Mathematical Equation Recognition :
Converting Bitmap To Text

By

Dipankar Saha (MTC9611)

el tWe PV s iEn ey

Dr. B. Chanda
klectronics and Communication Science Unit.
INDIAN STATISTICAL INSTITUTE
203 | Barrackpore Trunk Road
Calcutta - 700035

1998

Certificate of Approval

This is to certify that the dissertation work entitled Math: matical
Equation Recognition : Converting Bitmap To Text sub-
mitted by Di.pankar Saha , in partial fulfillment of the requirements for
M. Tech in Computer Science degree of the Indian Statistical Institute . is an

acceptable work for the award of the degree.

Date :

29th July 1968 14) o N A\ 2-‘7 l ;// Vs
/é : 6/6’“‘ {;}/A‘ (External Examiner)

(Supervisor)

- -~ -
: "‘tJ %h&h ws;; -?.,“:1*-1::
B R ST
* i =
R S
bow B
e -7 .-"l --I.' "i?
- b T
.f

- Acknowledgement

[owe a debt of gratitude to Prof. Bhabotosh Chanda { Dept. of E.C.5.U.,L5.1.]
for providing me invaluable technical support throughout the project . Dur-
ing the course of this project , he has always given me helpful suggestions
whenever | was in trouble and finally helped me to prepare this manuscript.}
would also like to acknowledge Mr. Subhomoy Mitra (Dept. of C.5.5.C. ,
1.S.1.) for giving some innovative ideas to tackle the problem.

Finally I would like to thank all my teachers and batchmates for their

support throughout the project.

Abstract

Transforming a paper document to its electronic version in a form suitable for
efficient storage,retrieval and interpretation continues to be a challenging prob-
lem. After pixel level processing and segmentation technique has segmented the
image of a paper into three basic components namely Text, Image or Drawing
and Mathematical expression. A lot of post processing is required to store the
datas in some particular format so that it can easily be retrieved and at the
same time huge lossless compression ratio is achieved. In this project we are
dealing with the post processing of Mathematical expression. Qur basic objec-
tive here is to generate the Latex code automatically,which will give us back to
that Mathematical expression. For thac, we first used Connected Component
techniques to seperate out the characters and Template Matching techniques
to recognize the mathematical symbols and finally proposed a novel application
of a m-Ary Tree to generate the Latex code. Here m-Ary trec model has been
constructed based upon the relative positions of the symbols.

Key Words : Connected Component, Component Levelling. Template Match-
ing, m-Ary Tree, Preorder Traversal.

Contents

1. Introduction

2. Problem Description

3. Proposed Methods

3.1 Generation of Template Database
3.2 Seperating out characters

3.3 Bounding Rectangle Determination
3.4 Merging

3.5 Character Recognition

3.6 lranslation

4. Experimental Results
4.1 System Used / OS
4.2 Results Obtained

5. Discussions and Conclusions
5.1 Implementation

5.2 Possible scope of failure and their cause

6. Reference

1 Introduction

Over the years transformation of a paper document to its electronic versions
and subsequent storing into some efficient format have become an important
and challenging aﬁpﬁcatien domain for computer vistion and image process-
ing researchers. In writting research paper Latex is used as an universally
accepted tool. Hence we can safely assume that the published research pa-
pers are always written in Latex and they alwavs conform to the Latex
Syntax. Storing a image in the form of a scanned binary image takes a
huge amount of space. Instead if we can process that binary image and au-
tomatically generate the Latex code which was actually used for preparing
the concerned paper, then our problem is solved. But this seems to be an
oversimplified version-of the original problem. Considering the Latex Syntac-
tic structure,to have any amount of success regarding this matter,first thing
that we have to do is to segment the Binary Image into three distinct regions
1) Text 1i) Drawing/Image iil) Mathematic:! region. This itself is a
very complicated job, considering the huge number of approaches that are
available. Hence for the sake of simplicity we ignore that segmentation part
completely and start our job by assumning that a perfectly segmented mathe-
matical region is given as an input to us.Our work concentrates on recognising
the different distinct components(mathematical svinbols) in that region and
finding out the svntactic binding among them based upon their relati: po-
sitions. Due to problem of perfect segmentation we AT agaln narrowing our
path by taking a Synthetic Image ;-{:-; our mput. [his image 1s generated
by compiling a Tex file, using dvips application o the dvi file generated in

the previous step. and finally applying gs application on the postscript file

i !

i
]

generated in the previous step. It gives us two fold advantages. Firstly this
image is devoid of any amount of noise or skewness which otherwise we
had to remove by preprocessing that given image. Secondly it gives us the
Ideal character which paves the way of easier Template Matching for their
recognition. But this fundamental assumption does not reduce the gravity of
our work in any great extent, as, otherwise only optical character recog-
nition part would have been hampered to an extent. From the point of view
of practical application of this project to any significant amount, it 1s very
difficult to design a fully automated system for document transformation
and that too with a very high percentage of accuracy. This is mainly
due to the fact that most of the algorithms developed for the second phase
..e. code generation part.depends on the distance heuristics which might
vary significantly from document to document. Hence rigorous training
is always necessary to fix up the heuristics to find the best possible result.
But under any circumstances it can never give a hundred percent gurantee
of getting back the original code. A Data Flow Diagram of the whole

process is given in Fig. 1. Deatils of these processes are described later on.

Synthetic binary image
Template Database containing single character

e

create Template file
or individual characte

Synthetic binary image
of Latex document

distinct Labelled
Esxstract

Characters |

components binary limage

Vertical & Horizontal
Heuristic

Conmponent
Labelling

Bounding
with
Rectangle

Taemplate

Matching

components Heuristics

recognized

x

Translation Latex

Scheme | Code

Fig. 1. Data Flow Diagram

2 Problem Description

As stated earlier, the goal is to generate the Latex code from the bitmap

image of thr region. As an example, consider the following equation in Fig.

2a.

—_— q '
?—iﬁxf — l-i:ﬂ yl T ﬁ

Fig 2a.
The Latex code corresponding to the above equation is -

33

\sum_{i:{]}'“{\infty}x_{i}z\prod{iz(]}’{q}y‘{i}-’xl}et.a.

5%

In this respect,now we provide a brief description of the different modes
of Latex.Here there are altogether three modes. (1) Text (11) Image/Drawing
and (i11) Math. Our subject of interest is only the Math mode.

A formula that appears in the running text, called an intext formula. is
produced by Math environment. [t can be invoked with either of the two
short forms, \(...\) or $3 ... $$ and with long forms \begin \ end combination.
A numbered displayed formula is produced by the equation array put into
Math mode. In this mode it ignores spaces in the input. For gIving spaces In
between we have to put & or ~ before the svmbol concerned. Now we provide

examples of some common structures.

A

Subscripts & Superscripts :

z¥ : x"{y-{1}}

Fraction :

¢ = g x = \frac{y+\frac{z} {2} " {2} +1}
I \frac{x+y} {1+ \frac{y }{z+1})

z+1

Roots :

VT Yy \sqrt{x+y}

"2 : \sqrt [n]{2}

Ellipsis:

1., Zn ¢ x {1}, \ldots , x_{n}

ai+ ...+ a, : a.{l} + \ddots + a_{n}

Similarly differnt tvpes of symbols are there.
Normal alphabets . Lowercase |, Uppercase eg. a.A.xv,Y et

(reek letters @ Lowercase and Uppercase eg. a... {1 etc.

Binary operation symbols : eg. . x .= etc,

Helational symbols : eg. <, =. x etc.

Arrow symbols . eg. ., & etc.

Misc. symbols 1 eg. V,d, oo etc.

Vartable size simbols @ 3. [. ¢ etc.

All the above symbols can be written in different styles like bold, 1talic.
roman. sans serief type writter. But i our problem we have taken into
account of only a single stvle syinbols. This 1s also our uone of the assumptions.

But it can he eastly extended by creating data base for all possible stvles.

9

Considering the above facts, to achieve our goal, first job 1s to seperate
out the different characters present in the bitmap. Secnn‘dly, we have to
recognize each character and find their relative positions. In order to do that
we have to find the parameters needed to describe the boundary rectangles
of each extracted symbols. Finally we have to device an effective translation
scheme which will operate based upon their relative positions and will give
back the Latex code.

Assumptions :

1. Input image is a synthetic image. 1t differs from the real life scanned
image of the document in a sense that any sort of noise and skewness :s
totllly absent from it.

2. Different distinct 8-Connected components i.e. distinct characters
should not be merged in the bitmap image. If thev remain so then our
algorithm will fail to seperate them out and consequentiy recognition system
will fail. '

3. Resolution of dvips utilityshould always be set at 600 dp1. Our
standard te%plate is prepared only on that reselution. FFor other resolution
they will differ. resulting the failing of the recognition scheme.

4. Our Template database is limited at present. It does not contain
all possible characters, types and fonts. For future extension they can be

incorporated.

10

3 Proposed Method

Otir proposed solution to the afforementioned problem consisits the tollowing
stéps : .

1. Generation of standard Template database.Character recog-
nition.

2. Seperate out each character.

3. Determining bounding rectangle of each character and pa-
rameters required to determine their relative positions.

>4. Merging of bounding rectangles.

5. Character recognition.

6. Translation scheme.

3.1 Generation of standard Template database :

Steps are following :

a> Create a bitmap file which consists of a single character whose [lem-

plate is to be stored.

b> Find a bounding rectangle of that charcater. Get the parameters
needed to describe the rectangle i.e. width and height. ¢> Extract the
binary bitmap o. that rectangle and store in a file along ﬁ'ith its height and
width.

d> Name the file same as the name of the character. Its extension is
.chr.For eg. let us take a look at the file a.chr whichi is the Template file of

'a’. It is shown in a table structure.

11

616 I
610[{011]010
0i1(130(1}0
1{1(0{0([1(0
111,011110
1114011111
B
byl (11 1|1

Here 1st row contais number of rows and number of columns. From next
row it contains the bitmap of the character ’a’ taken at 600 dpi resolution.

e> Create all the files of the characters in this way.

f> During the execution of the program store this database in the active
memory to reduce comparison time.For that, create an array of structures
whose size is equal to the number of characters in the database.

g> Each structure contains name,height, width and bitmap as its field.

h> Initialize the database at the beginning of the program by filling up

this structures by reading from the corresponding files.

3.2 Seperate out each character :

For separation of characters we need the concepts of lmage Segmentation.
Image segmentation refers to the deconiposition of a scene into 1ts compo-
nents. It is a key step in image analysis. For example. an application like
this would first segment the various characters before preceeding to identify
them. Ideally a partition represents an object or part of an object. Formally.
segmentation can be defined as a method to partition an image, [z, 7], into

subimages, called regions,F;, P, such that each 1image ts an object can-

12

didate.
Definition 3.2.1

A region is a subset of an 1mage.

Definition 3.2.2

- Segmaentation is grouping pixels into regions,such that

1. U%. , P.= Entire image {P:} is an exhaustive partitioning.

1=1 * 1
2. PNP; = .1 # 3. {P:}is an exhaustive partition.

3. Each region {F;} satisfies a predicate:;that is.all points of the partition

have some comimon property.

4. Pixels belonging to adjacent regions,when taken jointly,do not satisty
the predicate. Definition 3.2.3

Neighbours

A pixel in a digital image i1s spatially close to several other pixels. In a
digital image represented on a square grid. a pixel has a common boundary
with four pixels and shares a corner with four additional pixels. We say that
two pixels are four neighbours if thev share a common boundary. Similariv.
two pixels are &-neighbours it they share at least one corner. For example,
the pixel at location [i,j]has. 4-neighbours [+ 1 gl [t = L.], [i.j~ 1], {i. J+ 1],
The 8-neighbours of the pixel include the 4-neighbours plus {t + 1. j + 1}, i1 +
L,jg—=1l.{t—1,y+ 1}J.{t = 1.5 — 1]. For detail illustration look at the followine
fig.

i3

Fig.3.1a(4-neighbours)

< K 3
1 gl |
* * b

Fig.3.1b(8-neighbours)

Definition 3.2.4

Path

A path from the ﬁixel at {19, 70} to the pixel at {14, 4] I1s a sequence of
pixel indices {ig, Jo| » {1, 71] + [22. j2] «oeviJikg1. Jhy1] such that pixel at {70. jo]
for all k with 0 < & < n—1. If the neighbour relation nses 4-connection then
1t’s a 4-path ;for 4-connection S-path.

Definition 3.2.5

Foreground

The set of all 1 pixels in an 1mage is called the foreground and 1s denoted
by 5.

Definition 3.2.6

Connectivity

A pixel p € & is said to be connected to g € ~'if there is a path from
pto g consisting entirely of pixels of S.Note that connectivity is an equivalent

relation. For any three pixels p.g.and rin S. we have the following properties

14

1. Pixel pis connected to p(reflexivity).

2. If pis connected to q, then gis connected to p(commutivity).

3. If p is connected to g and ¢ is connected to r then p is connected to
r{transitivity).

Defination 3.2.7

Connected Components

A set of pixels in which each pixel is connected to all other pixels is called
a connected component. Component Labelling

A component labelling algorithm finds all connected components in a bi-
nary image. We use this algorithm to find the binary bitmap of the differeit
characters, their bounding rectangle, size and position. There are two al-
gorithm for component labelling : recursive and nonrecursive. We will use
Sequential Connected Components Algorithm using 8-connectivity.
Steps are following.

Phase 1

a> Scan the image left to right . top to bottom.

b> If the pixel 1s 1,then

(1) 1f one of its left or upper three pixels of its S-neighbours has a fa-
bel.then copy the label.

(2) If all the pixels which have labels are same then copy that label.

(3} If marked pixels have different label then copy the label of the first
pixel traversing clockwise direction starting from the left pixel. Enter this
label in the equuvalent table as equivalent.,

(4) Otherwise assign a new label to this pixel.

c> If there are more pixels to consider. then go to step 2.

end of Phase 1

Phasge 2

a> Process the equivalent table and find the lowest label for each equiv-
alent set in the equivalence table.

b> Scan the picture as described in step <a> of Phase 1. Replace each
label by the lowest label in its equivalent set. Here use the equivalence table
as a lookup table.

end of Phase 2

At he end of Phase 2 each connected component is marked with an unique
label. As a result extraction of these components becomes easter.

Implementational Details & Data structures used :

For storing the bitmap image a two dimensional integer array 1s used.
Here integer array is taken to facilitate the component labelling algorithm to
work where integer values are assigﬁed to different labels.

For storing the equivalent table linear linked list is used which is dynam-

tcally updated in the Phase 1 of the previous algorithm.

3.3 Determining bounding rectangle of each character
and parameters required to determine their relative

positions

Algorithm for extracting components from the labelled bitmap
Begin List Construction
a> Process the equivalent table to fnd the number of distinet components
present in the image.
b> For each component create a linear linked list which are again stored

in a linear arrayv.

10

c> Assign the unique labels of the equivalent table to each member of
the array.

d> Start scanning the image from left to right from top to bottom.

e> If the pixel value is not 0 then create a new list having its own label
and add the list to the end of the list in the proper position of the array.Also
store the coordinates of the point in the each list corresponding to a point.

f> If more pixels left then go to step d.

End of List Construction

Begin array of structure construction

a> Create an array of structure where array length is equal to the total
number of components_

b> From the list corresponding to each component find out the minimum
of x and that of y coordinates and also maximum of x and v coordinates.

¢> Iind the bounding rectangle of the symbol. Store its left top coordi-
nates and height and width as parameters. |

d> Fill up this bounding rectangle bitmap. Put 0 cvervwhere except in
those points where 1 exists in the list.

e> Do it for all the lists.

Eind arrayv of structure construction.

There are however few problems related to character bitmaps. Few char-

acters are vertically disconnected. viz.Fig. 3.2

()= 2 = cte

Fag. 3.2
Algorithms so far we have described, will give these symbols as broken

ones. llence 1 the next statge (i.e. recoguition stage} algorithis will not

17

be able to detect those components properly. Hence we have to merge dis-
tinct components depending on the vertical distnace heuristics. Similarly
bitmap of some of the components are broken in the horizontal direction. To
recognize properly, merging along the horizontal direction depending on the
horizontal distance heuristics is necessary. The scheme is following :

a> After extraction,apply matching algorithm on each components. If
there is a match, put fhe name in the symbol name.

b> llse put NULL in the symbol name.

¢> Choose a distance heuristics value. Apply vertical merge on those
symbols which are vet to be detected(i.e. NULL).

d> If required then apply step ¢> again. But this time with a higher
heuristics value,

é> If required then apply step <e¢> again. But this time with a horizontal

distance heuristics and also merge it in the horizontal direction.

3.4 Merging :

[t 1s explained below using Fig 3.3a and Fig 3.3b

0101110
0701010
gi1(0 (0
1101170
L0
O0;1]110
Ol 1|01
0111110

o | &
o | &2
Lo B R

-
-
-
o B B
o | O

Fig.3.3.b

From the above two pictures it is quite evident that charcater maps of the
two symbols are broken.Component labelling detects them as two seperate
components. Hence merging is required. Steps are following.

Begin merging

a> Take the component in the array for processing if the detecting flag
shows FALSE.

b> Try to find the components which overlap in the x-direction.

c> Distictly find the top and bottom one.

d> If topLeftCorner.y +height-bottomLeft.v <= yDistauceHeuristics then
merge two components by :

I>> finding the lowest x and y and also the highest x and v cordinates of
the two rectangles.

2> hnding the height and width of the new hounadary rectangles by
taking out the common areas.

3> filling .1p this rectangle with the bitmap of the 1wo components.

e>inally update one structure with these new values wid mark the oth-
ers processing flag in a way such that it 1s never used.

End merging

In case of horizontal merging all the steps are same except in it ix

19

x-direction and 1n <d> all y 1s replaced by x.

3.5 Character recognition

One direct method of character recognition is Template Matching. The com-
ponents that we have extracted so far are stored in the two dimensional
matrix form. Also our standard Templates in the database has been kept in
the same fashion along with their sizes. Here we will move one components
bitmap over all the Templates in the database. If the sizes of the element
if the database falls within a range then we compare their bitmaps and find
number elements matched. From this statistics we calculate the confidence of
matching. If it is greater than a pre defined value then we can conclude with
that amount of confidence level that this Template resembies that component
and we copy that name to the component name tield. Detail algorithmic steps

are given below :
a> For each component in the component array do

b> Get a component and do for each element in the database do 1/
[f the size of the component i.e. height and width are equal to height and
width of the Template or lie within a certain range of that then comipare
their bitmaps.

2} Count the number of matches in step 1.

3) Find the confidence of matching by dividing the counter by the arcs
of boundary rectangle of the component.

4) If confidence of matching is greater than a predetined value then copy

the Template name to the component name and break.

20

5> FElse continue.

¢> If there is no match, copy “NULL” to the component name.

3.6 Translation scheme

So far we have discussed about the methods for recognizing characters and
finding out their relative positions.Relative positions will be obtained by the
parameters of the bounding rectangles. Now we are going to discuss how
to get back the Latex code from these informations. This 1s possibly the
trickiest and the most vulnarable section of the whole project. Not only
because there does not exist any sort of existing algorithm for this but also
because of the fact that proposed algorithm heavily depend upon the distance
heuristics which may vary widely from ducument to document.

Proposed method is illustrated with the Fig. 3.5.1

Consider the following example :

Yitorl =120 8, + o’k —ay

Fig. 3.5.1

Applyving previous algorithms we have been able to extract :

DT R S TR | S RN U * I SN ¢ B S RN/

But we have no idea about their relative positions and how are they
syntactically bound.Finally we have to reach the following eode :

\sum_{i=0}"{\infty}x_{i}"{2}=\prod_{j=0}"{10}\beta_{j}+\alpha’ {2}k

- a \eta

This 1s our objective.

Now we are going to prgpose a novel application of a m-Ary tree struc-

ture to serve o@@ purpose.We take m A 5.We divide the surroundings of a

bounding rectangle into 5 rdgions as illustrated in the following Fig. 3.5.2

Bounding

Box

[t is being observed that if the main symbol lies in the rectangular box(
vide Fig. 3.5.2) then subscripts (including boundary rectangle) lie in the-
Reg. 1 and Reg. 2. Superscripts lie in the Reg. 3 and Reg. 4 and normal
symbol lies in the Reg. 5. Here some tvpical observations are made based
upon which certain heuristics have been formed.

Observations :

[> U.pper part of the bounding rectangle of Reg.] svmbols alwavs lie af
least 1 pixel below the horizontal line above.

2> All the symbols in the Reg. 1 and Reg. 2 are subscripted symbols.

3> All the symbols in the Reg. 3 and Reg. 4 are superscripted symbols.

4> Subscripted symbols starting at the Reg. 2 has their upper boundary
in Reg. 5 and lower boundary in Reg 2. Sinilarly right boundary alwats lie
to the right of the center rectangle.

5> Lower boundary of the symbols from the Reg. 3 always lie at least 1
pixel above the top boundary of the rectangle.

6> Superscripted symbols starting at the reg. 4 has their upper boundary
in Reg. 4 and lower boundary in Reg 3. Sinilarly right boundary alwats lie
to the right of the center rectangle.

7> For svmbols lying in the Reg. 5 if upper bounadry lies in Reg. 4 then
lower boundary eithe touces the extended lower horizontal line or exceeds
it. Else if the upper boundary touches the extended upper horizontal line
the lower boundary must lie in the Reg. 5 or may touch the extended lower
horizontal line .

5> Note that all the above observations made are recursively applicable
to each of the bounding rectangle.

In the proposed m-Ary tree structure for each reg. a link is stored.If a
svimbol exists n that reg. then pointer iz set to that node else the pointer is
made NULL.

Proposed structure of each tree node as toliows:

Struct _TreeNode{

char cNodeName([10}; /*for storing the nanie of the svmbols™/

int nLinkFlag; / 1t is set to -1 at the beginning. It is used for insertion of
element 1n the tree™/

int nTraverseFlag: /*same as above except it 15 used for preorder like

traversal™/

23

Point pStartPoint: /* holds the starting co-ordinates of the rectangle® /
int nWidth; /* width of the 'recta,ngle*/

int nHeight; /* height of the rectangle */

char PrintFlag; / *indicates whether the node has been processed during

traversal or not*/

struct _TreeNode tNext[4]; /*stores the link to the next links of the trec
"/

}:

As said earlier the overall structure i« recursive in nature. As a result
depth first approach is taken i.e. once a node is reached we try to move as
deep as possible by following the link in the increasing order starting from
0. When no more link js Ieft to scan. we reject this node and move one
step back to the previous node and process in the same fashion. If we are
succssesful in creating the tree in this fashion then if we made a
preorder traversal of the tree ybarring from ' 7 0t . g0 S

—_

we will get back the Latex code.This ;s Hustrated in the following Fig.

\infty

25

Example of a m-Ary Tree

The above Fig. is for the equation:
2izo®; = 152005 + o*k — ap
If we make a preorder traversal of the above tree then we will get :

Zatvma 'y ty =1 Oy 1—':H:ja=:01 mga,;r*"'rﬂf*-?!l":a!n

Actual Latex code is :

5%

\sum {i=0}"{\infty}x_{i}"{2}=\prod_-{j=0}"{10}\beta_{j}+\alpha" {2}k
- a \eta .

$%

Overall translation scheme is divided into two parts :

a> Insertion into the m-Ary tree

b> Preorder traversal of the m-Ary tree

Algorithm for inserting components into the tree :

a> Find out the left most component in the hitmap which is not od suffix
type. Do it by comparing the start coordinates of the bounding rectangle
and using CFlag which indicates the tvpe of symbol.

b> Create a tree node for this component. Fix it as a root of the m-Ary
trec.

c> Try to find out whether there exists any component in the Reg. 1. 2.
3. and 3 respectively. Searching for component is done in that sequential
fashion. If there does’nt exist any component, return the tree. Else go to
step <d>.

d> Create a new tree node. Push the previous node into the stack and
start processing the new node. Also update the nlink field in ecach stage.
Iry to find out the components in the same way described in step <c>.

e> [f a component «-«ists, do step d>.

f>> Else pop the node(if there exists any) which is present in the stack
and start processing for other links. If stack is empty and returns NULIL.
then stop and return the head.

Here components in different directions are found based on the assump-

27

v e i el

tions made earlier. Since whole algorithm behaves like depth first search. the
processing -of the root of the tree occur at the last step.
Algorithm for preorder traversal of the tree :

It is a recursive procedure. Basic principle of inorder traversal is -

1. Progess the node r.

2. Do inorder traversal of its link (

3. Do inorder traversal of its link 1

4. Do inorder traversal of its link 2

3. Do inorder traversal of its link 3

6. Do inorder traversal of its link 4

Steps

a> First take the root node and depending on its flag value print it
into the file (eg. if the flag is G’ put \symbol name if flag is A" put Sym-
bol_name). Increment the file pointer accordingly.

b> Do the traversal in the fashion described as above. Use stack to
remove inherent recursion of the process.

¢> During traversal if there exists a node either in the direction | or
2 then put _{ before the symbol name and store the address of the node
corresponding to which _{ has been inserted in the file. Push the node into
the stack.

d> When all the links of a node js traversed, 1ts processing is totaliv
- mplete. So pop up node (if there exists any) from the stack. But be-

tore popping up, compare whether any { was inserted for the just processed

node(as mentioned prviously it is stored somewhere) If true the pur b oand

f

delete that entry.Else continue.

e> During traversal if there exists a node either in the direction 3 or

e
o

4 then put “{ before the symbol name and store the address of the node
corresponﬂing to which "{ has been inserted in the file. Push the node into
the stack.

f> Do same as step <d>.

g> Stop when stack is empty and no more node is there to undergo

processing.

4 Experimental Results

4.1 System used/OS

Intel Pentium-133 chip
16Mb RAM

Linux operating system with 70Mb swap space.

4.2 Results Obtained :

it is applied on number of binary images (all of them excludes fraction
symbol). Although it can identify the fraction symbol. it can’t generate the
correct code for that image. As far as character recognition i~ concerned it is
successful in recognizing almost 95% of the characters. Bui due to problem in
the heuristics part, it some times fail to insert the element properly in the tree
resulting a code which mismatches with the image and many times disobey
the Latex syntax. We are now trving to develop an adoptive heuristic

based technique and we expect that this would give a much better result.

29

2.1

0.2

As discussed earlier,our database consists of limited number of svsmbols.

Discussion and Conclusion

In our implementation part we have developed the

following tﬁings :

1. module for extraction of the bitmap for standard tem-
plates,

2. module for generating standard database,

3. module for implementing component labelling algorithm.

4. module for extracting the the components from the labelled
binary image and finding the bitmap of the bounding rectangle,

5. module for merging(if necessary) the broken components
interactively (i.e. the horizontal and vertical heuristics can be
fixed) accordingly,

6. module for multiphase character recognition scheme

7. module for translation scheme that includes insertion and
traversal,

and finally interactive menu to coordinate these modules.

Possible scope of failure and their cause :

Hence outside this range any symbolare not recognized.

Recognition scheme is tried to be made as simple as possible. If however
two distinct characters by anyv chance become a single connected component
then the system fails to recognize both of them. At the same time. it may

recognize a character as a differnt one if confidence level matches before (eg.

30

\coprod will always be recognized as \prod as their bitmap differnce is
very small). But again this problem can be solved by using a highly interac-
tive menu based program and giving options for choosing thresh hold value
for the confidence level. .

Most vulnerable part is the insertion routine of the translation scheme.
Otherwise the scheme is theoretically very strong. This part depends very
much on the distance between the nearby symbols. There are every possi-
bility that their proper relation may not be grasped due to some inherent
conflicting distance heuristic values. Also these values will differ from doc-
ument to document. Solution to this problem is a highly interactive menu
based program where these values can be manipulated to find out the best
possible solution. If however the tree is constructed properly then traversal

will always give the correct result.

Future Exztenston :

a> Increase the template database

b> This program fails if there exists a fraction in the mput file. [t needs
to be taken care of.

c> Make this program a highly interactive X-Windows based menu driven
program

d> Test on huge number of sample bitmap images to find out the best

average heuristics

31

1 References

1. Fundamental of Digital Image-?pcessing.
Anil K. Jain

2. Digital Image Processing

R.C. Gonzalez & F.C. Wintz

3. Digital Picture Processing vol. 1 and vol. 2
Rosenfeld and Kak

4. Computer Vision and its application

Ramesh Gaonkar

32

