=1] “

It is to be noted that no rotation parameters are needed for the one-dimensional
case. The initialisation of this Wavelet Network consists in evaluation of the
parameters §, w;, t; and s; for i = 1,..., N. To initialise § we need to estimate
the mean of the function f(x) (from its available observations) and set § to
these estimated mean. The w;'s are initalised to some random numbers 1n
the interval {0,1]. The rest of the problem is how to initialise the ¢;’s and the

8;’s. This is done as follows :

To initialise t; and 8; select a point p between a and b : @ < p < b.The choice
of this point is etailed later. Then we set :

t; =p, s;=C{(b—a),

where { > 0 is a properly selected constant (the value of ( was taken as 0.5 in
our experiments).The interval [a, b] is then divided into to parts at the point
p. In each subinterval, we recursively repeat the same procedure which will
initialise ¢;, 8; and t3, s3 and so on,until all the wavelets are initialised.

This procedure applies in this form when the number of wavelets used is a
power of 2. When this is not the case, the recursive procedure is applied as
long as possible then the remaining t; are initialised at random for the finest
scale.

2. The Multidimensional Case : For the multidimensional case,the initialisa-
tion of § and the w,’s can be performed in the same manner as for the one-
dimensional case. Here 7 is set to be estimated as the mean of the function
to be approximated , and the w;’s are initialised randomly.To initialise the
t;’s and the s;’s the different coordinates are handled scparately as in the one-
dimensional case.Then all the possible combinations between these s;’s and
t,’s can be taken.

3.6 Tentative Improvements

The selection of the number of wavelets in the network may be performed by re-
lying on appropriate versions of standard model order criteria in Statistics, e.g.,
Akaike criteria or Rissanen’s Minimum Description Length principle , as described
in section 2.4. In all cases, such an approach amounts to adding to the objec-
tive function an additional term which penalises the number of adjusted param-
eters , following the principle of parsimony [BoxJ’70]. In our experiments with
Wavelet Networks no automatic procedure was designed for adjusting the number
of wavelets directly from the data.However this was implemented in an innovative
Genetic Algorithm — based Wavelet Decomposition which will also be discussed
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in this article.Before that an improvised model of Wavelet Networks which uses
multiple families of wavelets instead of just one, is discussed.

4 Multiple Mother Wavelet Networks

In many real-life cases the time series may not only possess multiresolution structure
but also may be a composition of various functional models, for e.g. the time series
may be a superposition of monotonically increasing(or decreasing) and osscillating
functional models at various levels of resolution.

In that case it is still possible to approximate the series with a "complete set”
of wavelet functions belonging to a single functional family, (single mother wavelet)
to any required degree of accuracy. However the number of relevant coeflicients re-
quired in this case will be large and in practice will push up the computational cost
considerably.

In such cases a better method would be to judiciously choose sets of wavelets
belonging to several different families(several different mother wavelets). This com-
pound set of wavelets is then used to train a similar such Wavelet Network. In such
cases the relevant number of components will be much smaller than the Wavelet
Network using a single mother wavelet and its family.

such a Wavelet Network has been termed a Multiple Mother Wavelet Network.
It is described by the following model :

N Noof fam, T — t;r

g(x) = Y wi,(-
1 -1 r |

-

) + 7.

".t_lr

1

Here all the symbols have their usual meaning. The subscript « refers to the tamily
( mother wavelet ). The scale and translation parameters also have the subscript o

4.1 Calculating the Stochastic Gradient

Here we wish to minimise the same square error functional as (562). i.e.,

1 :
{:(91 Lk, Uk) - 5[99(3:*) o Jk]£

All the results tor Wavelet Networks apply to this Multiple Mother Wavelct
Network model. The partial derivatives w.r.t the various parameters are calculated
as tollows :

The partial derivatives of the functional ¢(8, i, yi) w.r.t w,. t; and s; are respec-
tively given by

= 2k (62)

= eptn(2;) (63)



% = —epw? R D8l (2;) (64)
dc
as¢

In the above equations the subscript a below ¢ and in the w{’s and s{’s refer
to the different families ( different mother wavelets ) of wavelets used.

At this point we are ready to implement the Stochastic Gradient algorithm for
the Multiple Mother Wavelet Network. However proper initalisation is required as
in the previous model. As is the case for Backpropagation algorithms for Neural
Network learning, the objective function is likely to be highly convex, so local
minima are expected. To improve the situation,careful initialization of the network
is performed and appropriate constraints are set on the adj usted parameters.

= —ekw?(D?)zdmg[Ri(mk — ti)]",b;(zi) (65)

4.1.1 Network Initialisation

The initialisation procedures used in the case of Multiple Mother Wavelet Networks
is quite similar to those for the previous model (single mother) with a few variations.
The initialisation procedures cited below are only simple heuristics of this idea.

1. The One-Dimensional Case : For the sake of simplicity,the one-dimensional
case is considered.It is assumed that the function f(x) is to be approximated
over the domain D = [a, b] by a network of the form :

N Nocof fam.

Q(iﬂ):Z Z Wil

1= o= | 3

x

)+ 3.

Again here,no rotation parameters are needed for the one-dimensional case. The
initialisation of the Network consists in evaluation of the parameters g, wy', ¢/
and s¢ for i = 1,...,N for the different families of wavelets. To initialise g
we need to estimate the mean of the function f(x) ( from its available obser-
vations) and set § to this estimated mean. The w;'s are initalised to some
random numbers in the interval {0,1]. The rest of the problem is how to
initialise the t¢’s and the s¢’s. This is done as follows :

To initialise #; and s, select a point p between @ and b: o < p < b. The choice
of this point is detailed later. Then we set :

t,=p, s =C((b~—a),

where ¢ > 0 is a properly selected constant (the value of { was taken as 0.9
in our experiments).

The interval [a,b] is then divided into two parts at the point p. In each
subinterval, we recursively repeat the same procedure which will initialise
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ty. 85 and iz, 83 and so on. until all the wavelets are nitialised. This procedure
applies in this form when tha number of wavelets used 1s 4 power of 2. When
this is not the case, the recursive procegure is applied as loug as possible, then
the remaining ¢ are initialised at random for the finest scale.

The above procedures for the hitialisation of ¢, and §; are carried out sepa-
rately for each family of wavelets.

" The Multidimensional Case : For the multidimensional case,the initialisa-
tion of § and the w;’s can be performed in the same manner as for the one-
dimensional case. Here § is set to be octimated as the mcan of the function
to be approximated, and the w?’s are initialised candomly. To iuitialise the
t*’s and the s?'s the ditterent coordinates are handled separately as  che
one-dimensional case. Then all the possible combinations between these si's
and t7's can be taken,

Criticism of the above Wavelet Network Mod-
els

The most important criticism for Wavelet Networks comes from the fact that though
it has been cited that the network coefhicients have an explicit link with the ac-
tual transform coefficients of the corresponding wavelets,this can be proved to be
wrong.To prove this we considered a synthetically constructed trme series using the
following wavelets :

2

i ) - La
) Ht.rmm,sm!e('n) = —1TC !
trans. = 0.0 seale = 1.0
trans. = ~-9.0 scale = 5.0
trans., = 8.0 srrale = 0.0
2 , e . Lo
gl,ruuh‘,sf:ﬂif(‘H) T S’Zﬂ(m)ﬂ E
trans. = 0.0 scale = 1.0
trans. = -5.0 seale = 0.0
trans. = .0 seale = H.0

All the coefficients w; for the above translated and scaled wavelets were taken

as 10.0 while the rest of the w; were set to U.

The Wavelet Network was successfully trained using 16 wave
first set and & from the
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lets, 8 from the
second sct.including the above ones if the above conjeciure
was to be true then only those coofficients w; corresponding to the above wave
would have had appreciably high values (~ 10.0)

the wavelet transform coefficients was performed after the network was trained,

The forward transform for inding



using the final values of the scale and translation paramcters. However we had the
following results instead.

Wo.a1.1 14 = 3.928647(9.56) Wh 13117 = 3.640312(9.89)

w5513 = —2.113495(9.96); W g 00519 = 2.302456(9.87)

Wy 56035 = —1.219450(1.09) Wy 1603 = 4.923816(0.85)

w6123 = —1.109861(0.21) w5504 = —1.671342(0.65)

Wy 203 = 1.590399(1.01) Wis02.48 = 1.490732(0.99)
3

W5 33512 = 1.502341(9.05) W 19506 = 4.156870(9.78)

Wy

Wy 5057 = —2.758421(1.01) W g6.266 = —3-498356(1.23)

Wiy 671y = 3.490235(0.10) Wio ay1e = 5.121056(0.77)

The numbers outside the brackets denote the network transform coefficients
while the numbers in the brackets denote the wavelet transform coefficients. It can
be seen that the numbers in cach pair differ considerably in all the cases. This
1s quite sufficient to show that the network coetheients have no explicit functional
dependence on the wavelet transform coefficients.
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6 GA-based Wavelet Decomposition

In this section an innovative Genetic Algorithms — based method is introduced.
‘However before the algorithm is formally discussed, the drawbacks and of Wavelet
Network models are explained and reasons are cited for the use of GA-based models
for Wavelet Decomposition.

6.1 Motivation for GA-based Model

The above Wavelet Network models discussed [Zhan'92] are trained using Backprop-
agation - type learning algorithms using gradient-descent methods. The drawbacks
of these methods are as follows :

e First. such methods are local 1n scope;the optima they seek are the best In a
neighborhood of the current point.
» Second, calculus-based methods depend on the existence of derivatives (well-
defined slope values). Even if we allow numerical approximation of derivatives, this
is a severe shortcoming. Many practical parameter spaces have little respect for the
notion of a derivative and the smoothness this applies. The real world of search is
fraught with discontinuities.

It comes as no surprise that methods depending upon the restrictive require-
ments of continuity and derivative existence are unsuitable for all but a limited
problem domain.

Enumerative schemes have been considered in many shapes and sizes. The idea
is fairly straightforward;within a finite scarch space,or a discretized infinite search
space,the search algorithm starts looking at objective function values at every point
in the spaceone at a time. Although the simplicity of this type of algorithm 1s
attractive,and enumeration is much like a human kind of search (when the number
of possibilities are small), such schemes must ultimately be rejected in the robustness
race for one simple reason : lack of cfficiency. Many practical spaces arc simply too
large to search sequentially and still have a chance of using the secarch information
to some practical end as in online applications.

Even the highly touted cnumecrative scheme dynamic programming breaks
down on problems of moderate size and complexity,suffering from a malady melo-
dramatically labeled the curse of complezity [Bell’61]. We must conclude that
less clever enumerative schemes are similarly,and more abundantly, cursed for real
problems.

Random search algorithms have achieved increasing popularity as researchers
have recognised the shorteomings ot calculus-based and enumerative schemes. Yet,
random walks and random schemes that scarch and save the best must also be
discounted because of the efficiency requircment.Random scarches,in the long run
can be expected to do no better than enumerative schemes.

In our haste to discount strictly random search methods,we must be careful to
distinguish them from randomisced techniques. Genetie Algorithms are an example
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of a serch procedures that use random choice as a tool to guide a highly exploitative
search through a coding of a parameter space. Using random choice as a tool for
a directed search process seems strange at first sight but nature contains many
such examples. Another currently popular search technique, strulated annealing
uses random processes to guide its form of search for minimal energy states.The
important thing to recognise at this juncture is that randomised search does not
necessarily imply directionless scarch.

6.2 Genetic Algorithms

The mechanics of a generic genetic algorithm are surprisingly simple,involving noth-
ing more than copying strings and swapping partial strings. The explanation of why
this simple process works is much more subtle and powerful. Simplicity of opera-
tion and power of effect are two of the main attractions of the genetic algorithm
approach.

A generic genetic algorithm that yields good results in many practical problems
is composed of three main operations [Gold’89] :

1. Reproduction ( or selection )

2. Crossover

3. Mutation

Reproduction ( or selection ) is a process in which individual strings are copied
according to their objective function values, f ( biologists call this function the
fitness function). Intuitively we can think of the function f as some measure of
profit,utility or goodness that we want to maximise. Copying strings according to
their fitness values means that strings with a higher value have a higher probability
of contributing one or more offspring in the next generation.

This operator, of course, is an artificial version of natural selection, a Darwinlan
method for survival of the fittest among string creatures.In natural populations
fitness is determined by a creatures ability to survive predators, pestilence and other
obstacles to adulthood and subsequent reproduction.In our unabashedly artificial

settings the objective function is the final arbiter of the string creature’s life or
death.

The selection operator may be implemented in algorithmic form in a number
of ways. Perhaps the casiest form is to create a biased roulette wheel where each
current string in the population has a roulette wheel slot sized in proportion to its
fitness.
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After selection , simple crossover may proceed in two steps as follows :

e First.members of the newly generated strings in the mating pool are mated
at random.
e Second, each pair of strings under crossing over as follows : an integer position k
along the string is selected uniformly at random between 1 and the string length(l)
less one,i.e.,[1,1].Two new strings arc created by swapping all characters between
positions £ + 1 and ! inclusively.

Finally comes the issue of mutation.Mutation is needed because, even though re-
production and crossover effectively search and recombine extant notions occasionally
they may become overzealous and lose some potentially usctul genetic material (1's
or 0’s at particular locations ). In artificial genetic systems the mutation operator
guards against such an irrecoverable loss.In the generic GA problem, mutation is
the occasional (with small probability) random alterations of the value of a string
position.

When used sparingly with reproduction and crossover | it is an insurance policy
against premature loss of important information. That the mutation operator plays
a secondary role in the generic GA,we simply note that the frequency of mutation to
obtain good results in empirical studics is of the order of one mutation per thousand
bit. (position).

6.3 Difference of GAs from Traditional Methods

Genetic Algorithms are different from conventional optimization and search proce-
dures in the following ways :

1. GA’s work with a coding of the parameter set,not with the parameters them-
selves.

2. GA’s scrach from a population of points not a single point as used in conven-
tional search techniques.

3. GA's use payoff(objective function) information, not derivatives or other aux-
iliary knowledge.

4. GA’s use probabilistic transition rules not deterministic rules.

Genetic Algorithms require the natural set of parameters of the optimisation
problem to be coded as a string of finite length over some finite alphabet. They
exploit similarities among coded strings in a very gencral way. As a result they are
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largely unconstrained by the limitations of other methods( continuity, existence of
derivatives,unimodality,and so on ).

Many conventional search techniques require auxiliary information in order to
work properly. For example, gradient descent techniques need derivatives ( calculated
analytically or numerically) in order to be able to climb the current ( possibly local }
peak, and other local search procedures like the greedy techniques of combinatorial
optimisation can reach their goal only if they have access to most if not all auxiliary
information.

By contrast, genetic algorithms have no need for all these auxiliary information:
GA'’s form an evolutionary system. To perform an effective search for better and
better structures,they only require payoff values (objective function values) asso-

ciated with individual strings of a population. This characteristic makes a GA a
more canonical method than many search schemes.
Unlike many methods,GA’s use probabilistic transition rules to guide their

search. They use random choice as a tool to guide their search towards regions
- of the search space with likely improvement. |

Taken together, these four differences-direct use of a coding, search from a popu-
lation, blindness to auxiliary information, and randomised operators -contribute to

a genetic algorithm’s robustness and resulting advantage over other more commonly
used techniques.

However it should also be noted that not all is good with Genetic Algorithms.
For non-combinatorial optimisation problems where the search space is unbounded

( say the set of reals ) , GA’s often require prohibitively large computation time
to get any reasonable solution even for a population with search space of moderate
dimensions. Moreover for GA’s there is also no well defined termination criterion.

6.4 Presentation of the Problem in the context of GA

In this subsection we introduce the problem of function approximation by wavelet
decomposition from the context of genetic algorithms.

In the context of this problem we have several (functionally)different families of

4
WﬂVElEtS {gt.rans,scﬂle}
a == family number for certain values of the translation and scale parameters.

Given any function f(x) which is to be approximated in some interval [a,b], we pro-
ceed as follows :

1. We first calculate the transform cocfficients :

'y L fr b F
tﬂlr'uus,scuh’* =< Sirans scale f > (ﬁb)

by performing the corresponding convolution of the function f(x) with the
wavelets gi . seate(®) 0 the interval fa, b], using the given values of f(x) in
(@, b].Note that these transform coefficients are fixed for a given function f(x)
and nced to be calculated only once in the beginning.
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2. The coding of the wavelets in the chromosome string is an important is-
suc.Given k familics of wavelets cach having m translations and n scalings,
there are a total of m.n.k wavelets in what may be called a dictionary. Then
each chromosome string 4 can be represented as a Boolean string as :

v = (Y1,%2,- .-, Ymai ). Fach bit v; in the string represents the presence(l) or
the absence(0) of a particular wavelet from this dictionary ( fixed values of
family, translation and scale ) weighted by the corresponding weighting fac-

tOr Wity scate- Thus for that particular chromosome ( or individual ) v the
approximation to f(x) is :

f(:’ﬂ') — Z T“;'{ﬂnﬁi,SE‘JI!E’,‘g::jﬂﬂﬁi,ﬁl’:ﬂh’{(:I:) (67)
Vo |

3. The next important issue is the choice of the fitness function to be maximised
while choosing the best individual from a given population.The simplest and
clearest choice in this aspect is the inverse of the mean square error (MSE).
This is calculated as follows :

Given a chromosome string +,the corresponding approximation f(z) to f(x)
is calculated using the formula cited above. The meam square error 1s then
calculated as :

1 SR .
MSE = < 3 [f(s) — f(x) (68)

xé|a,b]

where, N = total no. of observation points in [a, b].

The inverse of this mean square error is a good measure of the htness value
for that individual.In this way the fitness values are calculated for all the
individuals in a population.

6.5 Population Initialisation and Variations From the Main
. Theme

The starting population is initialised as follows :

1. For cach individual in the population,the number of 's(TRUE bit values) is
chosen at random between 1 and m.n.k(chromosome length).
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2. Those many allele sites are then chosen randomly in that string and the bit
values are set to 1. The rest of the bit values are set to O(FALSE).

Keeping in mind that in a pure genetic algorithmic method with no adulter-
ation or forceful manipulation in crossover , convergence takes a very large number
of generations and that too with very little guarantee , we chooose to modify this
idea as follows :

In each generation we always retain the best-fit string and carry it over to the
next generation if and only if its fitness value is greater than that of the best-
fit string in the new generation.This guarantees that the fitness value(and hence
the approximation) can only improve from generation to generation. It can never
deteriorate due to sudden unwanted crossover or mutations.

7 GA-based Wavelet Decomposition with Penalty

In this section a modified genetic algorithm-based wavelet decomposition technique
is proposed. This algorithm uses penalties together with payoffs. Considering some
ofthe drawbacks and limitations of the previous technique , the need for the present
modified technique can be justified easily.

Consider the case when the above GA-based method is used to approximate
a function in which certain trends( particular values of the translation and scale
parameters ) are present with very high weightage and others arc present with very
low weightage.

In such a case the algorithm would, in most cases, not only select the important
trends but also a large number of the unimportant ones which are not present in
the original function.The reason for this is that since the unimportant trends have
very low transform coefficients (w.r.t f(x}), their contribution in the best approxi-
mation ( best-fit individual ) to f(x) changes the mean squarc error and hence the
fitness value by a negligible amount.Hence they may also be present in near-optimal
approximations of f(x).

Clearly this is not a desirable result. The unwanted trends not only introduce
some error in the approximation but also increase the computational cost since they
are also evaluated every time the value of the function is calculated at some point.It
would have been better if only those trends present in the original function could
be retained in the best-fit individual and the rest are discarded . To implement

this the penalty-based algorithm was developed. It will be discussed in the next
subsection.

7.1 Function Approximation with the Modified Scheme

In this subsection we introduce the problem of function approximation by wavelet
decomposition based on a genctic algorithm using penalty.
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The notations and functions used here are the same as the previous genetic al-
gorithmic approach to wavelet decomposition. Here we have several ( functionally
) different families of wavelets {gf...4 scate )

a = family number for certain values of the translation and scale parameters.
Given any function f(x) which is to be approximated in some interval [a,b] , the
steps of the method are described as follows :

1. We first calculate the transform coefficients :

r . Y '
th‘ﬂHS,S{Z{’IIE’ = < y.!ruus,smlei f > | (6-))

by performing the corresponding convolution of the function f(x) with the
wavelets g2, weae(Z) in the interval [a,bl,using the given values of f(x) in
[a, b].Note that these transform coefficients are fixed for a given function f(x)
and need to be calculated only once in the beginning.

2. Next comes the coding of the wavelets in the chromosome string which is an

important issue . Given k families of wavelets cach having m translations
and n scalings, therc arc a total of m.n.k wavelets which may be called a
dictionary. Now each chromosome string v can be represented as a Boolean
string as :
v = (¥1,Y25 - - - s Ymnk ). Each bit 4; in the string represents the presence(l) or
the absence(0) of a particular strain ( fixed values of family , translation and
scale ) of wavelet from this dictionary appropriately weighted by the corre-
sponding weighting factor w ... ;... Thus for that particular chromosome (
or individual ) v the approximation to f(x) is :

f(ﬂ:) — Z ?ﬂ::'iﬂnsi,H-:‘:fliﬁ.‘g::'l:tlﬂ.ﬁ;,St’:ﬂif',"(:H) (?0)

Vi

3. The next important issuc is the choice of the fitness function. The fitness
function should be such that its highest value in a population corresponds to
best-fit chromosome ( or individual ) in that population. We thus define the
fitness function used in this problem below.

Let nyp e be the number of alleles in the chromosome string which have values
TRUE(1). We assume that the mean square error for the initial population
(MSE,,;) has been calculated and stored somewhere so that it can be used
later. The objective function is defined as :

1
itness = f
jitness MSE + anppy s MSE,; ( )
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Here o is a positive real number, 0 < a < 1. MSE is the mean squared error.

Given a chromosome string v,the corresponding approximation f(z) to f(x)
is calculated using the formula cited above. The meam square error is then

calculated as :

MSE =~ 3 [f(#) = f(=)] (72)
z&la,b]

where, N = total no. of observation points in {a, b).

Use of this objective function penalises those individuals which contain addi-
tional unnecessary wavelets.

7.1.1 Population Initialisation and Variations From the Main Theme

The starting population is initialised as follows :

1. For each individual in the population,the number of 1's(TRUE bit values} is
chosen at random between 1 and mnk(chromosome length).

2. Those many allele sites are then chosen randomly in that string and the bit
values are set to 1.The rest of the bit values are set to O(FALSE).

3. The mean square error of this initial generation is then calculated using the
formula given in (72) and this result is stored somewhere for future use.

Keeping in mind that in a pure genetic algorithmic method with no adulteration
or forceful manipulation in crossover,convergence takes a very large number of gen-
erations and that too with very little guarantee,we divert from the original themc
as follows :

In each generation we always retain the best-fit string and carry it over to the

next generation if and only if its fitness value is greater than that of the best-
fit string in the new generation. This guarantees that the fitness value{and hence

the approximation) can only improve from generation to gencration. It can never
deteriorate due to sudden unwanted crossover or mutations.

8 Another Tentative Approach

This is a final tentative approach to function approximation and forecasting. It
draws heavily from the Feynman Propagator Theory which is used in problems
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.o Theoretical Particle Physics [Feyn’65]. In this theory the path of an clementary
particle in spacetime 1s calculated by summing over all fields that have traversed
and reached the particle at that instant of time. In cffect the theory is a causal
theory of fields and particles.
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In our case let f(z) be the function to be a

pproximated, and let f(:ﬂ) be an
approximation to it. We use the mode] :

f(z) = [ G(z - o)g(n)ds (73)

where,
9(c') = f(z').Va' < o

= undefined but finiteVz' > . (74)

The function G(x) is called the Green function or Propagator for the model.
It has the causal property that

G(z) =0,Vz <0.

The above equations describe the model required for the problem. It is clear
that for forecasting the Green function G(x) has to be constructed from knowledge

of past data only. This is done as follows. We resolve the Green function in terms
of its wavelet tarnsform as

(75)

G(e) = [ | [ W (o, 7)i(= i Drdr (76)
where,
Wio,7) = [ Gayu(E=T)ds (77)

The problem then reduces to finding the transform coefficients W(o,7). For
this first we change to discrete universe. The above equations

then carry over to the
following equations.

K
flk) = Z Gk - K')g(k") K = No. of pust obsun. (78)

k=K

where the functions have thier usual meaning. Then

A

M N vt
Glk) =SS W,, /e "tz (79)

i=:() j=1 j

where the parameters have their usual meaning tor discrete wavelet transform (
DWT ). The constants M and N arc appropriately chosen. Hence substituting (79)

34



n (78) we have

K — Y 4.
- 3 5w ymu R b (80)

K=K i=0 j=
The idea is to learn the wavelet transform coefficients W, ; instead of calculating
- them ( which is computationally expensive ) using the forward transform. This can
be done by applying a Backpropagation-type learning algorithm which is described
below.

8.1 Learning Algorithm

We define the mean squared error as

1 K s
= —E;[f(k) — f(k)] (81)

Our gradient-descent learning intends to minimise this mean squared error. The
stochastic gradient for the W; ; are calculated as follows

De 2
8W,J = “_zﬁk[zz_"‘p

r‘ 'I,,J

("C k) -

S}

> Yg(k')} (82)

where,

The coefficients are then updated in each learning pass using the generalised
b-rule :

where « is the learning rate.

8.2 Comments on the Above Model

The above algorithm was implemented in C language. The program was run for
several iterations. However no positive result was obtained even though the error
was observed to decrease at each pass. It is most likely that further improvements
such as proper initialisation and proper choice of the wavelet scale and translation
parameters will better resuits.
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9 Experimental Results

In this section , results on simulated as well real data arc reported. The above
discussed algorithms were implemented in C language. The programs were run on
Sun and Silicon Graphics workstations. The experiments were performed using the

Autoregressive model , the Multiple Mother Wavelet Network model , the Uncon-
- strained Genetic Algorithm model and the Penalty-based GA model. The original
function as well as the approximations using the various models were plotted. The
results are shown in the adjacent graphs.

9.1 Experiments with Simulated Data

The simulated data was prepared in the tollowing manner. The 6 strains of wavelets
( 3 cach from two different familics of wavelets were taken to prepare the simulated
data as shown.

] J L f 1_—.’-:;!:"E
gfi'ﬂlls,.‘i{“ﬂh*(‘n) = —xe ?
trans. = 0.0 scale = 1.0
trans. = -5.0 scale = 5.0
trans. = 5.0 scale = 5.0
Z . %;L'?
gtrmm,ﬁﬂﬂir ('“E) = .S‘ITL(.’H)(,’,
trans., = 0.0 scale = 1.0
trans. = -5.0 scale = 5.0
trans. = 5.0 scale = 5.0

All the coefficients w; for the above translated and scaled wavelets were taken

as 10.0 while the rest of the w; were set to 0 . The actual function was plotted and
is shown in Fig. 4.

For the AR process the best results ( minimum error) was achieved with a 5,

order process. The approximated function was plotted and the result appears in
Fig. 5. The AR coefficients are given below

In the Multiple Mother Wavelet Network the network was trained with 16

wavelets taking 8 each from two different families whose functional forms are given
below :

Family 1:

. — e da?
gtrans,saale(m) = —&e 2
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Family 2:

gtzrmts,scafp (:E) = SZTL(IB)E %Ij

The values of the translation and the scale parameters included those values
that were present in the original function.The approximated function was plotted

and the result is shown in Fig. 6. The values of the various transform coefficients
are given below.

Woa1 1014 = 3-928647 w4 10,0 = 3.640312

w

i

4553 = —2.113495; w’ ;4,5 g = 2.302456

fe
ol |
(1 |

w6035 = —1.219450 w?, 4,4 = 4.923816
Wlogram = —1.109861 w?, 4., = —1.671342

Wasg23 = 1.590399 w?oy, e = 1.490732

Wya3512 = 1.502341  w? 4506 = 4.156870

] . . ; o

Wiggry 11 = 3490235 w15, ,, = 5.121056
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In the case of both the Unconstrained GA-based algorithm and the Penalty-
based algorithin the dictionary included a total of 45 wavelets taking 15 each from

3 different functional families of wavelets, The functional forms for these families arc
given below :

1 =1 ifz<0
gh-uﬂs,scnff(m) { 1 if N 0
Fﬂmlly ):
g;{'ﬂTLS,SmIE(:E) e _:Be—a%mli
Family 3:

2

3 €

- _ 1
g;‘lrans,scﬂfﬂ(m) = SITL(:E)@ 2

The values of the translation and the scale parameters included those values that.
were present in the original function.The algorithm was run for 100 generations.The
approximated functions for both the cases were plotted and the results are shown
in Figs. 7 and 8. The best fit strings and the maximuin, minimum and average
fitness values for both the cases(unconstrained and penalty-based) are given below.

For the unconstrained GA method

Maximum fitness : 46.493467
- Minimum fitness : 0.010583
Average fitness : 3.539036

Best fit string : 111000010100101111100001110001111101011101000

For the penalty-based GA method :
Maximum fitness : 22.221481

Minimum fitness : 0.011082
Average fitness : 2.015031

Best fit string : 000100100000001110000001100010111101001100000

Note the marked difference in the number of 1’s between the two cases. The
fitness values are also different due to the penalty termn used. The relevant strains
are those occurring in the 16!, 17" 24" 314 32" and 39" bit positions.
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9.2 Experiments with Real Data

The real data used in this case is the well known gas furnace data from Series J
of [BoxJ'70]. The function to be approximated is the percentage concentration of
CO; given in that data.The data was taken for 200 points. The plotted graph is
shown in Fig. 9.

For the AR process the best results( minimum error) was achieved with a 3
order process.The approximated function was plotted and the result appears in Fig.
10. The AR coefficients are given below :

¢; = 1.970916, ¢, = ~1.372316, @3 = 0.339978.

In the Multiple Mother Wavelet Network the network was trained with 16

wavelets taking 8 cach from two different families whose functional forms are given
below :

Family 1:

| g
. — P l
-qﬁr‘ﬂus sode (3:) LC

Family 2:

d: ‘

2

g!. rans,.scale

(z) = sin(z)e ?

The values of the translation and the scale parameters included those values
that were present in the original function. The approximated function was plotted
and the result is shown in Fig. 11. The values of the various transform coefficients
are given below.

Wo.17.10.15 = 4.896728  wi 54 1041 = 5.789123

!

w! g 3500 = 5.021989 w1508 = 6.907865

1 1 2 ]
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Wy 45207 = 5.302910 w?, ., ., = 4.123410

Wygs229 = —8.291540 w?gy, a0 = —7.980543

.09

W; 49544 = 4.901213 W5 56531 = —4.091357

.

W 1053 = 3481243 wl 4, . = —8.975621

Wige,1.20 = 9.197865 w?) . | 5o = 2.901879

In the case of both the Unconstrained GA-based algorithm and the Penalty-

based algorithm the dictionary included a total of 45 wavelets taking 15 cach from
3 different functional families of wavelets. The functional torms for these families
are given below :

Family 1:
I -1 itz <0
. T) —
g!rans,sca!e( ) { 1 T z >0
Family 2:
2 - — L4
gtrﬂns,sr,ufr(m) = —kxe ?
Family 3:

1.3
21

gfr‘ﬂ?lﬁ,.'if:ﬂjt" (:E) — S?:TL(.‘E) C

The values of the translation and the scale parameters included those values that
were present in the original function. The algorithm was run for 100 generations.
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The approximated functions for both the cases were plotted and the results are
shown in Figs. 12 and 13. The best fit strings and the maximum, minimum and
average fitness values for both the cases ( unconstrained and penalty-based ) are
given below.

For the unconstrained GA method :
Maximum fitness : 27.678931 |
Minimum fitness : 0.157290
Average fitness : 2.409567
Best fit string : 101011101001011101001011100011111010111010011

For the penalty-based GA method :

Maximum fitness : 10.391239
Minimum fitness : 0.302199

Average fitness : 1.154093
Best fit string : 101001101001001101001001100010111001100100011

Note the marked difference in the number of 1’s between the two cases. The
fitness values are also different due to the penalty term used. Also comparing Figs.
12 and 13 we find that the curve in Fig. 12 approximates the original curve ( Fig. 9
) than that in Fig. 13. This is because in the penalty-based model certain wavelets
with relatively low values of transform coefficients have been forcefully removed

from the best-fit string to maximise the fitness. This may be one drawbacks of this
penalty-based mode].

10 Conclusion

In this article a known statistical technique for function the (AR method) forecasting
is first studied. Then a recently discovered Wavelet Network model is investigated
in detail. This Wavelet Network mode] is improved further by modifying the model
to incorporate multiple mother wavelets. The defects of such Wavelet Network
models are then investigated and a Genetic Algorithm-based model using wavclet
decomposition is proposed and implemented . Finally the defects of this GA-based
model are highlighted and the model is modified giving a Penalty-based GA model.
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