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Abstract

In this thesis we propose the topological routing of a floorplan where
the circuit modules are of convex polygonal shape. We assume that a
net will never appear more than once in a circuit module and the pins
corresponding to nets are placed along the edges of the polygonal circuits.
The objective is to route the nets such that a specific distance is maintained
between the wires corresponding to two different nets. We first partition
the free space into trapeziums and along the edges of these trapeziums a
capacity constraint is assigned to satisfy the objective function. We use
line sweep approach to design a multipass heuristic algorithm for routing
the nets concurrently, i.e. considering all nets together. Since standard
benchmarks are not available, floorplans containing polygonal modules are
generated randomly and the algorithm is tested. The algorithm works
very fast and for most of the examples of moderate size it outputs 100 %
routing in a pair of Top to Bottom and Bottom to Top sweep. For some
examples more than two passes are required. The limitation of assigning the
consldered capacity constraint to satisfy the objective function regarding

the separation of routing wires is mentioned in the conclusion of the thesis.
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Chapter 1

Introduction :

A VLSI chip may contain several million transistors. As a result, tens of

thousands of nets have to be routed to complete the layout. In addition
there may be several hundreds of possible routes for each net. This makes

the routing problem computationally hard. In fact, even when the routing

problem is restricted to channels, it cannot be solved in polynomial time i.e.

the channel routing problem is NP-complete. (1], i.e. it cannot be solved
in polynomial time. Therefore, routing has traditionally been divided into
two phases. The first phase is called global routing and generates a 'loose’
route for each net. In fact it assigns a list of routing regions to each net
without specifying the actual geometric layout of wires ( Figure - 1 a ). The
second phase, which is called detailed routing , finds the actual geometric
layout of cach nct within the assigned routing regions ( Figure - 1 b ).
Unlike global routing which considers the entire layout, a detailed router
considers just one region at a time. The exact layout is produced for each
wire segment assigned to a region, and vias are inserted to (:(}ml}itzt{r the
layout. Detailed routing includes channel routing and switchbox routing.

Another approach to routing is called Area Routing which, is a phasc
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routing technigue. However, this technique is computationally infeasible for
general VLSI circuits and is typically used for specialized problems. Here
we discuss techniques for global routing.

The following example illustrates the main concepts of global routing.

In this example each channel is supposed to be of unit capacity. Routing
of two nets Ny = { ¢, ¢, }and Ny = { t,, ¢y, }. There are several possible
routes for net N,. Two such routes R, and R, are shown in (Figure-2).
It the choice is to route just N; then R, is a better choice. If both N,
and N, are to be routed, it is not possible to use R, for N| since it would
make N, unroutable. Thus global routing is computationally hard since it
Involves trade-offs between routability of all nets and minimization of the
objective function. In fact. global routing of even a single multi-terminal
net is NP-complete.

There are two kinds of approaches to solve global routing problem.

1. Sequential

2. Concurrent

Sequential Approach : In this approach nets are routed one by
one. Once a net has been routed it may block other nets which are yet.
to be routed. So this result is very semsitive to the order in which the
nets are considered for routing. Usually the nets are sequenced according
to their criticality, perimeter of the bounding rectangle and number of
terminals. The criticality of a net is determined by the importance of the net.
The criticality and other factors can be used to sequence the nets. Actually
these sequencing techniques do not solve the net ordering problem. In a
practical router in addition to a net ordering scheme an improvement phase
1s used to remove blockages when further routing of nets is not possible.

Even this may not overcome the shortcomings of sequential approach. One



such improvement phase involves rip - up and reroute ' technique, [2, 3]
while other involves ’shove aside’ technique. Another approach has been
suggested in [4].

The Sequential approach includes :

a) Two - terminal algorithms :

1. Maze routing algorithms.

ii. Line - probe algorithms.

ii1. Shortest path based algorithms.
b) Multi - terminal algorithms :

i. Steiner tree based algorithms

Maze Routing Algorithms :

Lee |5] introduced an algorithm for routing two terminal net on a grid in
1961. Since then the basic algorithm has been improved for both speed and
memory requirements. Lee’s algorithm and its various improved versions
form the class of maze routing algorithms.

Maze routing algorithms are used to find a path between a pair of points,

called the source (s} and the target (t) respectively, in a planar rectangular

grid graph. The gcometric regularity in the standard cell and gate array
design style lead us to model the whole plane as grid. The areas available
for routing are represented as blocked vertices. The objective of a maze
routing algorithm is to find a path between the source and the target vertex
without using any blocked vertex. The process of finding a path begins with
the exploration phase, in which several paths start at the source, and are
expanded until one of them reaches the target. Once the target is reached,
the vertices need to be retraced to the source to identify the path. The
retrace phase can be easily implemented as long as the information about

the parentage of each vertex is kept during the exploration phase. Several



methods of path exploration have been developed.

Line - Probe Algorithms :

The line - probe algorithms are developed independently by Mikami
and Tabuchi in 1968 [6] and Hightower in 1969 [7]. The basic idea of
a line probe algorithm is to reduce the size of memory requirement by
using line segments instead of grid nodes in the search. The time and space

complexities of these line - probe algorithms is O(L), where L is the number

of line segments produced by these algorithms.

The basic operations of these algorithms are as follows. Initially lists
slist and tlist contain the line segments generated from the source and
target respectively. The generated line segments do not pass through any

obstacie. If a line segment from slist intersects with a line segment in tlist
, the exploration phase ends ; otherwise, the exploration phase proceeds
iteratively. During each iteration new line segments are generated. These
segments originate from ’escape ' points on existing line segments in slist
and tlist . The new line segments generated from slist are appended to
slist. Similarly, segments generated from a segment in tlist are appended
to tlist . If a line segment from slist intersects a line segment from #list
, then the exploration phase ends. The path can be formed by retracing
the line segments in set #list , starting from the target, and then going

through the intersection, and finally retracing the line segments in set slist

until the source is reached.

Shortest Path Based Algorithms :

A simple approach to route a two - terminal net uses Dikjstra’s shortest
algorithm [8]. Given a routing graph G = (V, E) a source vertex s € V
and a target vertex t € V a shortest path in G joining s and ¢ can be
found in O(|V|?) time.



The length of an edge is increased by a factor o > 1 whenever a con-
gested edge is utilized in the path of a net. If the edge congestions are
strict, the algorithm can be modified to use 'rip - up and reroute ’ or ’shove
aside ’ techniques (2, 3].

Concurrent Approach ;:

This approach avoids the ordering problem by considering routing of all
the nets simultancously. The concurrent approach is computationally hard
and no efhicient polynomial algorithms are known even for two terminal
nets. The concurrent approach takes a global view of all the nets to be
routed at the same time. This approach requires use of computationally
expensive methods. One such method uses integer programming. Integer
program for an overall problem is normally too large to be handled effi-
ciently. Thus, hierarchial top down methods are used to break the prablem
into sub - problems. These smaller sub - problems can be solved efficiently.
The solutions are then combined to obtain the solution of original global
routing problem. One such hierarchial based integer program for global
routing has been presented by Heisterman and Lenguar [9].

Several Hieuristics have been proposed to these problems.

Usually VLSI chips are all rectangular in shape. In near future with the
development of MCM’s and need for compaction there may be trapezoidal
or in fact arbitrary polygonal shaped chips.

Keeping this in mind we have tried to develop a concurrent approach to
solve the problem of routing multi terminal nets placed along the edges of

polygonal chips in two layers. To solve this some computational geometry

techniques have been used.



Chapter 2

Problem Description :

Let P = { P, P, ..., P, } be a set of k non overlapping convex polygonal
circuit modules distributed over the floorplan. For the sake of simplicity,

let us assume that the boundary of the floorplan is rectangular.

Let N = { n;,n,,...n,, } be a set of m nets attached to different circuit
components.
For each polygon P;, a subset N; of the set of nets N is attached. The

pins of those nets appear along the boundary of P. and for simplicity, we

assume that each net of N; appcars only once on P,. The gap between
two adjacent pins corresponding to two different nets satisfies the required
constraints i.e. the routing wires should be non-overlapping assuming the
specified width of the routing wire and the capacity constraint of the region.

Also its easy to see that for each net n; we can associate a subset of P along

which the net is placed.
Example - Figure (3).
P ={P,PP}N ={nyngyn;)}
Along with each nets we can associate the tfollowing subsets :

nl"_}{P11P2}(_:. P ﬂz"*{PhPa}g P ns*“*{Pa',Pz}g P



Along with each polygon we associate subsets as follows

P—-{n,n}C N P —-{n;,n3 }C N Py — {ny,ny } € N

Our objective is to route the nets.

In order to route a particular net, all the pins distributed in difterent
polygonal modules are to be connected by wire.

We have to ensure nonoverlapping and capacity constraints are taken
care 1n our strategy.

Overlapping :

In actual routing we shall use two layers. So we may allow the wires
corresponding to different nets to overlap once in their routing path, in-

dicating connections are made in the second layer in case of overlapping

WITres.

Capacity constraint :

The routing wires are of specified width. Again due to the conductivity
constraints, a minimum separation of specified width needs to be main-

tained between two wires running parallelly accross any line. Now consider

a line segment whose each of the two end terminal lie on the boundary ot

two different polygons or the boundary of the floorplan, which does not in-
tersect any polygon in its interior. The maximum number of wires passing
through it can be obtained from the width of the wire and the minimum
separation constraint. This number may be considered as a capacity con-

straint of the line segment.

The objective is to route each net satistying the capacity constraint

everywhere on the Hoorplan.
This original problem leads to two subproblems :

1. In order to ensure that the capacity constraint is satisfied everywhere

on the floorplan, identifying the minimum number of straight line segments



satisfying the above property is important.

2. Routing the floorplan satisfying the capacity constraint of those

straight line segments.



Chapter 3

Problem Formulation :

Consider the floorplan with k non overlapping convex polygons. In order

to find the topology of the global routing we partition the free space into a

set of convex polygonal regions as follows

e Select all the edges of the k convex polygons one by one and in any or-
der. Both the end points of the selected edge is then considered separately.
If that end point is unmarked then it is extended until it hits another linc

(a polygonal edge / another extended line / floorplan edge).

Remark - 1 : The convex partitioning obtained in this process is not
unique ; it depends on the order of choosing the edges of the polygons.

Remark - 2 : The number of convex partitions is same for any order

of choice of the edges of the polygons.

Detailed explaination is discussed in subsequent chapter.

Partitioning the free regions into convex partitions as stated above is a
difficult problem. The problem can be observed in the following way :

Given a point and a direction, fire a ray and locate an existing line which
it hits first. Given a set of n nonintersecting line segments in the plane the

algorithm in (10] constructs an O(n log®n) size in time O(n¥Uog¥n) (w <

10



4.3) , and computes the first intersection point by a ray originated from a
given point and in a given direction in O(/nlog*n) time.

But in our situation, after generating a line by ray shooting as stated
above, it is to be inserted in the data structure. No standard method
of maintaining a dynamically growing data structure for this problem is
observed in the literature and it becomes difficult to solve.

So we have tried with a simpler form of partitioning i.c. the trapezoidal
decomposition of the free space. Since this general problem of global rout-
ing. where the circuit modules are convex polygons, is proposed for the first
time, no benchmark examples are available. The experiments need to be
performed with the randomly generated benchmarks.

It is also very difficult to generate a set of non overlapping convex poly-
gons randomly. So we have limited our experiment with a set of circuit
modules each of which is a convex quadrilateral.

The problem is analysed in three steps :

1. Random Floorplan Generation and Pin Assignment.

2. Decomposition of the free space.
3. Routing.

11




Chapter 4

Brief Study On Simpler
Version Of The Problem :

Before approaching the main problem we test whether the objective of 100

% routability is actually achievable.

Even if the capacity constraint is not violated we find this desired rout-
ing is not always attained as its impossible to avoid overlapping of wires

everytime.

We first study a simpler problem of placing the nets on the boundaries

of the enclosing box.

Our aim is to route the nets with the same constraints as in the original

problem.
In fact, even in the absence of obstacles, it is not necessary that all these
connections can be made. We present a few examples here.

Some study on the ordering of nets , reveals certain instances when 100

percent connection cannot be obtained.

Orderings For a Single Layer :

If on making a clockwise (anticlockwise) traversal of all the four sides of

the enclosing box ; we find a certain pair N;, N; occuring more than once

12



(necessarily same order) then the segments connecting them will overlap.
Examples :
Figure 4 and Figure 5 shows same ordering of nets 1s mandatory.
Figure 6 shows that traversal of all the four sides is necessary.
Considering either AB and BC or AB and CD only we find the ordering
suggests routability but BC and CD suggest otherwise. Hence more than
one layer is actually needed. This shows that all four sides should be tested.

!

Figure 7 exhibits that (N;, N;) need not be consecutive.

Here (N,, N3) appears twice indicating one layer is insufficient in this
case too. But (Ny, N3} as such does not appear consecutively.

It can thus be inferred that while checking all the four sides; 1f no pair
appears twice, single layer routing is possible.

Next, we shall test if two layers are sufficient. By two layers we mean
presence of a second layer which will be an exact copy of the first layer nd
whenever a wire in first layer intersects we connect them in second layer to
avold crossings.

In Figures 8 and 9, the connections within the box indicate connections
in the first layer, and the connections outside the box represent connections
in the second layer.

After connecting N in the first layer as shown in Figure 8 N; cannot be
connected in the first layer as it will lead to crossing of wires. Connecting

it in the second layer results in Figure - 9.

Connecting Nj in either layer will lead to crossing of wires, so, this shows

that TWO LAYERS ARE ALSO INSUFFICIENT to have 100 percent

connection sometlmes.

The previous result, may be generalised to two layers as * On making

a traversal of four sides in clockwise / anticlockwise direction no triplet

13



(Ni, Nj, N¢) (NOT necessarily consecutive) should appear more than once

along the edges to have 100 percent connection.
NOTE :

e If there is a repeated tuple (N;, N;), (N;, N;, Ni) we can infer that the

given number (two and three) of layers are insufficient for routing but no
conclusion can be made of the number of layers actually necded for routing
successfully.

e Even in our original problem 100 % routing may not be possible in
two layers as overlapping of wires cannot be entirely avoided as shown in

Figure - 10. In such cases our aim will be to restrict to maximal routing.

14



Chapter 5

Pre process:

The first step to the problem is to generate a random floorplan. The bound-
aries of the enclosing box is given. The convex polygons of random shape

are to be placed randomly in a non overlapping manner and nets are to be

attached with each polygon randomly.

5.1 Floorplan Generation :

We have considered only convex quadrilaterals instead of convex polygons

having arbitrary number of arms, for implementational simplicity.

In order to avoid overlapping of quadrilaterals the enclosing box of the
floorplan is partitioned into arbitrary number of axes parallel rectangle, of
various sizes and in each of the rectangle four points are chosen such that the
quadrilateral generated with those four points form a convex quadrilateral.

Thus we generate the floorplan in the following two main steps :

e Partition the enclosing box into recangles.

e Generate convex quadrilaterals within each partition.

Rectangﬁlar decomposition of the floorplan

Let the bottom-left and top-right corners of the floorplan be (0,0} and



(b)

(o)

o

fin \ s

(d)

(c)

Fig 11



(a, 3). The rectangular floorplan is decomposed into rectangles following

the algorithm given below.

Step 1° : Generate a set of increasing x coordinate randomly within
[0,]. Figure - 11 a

Step 2° : For each chosen x-coordinate choose a pair of y coordinates in
the interval [, 3] as shown in Figure -~ (11 b).

Step 3° : Perform a line sweep from top to bottom tfor generating max-

imal horizontal lines as explained below :

e When the sweep line encounters a top end point of a vertical line

segment insert it in the AVL tree.

e When a bottom end point is encountered delete the vertical line

segment delete it from the AVL tree.
e On encountering a point extend it horizontally till it hits the
boundary or any other line segment in the AVL tree.

Figure - (11 d) shows the partitioned figure.

It easily seen that if there are 'K’ vertical lines within the box the total
number of such rectangles formed is less than or equal to 3K + 1. In
case of presence of co-horizontal * points the number of rectangles formed
is less than 3K + 1. Clearly as these rectangles partition the box, the
quadrilaterals generated lying entirely within it, are non-overlapping.

' : Cohorizontal points are points lying on the same horizontal line.

Generation of Convex quadrilaterals inside the rectangle :

A quadrilateral is convex if and only if the diagonals intersect each
other, Inside each partition we shall generate two intersecting lines lying

entirely within it.

The four endpoints thus formed will be the corner points of the quadri-

lateral.

16
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To form intersecting lines, we divide the rectangle into four quadrants

with the midpoint of the rectangle as origin.

Choose a point in each quadrant given by the algoritm -() and join the

points in the adjacent quadrants by straight lines.

Algorithm to generate convex quadrilateral within a rectangle.
ALGORITHM - 2 .

Step 1°: Form the four quadrants.

Step 2°: Choose two points A and C in second and fourth quadrant

respectively.

Step 3°: Choose a point B in the third quadrant such that it is to the
left of AC.

Step 4°: Choose a point D in the fourth quadrant such that BD inter-
sects CD.

ABCD is the required convex quadrilateral.

Figures 12, 13, 14 illustrates thesc.

Note: In a similar fashion any convex n-polygon may be generated. For
example :

Generation of a five (n)-sided polygon :-
1. Divide the rectangle into five (n) parts.

2. Choose four (n-1) parts and draw a four (n-1) sided convex polygon

ABCE (P P...P,_,FP,) by choosing points in these parts.

3. Choose a point D (P,_;) on the other side (opposite to that found in

step 3) of CE (P, P,;) s.t. AD (P,.3P,.1) and BD (P, P,_,) intersects CE
(RL--—ERL)-

ABCDE (P P;....P,) is the required five (n) sided polygon.

Figure 15, 16 illustrates these.

Once the quadrilaterals are drawn, the nets are to be placed along the
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sides of the polygon. This is discussed in the next section.

5.2 Pin Assignment :

In our experiment,we assume that the number of nets and the total number

of pins is given. The number of pins corresponding to each net is settled

randomly. The next task is :

® to assign nets corresponding to each block.

e to select sides of a polygon where the nets assigned to a particular
polygon will appear.

Initially each polygonal edge is selected and is filled 50 % of its capacity.
Finally for the remaining pins the polygons are selected randomly and is

assigned to any of its edges selected randomly. The algorithm follows -
Algorithm - 3:

For Pin Generation

Step 1°: Using the width and distance between pins, find the capacity

of each arm.

Step 2°: Choose the number of pins corresponding to each net along
with the cumulative frequency.

Step 3°: (REPEATED#)A number less than the total is generated,
find the net having its cumulative frequency lying in this range. If

pins of this net are left place it on the edge
Else

choose some other net. # . Step 3 is repeated for each edge sequentially
till each edge is filled to half its capacity, then for the rest of pins an edgc

having capacity is randomly generated on which it will be placed.
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The following example illustrates it :

for (i=1; i <« DIFFERENT-PINS ; i++)

count — of — net; = rand() % (TOTAL / DIFFERENT-PINS)
s.t. (TOTAL/(2*DIFFERENT-PINS)) <

count — of — net; < (TOTAL/DIFFERENT-PINS)

count — ﬂf — NetpIFFERENT - PINS
— TOTAL _ (EDIFFERENT*PINS-I ﬂﬂu?lt . Gf - ﬂ:ﬁti)

1=1

Say the table is generated as follows :

net-number coumnt curnulative frequency
1 6 6
2 0 11
J O 16
4 9 25

A random number is generated say 14.

Then net three is placed on the concerned edge after reducing its count

and capacity of the same edge by one.
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Chapter 6

Decomposition :

Once the Hloorplan is ready and the pins are in place, the next is to decom-
pose the obstacle free space into geometrical regions.

We discuss the following two types of decomposition here.

1. Convex polygonal decomposition.

2. Trapezoidal decomposition.

If minimality is the criteria we shall opt for the first decomposition but

as already discussed we shall go for the other type for implementational

simplicity.

6.1 Convex Polygonal Decomposition :

As the name suggests here the free space is decomposed into convex regions.
Through each convex point of the polygon an extended edge is drawn.

By a convex point we mean the vertices on the polygon the edges on

which subtend an angle less than 180 degrees.

In Figure... 17
Convex Points : A, B, D, E
Concave Points : C as /BCD > 18(°
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For cach vertex there are two ways of extending it. The decomposition
need not be unique. There are several ways of decomposition.

Figures 17, 18 and 19 exhibit three different decompositions of the same
figure.

Note: Number of CONVEX POLYGONS ARE THE SAME.

The number of decomposed figures is constant. But in case of collinear
points to maintain minimality of decomposition it is extended along the
direction of collinearity as shown in Filgures 20, 21 and 22.

Note: Point B can be extended along BC or AB. Also F can be extended

along FG or FH. But as AB and FG are of the same slope it is necessary
that B and F be extended along AB snd FG respectively.

Figure - 21 It could be seen that 1 and 6 can be merged. '

Figure - 22 Exhibits the minimal decomposition.

Note: This choice matters in case of a pair of points is collinear and
adjacent.

In case of non adjacency the direction of extension is immaterial.

Figures 23 and 24 show in case of non adjacency any ray may be chosen
to decompose the figure.

No. of convex polygons =

{ (Total No. of Convex points)

- (No. of distinct pairs of collinear and adjacent points)
- (No. of polygons - 1) }

In Figure 25

The pair of collinear and adjacent points are :

(B.E) ; (CH); (F.]); (G,L) '

as the lines AB and EF, CD and HG, EF and 1J, HG and LK respec-
tively.
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' §o number of convex points = (12-4-2) =6 which is the case.

In Figure 26 :
(D,F) ; (F,I); (G,L) are collinear and adjacent points, but the

count is only two as 'F’ appears in both.

So number of convex polygons = (12 - 2 - 2) = 8.

In Figure 27 :

(CH) : (BE); (D,I) ; (GN); (I,M) ; (K,P) 5 (C.J) 3 (H,M)

The first six pairs are collinear and adjacent but the last two are re-
peated.

Number of collinear and adjacent distinct pairs = 6.

So number of convex polygons = (16 -6 - 3) = 7.

6.2 Trapezoidal Decomposition :

We have already mentioned the data structure is involved to draw these,
for implementation purpose trapezoidal decomposition will be dealt with
in which case the decomposition is horizontally maximal.

To draw these lines an AVL tree has to be maintained which consists of
polygonal edges. Each node has segments to its left as its left subtree and
segments to its right as its right subtree.

We perform a Top Down sweep halting at every polygonal point.

At every point we run the following algorithm :

e Find the points position in the AVL tree.

o If the point is the topmost point of the polygon then insert both the

segments incident on it in the AVL tree.

e If the point is the bottommost point of the polygon then delete both
the segments incident on it from the AVL tree.
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e If its some other point delete the upper segment incident on it from
the tree and insert the lower segment incident on it in the tree.

Figure 28 - A inserted in AVL tree. Figure 29 - D inserted in AVL tree.
Figure 30 - B inserted in AVL tree. Figure 31 - C inserted in AVL treo.

Algorithm - 4 :

Step 1° : Sort the vertices w.r.t. y coordinate.

Step 2° : Insert the two vertical boundarics in the AVL tree.
le. T = (PS U QR)

Note : segments are in left to right order in T

Step 3° : Process the points in sorted order.
Process(FP,)

1. Locate the position of P, in T.

2. If (3 no neighbour P; of P))

Delete all (P, P,) in T, where P,

F; are vertices of the same polygon P.

Elsc while(3 an unprocessed neighbour P;, P,) {
-) if ((Px, P,) € T for some processed k

where Py, P; are vertices of the same polygon P)
T'=T\ (P, B)

) T=TU (PR, F)

}

Figure 32 and 33 shows the result of this algorithm. Figure 33 shows in

cohorizontal cases lesser number of trapeziums result.

Complexity Analysis :

Complexity analysis of convex polygonal decomposition has already
been discussed. We now give the analysis of trapezoidal decomposition.

Here sorting takes O(nlogn) time, the rest of the operations are AVL tree
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operations. So the entire process takes O(nlogn).

24






Chapter 7

Routing

We shall route all the nets concurrently using the line sweep algorithm i.e.

taking all the nets together, we need not consider the ordering of the nets.
THEME

Consider the graph 'G’ with the trapeziums as its vertices. An edge is
present between two trapeziums if they share a common edge or a part of
it. Needless to say the graph will be planar. Figure - (34) gives one such
example.

Initially all the nets appear along the edges of the convex polygons, and
they will be attached to their adjacent empty trapezium, now we proceed
to work with the trapeziums only and may forget the polygonal obstacles.

Our main aim is to route the nets. First we present an algorithm which
uses a naive method of routing, without .optimising the path lengths, we
then progress to suggest certain methods improving upon the path lengths.
For implementation purposes we have adopted the first algorithm., We

present the examples later.
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7.1 Main Algorithm :

The idea will be to do a sort of breadth first search of the graph 'G’.
Each node has its own original net list as already mentioned, besides that
1t inherits the unrouted nets from its ancestors. In cach scarch a set of
trapeziums’ net list is compared, when a common net is found it is routed

through its common ancestors.

This is carried out in two passes, a top-down sweep and a bottom-
up sweep. In the top-down sweep the nets are pairwise routed and in the
bottom-up sweep interconnections are made in case of multi- terminal nets.
Details and Examples are discussed a little later. Whatever is left unrouted
in the two passes (say due to capacity failure) is done over repeated itera-
tions.

Before proceeding further we explain the concept of inheritance.

In case a net is left unrouted its neighbour inherits it i.e. the neighbour’s
new netlist will be the set theoritic union of its original netlist and the
unrouted nets of its ancestor’s netlist.

When a trapezium has more than one neighbour then the neighbour

through which the median of unrouted concerned net passes inherits that

net.

Each time before inheriting the capacity of the edge is checked, in case

the capacity has been used up it is left for the next iteration.
Also for each net there are pointers pointing to the topmost and bottom-

most net. The bottommost (topmost) net is not inherited by the trapeziums
below (above) it.

Steps iavolved in our algorithm may be summarised as

e 1. Find the inginal net list.
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¢ 2. Form the queues © .
e 3. Find the topmost and bottommost pin for each net.

The next few steps are done iteratively.

¢ 4. Perform a Top to Down sweep. (Here pairwise routing is com-
pleted).

e 5. Pertorm a Bottom to Up sweep. (Here connections for multitermi-

nal nets are completed).

Whenever capacity of an edge is exhausted find some other path is found
by backtracking till we reach a forking (a trapezium with more than one
neighbour) vertex in the next iteration, this time we let some other vertex

inherit the net.

9 : Queues are sequences of trapeziums whose net lists are to be com-
pared.

In a certain sense trapeziums in a queue are at a same horizontal level.

The trapeziums formed have a neat ordering that helps in the formation
of the queues. Given a queue the next queue would be found by finding
the minimum element in the given queue and finding its neighbours and in-
cluding them in the new queue along with those trapeziums of the previous
queue not having their neighbour in the new queue.

Algorithm - 6 :

Input : Given a queue[k]

Output : A new queue[k+1]

Process : queue(k+1] = @ |

minimum = minimum element of queue[k]

while(3 minimum’s neighbour)

queuelk+1] = queuelk+1] U minimum’s neighbour

V elements x in queue[k]

27



if any of x’s neighbour ¢ queuce [k+1]
queuelk+1] = queuelk-+1] U x
else
queue(k+1] = queuelk+1] U all neighbours of x

Detailed explaination of sweeps :
Top to Down Sweep :

Compare the clements in the quene after inheriting nets from the pre-
vious queune. If we find a match, i.e. same net in more than one element in
the sequence, we route it, by tracing back through the path of inheritance.
Once routed its flags are marked and is not inherited by its descendants.

In case of inheritance, if a trapezoid has more than one descendant, the

descendant through which the Median’ of UNROUTED nets pass through

inherits the net.

In case capacity of a trapezoid is exhausted, the net is not inherited and

marked UNROUTED.

No net is inherited by the trapezoids below the bottom-most net. An
Example is explained in details In the next section.

Bottom to Up Sweep

The nets left (or considered”) unrouted in the previous sweep are

routed here. We find Median® of ROUTED nets in this path of inheri-

tance, whenever a trapezoid has more than one neighbour (bottom). The

neighbour through which this median passes inherits the net. The path of

inheritance continues til] we reach a trapezium which s already present in
routed path of the net.

¥,

In case median passes through left (right) of the leftmost (right-

most) neighbour, the leftmost (rightmost) neighbour inherits the net. Ex-
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ample.2 illustrates it.
# .
In case of multi terminal nets (say four nets) the sweep routs them
pairwise say A, B and C, D have been connected respectively. The connec-
tion needed between these pairs is unconsidered unrouted.

Figure 40 and Example 3 Illustrates it.

Iterations

Those left unrouted have flags marked indicating the sweep which left
them unrouted, accordingly we trace back to the last ancestor which has

more than two ncighbours, the other neighbour will be inheriting it this

time.

7.2 Illustrative examples :

We achieved hundred percent routing has been achieved on most of the

input data.

In fact majority of the cases the routing was completed after one itera-

tion itself.
Example : 1 (Refer Figure - 34)
Its graph : (Refer Figure - 35)
Its original net list : (Refer Figure - 36)

Its queue :
1 2 3
2 8 3
3. 8 4 )
4 8 6 &
. 8 6 7

29



“ o O A G W
|
n




6. 8 9
7. 10 11
8. 12

Its course of completion :

Top to Down
Queuel: 2 —-51:;3 — 3
Queue 2 : 8 —>1;3 — 3
Queuve 3 : 8—1;4—-3:5—>1

* Supposing median of B and G passes through ’3’ or left of

'3’
As 'one’ is common to eight and five their common

ancestor 1s searched for and resulting route is thus
{8-2-1-3-5)
'1" being present in 2’s original list 8 is redundant and hence deleted.
Path fornet #1: {2, 1, 3,5}
The flags of 8 and 5 for net 1 are marked routed. To indicate they are not to

be considered for inheritance in the next step, shown by bullet superscript

henceforth.
Queue4:8 —1*;6523:5— 1°
Queue 5: 8 —1°;6 — 237 — 2

¢ Net 2 appears more than once. The common ancestor of
and 7 is 3.

Path for net # 2: { 6,4, 3,5, 7 )
Queue 6: 8 - 1*:9 - 3
Queue 7 : 10 rightarrow 1; 11 — 3 3

¢ Assuming the median of B and G passes through 11.
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As 3 is repeated in same trapezoid simply the path of in-

heritance is traced back.

Path for net # 3 : { 11,9, 6, 4, 3 }
Queue 8 : 12 — ¢
¢ 1 is not inherited as 12 ig below the bottom most net 1.

Bottom to Up

Unconsidered nets left is F (present at 10). The trapezium through

which the median for routed net 1 passes inherits it. Say here the median

of A and C passes through 9 and 6. Then 1 is inherited by them and in-

heritance continues till we reach 3 which is present in path 1.

So the appended path is {10-9-6-4-3)

The path for net # 1 s finally : { 2, 1, 3, 5, 10, 9, 6,4}
Routing is over.

Net #1: {2 1,3, 5, 10,9, 6, 4 }

Net # 2 . {6,435 7}

Net # 3 . {3,4,6,9,11}

Note : Here routing has been completed in one iteration.

If any net remains unrouted we iterate the steps to route tjj completion.

Why we need the bottom to up sweep is clear from the discussed exam.

Next we ponder over the reasons for unrouted nets even after these two

Reasons for unrouted nets remaining :
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1. Capacity constraint disallowing inheritance (both for top and bot-
tom).

2. While tracing back (by checking the median in the bottom sweep)
we may reach the end without any desired result. As shown in Example 2.

Example 2 (Refer Figures - 37, 38)

When the queue 4, 5, 3 is considered repeated occurance of net 1 is

detectoed.
Resulting Path fornet 1: {425 }

Net 1 at 6 remains unrouted in the top to down sweep also it is not
inherited by any trapezium as it is the bottommost net 1.

In the first bottom to up sweep the path encoutered is 8 1 none of

them being present in the constructed Path 1.

As the end has been encountered without the completion of routing..
this has to be taken care in the next iteration.

Example 3 (Refer Figures - 39, 40)

As the nets are multi terminal, say four nets A, B, C, D are all net 1.
A and B, C and D are pairwise routed in the same order. Then the lower

C and D are considered unrouted for bottom to up sweep to have inter

connection.

Top To Down :

AB {3124}
CD { 10}

Path for net # 1 : Path for AB U Path for CD
Bottom To Up

The lower element among C and D is selected and considered
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unrouted to trace path. say median of A and B passes through '7’. then

path traced is

{10,8,7,4}
Ultimately the path for net # 1 is

{3,1,2, 4,10,8,7}

7.3 Better Techniques

In this method its obvious that we have overlooked any method of optimis-
ing the route. Keeping this in mind we may approach to find better (i.e.
in terms of wire length) route.

* On finding a matched net instead of always backtracking till its com-
mon ancestor, we could calculate the smaller distance (distance from either
of it to its common ancestor or descendant) and route it accordingly. This
will lead to smaller routes. Example (Figure - 41).

e Other criteria for routing would be to take density of the pins of
this net to decide whether to trace the path till the common ancestor or
descendant. This could be done by simply checking the y coordinates of
the nets. This will ensure the connections from the remaining pins of this
net may have a shorter path. Example (Figure - 42).

* In subsequent passes we may allow inheritance even after a match is

found to study its performance.
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Chapter 8

Conclusion

Our approach involves breadth first search considering all the nets at thoe

same time. The nets placed higher up have a higher priority of being routed

before.

This does not guarantee the shortest path, but guarantees an obstacle

free path.

As all nets are considered simultaneously without any bias to its order-
Ing.

For most of the input data the routing is over in the first iteration itself
because many capacity constraints have been overlooked.

Examples : (To show how the capacity constraint considercd here is
inadequate).

(Reference Figure - 43)

Definitely AC allows lesser number of wires to pass through than either
AB or CD considered.

(Reference Figure - 44)

Constraint AC has been overlooked .

(Reference Figure - 45)
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Though AB, AC allow five wires to pass through AD actually restricts
it, which has not been considered.
To overcome the above mentioned problem if we consider the altitudes

drawn from the intersection point of the sides through which the wires pass

are considered.
(i.e. for wires 1, 2, 3 AD is considered

and for wires 4, 5 BE is considered )

it is insufficient. BE or AD can allow more wires to pass through but
AB cannot.

S0 we may have to consider a combination of both of these.

Adding a subroutine test-capacity which will test for all crossing of

wires within the trapezoidal area will make this algorithm complete in true

S€Ense.
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