M. Tech. (Computer Science) Dissertation Series

Development of Heuristics for Permutation Routing
in a General Network and Algorithms
for some Specific Networks

a dissertation submitted in the partial fulfilment of the
requirement for the M. Tech. (Computer Science)
degree of the Indian Statistical Institute

By

Niloy Kumar Dana

under the supervision of

Dr. B. P. Sinha
Professor & Head
Advance Computing & Microelectronics Unit

INDIAN STATISTICAL INSTITUTE
203, Barrackpore Trunk Road
Calculta = 700 035

m

/ 1\65‘ 'NS'W e

1998 .;-.??" N

- R
~ALCY A%

Indian gtatistical Institute

203, Barrackpore Trunk Road

Calcutta = 700 035

Certificate Of Approval

This is to certify that the dissertation work entitled “Development of Heuristics for
Permutation Routing in a General Network and Algorithms for some Specific Networks”
submitted by Niloy Kumar Dana, in partial fulfilment of the requirements for M. Tech
in Computer Science degree of the Indian Statistical Institute is an acceptable work

for the award of the degree.

;\,;fw

Prof. Bhabdfi P. Sinha
Professor & Head
Advance Computing & Microelectronics Unit

ACKNOWLEDGEMENTS

I would like to acknowledge my guide, Dr. B. P. Sinha for providing me
invaluable support throughout this project. During the course of this project he has
always given me helpful suggestions whenever I was in trouble.

I would like to thank all members of ACM unit , for helping me directly or
indirectly throughout the work.

Finally I would like to thank all my teachers and batchmates for their support
throughout this project.

Niloy Kumar Dana.

Abstract

Presented here is a heuristic for routing permutations on a gencral network. Discussed also are some
deterministic algorithms on some special kind of networks. Linear array , Two-dimensional array , and
hypercube are included in the special kind of networks. Both off-line and on-line roufing problems are
considered here. For a two dimensional (N X N) array every permutation can be routed in 6 N + o (N)

steps with a queue size of only one.

SI. No

I I N R N =

—
<

Contents

Topic

Introduction

Packet Routing Algorithm
Heuristic for general network
Algonthms for special networks

Intersection Graph

Node coloring formulation
Off-line Routing

On-line Routing
Conclusions

References

Page No

NN L

10
11

12
18
24
25

T Introduction

The exchange of information between Processing Units is one of the most important
problems on parallel computers in which the PUs communicate through an interconnection
network. The basic communication step is that of transferring packets. These are portions
of information generated and received by PUs. Usually a PU is connected to a small

number of other

PUs and the packet sent by it need to travel through a sequence of intermediate PUs to
their final destination. The handling of all the packets moving through the network is
called packet routing

A packet routing problem consists of a set of M packets , each with a desired
destination address P Initially the packets are stored individually among the NV nodes of
the network, and the desired destinations are all different The problem is to route the

packet to the desired destinations using local control in as few steps as possible.

The efficiency of a protocol for solving a packet routing problem is measured by two
parameters : 1) The time required to complete a set of packet sending requests, and 2) the
size of an auxiliary memory in each PU to store such incoming packets which have to stay

for a while before moving on.

In a permutation routing every PU is source and destination of prectsely one packet.
So here every PU will have some packet to a destination PU . This sources and
destinations will have a one-to-one correspondence.

In case of partial permutation routing every PU may not send a packet but here also there

will be a one-to-one correspondence.

Circuit switch fixed routing is an increasingly popular communication model wherein
there is between every source-destination pair a single path that is system-determined by a

fixed routing rule.

Packet Routing can be broadly classified into off-line and on-line routing.

If the path followed by each packet in each of the permutations can be pre-computed and
stored at the originating processor then this type of routing is called off-/ine routing.

The algorithms for which the local routing decisions are made without pre-computation

and without knowledge of global routing problem are called on-fine roufting algorithm.
Obviously this will be harder.

2 Packet Routing Algorithms

When routing a permutation f [where every node h needs to send a single message to node
"to f{h)],path conflicts often occur and cause communication overhead, namely link
conflict, node conflict, and path length. It can be shown that the impact of node conflict
and path length is negligible in circuit-switched fixed routing systems. While the impact of

node contention is more dominant. So we assume throughout that the communication

overhead is due to link contention only.

To minimise the communication overhead when routing a permutation , the permutation
has to be scheduled. Scheduling a permutation consists of partitioning the set of nodes
into m subsets E,E,,.....E, for some m, such that for every h = 1,2,...,m, the paths
originating from the nodes in E ;, do not conflict over links, i.e. they can be established
simultaneously and their corresponding messages can be delivered in parallel. E
represents the set of source nodes that can send data to their destinations at time h , h =-.-

1,2,....m. Optimal scheduling is the process of finding a partition of minimum size m, and

the partition is called an optimal schedule.

] Heuristic for a general network :

-dnput :
1) A weighted graph where the weights denote the cost .

2) A permutation of all the vertices which are actually the destination nodes.

Data-structures used:

struct set {
int first;
int second;
struct busy_time *tptr;

struct set *next;

struct busy_time {
int enter time;

Int exit time;

struct busy time *next;

Fig. 1

Here destination permutationis { 5, 7, 1, 2, 8, 4, 3, 6 }

1.e. node 1’s destination is node S

node 2’s destination is node 7 etc.

Steps .

i,

Find the shortest distance between all source-destination pairs . Find also the shortest
time T, T,,...,T, to be taken for different sources to send their packets to proper
destination. Denote a shortest path by a set of links. So there will be N number of sets
Ay, Ag,...., Ax Also find according to this shortest paths find the entering time and

exiting time in every {ink.

In the example

source | destination route (shortest path)

12 - 24 - 45
21 - 17

32- 21

42

36 - 68
65 - 54

74 - 45 - 53
86

h W B 00N =]

1
2
3
4
5
6
7
8

» Sort these shortest times in non-increasing order. Let S| S, . S, be the sorted order of

the set Ty, T,,..., T, and the corresponding set U of ordered sets are By, B,,...., By
Initialise A < BL

3. Till all the sets are finished.
Perform V=U - A
Take set B € left-most of V.
If (any element i1s common between two sets A & B)
If (if the busy times of these two sets in the common link is intersecting)
find the entering node and exiting node of the link in which they are intersecting. In
the set B try to get another path through these two nodes without taking the link
in which they are intersecting..
If (there exists such a path)
change the route-links of set B and add these links to the links of set A to

get a combined set.

Else
B € nextset of V.

Break.
Else
add the links corresponding to set B to those of set A to get a combined set.

Else

add the links corresponding to set B to those of set A to get a combined set.
Set A € combined set { A,B } .
Set B € right set of B in the sorted list.

4 Routing algorithm for Special networks.

In linear arrays there is only one path between any pair of nodes. Therefore , there can
only be one fixed routing rule. In the case of rings , we will consider the clockwise rule
that selects the clockwise path. This forces the ring to be a directed graph. The counter-
clockwise rule can be treated similarly. In meshes the row-column rule will be considered .

In this rule , the source-destination path goes row-wise to the correct column and the

column-wise to the destination.

In the k-cube , call the bits that differ in two nodes x and y of binary levels X y.; ... X 1 X
and y .1 ..V 1Yo the changeable bits . It is evident that a shortest path from x to y can be
generated from x one node at a time by complementing every changeable bit exactly once

in some order. We will define two fixed routing rules: the e-cube rule selects the selects

the path corresponding to complementing the changeable bits from right to left. The ¢ -

cube rule selects the path corresponding to complementing the changeable bits from left to

right.

10

3 Intersection graphs

Let Ay, A,,....Aq be n sets. The intersection graph modelled by these sets is the graph
G=(V,E)where V={12,..,n} andE={(h,j) |AnnA;*T}. If the sets are

intervals on real axis , the intersection graph is an interval graph. If the sets are arcs of a

circle , the graph is calied circular arc graph.

11

6 Node Coloring Formulation

Let G = (V, E) be a network with a fixed-routing rule s , and fa permutation of V to be
scheduled on G . Our node coloring formulation aims at constructing a graph It (G) such

that every schedule of f in G corresponds to a node coloring of I'y (G) and vice versa. In
particular the chromatic number of is equal to the minimum number of passes needed to

route fin G, i.e. the size of the optimal schedule of f.

Let I't(G) be the intersection graph modelled by the sets A;= { e | e is an edge in the path
h->f{h) }, foralll eV, i.e. It (G) =(V, E) where V- V and (h, j) € E if and only if s-
determined paths h-> f{h) and j=> f{j) overlap (i.e. , conflict over at least one link in G.

Theorem 6.1. (a) A partition E,, E,,.... E., of V is a schedule of fin G if the m-coloring
of

I't (G) derived by coloring the nodes E ; with color j for }J=1,2, ..., mis a correct node

coloring.
(b) The chromatic number of I'¢(G) is equal to the size of the optimal schedule of £

Proof . (a) Assume that E,, E,,....E,, is a schedule of £ in G. Then by defimtion , for
every) =1, 2,, m, the paths (h 2 f(h)) . ; are mutually non-overlapping (i.e. non-
conflicting), and , therefore the corresponding nodes he E ; are mutually nonadjacent in
I't (G) .Thus all the nodes h € E j can be colored with the same color, say color j.

Conversely if for every j the nodes in E ; can be colored with the same color in I ¢ (G) .

Then their corresponding paths are non-conflicting in G , and therefore ,(Ej)r<=j<m 152

schedule of fin G.
(b) This will immediately follow from part (a).

12

/ Offline Routing

7.1 Permutation scheduling on linear array

There can be two possibilities : The first is when the edges are half-duplex , i.e. data can
flow over a link in either direction but not simultaneously. The second case is when the
links are full-duplex, i.e. data can over a link in both directions simultaneously. Let us

consider the half-duplex case.

It can be observed that if G is a linear array Ly the graph I'; (L) 1s an interval graph. This
i1s 50 because two paths h = f{h) and j ® f{j) conflict over links in Ly if and only if the
real intervals [h, f(h)] and {j, f{j)] are overlapping. Note that an interval [a, b] 15 the set { x
| x is a real number and a < x < b }. Note also that if h > f(h) , the interval [h, f{h)] is
simply taken to denote [f{h), h |.

Algorithm :

begin

1. Sort the end points of the intervals.

2. Let Q be a list of available colors ,and m, an mteger variable representing the

maximum number of colors needed so far. Initialise Q to & and m to 0.

3. Scan the sorted endpoints from left to right. When an endpoint x 18 reached do

if (x is a left end of an interval 7) then
if (Q is not empty) then
delete a color ¢ from Q and color 7 with ¢ :
else

increment m and color I with color m ;

k3

else /* x is the right end of 7 */

insert the color of 7 into the hst Q ;

end

7.2 Permutation scheduling on hypercubes

In this section , the permutations that are routable in one pass (i.,e. m = 1) under one of

the rules e *! -cube and e-cube , will be characterised assuming that the links are full-

duplex. Using this characterisation , it will be shown that the very useful Q-realisable (
resp. Q *' -realisable permutations are routable in one pass on the hypercube under the e !
-cube (resp. , e-cube) rule. Afterward, the Benes routing algorithm will be used to

schedule arbitrary permutations in 2 passes on the hypercube.

Throughout this section , the hypercube under consideration is a k-cube of N=2* nodes
and the permutations are permutations of { 0, I, N -1} . we will also follow the

notation that every node x has the binary label X k1 ...X 1Xo,

Lemma 7.1. Lets=5¢,....8150and d=d .,didy betwo nodes in the & - cube under
the

e "' -cube rule. The path s > d goes through an edge (x, y) in the r th dimension if and
only 1f |

x=diq....d185r...80y=dxa....d 8.8 sand d ,= com(s ,) where com(s) is the

complement of s ..

Proof : Refer[2]

14

Lemma 7.2. Two paths s > d and s| = dlconflict over a link in the &~cube under the e

rule if and only if there exists an integer r, 0<=r <=k-1, suchthatd.;....d;8:180 =
dl og....dl sl ..., slo andd ,=dl ;=com(s.) = com (sl). Where com denotes
complement.

Proof. Refer [2].
Lemma 7.3. Two pathss 2 d and s = d’ conflict over a link in Q of 2 *inputs if and
only if there exists an integerr, 0 <=r<=k-1, ds;.....d ;871 ...80=d %1d" + § ¢+

iillS’ ﬂ

Proof. Refer [2].

So based on the above lemmas we have the following theorem.

Theorem 7.1. a) Every permutation realised by the 2 network without conflict 1s

routable in one pass on the k-cube under the e ' rule.

b) Every permutation realised by the Q ! network without conflict is routable in one

pass on the k-cube under the e rule.

Since many interesting and frequently used permutations are realised by Q and Q ' | it

follows that many interesting permutations are routable in one pass on the fixed routing

hyper cubes which uses the e-cube rule,

Now we know that every Benes network is identical to the network derived from

concatenating an £ ~' network with an Q network .

I5

So to yield a 2-pass scheduler :

1. Use Lee’s algorithm which for any given permutation f, finds the switch setting of Q2 °

'Q to realise f .

2. Let g be the permutation realised by the settings of the £ ! part , and let h be the
permutation realised by the switch settings of the £2 part Clearlyf=goh .

3. Route g in one pass on the hypercube under the e-cube rule and then route h in one

pass on the hypercube under the e "' cube rule .

7.3 Permutation scheduling on a two-dimensional array

Off-line algorithm can solve any permutation routing problemin 3 N - 1 steps on a NXN

array using queue of size 1.

Steps :
1) The packets are permuted within each column so that at most one packet 1n

each row is destined for each column. I

2) Each packet is routed within its row to the correct column.

3) Each packet is routed within its column to its correct row (i.e. destination).

So in the off-line part we need to figure out how to permute the packets within

each column during step 1 so that there will be at most one packet in each row

destined for any column. .

Steps of permuting the packets within each column

Let us consider the more general problem of routing packets on an r X sarray.

Steps:

1) Construct a bipartite routing graph G = (U, 'V, E), for an arbitrary routing
problem /°, containing 2s nodes U = {uy, uz, ... u tand V={ vy, vs ... Vu }

and rs edges E = { e;, e, ... €4} The routing graph contains one edge for

16

each packet , and the k th edge connects u i to v i, where ik is the starting
column of the k th packet and jk is the destination column of the k th packet (]
<k Srs).

2) Label each edge of G with an integer in the interval [1, r] so that any two edges
incident to the same node will have different labels. This labelling is possible
since G 1s a r-regular bipartite graph. (r~regular means every node of G is

incident to r edges).
3) Each packet p i1s sent to row |, where |, denotes the label for the edge

corresponding to packet p.

Using bipartite matching it can be shown that every permutation can be routed on p X g

meshes in g passes under the row-column routing rule.

Theorem 7.3.
Let G= (U, V, E) be a bipartite graph such that for every subset A of U, we have |[I" (A)
| = | A|, where I' (A) is a subset of nodes in V that are adjacent to nodes in A. Then g

has a perfect matching , that is, a matching of size = min([U|, |V).

~ Assume that that the node in row x; and column x;1s labelled xx,, for all

x;=0,1, ...p-land x;=0, 1, ...q-1. We are to select, in every pass, p paths

X1X2 2 f (x1x2) such that there sources belong to distinct rows and there destination belong
to distinct columns so that paths do not conflict.

This will be accomplished using perfect matching in a bipartite graph G = (V, V. E) to
be defined next. V| is the set of columns and V is the set of columns. For every pair of
nodes(x,, y2) in V; X V5, (X, y2) is an edge of label y;x; if f(x;x;) = y1y2. Thus G is a
bipartite multigraph.

17

Lemma 7.4. Let G = (V; V; E) be as just defined. For every subset A of V;, we have
['(A)|=2]|A}
Proof. Refer [2].

Using the previous lemma and previous theorem it can be concluded that

G =(V, V5 E)has aperfect matching M of size equal to min (| V;/, /V /) =min(p, q) =
p (say).

Every edge of (xi, y2) of some label yx; in M corresponds to the path
x1%2 2 f (Xix2) that is x;x,=> y1y; consisting of row path x;x, 2 Xx;y»in row

X1, followed by the column path x;y, = yiy; in column y,.

The p paths corresponding to the p edges of matching M are mutually non - conflicting
because every two such paths have there sources in two distinct rows and there
destinations in two distinct columns due to the fact that M is a matching. Thus all these

paths can be established simultaneously in single pass.

By deleting M from G, we obtain a new bipartite graph that can be similarly shown to
have a perfect matching. By repeating this process q times we obtain q perfect matchings
yielding a q pass schedule for f under the row-column routing rule. We thus have a q pass

scheduling algorithm for meshes.

18

& Online Routing:

Permutation Routing on a linear array

Here we assume that the links are full-duplex.
For hnear array we use this scheme. At each step, each packet that still needs to move
right or leftward does so. The algorithm terminates when all packets have reached there

destination.

The first thing to notiée about greedy algorithm for linear arrays is that it is well defined

(at least in case of permutation routing) . In particular , two packets will never be
contending for use of the same edge (in the sameldirection) at the same time. Hence ,
whenever a packet is supposed to move according fo the algorithm , it is able to do so. In
this case no two packets which are travelling in the same direction will ever reside in the
same processor at the same time. More over in this greedy algorithm on a linear array each
packet reaches its destination in d steps, where d'is the distance that the packet needs to

travel. Hence the algorithm always terminates in at most N - 7 steps.

Permutation routing on a two-dimensional array
When we apply greedy algorithm with this type of network there arises a problem. Here

two or more packets might be contending for the same edge (in the same direction) at the

same time .

One of the strategies for arbitrating between packets that are contending for the
same edge 1s that the packet that need to go farthest goes first. For preventing the build-up
of large queues we could preset a maximum threshold g, and simply not advance a
packet forward into a processor with a queue that is at or near the threshold.

Here we allow the queues to grow arbitrarily and edge contention is resolved by giving

priority to the packet that needs to go farthest in that direction (farthest-first).

19

Steps .
1) each packet is routed to its correct column,

2) Then it is routed to its destination along the column.

Here every packet reaches its correct column in first N -/ steps. This is because there are
never any contention for row edges. Each row acts like a linear array and packets needing
to move rightward or leftward do so in a stepwise fashion. Though it is possible for

packets to pile up at a node still it does not affect.

So after N - 7 steps every packet is in correct column. However several packets

within a column might be piled up in large queues.

Now we take the help of the following lemma to prove the rest.

Lemma 8.1. Consider an N-node linear array in which each node contains an arbitrary
number of packets, but for which there is at most one packet destined for each node. If
edge contention is resolved by giving priority to the packet that needs to go farthest , then

the greedy algorithm routes all the packets in NV - 1 steps.

Proof : Refer |1} .

So any permutation can be routed on a two a two-dimensionﬁl(NX N)meshin 2N -2
steps but only if we allow queues of packets to build up at some processors. In the worst

case , some queues can grow to contain as many as N V) packets.

As we can see routing in a two-dimensional mesh can be done in diameter time but only at

the cost of very high queue size.

It will be shown here that queue size can be reduced if we sacrifice a little bit of the speed.

Here is given a 6N+ of N) step algorithm using queues of size 1.

20

8.1 Steps .

1. The packets are sorted mnto column-major order according to the column destination

of each packet. (Ties can be broken by row destination).

Here we are using the procedure to sort a JN X N Divide the mesh into mesh 1n

column-snakelike order.

Steps of the procedure column-snakelike order.
1 Divide the mesh into N * blocks of size N 3w N ¥*and simultaneously sort each

block in snakelike order.

2 Perform an N ® -way unshuffle of the columns, In particular permute the columns so
that the N *® columns in each block are distributed

evenly among the N 8 Jertical slices.(A vertical slice is simply a column of blocks.

Similarly a horizontal slice is a row of blocks).

3. Sort each block into snakelike order.

4. Sort each column in linear order.

5. Collectively sort blocks 1 and 2, blocks 3 and 4, etc. , of each vertical slice into
snake-like order.

6. Collectively sort blocks 2 and 3, blocks 4 and 5, etc. , of each vertical slice into
snake-like order.

7 Sort each row in linear order according to the direction of the overall N-cell snake.

8 Perform 2N ¥* steps of odd-even transposition sort on the overall N-cell snake.

2]

3/R
! N

Vertical slices

Horizontal slices

Lemma 8.2. A YN X +N mesh can be sorted in VN (log N +1) steps using shear

SOFL,

Proof: Refer [1].

22

So the steps 1, 3, 5, and 6 of the above procedure can be accomplished using shear sort 1n

at most O (N ?log N) steps.
Steps 4 and 7 can be accomplished using odd-even transposition sort in 2 VN steps.

Step 2 can be accomplished in a variety of ways using no more than YN + O (N ™*)
steps.

Step 8 also uses odd-even transposition sort , but only for 2N ™2 steps.

Hence the total running time is 3 ¥ N+ o (7 N) steps.

And it takes v N - | more steps to produce column-major order from snake-like column

major order.

If there are precisely N packets , then routing is completed at the end of this step only.

2. Each packet 1s routed to its correct column.

3. Each packet 1s routed to its correct destination,

In this algorithm there 1s never any contention for edges. This is because the sorting phase
rearrange the packet so that at most one packet in each row is destined for each column. -;
Hence when row routing is completed at the end of step 2 ,there will be at most one
packet 1n each node at the start of step 3. So there won’t be é.ny contention during the

column routing in step 3.

The algorithm can be generalised so that it runsina (2 +4/q) N + o N /q) steps with

queues of size 2q - 1.

23

Siteps :
1. The grid is partitioned into q * blocks of size vV N /q X v N/q, and we sort the packet

into column major order as done in the previous algorithm within each block according

to column destination of each packet.
2. Each packet is routed to its destination using the basic greedy algorithm.

Analysis:

Step 1 takes 44/ N/q + o (v N/q) steps.

Step 2 takes 2V N - 2 steps. Hence this routing takes a total of (2 + 4/q) VN +
oV N /q) steps.

24

9 Conclusions

Here we have considered the off-line anq'online permutation routing for mesh, hypercube.

It can be extended to multimeslh. Multimesh can be considered as a 4-dimensional mesh

and the idea of two-dimensional mesh can be applied here to develop an algorithm for it.

o8

10 References

{1] F. T. Leighton. Introduction to Parallel algorithms and architectures: arrays . trees .

hypercubes.

[2] Abdou Youssef. Off-line permutation routing on circuit-switched fixed-routing

networks. Networks , an international journal. Vol-23, pp 441-448.

