AL

Fléoeplan Equipartitioning using Stairé_ase.
o - Channel
Minimizing th€ Crossing nets

My
‘\

A disseértation submitted
in partial fulfilment of the requirements for the

M.Tech. (computer science) degree
of the

Indian Statistical Institute

By
Nermalya C’hattopadiayay

Under The Supervision of

Dr. Subhas C. Nandy

INDIAN STATISTICAL INSTITUTE
203, Barrackpore Trunk Road,
Calcutta- 700035

Acknowledgements

My sinceremost thanks are due to Dr. Subhas C. Nandy and Dr.(Mrs)
Sushmita S. Kolay, without whom this work would never have been a. reality.
I would like to thank all the staff here who provided me with encouragement:
in work, and made the course work interesting.

I would also like to thank all my classmates for their wonderful comparty
making the two years enjoyable.

A special word of thanks to Miss Rekha Menon, Miss Padma Mahalingam,
Mr. Manas Ranjan Jagdev, Mr. Monoj Barua, Mr.Debasis Sarkar for their
help in completing my project work.

Finally, T would also to take this opportunity to gratefully acknowledge
the help provided to me by Electronics unit and the computing facilities

provided to me by Computer and Statistical Service Center in 1.S.1.

August 2, 1997 Nirmalya Chattopadhyay

Abstract

This dissertation identifies a new problem of partitioning of VLSI floorplan
called Balanced monotone staircase partitioning. In a VLSI floorplan, the
isothetic rectangular circuit modules are placed on a 2D floorplan and the
net attached to each module is given. The objective of global routing is
to connect the terminals attached to different modules that belongs to the

same net. In this framework the global routing problem is mapped into a
series of hierarchical staircase channel routing. So our ob jective is to divide
the floor into two almost equal halves by a monotone staircase channel
and simultenously minimize the number of crossing nets. We have defined
a mixed optimization problem where the objective function is a convex
combination of the following two ratios:

A ratio = difference in area of two partitions/ Total-area.
Nratio= number of crossing net/Total-net.

The problem of partitioning the floor into almost two equal halves is shown
to be NP-COMPLETE in [2]. Here we present a heuristic algorithm using
circuit partitioning algorithm given by F iduccia-Mattheyses[6]. Finally we

have suggested a new approach to solve the problem.

Certificate of Approval

This is to certify that the thesis titled Floorplan Equipartitioning Us-
Ing Staircase Channel Minimizing The Crossing nets. submitted
by Mr. Nirmalya Chattopadhyay, towards partial fulfilment of the re-
quirements for the degree of M.'Jtu{th. in Computer Science at the Indian
Statistical Institute, Calcutta, embodies the work done undor OUr SuUpervi-

S101.

o
(Subhas C. Nandy)
Computer and Statistical Service Center

Indian Statistical Institute,

Calcutta - 700 035

Contents

1 Imntroduction :

2 Problem Formulation

2.1 Objective
22 Notations
23 Change Of Cutsize

3 Main algorithm :

J.1 Data structure:
3.2 Method of Selection:
3.3 Algorithem:

4 Another Approach
4.1 Introductiono L.

@ “RNNe R N -8

Chapter 1

Introduction :

The global routing is an important problem in VLSI design which comes
after the placement phase of design cycle. In the placement phase, the
position of the different circuit modules on the floor are determined. A
netlist is attached to each circuit component. Space not occupied by the
cells (circuit modules) are used as routing region. In the routing phase the
objective is to connect the terminals attached to different modules which
belong to the same net. The most common approach of global routing
is the sequencial routing[3] i,e to route one net at a time and to choose
the shortest path whenever possible. A good heuristic for the problem of
finding the shortest connection for an n-pin net using rectlinear Stiner tree
is available in[4]. Both the algorithm assumes an underlinw grid structure
which causus them to be inefficient with respect to the space complexity
for the large problems. Hightower|[5] reduces the memory requirement by
using the line segment instead of grid nodes in the search. In the high
performance circuit,the opti- mization function is often the minimization

- of congestion in the routing tracks with 100to achieve the goal.

In VLSI design, the position and aspect ratio of circuit modules becomes

hxed after completion of floorplaning and placement phase. Let B={b;, by, . ..

be a set of n blocks distributed on a rectangular floorplan. Thus a floorplan

is a rectangular dissection of the bounding rectangle with isothetic cutsize.
Each rectangle bi is attached with a set of nets and cutlines denote the the

routing space. We assume that cutlines are meets at T junctions only.
Slicible and non slicible floorplan

A floorplan is said to be slicible if it is obtained recursively by partitioning
a rectangle into two parts either by a horizontal line or by a vertical line,

otherwise it is nonslicible. For slicible floorplan hierarchical partitioning

through the cutlines may be used to facilitate global routing. For nonslicible
Hloorplan such a partitioning does not exist. Furthermore directed cycles
appear in their channel digraphs, so it causes infeasible routing order. But if
staircase channel is used then the problem of finding suitable routing order

can be solved easily by finding suitable staircase channel hierarchically.
Multiterminal net problem

In multiterminal net problem a net is attached to more than two cells.
problem is to minimize the number of nets crossing the cut. One algoritiun
for this problem is given in [2|. We have implemented the algorithm and

tested it by several exam- ples and got the correct result in each case.
Balanced monotone staircase partitioning

The problem of dividing the floorplan by a monotone staircase channel into
two partition of almost equal size with minimum number of crossing nets

is called balnced monotone staircase partitioning. Here the objective is

to solve a mixed optimization problem where the objective function is a
convex combination of the following two ratios:
A-ratio= difference in area of two partitions/Total-area. N-ratio= number

of crossing net/ Total-net. The problem is shown to be NP-COMPLETE
in [2.

In this dissertation we have considered the balanced monotone staircase
problem. We took the min-cut partition obtained by the algorithm given
in [2] as our initial solution and try to improve balance by swaping block
(which is chosen using FM heuristic) from heavier partition to the lighter
partition keeping the staircase monotone and cutsize as minimum as POs-

sible. Finally we have suggested anoter approach where cell is chosen ac-

.

cording to size difference between the partitions due to its transfer.

Our thesis is organized as follows. In chapter 2 we discussed some general
tacts which will give us some idea for choosing heuristic. In chaoter 3 we
presented our algorithm which we have implemented. In chapter 4 we have
discussed our new approach which is yet to be implemented to judge its
performance. Our plan is to implement the second heuristic to compare

between the two heuristics proposed in this thesis.

Chapter 2

Problem Formulation

2.1 Objective

Consider a floorplan consisting of a set of cells {c;,cy, ... ,Crn }. We shall
denote the cell that appears at the top-left corner as the source and that
appears at the bottom right corner as sink block. The partition containing
the source (sink) is called S-partition (T-partition). Our objective is to get
an almost balanced monotone staircase partition such that the cutsize is as
minimum as possible. The objective function to be optimized is mentioned

in the introduction.
Precisely our objective is as follows:
¢ Jo maintain monotonicity of staircase partition.

® To obtain area difference between, S-partition and T-partition as minimum

as possible.

e Cutsize should not be much different from min-cut.

transterred group of ¢; and ¢;s5 denoted by TG(i). So TG(i)= {¢;}U FOL-
LOW(i). ¢; is called base-cell of TG(i) or base-cell in short.

Now consider the following theorem.

Theorem: Take a monotone staircase partitioning. Suppose c; is base cell.
Then partition is still monotone after moving ¢; iff all c¢; belongs to FOL-

LOW(i) are also transferred with ¢;:

prootf:

Suppose ¢; is transferred with all ¢; s.t ¢; belongs to FOLLOW(i); To show
that obtained staircase is monotone. Suppose not. Then there exist a
directed edge in G from T to S. Since initially staircase was monotone. So
there does not exist any directed edge in G from T to S at that time. This
unplies either this edge is from one of the transferred cell to a cell ¢; of S
(if initially ¢; is in S) or this edge is to one of the transferred cell from a
cell ¢; of T (if initially ¢; is in T). In both the cases it is clear that ¢; 1s not
transterred fromwm its initial position with ¢;. Now we see that if ¢; is initially
in S (T) then there exist a dipath in G from (to) ¢; to (from) ¢;. S0 in both

15 11Ot

the cases ¢; belongs to FOLLOW(i). But we have just seen that ¢,

transferred, which is a contradiction.

Conversely, suppose the obtained cut is monotone.we have to show ¢ is
transferred with all its follower cells. Suppose there exist c; belongs to
FOLLOW(i) which is not transferred. If ¢; belongs to S initially then there
exist a dipath from ¢; to ¢;. Otherwise (if ¢; belongs to T initially) there
exist a dipath from ¢; to ¢;. In both cases there exist a directed edge from
T to 5 in G. Which ymplies that the cut is non monotone. Which is a

contradiction. e

O

So starting with min-cut partition at each pass we wi|l choose an appropri-
ate ¢; s.t movement of TG(i) will improve balance and simultenously keeps
the cutsize as minimum as possible. Note that ¢; is the base cell of TG(1), so
from now we call selected cell as base cell. by above theorem monotonicity

wiil be preserved at each pass. So balanced partition will be monotone.

In order to maintain the restriction on the cutsize we have to find a suitable
base cell. Needless to mention that there is always a possibility of reducing
the cutsize by transfer of cells from top-left corner or bottom right corner.
But such a choice of base cell will transfer a huge number of cells to the

complementary partition which will again destroies the balance.

T'he above facts implies that if we give more importance to obtain balance
(i,e (2)) than to reduce cutsize then we have to select those cells which has
minimum number of follower cells. So it is obvious that we prefer the cells
at the boundary of the partition as base cells and develop algorithm based
on it. But before presenting an algorithm let us formalize the problem and

try to see how the cutsize is affected by the transfer of a base cell.

In the next section we give some formal definitions,and from thosc we
present some observations. We use some notations to make the treatment

easler.

2.2 Notations

e N=5Set of all nets.
For anet n € N

e DP(n) => { set of all cells ¢; in partition P s.t n € ¢; }.

o

e D(n) => {setofallcells ¢; st n € ¢; }.
® &, ﬁﬂ w.r.t a c;.

lf ¢; € P we denote ap,= |DP(n)| (= number of elements of DP(n)). and 4,

=|DQ(n)| where Q is the complementary partition of P.

2.3 Change Of Cutsize

Let us look at the change of cutsize due to transfer of the base cell with
its follower cells. We first try to compute this change. For this purpose we

have to define some notions which are as follows:

For cach ¢; we define Gain(i) as the reduction of cutsize due to change
of ¢; to its complementary partition. i,e Gain(i)=0ld-cutsize-New-cutsize,
where Old-cutsize is the cutsize before transferring ¢;(and its follower cells)

and New-cufsize is the cutsize after transferring c;(and its follower cells).

Definitions

® A net is said to be totally covered by ¢; in partition P if ¢; ¢ P and
DP(n)C TG(i).

¢ A net is said to be partially covered by ¢; in partition P if ¢, € P
DP(n)N[TG(i)]# NULL and 3 cell ¢; containing n s.t ¢; € P and
¢; € {c;UFOLLOW(i)}.

From now onwards we will not mention about partition P further; We

call n totally covered by ¢; or n partially covered by ¢;.

o FULL(i)={set of all nets which are totally covered by ¢ }.
* PART(i)={set of all nets which are partially covered by ¢;}.
o POSITIVITY([i]= #{n: n € FULL(i) and 3,>0}.

* NEGATIVITY{i]= #{n: n € PART(i) and 3,=0}.

Example: Consider Fig 1. Here 1,2,3.4 are cells and a,b,c,d f are nets.

9

Figure no. |

Let us consider cell 2.
We get FOLLOW(2)={3, 4}.
FULL(2)= {d}. PART(2)= {b, c, f}.

Lemma: Gain(i) = POSITIVITY]i] - NEGATIVITYi].

proot:

Gince if the net n €FULL(]) then after transferring c; to its complementary
partition /A any cell in previous_partition of ¢ which contains n. again
3,>0 => n crossed the cut before transferring ¢;. That means cutsize 1s

reduced by 1 for n; Eence total reduction of cutsize for such type of net is
POSITIVITYi].

Again consider n s.t 1L cPART(i) and 3,=0; Since 3,,=0,before transterring
¢. n has no effect on the cutsize. Now since n ePART(i).So 3 at least one
cell containing n which has not transferred with c;; This implies cutsize will

be increased by 1 for such n.

Hence total increament of cutsize for such type of net is NEGATIVITYi].
5o New-cutsize = Old-cutsize - POSITIVITYi] + NEGATIVITY|i].

—> POSITIVITY[i] - NEGATIVITY]i] = Old-cutsize - New-cutsize = Gain(i)(by
definition) de

Now the status of the nets which are neither on ¢; nor on any follow ot

10

¢;- will remain unaffected by the movement of ¢;; we call all such nets as

impassive nets of ¢;. More formally,
IMPASSIVE(i)= set of all nets n s.t DP(n) N TG(i) =NULL where ¢; € P.
Result: N=FULL(i)UPART (i)UIMPASSIVE(i) (1)

again they are mutually exclusive. ie

FULL(i)NPART(i)=NULL; (2)
FULL(i)NIMPASSIVE(i)=NULL; (3)
IMPASSIVE(i)NPART(i)=NULL; (4)

proof: To show (1).
Let ngIMPASSIVE(i). Then D(n)N[TG(i)]#NULL.

Put X=D(n)N[TG(i)]. Now for each ¢; € D(n)N[TG(i)], ¢; € same partition
as c;; | since ¢; €TG(i)]

call this partition P.
i,e DP(n)N[TG(i)]#NULL. (A)

It DP(n) C TG(i) then n € FULL(i). Otherwise 3¢y € DP(n) s.t ¢ ¢TG(i)
(B)

By (A) &(B) n € PART(i);

Hence if ngIMPASSIVE(i), n € PART(i)UFOLLOW(i). =>N-IMPASSIVE(i)
C PART(i)UFULL(). |

conversely let n € PART(i)UFULL(i). Then DP(n)N[TG(i)]##NULL. =>n

11

¢ IMPASSIVE(i). =>n € N-IMPASSIVE(i). So (1) is proved.
(2),(3)&(4) are obvious. &

S0 we see that for a fixed cell ¢; a net n is in one of the three status. ie either
it is totally covered by ¢; or it is partially covered by c; or it is impassive of
c;. Note that this distribution of the set of nets N is different for different

cell.

Example: Consider the floorplan in the picture Q. Here a,b,c,d belongs
- to both side of the cut. So cutsize=4;

Let us compute the Gain of the cell 6.

FOLLOW (6)={4,3,8}.

FULL(6) = {c}.

PART(6) = {a,b,d,e,f}.

IMPASSIVE(6)= ¢.

Again, T(a)=2, T(b)=0,T(c)=4,T(d)=2, T(e)=3,T(f)=0.
So POSITIVITY(i)=1, NEGATIVITYi]=2.

=> Gain(6)= -1.

A Method of computing Gain(i)

In order to compute Gain(i) for a cell ¢ let us define a matrix namely

NET-CELL matrix.
NET-CELL matrix for partition S(denoted by NET-CELL(S)).

Lot

S5|= Number of cells in partition S.
IN|= Total number of nets.

For cach cell ¢; € S and for each net n € N form the ordered pair (j,n);

12

Thus we have total |S|.|N| such ordered pairs.

Now consider the matrix

NET-CELL(S)=((ali][k])) of order |S|x|S].|N| as follows
The columns of the matrix corresponds to the cells in S

The rows will correspond to the ordered pairs (j,n) in their lexieographical

order such that c; € S and n € N,

Now if the ordered pairs starting with j appears first in p-th row will end

at (p+|N|-1)-th row. In this case call p as START(j) and
define RANGE(j)= set of all integers from START(j) to START(j)+IN|-1.

Now for ¢, € RANGE(j) define the element ali][k] as follows:

ali][k]=(x,y} where

x=1 if either i=j or I a dipath from ¢; to ¢(i,e ¢ € FOLLOW()));
=() otherwise. .

y=1ifn € ¢,.

=0 otherwise.

| NOTE THAT ali][k]’s are from the field (C,+,.)

C is the set of all romplex rnmhers |

similarly conseru.. . —uL(T)=[ali][k]] of order |T|x|T|.|N]

where for ke RANGE(j)

13

ali][k]=(x,y) where

x=1 if either i=j or 3 a dipath from ¢; to ¢;(i,e ¢ is in FOLLOW(j)); =0
otherwise.

y=1ifn € ¢,.

=0 otherwise.

OBSERVATIONS:
Consider NE'T-CELL(S).

Let elements are generally denoted as (x,y); Consider a particuler row(let

it corresponds to (j,n));

e Let (p,q) be the sum of all ordered pairs for which x=1.(note that p>1
as x=1 for i=j). If q=0 then it implies the cell ¢; and all the cell which has

a dipath from c¢; does not contain the net n.That means neither cell C; NOr

any of its follower contains net n.=> n € IMPASSIVE(j).

e If 3 two elements (1,1) and (0,1) in the row (j,n) then it implies that 3 a
tollower cell of ¢;(or cell ¢; itself) which contains n and 3 another cell which
belongs to the same partition as c;{ which is of course S here note that we
consider NET-CELL(S) here) which contains n and is not a follower cell of
¢;. Which implies that n € PART()).

o If J at least one (1,1) and A any (0,1) then it implies that 3 a follower cell
of c; which contains n and A any cell in S partition which is not a follower

cell of ¢; containing n; i,e n € FULL(j).

similar results holds for NET-CELL(T). We will write formal algorithmn for

computing these latter. Now we concentrate on some more observations

14

which will give us some better insight that finally helps to choose better

heuristic.

SOME RESULTS AND DECISIONS:
Resultl: For min-cut partitioning Gain{(i)<0 V i.

proof: If there is no ¢; 5.t Gain(i)>0. Hence cutsize can be improved further
by changing ¢; to its complementary partition which contradicts the fact

that the cut is a min-cut.
Result2: If ¢; € FOLLOW(i) then FOLLOW(j) C FOLLOW().

proof: casel: ¢ € S. Then ¢; € and 3 a dipath from j to ¢,. Take ¢ €
FOLLOWY{j). Then ¢ € S and 3 a dipath from ¢; to ¢x. => 3 a dipath
from ¢; to ¢x. So by definition ¢, € FOLLOW(i). Hence the result.

cased: ¢; € T. Then ¢; € T and 3 a dipath from c; to ¢;.

Take ¢, € FOLLOWY(j). Then ¢, € S and 3 a dipath from ¢ to j. => 3 a
dipath from c; to ¢;. So by definition ¢ & FOLLOW(i). Hence the result.

Result3: If ¢; € FOLLOW(i) then FULL(j) C FULL().

proot: Take n € FULL(j). Then DP(n) C {cell(j)JUFOLLOWY(j). Since
¢; € FOLLOW(i). So by (R2) FOLLOW(j) C FOLLOW(). => DP(n) C
FOLLOW(i) € TG(i)=FULL(i). => n € FULL(i) (proved).

Result4: If ¢; € FOLLOW(i) then POSITIVITY[j]<POSITIVITY]il;

proof: Note that FULL(j)n{n: £,>0} C FULL()n{n:4,>0}. (Since by
Result3 FULL(j) C FULL(i) and ¢; is in the same partition as c;, so 3, is
same for both of them.] => #{n: n € FULL(j) and 8,>0} < #{nmn €

15

FULL(i) and ,>0}. =>POSITIVITY][j] < POSITIVITY]i.
REMARK:

Note that same thing we cannot say about NEGATIVITYTj] if ¢, € FOL-
LOW(i}, because there may exist n & PART(i) s.t n € IMPASSIVE(j). So
PART(j) may not be a subset of PART(i).

Resulth: If PART(i)=NULL then Ga.in(i)zGain(j).

proof: Since PART(i)=NULL. => NEGATIVITY [i]=0; => Gain(i)=POSITIVITY]i]
2POSITIVITY(j] > Gain(j) V¢; € FOLLOW(i).

REMARK:

Result shows that if PART(i)=NULL then the chance of ¢c; for going TOP
of the BUCKET is greater than the chance of ¢c; for going TOP Vc; €
FOLLOW (i) if BUCKETS are arranged according to the gain.

Result6: If ¢; € S, n € source and n € TG(i) then PART(i) #NULL. [similar

result holds for sink also]

proot: Since source @FOLLOW(i) for any i s.t ¢; € S:
Now DS(n)N[TG(i)] # ¢. => n € PART(i).
REMALRK:

Note that if ¢; -> Top-left corner then FOLLOW(i)->{set of all cells in S
partition}. => PART(i)-> ¢. So by Results Gain(i) is probably bigger
than all of its follows.. But note that transter of cells nearer to Top-left
corner causes the transfer of a huge number of cells(which are all follower

cells of ¢;) with it. Hence balance will be destroyed. It implies that it may

16

not be possible to transfer a cell which is most suitable for cutsize.

Result?: If ¢; € P then IMPASSIVE(i) D {n: |DP(n)|=0}. proof: Obvious.
Since A any cell in P which contains n. Hence n 1s neither on c¢; nor on any
follower cell of ¢;. => n € IMPASSIVE().

REMARK: If ¢; € P and IMPASSIVE(i)=¢, then by above result {u:
P(n)=0}=¢. Son €P ¥V n &€ N. It implies if P and complement of P both
contains an IMPASSIVE cell then all nets passes through the cut.(i,e most

harmful situation.).
Result 8 : If source(sink) does not contain all the nets then min-cut < |N|.

proof: Suppose source(or sink) does not. contain all the nets. Consider the
partition S={source} (or T={sink}). Since A any cell whose corresponding
node has a dipath to(from) source(sink) in G. => /A a directed edge from I
to S in G. => resulting cut is monotone. Again on this cut no. of crossing
net= no. of nets on source(sink)=c (say). Since the cut is monotone =2>

min-cut < ¢ < |N|.

Example: Consider the floorplan in Fig. 3. Here source={1}. Sink ={9}.
Note that none of them contains all the nets. So min-cut cannot contain

all the nets. Moreover min-cut < 3.

" Result 9 : If min-cut < |N| then the corresponding partitions, 5 and 1
cannot contain IMPASSIVE cells both.

proof: Obvious. Otherwise each net will cross the cut=> min-cut=[Nj|.

Which is a contradiction.

17

3
{b,8,d,f)

! 4
1 (d,ﬂ,f)
'}r
{(0,g9.c.b)
)
(a,b.d.f)
Figure 5

(b,9.c)

R(!Slll’lﬁlé: Let IMPASSIVE(i)=¢. Then ¢; € FOLLOW(j) => Gain[j]>Gainli].
(Note that IMPASSIVE(j)=¢ also)

proot: Since IMPASSIVE(i) =¢.

=> N=FULL(i)UPART(i). (1). Since ¢, € FOLLOW(j). Soif n € PART(j)

then ngFULL(i). => n € PART(i) (by (1)). => PART(j) C PART(i). =>
NEGATIVITY([j] < NEGATIVITY[i]. Again by Result4 POSITIVITY]i] <POSITIVITY]j
So Gainfj]= POSITIVITY[jj-NEGATIVITYU] > POSITIVITY[i]-NEGATIVITY j]

=Gainli].

REMARK:

Note that if IMPASSIVE(i)=¢ then each net passes either through it or
one of its follower cells. Hence if ¢; € FOLLOWY(j) then IMPASSIVE(j)=¢
also.If ¢; € FOLLOWY(j) call ¢, is a ANCESTER of ¢;. Now it IMPASSIVE(i)=¢
then as we go through ANCESTOR to ANCESTORS then gradually Gain
increases. Now notice that the cell i for which IMPASSIVE(i)=¢ has a high
possibility that it has a large number of follows. So it is nof, surprizing that
the cells which are most fit for reducing cutsize disturbs bélance very often.
Result12: Let n: [DP(n)|=0=¢ where P is S or T. Then J i c P st
IMPASSIVE(i)=¢.

proof: Since n: [DP(n)|=0=¢. So all net belongs to P. W.l.g let P=S. Since

each cell of S is a follower cell of source. So each net belongs to either source
or a follower cell of source. => IMPASSIVE(source)=4.

Result13: If ¢; € P and IMPASSIVE(i)=¢ and ¢; € P Gain(j) > 0.
proof: Since IMPASSIVE(i)=¢. => n: IDP(n)=0; So for any ¢c; € P

NEGATIVITY[i]=0; => Gain(i) > 0:

18

For next part since n: |DP(n)| >0=N.

NOW Gain(j) =[n: n € FULL(j) and [DP(n)] >0|V j € P.

=> [n: n € FULL(j)|=|FULL(})|.

Result14: For min-cut partitioning if 3 ¢; € S(T) s.t IMPASSIVE(i)=¢,
then Vc¢; € T(S) except c;=sink(source) Gain(j)=0.

proot: W.lglet ¢, €8S s.t IMPASSIVE(i)=¢.

=>Ve; €T Gain(j) > 0; (1) -

Now for min-cut partition Ve, € {source,sink}
Gain(k) < 0;
=> Ve; € T-{sink} Gain(j) <0; (2)

by (1) and (2) result follows.

Lemnmma: For min-cut partitioning suppose ¢; € § s.t IMPASSIVE(i)=¢.
Then all nets passing through in cut belongs to sink.(similar result holds

for source also).

proof: Take n; € sink. Then it must crosses through the cut otherwise n, ¢

{n:[DS(n})|=0}. Which is a contradiction(note that {n: |DS(n){=0}=0¢}).

5o [{n:n € sink}| < cut-size. Again cut is min-cut, so cut-size < {n: n €
sinkp|. => cutsize= |{n:n € sink}|. Now {n:n € sink} C {n: n crosses the

cut } and both has the same cardiné,lity. 50 the result follows. &

/* COMPUTATITION OF S(n) */

19

Let element of NET-CELL(S) is generally denoted as (dflag,nflag).

Consider row (i,n) for some i. ADD all nflag s.t nflag #0. This is the

number of cells in § which contains n, ie S(n).

Take ¢; € S.

/* COMPUTATION OF Gain(i),fFULL(i)I,IPART(i)I,IIMPASSIVE(i)f */
Gain(i)=0; /* |FULL(i)|]=FULL. |IPART(i)|=PART,|IMPASSIVE(i)|=IMPASS
¥/

FULL==0;

PART=0);

IMPASS=0;

For each net n

{
Consider (i,n) in row in NET-CELL(S).

pHlag=FALSE:
fHag=FALSE;

for all element (dflag,nflag)
if((dflag,nflag)=(1,1))

flag==TRUE;
clse if((dflag,nflag)=(0,1))

if{flag)

2()

pflag=TRUL;
PARTH++;

if(8,,==0)
Gain(i) ;
break;

//end if

} //end for

if(flag)

{

if('pflag)

{
FULL++;
if(3,,>0)
Gain(i)++;

} else

{
if(!pflag)
IMI’ASSH-+;

}

} //end for

Chapter 3

Main algorithm :

In this chapter we will present our algorithm. We have seen in chapter2
that in each transfer a group of cell will move(except a few cases where
base cell has no follower cells). Now we see the technique of cell selection

1n detail. First let us describe the data structure.

3.1 Data structure:

We mainly followed the data structure given in FM algorithm. i,¢ here cor-
responding to S and T partition we maintain two array of doubly linked lists

- call them SBUCKET0, .. ., 2pmax| and TBUCKETJ0, ..., 2pmax] respec-
tively where pmax= MAX{Total-net-#{netsesource}, Total-net-# {netsesink}}.

Put Pos(i)=Gain(i)+pmax. [note that Pos(i) > 0V i].

Now consider SBUCKET only (similar for TBUCKET). We put a ¢; in

22

J-th entry of SBUCKET if ¢, € S and Pos(i)=;.

W.l.g let Size(S) > Size(T) after min-cut partitioning.

Now from Result5 of chapter 2 we see that that the cell at the top left
corner has a higher possibility to go to the top of the SBUCKET. Hence
possibility of getting a boundary cell at the top of the bucket is too low(note
that here boundary cannot be nearer to the top left corner as Size(S) >
Size(T)).

So let, us define TOP1 H.H,-

TOP1=MAX{Pos(i): ¢; € Sand ¢; is a boundary cell}. (TOP2 for TBUCKET).

(Note that although we are interested for boundary cells only yet we main-
tain all the cells in the bucket, as just aftor transterring base cell boundary

cells are changed).

We also maintain a link list called FREE CELL LIST where we put the

selected cell(i,e base cell) and all it’s follower cells(and lock them all).

3.2 Method of Selection:

Since we have to select a cell from heavier partition and move it to the
lighter partition with all it’s follower cells. We will proceed as follows.
Consider the bucket corresponding to the heavier partition. Wilg let it
1s SBUCKET. Among the boundai‘y cells in TOP1 take that cell whose
directed area(the sum of area of the cell and it’s follower cells) is minimum.

It it doesn’t destroy the balance(whose possibility is high because very few

23

cells are trausferred with a boundary cell) then select it as a base cell
otherwise no base cell can be selected and pass is terminated. Update the
boundary cells with TOP1 and TOP2.After selecting a cell we lock it and
all the cells which has a dipath from selected cell. We then put the selected

cell and all of its follower cell.

We want to minimize the objective function namely which is, alpha(Aratio)+(1-
alpha)(Nratio) where Aratio= difference in area of two partitions/ Total-

area and
Nratio= number of crossing net/Total-net.

First we cstablish the initial balance from min-cut partitioning(if possible).
At that time we choose a cell and swap it to its complementary partition

untill all cells are locked. After establishing initial balance we will try to

improve it. At each pass the objective function will be computed and will
be compaired with previously computed value. If new objective function
15 less than old then this value is stored otherwise if it is bigger then old
value is stored and old partition is maintained. Finally if both are same
(i, no change during the pass) then algorithm will be terminated. Details

as follows.

3.3 Algorithm:

INPUT: A set of cells with their geometric positions in the floorplan and
associated net list. OUTPUT: A set of cells which are in S partition. |

(1) Find min-cut paritioning using algorithm given in [2].

24

(2) Compute Gain of each cell and initialize buckets.
(3) / ESTABLISH INITIAL BALANCE /
W=Size(S) +Size(T):

Hag=FALSE.

while(!flag)

{

if((5ize(S) < W /2-smax)|] (Size(S)>W /2+smax))
{ j=Selected-cell();

Find-boundary(j); // this actually changes the boundary status of the cells

due to transfer of j

if(j7#0)
{

Lock(j) //locks ¢; and all its follower cells

Pick(j) //takes out c; and it’s follower cells from bucket and puts into free

cell list

Modity-gain();

Change-status();// changes status flag of all transferred partitions

1 else

break:;

} // end if else
Hag=TRUE;

} //end while

if((Size(S)<W/ 2-smax)|[(Size(S)>W/2+smax)) then initial balance is not

25

established. So balanced partition is not possible, else

{

Prev-ob jectivn:C{}mp-nbj(); /computes objective function /
Compute-gain();
Set-bucket();

}

(5) / IMPROVE BALANCE /
Hag=FALSE:
MIN=Prev-objective:

while(!flag)

{
Unlock all the cell.

Move-possible=TRUE:

while((UNLOCK())&&(Move-possible))
{

J=5elected-cell();

Find-boundary(j);

if(j==0)
Move-possible=FALSE:
else

26

{

Lock(j) // locks ¢; and qll its follower cells

Pick(j) // takes out ¢; and it’s follower cells from bucket and puts into free
cell list /

Modify-gain();
Store-status(); // shaves the status of each partition
Change-status(); // changes the status of cach partition }

if(Prev-objective > Comp-obj())

{

Prev-objective = Comp-obj();

} else
{
Release();

Back-status();
. // end else } // end while

I f(MIN==Prev- bjective)
{

Hag=TRUE:

/ OUTPUT HERE /

j

27

else

{
MIN=Prev-objective:
Compute-gain();
Set-bucket();

} // end else

} // end while

28

Chapter 4

Another Approach

4.1 Introduction

Let us look at the problem in another way. Previously we have chosen that
boundary cell as base-cell which has maximum gain among all the boundary
cells. But see that in this way much less number of cells are transferred in
cach pass, so number of iteration increases(a—xlthough.pussibility of rejection
of a pass decreases.). Also since cells were arranged in buckets according
to their gain, so it was not very clear that which cell would decrease the

size difference between S and T greatly.

keeping this idea in mind we have arranged our buckets according to the size
difference between S and T due to transfer a cell. Details will be described
latter. What is important thing here we will get directly the cell which is
most fit to decrease the size difference between S and T. Again notice that
previously we have always transferl}ed the cells from heavier side to lighter
side. What would be happened if we remove this restriction ? Then there

was a chance to transfer cell in lighter side to heavier side, which is too

29

much harmful for establishing balance. Also notice that we have started
from min-cut partition. So there was a possibility to reach in a condition
where cutsize and balance both are warser than min-cut partiton (cutsize
will be warser than min-cut in any case of course.). That means we might
be loser in all respect! So this restriction was necessary there. But note
that without this restriction we may also reach to a balanced partition
whose balance is not as good as before(with restriction) but cutsize will be

improved.

In this approach we will omit this restriction. However the buckets are
arranged in such a way that will ensure that balance will never be warser

than min-cut balance.

4.2 Theme of the Algorithm

Min-cut-difference: The area difference obtained by min-cut partitioning.

Directed-area: The sum of the area of a ¢; and follower cells of ¢; is called

the directed area of ¢;; It is denoted by dr-areali].

More formally, dr-areali]= 2.ciefa)UFoLLOW () aTeal].
Note that dr-areali] is actually the amount of area transferred by ¢; from

one partition to the other.

Size: Let M be the set of all partition P s.t either source € P or sink € P
but not both of them. Define a function Size from M to Z+ (the set of all

+1ve integers) by Size(P) = 2oc;ep arcalj]l. If P contains the source then

30

we denote it by S oterwise by T.

Size difference due to c;: After transterring c¢; to its complementary par-

tition the absolute Size difference between two partition is called the Size

difference due to ¢;. It is denoted by diff(5,T,i).

If ¢; is initially in S block then after transterring ¢; from S to T

S1ze(S) -> Size(S)-dr-areali;
Size(T) -> Size(T)+dr-areali];

S0 diff(S,T,i)=abs((Size(S) -dr-areali])-(Size(T)+dr-areali]))
=abs(Size(S)—Size(T)—Q(dr-area[i])).

If ¢; is initially in T block then after transterring c¢; from T to S
Size(S) -> Size(S)+dr-areali;

Size(T) -> Size(T)-dr-arcali:

So diff(S,T,i):abs((Size(S)+dr—area[i])—(Size(T)-dr-area[i]))
=abs(Size(S)-Size(T)+2(dr-areali])).

Active Cell : The ¢; for which diff(S,T,i)<= min-cut-difference is called an
Active Cell. We are interested for Active Cell’s only.

ACT=set of all Active Cell. |
dmax=max{diff(S,T,i);i € ACT},
Note that dmax <= min-cut-difference.

Let us consider two buckets for two blocks(S and T); The index runs from
0 to dmax. Call the buckets as SBUCKET]0, ..., dmax] and TBUCKETI0,

..., dmax], where j-th entry contains a link list of free cells such that if ¢,

31

1s in the j-th entry then diff(S,T,i)=j:

If 3 at léast one ¢; s.t diff(S,T,i)=j we call j is non empty.

Let SMDIF=min{j of SBUCKET such that j is non empty }.
TMDIF=min{j of TBUCKET such that j is non empty }.
Consider ¢; from SBUCKET s.t diff(S,T,i)==SMDIF and Gain(i)
1s maximum among all other cell of SMDIF-th entry.

Counsider ¢; from TBUCKET s.t diff(5,T,j)=TMDIF and Gain(j)
1s maximum among all other cell of TMDIF-th entry.

It (Gain(i) > Gain(j))

choose(c¢;).

Iilse If (Gain(i) < Gaing(j))

choose(c;). |

Else choose ¢; (¢;) if diff(S,T,i) (diff(S,T,j}) is minimum.

We call selected cell as base cell.

%

Byconstructiono fbucketsitisclearthatdi f ferencebetweenS 1ze(S)andSize(T)willneverh
RESULTS :

(R1) If Size(S) != Size(T) after min-cut partitioning then at least one bucket

1S empty initially.

Proof: Casel: Suppose Size(S) > Size(T). Since initial partition = min-cut

partition. So initially min-area-difference=Size(S)-Size(T).

Now for ¢; € T we get diff(S,T,i)= ISize(S)IﬁSize(T)+2(dr-area[i])I = Size(S)-
Size(T)+2(dr-areali]) (since Size(S)-Size(T) >0). > Size(S)-Size(T) (since
dr-areali]>0) = min-area-difference >= dmax. So Ac, € T so that diff(S,T,i)
<= dmax, hence none of them will go to the TBUCKET.

32

Case2: Suppose Size(S) < Size(T). Initially min-area-difference=Size(T)-
Size(S).

Now for ¢; € S we get diff(S,T.i)= |Size(S)-Size(T)-2(dr-areali])| = Size(T)-
Size(S)+2(dr-areali]) (since Size(T)-Size(S) >0). > Size(T)-Size(8) (since
dr-area(i|>0) = min-area-difference >= dmax. So Ac; € 8 so that diff(S,T i)
<= dmax, hence none of them will go to the SBUCKET.

Remark : Above observation shows the fact that initially cell will be

chosen from more weighted partition.

If ¢; is transferred from S(T) to T(S) then all the T(S) cells to(from) which
3 a dipath from(to) ¢; are now locked by ¢; (actually ¢; is now added to the

FOLLOW set of all these T(S) cells).

Let INDEP(i)=c;; ¢, € complementary block of ¢; and not locked by c¢;.

R R

Note that if ¢; is transferred from T(S) to S(T) and ¢, € INDEP({i) then c
e S(T).

(R2) If ¢; is the base cell and ¢, € INDEP(i) then ¢, & INDEP(j)¥e; €
FOLLOW(i).

Proof: Suppose not. If ¢; is transferred from T(S) to S(T) then since ¢; €
INDEP(i) so ¢ € S(T). By our assumption 3 c; € FOLLOVV(i)'sffz,;c ¢
INDEP(j). So ¢ is locked by ¢;. Hence 3 a dipath from(to) ¢, to(from)
¢; In DAG. Now ¢; € FOLLOW(i), so 3 a dipath from(to) j to(from) ¢; in
DAG.=> 3 a dipath from(to) ¢ to(from) ¢;. => ¢ ¢ INDEP(i}. which is

a contradiction.

REMARK: Note that if ¢; is transferred from one position to the other and

33

¢ ZINDEP(i) then ¢; becomes a foller of cell cx; So we get the followiné

result.

(R3) If ¢; is the base cell and c; € complementary block of ¢; then dr-area
is unchanged iff ¢, € INDEDP(i).

Proot: SUPPOSE ¢, € INDEP(i), so ¢, € INDEP(j) Vc; € FOLLOW(i)
(by (R1)). Hence no transferred cell will be a follower cell of cell ¢;.=>dr-

arealk| is unchanged.

conversely, suppose dr-arealk| is unchanged. Hence no transferred cell will

be a follower cell of cell(k). => c; 1s not a follower of ¢,. Hence ¢, €

INDEP(i).

S0 we see that if J some transferred cell ¢; (from partition P say) s.t ¢, &
complement of P and ¢; ¢ INDEP(j) then dr-arealk| will be changed. But

we don’t care these cells now because they are locked currently.

Let ¢; is the base cell. Call IB(i)=INDEP(i)U{c¢; : ¢; € previouspartitiono fe;andc;
is free}.

we now concentrate only on the cells ¢ € IB3(1).

UPDATION OF diff(S,T,j)

We now compute the change of diff(S,T,j) for all free cell ¢; due to transfer
of a ¢;.

W.l.g let ¢; is transferred from S to T. Then,

Size(S) -> Size(S)-dr-areali).

Size(T) -> Size-T+ dr-areali].

Let ¢; € SNIB(i) [then ¢; € FOLLOW(i)]. Now if ¢ € FOLLOW (i)NFOLLOW(j)

then c; will be transferred with ¢;. So dr-arealj] will be changed.

34

Hence new dr-arealjj= dr-arealj]-3 .. croLiowmnFoLLow ;) arealk]=CH (say).

So diff(S, T ,j)=|(Size(S)-dr-areali])-CH-(Size(T)+dr-areal[i]) +CH| =|Size(S)-
Size(T)-2(dr-areali])-2CH]|

. € INDEP(i) then dr-arealj| is unchanged. 5o

J

diff(S,T,j)= |Size(S)-Size(T)-2dr-areali]+2dr-areal[j]|

Now for ¢; € T and ¢

After updating diff(S,T,j) we allow only those c;’s for which diff(S,T,j) <=dmax,

and set them into appropriate position in bucket.

39

References:

[1] Subhasis Majumder, Subhas C. Nandy, and Bhargab B. Bhattacharaya,

Routing-Driven Hierarchical Floorplan Partitioning Using Staircase Chan-

nels

2] Subhasis Majumder, Routing Driven Floorplan Partitioning Using Stair-

case Channels.

{3] J.Soukup, Fast maze router, Proc. Design Automation Conference,pp.
100-101, 1978.

14] F.K. Hwang, An O(nlogn) algorithm for suboptimal rectlinear steiner
Erees, IEEE Trans. on Circuits and Systems, vol CAS-26, pp. 75-78, 1978.

15] D.W Hightower, A solution to the line routing problem on a continuous
plane, Proc, 6th Design Automation Workshop, 1969.

&}] C.M.Fiduccia, and R.M. Mattheyes, A lincar-time heuristic for improv-
ing network partitions, proceedings of the 19-th Design Automation Con-
%Erem:e, pp. 175-181, 1982.

36

