‘M.Tech. (Computer Science) Dissertation Report

SEMI-AUTOMATIC CONVERSION
~ FROM SEQUENTIAL TO
PARALLEL ALGORITHMS

By
Amit Kumar Rakshit

Under the Supervision of

Prof. Bhabani Prasad Sinha

Advanced Computing and Microelectronics Unit

Indian Statistical Institute
203, Barrackpore Trunk Road -

calCU'tta' - 700035 “ﬁ'{mhﬁﬁs e
SO AR, “E\
EE N .
JULY, 1999 SRR

e CALCUTTR oo

‘.-‘"
!
i
%

Certificate of Approval

This is to certify that the thesis entitled Semi-A utomatic Conversion from
Sequential to Parallel Algorithms submitted by Amit Kumar Rakshit, 1n
partial fulfillment of the requirements for M.Tech. in Computer Science
degree of the Indian Statistical Institute, Calcutta, is an acceptable work

for the award of the degree.

4

Date: 2% - A5 (Supervi;or)

Prof. Bhabani Prasad Sinha

Head of the Department

Advanced Computing and Microelectronics Unit
Indian Statistical Institute

203, Barrackpore Trunk Road

Calcutta ~ 700035

Date: (External Ezaminer)

Acknowledgements

The very first person whom I would like to pay my sincerest gratitude
and whom I feel myself honored to have worked with is my supervisor Prof.
Bhabani Prasad Sinha for his guidance, advice, enthusiasm and support
throughout the course of this dissertation.

I would like to take this opportunity to thank Prof. Bhargab B. Bhat-
tacharya, Prof. Aditya Bagchi, Dr. Nabanita Das, Dr. Bhabatosh Chanda

for the excellent and valuable courses they have offered in M. Tech. Wthh
help me in this work.

[would also like to thank to all C.S.S.C. and A.C.M.U. staffs for helping
me to avail the computing facilities and also giving their valua.ble advises,
whenever I have faced any problem.

Lastly, 1 should tha,nk my classmates Mr. Asimava Bera, Mr. P. Swa,my
Dhoss, Mr. Piyush Srivastava, Mr. Anjan Sarkar, Mr." Susanta Paul
Mr. Kaushik Majumdar, Mr. Arnab Nandi for their helpful suggestions
throughout the project and also my other classmates for sharing those mo-
ments of joy and frustration and made my two years stay at 1.S.1. enjoyable.

.S.1., Calcutta, |
July 1999 (Amit Kumar Rakshit)

A bstract

Determination of parallel algorithms from computation intensive se-
quential algorithms, consisting of nested for-loops, and their implementa-
tion on special-purpose VLSI arrays is a subject of lot of importance. The
mapping procedure is based on the mathematical transformations of index
set and data dependence vectors, but it preserves the order imposed on

the index set by the data dependencies. Also a proposed methodology is
im pI emented Rere for parallel program generator.

h

Contents

1 INTRODUCTION 2
1.1 Trends Towards High Performance Computation 2
1.2 The Parallel Computation i i 3

2 VLSI COMPUTING STRUCTURE 5
2.1 Parallel Computation in VLSI Architecture b
2.2 The Systolic Array Architecture 00000 6
2.3 A VLSI Model of Computation, 7

3 MODELS FOR VLSI ARRAYS AND ALGORITHMS 9
3.1 VLSI Array Model e e e 9
3.2 AlgorithmModel e e e e e 10

3.2.1 DataDependency i i ittt 10
3.2.2 Index Set and Data Dependence Vector L. 12
3.2.3 Definition of Algorithm Model e 13
3.24 Execution Ordering 14
3.2.5 Algorithm Equivalence 14

4 MAPPING OF ALGORITHM | 15

4.1 Transformation of Algorithms into VLSI Arrays 15
41.1 Example of Transformation 16

4.1.2 Why Semi-automatic P

4.2 Mapping Procedure e 18

5 IMPLEMENTATION ' , 20
5.1 Algorithm e e, 20
5.1.1 Main e e e e e e e e e e e e e e e e e e 20

512 Pipeline 0. e e e e 20

0.1.3 DataDependencec...... ... 21

014 Il-Transform. i i .. 22

0.1.5 S-Transform 22

6 CONCLUSION | 27
7 BIBLIOGRAPHY | 28

Chapter 1
INTRODUCTION

1.1 Trends Towards High Performance Computation

Over the past four decades the computer industry has experienced four generations
of development, physically marked by rapid changing of building blocks from relays and
vacuum tubes (1940 — 1950s), to discrete diode transistors (1950 — 1960s), to small-
and medium-scale integrated (SSI/MSI) circuits (1960 — 1970s), and to large- and very-
large-scale integrated (LSI/VLSI) devices (1970s and beyond). Increase in device speed,
and reliability and reduction in hardware cost and physical size have greatly enhanced
the computer performance. However, better devices are not the sole factor, contribut-
ing to high performance. Ever since the stored-program concept of Von Neumann, the
computer has been recognized as more than just a hardware organizstion problem. A
modern computer system is really a composite of such items as processors, memories,
functional units, interconnection networks, compilers, operating systesps, peripheral de-
vices, communication channels, and database banks. The more s seessiul people are in
making use of computers, the more computer petformance they find they need. What
was, in the last decade, largely preserve of academic and industrial research has becorme
a significant segment of the high-performance computing market. It is the fact that the
number of operations that a computer can perform per unit tirne has roughly doubled in
every two years for the last four decades. Fast and efficient computers are in high demand
in many scientific, engineering, medical, and research areas such as numerical weather
prediction, computational aerodynamics, artificial intelligence and automation, remote
sensing, nuclear reactor factory, weapon research and defense, computer-assisted tomog-
raphy, seismic exploration etc. Large-scale computations are often performed in these
application areas. For example, cross-sectional computer-assisted tomography images
used to take 6 to 10 minutes to generate on a conventional computer. Using dedicated
array processor, the processing time can be reduced to 5 to 20 seconds. The 100 megaflops
machine, like a CRAY-1, would take 24 hours to complete the 24-hour forecast. But it
is'not uncommon for us to expect the fore?a,st for the next day. |

These kind of applications are possible due to an exponential growth in VLSI technology
and due to seamless research and development in designing more and more efficient pro-

CHAPTER 1. INTRODUCTION 3

cessor architectures as well as more and more efficient algorithms. Higher performance
of processors has been possible to achieve by innovating improved architectural features,
e.g., RISC architectures, pipelined and vector processing, systolic architectures, etc., and
also by using parallel and distributed computing. For parallel and distributed computing,
efficient algorithms are designed which are mapped on suitable architectures. The com-
bined effort of innovating improved processor designs along with improved parallel and
distributed algorithms for various real-life problems leads us towards high performance
computing.

1.2 The Parallel Compﬁtation

A parallel computing system consists of parallel hardware and parallel software to run
on it. A paralle! processing system is a collection of processing elements that executes
programs concurrently, as well as communicate and cooperate with each other to solve
large problem fast. One of the simplest ways to use parallelism i3 the task farm. In this
approach, a master process produces a number off independent tasks which are farmed
out to slave processes. Once these have been processed, the results are collected by a
third process, which write them to disk or displays them on the screen. Typically, the
master and each slave reside on different processors. This arrangement provides good
load balancing for many types of problem — if one task takes a long time to complete,
the other processors in the system can get on with processing other tasks in parallel.
A problem is only suitable for task farm parallelism if it can be broken down into a
large number of tasks which can be executed independently df dach other. In order to
maximize the throughput of a task farm the number of tasks dhould be much greater

than the number of processars available. A tiypical appliostion is ray tmmg on a MIMD
machine.

Another effective form of parallelism is grid decomposition. In this case, the appli-
cation must be based on underlying grid, as in cellular automata and image processing
applications. This grid is divided into patches and one patch put on each processor.
Each processor updates the values in its part of grid, then swaps boundary values with
its neighbors. This approach yields good results when a local operator must be applied
to each point on the grid. The operations on the grid can be carried out in parallel on
each of the sub-grids except in the boundary regions.

A third form of parallelism, algorithmic parallelism, is usually more difficult to imple-
ment well. In algorithmic parallelism the different functions within the application are on
different processors. For example, the transformation, clipping, shading, and Z-buffering
stages of a graphics pipeline can each be put on separate processors. The problem with
pipelines of this sort is that they are susceptible to bottlenecks. If one stage of the pipe
is more compute-intensive than the others, its performance will limit that of the system
as a whole.

CHAPTER 1. INTRODUCTION 4

Several stra,begws are being developed to tackle the problem of parallelism. One ap-
proach is based on machine dependent parallel programming notions, which take the
form of new programming languages as is available with today’s parallel computers. But
this adds to the problem of non-portability and consumes a lot of man-hours in learning
languages which are architecture dependent and as such complicated. Moreover, the rate
of growth in VLSI technology indicates that today’s software for parallel computer will
be redundant in tomorrow.

The second approach is to use problem solving environments that generate efficient
parallel programs from high level specification. This approach is much meore promising
as it is suitable for software engineers as the architecture dependency will be taken care
of by the environment. But this necessitates writing parallel algorithms as well as de-
veloping powerful translators that take sequential algorithms as input and translate it
to its equivalent parallel algorithm which will be the input to the problem-solving envi-
ronment. There are several reasons why this translator is required. The most frequently
mentioned reason is that there are many sequential algorithms, which would be conve-
nient to execute on parallel computers. Also, sequential algorithms are easier to develop
and since majority of existing computers are sequential in nature sequential algorithm
development will continue till paraliel computation becomes cost effective.

, _.

Our work ultimately aims for the above mentioned translator development. We have
started our work in developing a parallel program generator. It takes a high level of
sequential iterative algorithm as input and generates an equivalent pspelined version of
the same which can be implemented on systolic array architecture. The communication
links to be used as well as the geometry of arrangement of processors are also taken care

of. It also gives the option to specify target architecture and to test whether it is possible
to execute a parallel version of the given algorithm on it.

Another alternative approach, which is being developed in Artificial Intelligence field,
is to use machine learning strategy. In this scheme, the intelligent computer is fed with
different sequential algorithms along with their parallel versions which are available for
different architectures. The machine thus has a knowledge base, and after studying the
pattern of the input sequential algorithm, it will be capable to generate the corresponding
parallel version using it’s knowledge-base. But this kind of approach is still in its infant
stage and in future, it may open a new horizon in the area of parallel computation.

Chapter 2 .

'VLSI COMPUTING
STRUCTURE

2.1 Parallel Computation in VLSI Architecture

Highly parallel computing structures promise to be a major application area for the
million-transistor chips. Such computing systems have structural properties that are suit-
able for VLSI implementation. Parallel structures imply a basic computational element
repeated perhaps hundred or thousands of times. This architectural style immediately
reduces the design problem by similar order of magnitude. |

The key attributes offered by VLSI technology are : large amount of hardware available
at very low cost, reduced power consumption and physical size, and increased reliabil-
ity at circuit level. Additionally, the high level of integration can conceivably eliminate
the need to physically separate processors from memory, thus eliminating the bottleneck
among them. Parallelism and pipelining are two classical concepts without which the
efficient utilization of the large hardware resources offered by VLSI is not possible. Par-
allelism implies the operation of many units at the same time. Pipelining also requires
a multitude of resources, but in contrast with parallelism, the resources work in a chain
allowing data to flow only from one unit to next one. Both, parallelism and pipelining,
can be seen at different logic levels. The first level of parallelism is offered by parti-
tioning the computational task into smaller computational modules. The second level of
parallelism is found within each computational module. The last level of parallelism is
“offered by the simultaneous processing of all the bits in a word; and this level is present
‘in almost all computers. We fix our focus at the second level.

- The exploitation of parallelism at the first level is often necessary because computational
problems are larger than a single VLSI device can process at a time. If a parallel
algorithm is structured as a network of smaller computational modules, then the modules
can be assigned to different VL.SI devices. The communications among these modules and
their operation control dictates the structure of the VLSI system and its performance.

In Fig. 1, a simplistic organization of a computer system consisting of several VLSI

CHAPTER 2. VLSI COMPUTING STRUCTURE 6

devices, main memory, and an interconnection network is shown. Each VLSI device has
a number of processors working in parallel.

VLSI VLS VLS| [wLsi
Device Device Device Device

Interconnection Network

Host Main
Processor h Memory

=i r |

b e

Fig. 1 Organization of a computer system canftaining sei:ér:ﬂ special
purpose VLSI processor arrays, interconnection network, host
processor, and main memory. |

The I/O bottleneck problem in VLSI system imposed a serious restriction on the
algorithm design. The parallel algorithms should be designed in such a manner that it can
be partitioned into modules to reduce the communication among them. Moreover, data
entering the VLSI device should be utilized exhaustedly before passing again through the
I/O ports. Unorganized data communication within the VLSI devices often detoriates
the performance. If the hardware contains local interconnections, the silicon area, time,

and energy can be utilized efficiently. The solution to this problem is to design algorithms
which, when mapped into VLSI hardware, require only local data transfer. |

2.2 The Systolic Array Architecture

- 'The choice of appropriate architecture for any electronic system is very closely related
to the implementation of technology. Moreover, to increase the efficiency of computation,

it is necessary to match the characteristic of the algorithms with that of the computer
architecture. Properly designed parallel structures that need to communicate only with
their nearest neighbors will gain most from the system. Precieus time is lost when the
modules that are far apart want to communicate. For example, the delay in crossing a.

chip on polysilicon, one of three primary interconnect layers on an NMOS chip, can be
- 10 to 30 times the delay of an individual gate.

CHAPTER 2. VLSI COMPUTING STRUCTURE _ [

The concept of systolic array architecture was developed by Kung and associates
5], [6]. A sgystolic system consists of a set of interconnected cells, each capable of
performing soime simple operations. Cells in systolic system are typically interconnected
to form a systolic array or a systolic tree. Information in a systolic system flows between
cells in a pipelined fashion and communication with the outside world occurs only at
the "boundary” cells. For example, in a systolic array, only those cells on the array
boundaries may be I/O ports for the system. By replacing a single processing element
with an array of processing elements, a higher computation throughput can be achieved
without increasing memory bandwidth. The crux of this approach is to ensure that
once a data item is brought out from the mémory, it can be used efficiently at each
cell it passes. VLSI systolic arrays can assume many different structures for different
compute-bound algorithms. Other advantages include modular expansionability, simple
and regular data and control flows, use of simple and uniform cells, elimination of global
broadcasting, limited fan-in and fast response time.

The major problem with a systolic array is still in its I/O bagrier. The globally
structured systolic array can speed-up computations only if the 1/O:bandwidth is high.
With current IC technology, only a small number of I/O pins ean be-used for a VLSI
chip. Of course, I/O port sharing and time-division multiplexing can fbe used to alleviate
this problem. F |

2.3 A VLSI Model of Computation

A model of VLSI computing structure is needed in order to relate the features of an
algorithm to the realities of hardware. Trade-offs are possible between various parameters
of the VLSI device in order to improve the performance. The approach taken here is
to distinguish between the operation of the systolic system at the array level and the
activities taking place inside the processing cells. The array level is called the global

level, and the processor level is called the local level. At both the levels, the operation
should be examined in time and space.

Here the tocus is set only on the step from the parallel algorithm to the global model. A
‘model of the processing cell and the transition from global model to the local model can
~ be found in [16]. The organization and the operation of the VLSI array can be described

" by the network geometry G, the functions F performed by the processing cells and the
network timing T.

The assumptions about the VLSI systolic network are as follows:

e The network consists of a planar mesh connected network of processing cells.

¢ The cells can be of different types and perform different functions.
e The interconnections between cells are buses which transfer parallel words.

¢ The operation of network is synchronous.

CHAPTER 2. VLSI COMPUTING STRUCTURE 8

The network geometry G refers to the geometrical layout of the network. The position
of each processing cell in the plane is described by its Cartesian coordinates. By choosing
the grid arbitrarily small it is possible to represent these coordinates by integers. Then,
the interconnection between cells can easily be described by the position of the terminal
cells. These interconnections support the flow of data through the network; a link can be
dedicated only to one data stream of variables or it can be used for transport of several
data streams at different time instances. A simple and regular geometry is desired.

The function F associated to each processing cell represent the totality of arithmetic
and logic expression that a cell is capable to perform. We assume that each cell consists
of a small number of registers, ALU and the control logic. Several different types of

processing cells may coexist in the same network; however, one design goal should be to
reduce the number of cell types.

The network timing T specifies for each processing cell the time when the processing
of function F occurs and when the data communications take place. A correct timing
assures that the right data reach their destinations at the right time. The speed of data
streams through the network is given by the ratio between the distance of communication

link over the communication time. Networks with constant data speeds are preferable
because they require a simpler control logic. | *

In brief, the global model of the VLSI array can be formallj; described by a set of 3-
tuples (G,F,T). The more regular the network is the simpler these functions become.

This model is quite general and is sufficient for developing a methodelogy for designing
VLSI algorithms. -

Chapter 3

MODELS FOR VLSI ARRAYS
AND ALGORITHMS

In this chﬁpter, we have studied the mathematical formulation for VLSI arrays and
algorithms. This formulation is required to map the algorithms into architectures.

f
i

3.1 VLSI Array Model f

The basic assumption regarding the computational resources is that it consists of mesh
connected network of processing cell.

A mesh connected array processor is a tuple (J*!, P), where J* ! C Z"! is the
index set of the array and P € Z("~U*" ig a matrix of interconnection primitives. For
the sake of generality, the dimension of the array is considered (n'— 1), but in practical
situation the planar layout structure is favored. The position of each processing cells in
the array is described by its Cartesian coordinates. The interconnections between cells
are described by the difference vectors between the coordinates of the adjacent cells. The
matrix of interconnection primitives is |

P:[ﬁl D2 ... ﬁs]

‘where p; i1s a column vector indicating a unique direction of a communication link.

Consider, for example, the array shown in Fig. 2. It is represented by the tuple (J?, P)
where,

J? = {(j1,42) : 0 < 51 £2,0< j» < 2}

p_[01-1-1 10 01 -1]|4
101 -1 1 -11-10 0}l

This array has 8-neighbor bi-directional connections and also a connection within the
cell.

CHAPTER 3. MODELS FOR VLSI ARRAYS AND ALGORITHMS 10

Fig. 2 A square array with 8-neighbor
connections.

The structural details of the cells and the timings are derived from algorithms which
are mapped into such arrays, For simplicity, it is considered that all cells are identical.
If an algorithm requires an array with several different types of cells, then the model can
be easily modified to describe the function of each cell in index set J*~!.

3.2 Algorithm Model

Here, the study is done primarily on those algorithms which have nested loops. In order
to map algorithms into VLSI array processors, it is convenient to define an algorithm
model. The prime characteristic of an algorithm model is data dependency, indez set,

the computation performed at each index point, and the input-output varighles. In the
following articles we describe the algebraic structure of the algorithm model.

3.2.1 Data Dependency

‘The basic structural features of an algorithm are dictated by data and control de-
pendencies. Data dependence represents the precedence relations of memory references
whereas control dependence refers to the precedence relations due to control stricture of
the algorithm. The two dependencies determine the execution ordering of the algorithm
in order to compute the problem correctly. The absence of dependencies indicates the
possibility of simultaneous computations. These dependencies can be studied in several
distinct levels : blocks of computational level, statement (or expression) lpwel, variable
level, and even bit level. Since, the main focus here is on algerithms for YWLSI systolic
arrays, the data dependencies at variable level, which is the lowest posst hvel before
bit level, is studied. N

CHAPTER 3. MODELS FOR VLSI ARRAYS AND ALGORITHMS 11

" Here is a simple example to explain the data dependencies.

Example : 1
FOR i := 2 TO 200 STEP 1 DO
BEGIN
X. ali] = bf2*i] + c[i]l;
Y. b{2*i+2] := al[i-1] + c[i-1];
Z. afi-2] = b[i+3] +1; %
END -.

The first four iterations of the loop are shown in the following table :

Statement | Expression

Xs al2] := b[4] + c[2];
Y, bi{6] := a{l] + c[1];
Zo al0] := b{5] + 1;
X3 a[3] := b[6] + ¢[3];
Y3 b[8] := a[2] + ¢[2);
Zo | al1] = bl6] + 1
X4 [a[d] := b[8] + c[4];
Y, b{10] := a[3] + ¢[3];
Z4 al2] := b[7] + 1;
Xs a[5] := b[10] + c[5);
Ys b{12] := a[4] + cl[4];
Z5 | 3[3 = b[B] T l;

The following observations are made regarding the data dependencies within the loop.

e In a single instance of the iteration, all the statements X, Y, Z are independent of
one another, since no variable appears within the statements more than once.

e The output variable of instance X, is the input variable of the instance Y, and
the computed by X, i1s used by Y3. This is repeated many times during execution
of the loop. In general, the result at Y; depends on the result at X;_;. This kind
of dependence is called How dependence or true dependence. Moreover, the

nature of dependency is constant throughout the execution of the loop; so it is
static flow dependence.

e Another flow dependence is observed between the instances Y3 and Zs where the

variable b[8], used by Zs is actually generated at Ys. But here the dependency
is not uniform; it changes during execution of the loop. So, it is called dynamic
flow dependence.

CHAPTER 3. MODELS FOR VLSI ARRAYS AND ALGORITHMS 12 |

e The generated variable afl] of instance 73 is an used variable of instance Y;. But
the instance Y, is actually executed before the start of Z» and the value of a(l]
used by Y. is the earlier stored value. So there is an anti-dependence of the
statement Z on the statement Y.

e When the execution of a statement depends on the input variables, the data de-
pendency then called input dependence. |

e There is another type of data dependency, called output dependence, in which
two different statements write on the same memory location at different time in-
stants. For example, if the variable ali] is considered, it can be noticed that it is
modified by Z;.. after X; has written on it. Here the output dependence is static
in nature. In some applications, it may be non-uniform also.

The analysis of data dependencies in high-level language programs must be done for
the purpose of detecting concurrency of operations. Here, three types of data dependen-
cies are considered — flow dependence, anti dependence and ouiput dependence.

3.2.2 Index Set and Data Dependence Véct(;r

To define index set following nested for loop is considered.

BEGIN
FOR I' := ! TO u! STEP p! DO
BEGIN
FOR I? := 2 TO u? STEP p? DO
BEGIN
FOR I := " TO u™ STEP p” DO
BEGIN
SI(I__) 3
32(1) :
Sv(I) ;
IEND;
END;
END;
END;

where, I/, v, and p’ are integer-valued linear expressions involving integer-valued index
sets I1, I% ... [F"Yand I = (I}, I?,...,I"). The assignment statements S, 52,...,5n
are of the form X := E where X is a variable and F is an expression of some input

CHAPTER 8. MODELS FOR VLSI ARRAYS AND ALGORITHMS 13

variables.

Let A denotes the set of all integers and N denotes the set of all n-tuples of integers. '
The index set £*(I) of the above nested loop is defined as,

(D) = {12, 1% : P<TI'<ul, BS<PP <, "<I"<ut} C N

When the above loop is executed, the elements of L" are get ordered in lexicographic

ordering. |
"|
Now, let X and Y are two indexed variables using index sets f(I) and g(I}), i.e.,
we write them as X (f(I)) and Y (g(I)) where f and g are two integer-valued function
defined on the set £*. Variables X and Y are generated in statements S;(/;) and S;(12)

respectively.

Variable Y (g(I)) is said to be flow dependent on the variable X (f (1) if,

1. I, < L | (here, ” < ” means "less than” in lexicographical sense),

2. f(fl) — g(I_Q):
3. X(f(I)) is an input variable in the statement S;(13),

4. Entries in the vector (f(I) — g(I)) are divisible. by the Silseps of the corresponding
for loop.

The vector d = I, — I is called the data dependence vector. An algorithm has number
of such data dependence vectors. In general, the data dependence vectors are functions

of the elements of the set £, i.e., d = d(I). However, depending on applications, these
data dependency vectors may be constant also.

3.2.3 Definition of Algorithm Model

In order to map the algorithms into VLSI array processors, we need suitable trans-
formation in index set keeping the motive of the algorithm intact. For this purpose, we
define an algorithm as follows :

An algorithm A over an algebraic structure S is is a 5-tuple A= (J”,C, D, X,Y) where,

1. J" is a finite index set of A, J*® CN™ ;

2. C, set of computations, is a set of triples (7, v,t) where j € J", v is a variable and
t is a term built from operations of & and variables ranging over §. The variable
v is called generated at 7, and any variable appearing in ¢ is called used variable;

3. D, set of dependencies, is a set of triples (j,v,d), where j € J*, the instance of
index set at which the variable v is used and d, an element of the set of n-tuple of
integers with at least one non-zero entry, is the data dependence vector;

CHAPTER 3. MODELS FOR VLSI ARRAYS AND ALGORITHMS 1&

4 X is the set of input variables for A;

5. Y is the set of input variables for A;

3.2.4 Execution Ordering

For completeness of the description of an algorithm through the algorithm model, it is
necessary to define the execution ordering of the algorithm. The execution ordering of

an algorithm A= (J*,C, D, X, Y) is deﬁned'.ia.s,

1. the specification of a partial lexicographic ordering O on J"_(called execution or-
dering) such that for all (d,v,j) € D, we have d © 0 (i.e., d larger than 0 in the

sense of O);

2. the executio_n'! rule : until all computations in C have been performed, execute
(3°,v,t) for all 3° © j for which (7, v,t) have terminated.

Here, the ordering larger than 0 is used in lexicographic sense. Thus, if
d =3-760
it means that the computations indexed by 7* must be’ perfbrmed before those indexed

by 3.

3.2.5 Algorithm Equivalence

Two algorithms A= (J*,C, D, X,Y) and A= (J",C,D, X,Y) are said to be 7 equiv-
alent if and only if,

1. Algorithm A is input-output equivalent to A; i.e., A = A

9. Index set of A is the transformed index set of A; J* = T(J") where T is a
monotonically increasing and bijective function. |

3. To any operation of A it corresponds an identical operation in A and vice versa.

4.]lf)jepenczehcies of A are the transformed dependencies of .4, and written as
= T(D) |

Here, we are interested in transformed algorithms for which the ordering imposed by
!:he first coordinate of the index set is an execution orderimg. The motivation is that
if olnly one coordinate of the index set preserves the correctness of the computation by
maintaining an execution ordering, then the rest of index coordinates can be selected by
the algorithm designer to meet some VLSI communication requirements.

Chapter 4
MAPPING OF ALGORITHM

4.1 Transformation of Algorithms into VLSI Arrays

A transformation which transform an algorithm A into an algorithm A is defined as,
T : <L'D> = <L} Dr>

The transformation T is partitioned into two functions as follows:

[

where, the mapping II and S are defined as,
nm:. Jr - J and S . Jgv 5 Jg!

Here, II is an n-dimensional row matrix of integers, and S is an (n — 1 x n) dimensional
matrix of integers, where n is the level of nesting. We consider only linear transformation
T, 1e, T € Z™". Thus the set of algorithm dependencies D = d;,ds, ..., d; is trans-
formed into D = T'D. The mapping II is selected such that such that the transformed
data dependence matrix D has positive entries in the first row. This imposes a valid
execution of ordering and can be written as,

HCL#>0, foranyJiED,lgisk.

In this procedure the advantage gained is that, the first coordinate can be correctly
regarded as the time coordinate. Thus a computation indexed by 7 € J" in the original
algorithm will be processed at time Jo = Hj Moreover, the total running time of the
new algorithm is usually ¢ = maz j, — min 7, + 1. In general, the time increment may
not be unitary; but it is given by smallest transformed dependence, i.e., minimum(I1d;).
Thus, the execution time of the parallel algorithm is given by,

;o |‘ma:c (Gt — %) + 11
B min Ild,;

for any j!,72 € J* and d;, € D.

1o

CHAPTER 4. MAPPING OF ALGORITHM 16

The transformation S can then be selected such that the t_ransformed dependencies
are mapped into VLSI array modeled as, (J"~!, P) to our suitability. This can be written

as, X
J'"l=8D=PK

where K indicates the utilization of primitive interconnections in matrix P. The matrix
K = [k;;] is such that ’

The above constraints indicates that there can not be any negative utilization of con-
nectivities and the use of connectivities should bhe done within the time taken for the
present computation, as there will be need of input-output communications as soon as
the next computation begins.

4.1.1 Example of Transformation

Here an example is considered to explain the above transformation scheme.
Example : 2

BEGIN
FOR i := 1 TO 2 DO
BEGIN
FOR j := 1 TO 2 DO
BEGIN
cli,j,0] := 0;
FOR k := 1 TO 2 DO
BEGIN
blk,j,i] := blk,j,i-1];
ali,k,jl := ali,k,j-1];
cli,j,k] := cli,j,k-1] + ali,k,j] = blk,j,il;
END
END;
END;
END;

Here, the level of nesting n = 3 and the index space and the data dependency vectors
are as follows: |

J? = {(1,1,1),(1,1,2),(1,2,1),(1,2,2), (2,1, 1),(2,1,2),(2,2,1),(2,2,2)};
D= {(1!01 0): (0: 1, 0): (0: 0, 1)}:

If we choose IT as (1,1,1) then,

CHAPTER 4. MAPPING OF ALGORITHM 17

Iid, =1, Ild; =1, Hd3 = 1
leHJ={314:4!5?4’5’5’6};

Hence, total execution time required for the transformed algorithm is

t =

max H(El—f)—l—l] B [(6-—-3)+1“ _ 4.
" min I1d, - 1 ’
To determine S let us consider the array mpdel shown in Fig. 2 i.e.,

J* ={(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2) }

01 -1 -1 10 01 -1

_ N
P_I:O’l—l 1 -1 1 -1 0O 0_

J2

One possible S may be.
g_[1 00
1010

For this § we get,
J2=8D

_[too0],
{010
100
“j0o 10

The utilization matrix is
"0 0

0
1
0

= &
— e

Il
= = O O O O O &
o Do -0 000

snto I en B Y cus Y s Y s B e T o I

4.1.2 Why Semi-automatic

When we are in the way to determine the transformation T = g , first the mapping

IT is selected so that the parallel execution time is minimized and then the mapping S is
determined by solving the diaphantine equation SD = PK. Each transformation leads

to a different array. This flexibility gives the designer the possibility to choose between
a large number of arrays with different characteristics. It also complicates the task of

CHAPTER 4. MAPPING OF ALGORITHM 18.

choosing the best S matrix. In case of large number of choices, the designer may choose
one.accodring to his intuition. That’s why this method is called Semi- Automatic.

There is another point regarding the determination of the transformation. If for a
choice of TI, no S could be found to satisfy all the conditions, then are two options:

1. Iteratively find the next best IT matrix for which at least one suitable S can be
found out. |

2. For the S found out within some limit Eﬁ_of T1d;, obtain a new Il such that the
constraint is satisfied. |

This problem can be formulated as follows :
Determine the transformation matrix T' of order n x n whose first row is considered as
the II-transformation which is a matrix of order 1 x n the remaining part of T is the
S-transformation of order (n — 1) X n, subject to the constraint that the time

, _ [maz G -3 +1

B [min H(L]

s minimized.

7 is n x 1 dimensional matrix of positive integers is given and, |

d; € D, Vi, 1 <i < N are given, each d, being n-tupleof integers, not all zero, and first
entry in each such tuple is non-negative.

The constraints are,

[d; > 0, Vi, 1<i<N

Then, the transformation S is obtained by solving the diaphantine equation SD = PK
where,

Pis a (n—1) x (3""! — 1) dimensional matrix whose entries are 1,0, or — 1 is given,
K = [k;] is a (3"! — 1) x n dimensional matrix, whose elements are non-negative
integers, satisfying the constraints,

kji >0, Vi,j, 1<i<(3'-1),1<j<n,

and
Zkﬁgﬂdl VE, 1‘535?1
J

4.2 Mapping Procedure

For the above problem following algorithm was proposed by D. I. Moldovan [1], {3].

STEP-1 Heuristically, find a transformation II, such that I1d; > 0 and which minimizes,

;o |‘ma:1: ;' — 7% +1

MIN]_I(L -| fOT any h,J2 € J" and di cD.

" CHAPTER 4. MAPPING OF ALGORITHM 19

- STEP-2 Generate all possible K matrices where cach element k;; of K are integers and they
satisfy the constraints,

1. kjl-z(]and
| 2. ijﬁﬁﬂfﬂ Vz,lgz‘:_in

STEP-3 Find all possible transformations S whose elements are integers and which satiéfy
the following conditions,

1. Diaphantine equation SD = PK ci*_;}n be solved for S

2. The matrix transformation T is non singular.

STEP-4 From all possible transformations select the one that minimizes the time.

STEP-5 The mapping of indices to processors is as follows :
Fach index point j € J" is processed in a processor whose i-th coordinate is

7: = ;3.

Chapter 5
IMPLEMENTATION

5.1 Algorithm

5.1.1 Main

Input : The sequential program file — inp.dat
Output : The parallel version of the program and the time and processors’
interconnections. i |

Procedure :

BEGIN
Check syntax of input;
IF syntax is wrong THEN
Stop;
ELSE
BEGIN
Pipeline all broadcasted variables; |
Find out data dependencies for all variables embedded in inner
most for loop;
Find out II transformation for minimum time;
Find out S transformation for best geometry and interconnection
talking suggestions from the user;
END;
END;

5.1.2 Pipeline

Input : The table of information about all variables and the for loop.
Output : The pipelined version of the program in file — inp.out.
Procedure

BEGIN
brod_var a variable that is to be broadcasted.
DO

20)

" CHAPTER 5. IMPLEMENTATION 2%

BIEGIN
Find all occurrences of brod_var with same index set.

FOR all index variables not used by brod_var DO
BEGIN
FOR all generated instances of brod_var DO
include the missing index variable;
FOR all used instance of brod_var DO

BEGIN |
FOR each missing index varjable ind_var DO

BEGIN !
IF' step negative THEN
include ind_var + step;
ELSE
" include ind_var — step:;
END;
END;
END;
IF brod_var is used at least once THEN
Do initialization for each missing index;
Add dependency due to brod_var in dependency vector list;
END DO UNTIL no more broadcast variables can be found;

END;

'5.1.3 Data Dependence

Input : The table of information about all variables generated.
Output : Determine the dependency vector list.
Procedure :

BEGIN |
data_var a variable that is not pipelined yet.
WHILE data_var is found

BEGIN
FOR all used occurrence of data_var,data_var; DO

BEGIN
FOR all generated occurrences of data_var; starting from first occurrence DO

BEGIN
substract indices used in generated instance from that of used

and store the resultant tuple in the result;
multiply the entries in result by —1 if step is negative;
divide the entries in result by the value of step;
IEF the first non-zero entry is negative THEN
store the result as anti-dependency;

ELSE
IF all entries in the result are zero THEN

CHAPTER 5. IMPLEMENTATION

BEGIN

IF the generated variable appears in a line before
the used variable THEN

store zero for dependency due to data_var;;
ELSE

continue;
END;
ELSE |
IF the result is lexicographically less than dependency till yet
obtained due to data_var; THEN
store it for dependency due to data_var;:
END:;
IF dependency due to data_var; is not zero THEN
Add dependency due to data.var; in dependency list:
END:
END:;
END;

5.1.4 II-Transform

Input : The table of information about data dependency.

Output : Tt finds out I transformation as best as possible.
Procedure :

BEGIN

FOR ent:= 1, TO cnt:=maximum_nested_for_loop, DO
BEGIN
find all I whose sum of absolute values is equal to cnt;
FOR all the IT which satisfy the constraint of +ve time I1;, DO

IF 1I; gives less total execution time than the best II available yet THEN
strore I1; as the best I1 available;
END;

IV valid best 11 is available THEN
report it;
ELSE

report failure;
END:;

5.1.5 S-Transform

Input : The table of information about data dependency and input
processor interconnection.

Output : 1t finds out I transformation as best as possible.

22

CHAPTER 5. IMPLEMENTATION

Procedure :

BEGIN
WHILE user’s are giving choices DO

BEGIN

read user’'s input;
test validity of user’s chioce;
IF user’s S is valid THEN

BEGIN
report SUCCEss; ﬁﬁ
report the final architecture 'of the network;
END:;
END:;
IF the user wants all valid S transformations THEN

BEGIN
ask for the dimension of the systolic array;

FOR all possible communication patterns DO

BEGIN
find the SD satisfying the communication pattern;

check for validity of the corresponding .S,
IF the S is valid THEN
BEGIN

add S as well as the resultant architecture the existing

list of valid S transformations;
END;
END;
END:;
END;

23

SAMPLE RESULT

Input File

LU decomposition of a matrix

BEGIN
FOR k¥ := 0 TO n-1 DO
BEGIN
ulk,k] := 1/ alk,k];
FOR j:= k+1 TO n-1 DO
BEGIN
ulk,jl := alk,j3;
END;
FOR i:= k+1 TG n-1 DO
BEGIN
1[i,k] := a[i,k] * ulk,k];
END; _
FOR i:= k+1 TO n-1 DO
BEGIN
FOR j:= k+1 TO n-1 DO
BEGIN
ali,j] := ali,j] - 1{i,k] * ulk,jl;
END; |
END;
END;
END;
Output File
Pipelined version
BEGIN
FOR k := 0 TO n-1 DO
BEGIN

ulk,x] =1 / alk,k];
FOR j:= k+1 TO n-1 DO

24

CHAPTER 5. IMPLEMENTATION

BEGIN
ulk,j] := alk,jl;
END;
FOR i:= k+1 TO n-1 DO
BEGIN
1{i,k] := ali,k] * ulk,k];
END;
J = k+1;
FOR i:= k+1 TO n—~-1 DO
BEGIN-
1$3[i,k,j-1] := 1[i,k];
END;
1 := k+1;
FOR j:= k+1 TO n-1 DO
BEGIN
u$3lk,j,i-11 := ulk,jl;
END;
FOR i:= k+1 TO n-1 DO
BEGIN
FOR j:= k+1 TG n-1 DO
BEGIN
1$3[i,k,j] := 183[i,k,j-1];
u$3lk,j,i] := u$3lk,j,i-1]; |
a$3(i,j,k] := a$3[i,j,k-1] - 1$3[i,k,j] * u$3lk,j,i];
END;
END;
FOR i:= k+1 TO n-1 DO
BEGIN
FOR j:= k+1 TO n-1 DO
BEGIN
ali,jl := a$3[i,j,k];
END;
END;
END;

END;

The data depéndency matnx D [di dy dj] is

1 00 ?
D= [0120]}j
0 0 1 k

‘tt [a |

The transformation I1 satisfying all the conditions is

m={111]

CHAPTER 5. IMPLEMENTATION .]

One possible value of transformation 5 is

010
S:[001]

If we choose n = 5, then the array architecture and the corresponding interconnec-
tions is shown in the following Fig. 3. |

.@. [
(31 (3)

. .. | mogew?nt Df l
3
movement of u
o

Fig. 3Array cofiguration of LU decompositien of mairix
The transformed dependency matrix Dis:

for n=5 and above S.
11
D = [g]xD= 01
_ 0 0

The first row of D i.e.,, IID = [1 1 1] indicates the amount of time unit allowed for its
respective variable to travel from the processor where it is generated to the processor
where it is used. Only two inteconnection primitives are used.

Initially, all the cells are loaded with the values of elements of the matrix and after

the execution of the algorithm, the lower diagonal matrix L is in the lower diagonal
domain and the upper diagonal matrix U is at the upper diagonal domain.

&)

&
&
O

&
&
&

O
S
&)

R e W

CONCLUSION

]

Here the algorithm proposed by Moldovan|2], [3] was implemented which convert the
sequential algorithm to parallel one and mapping of it into VLSI architecture. The se-
quential algorithms here considered have nested for loops. The algorithm stated in the
preceding section parallelizes the nested for loop as much as possible. The algorithm for
finding optimal transformation are exponential in time, but still applicable in practical
cases where number of iterations are high, but level embedding and number of depen-
dencies inside the inner most loop should be limited. In general cases, it will be highly
time consuming.

The main problem in fully automated process is that of finding a goodness criteria to
compare different systolic array architectures with different communication patterns. In
absence of user’s choice, large number of valid S transformations can be obtained, each of
which represents different architectures and communication patterns. It is very difficult
to get the best one from these large number of choices. Here the syntax analyzer is used
to check the input program and it generates some prior information about the structure

of the input program. This information is used to generate the pipelined version of the
program.

There are large scope of future works in this topic. One immediate step is to determine
the criteria to compare two systolic architectures. Beside this, the transformation can be
found out for other type of architectures also. Here the induced ordering on iterations are
tackled by dependency analysis. But the task to find and remove induced dependency by
the operators, by operation analysis remains to be done. Then we can get good parallel
algorithms for better architectures. Moreover, there are different other types of loops,
e.g., IF-THEN-GOTQO, can be considered to make this parallelisation method rohst.

27

BIBLIOGRAPHY

10.

11.
12.

13.

|

. Dan I. Moldovan, On the design of algoﬁthms for VLSI systolic arrays, Proceedings

of the IEEE, Vol.71, No.1, Jan.1983, pp.113-120.

. Dan I. Moldovan, On the analysis and synthesis of VLSI algorithms, TEEE

Transactions on Computers, Vol.C-31, No.11, Nov.1982, pp.1121-1126.

. Dan I. Moldovan and Jose A. B. Fortes, Partitioning and mapping algorithms

into fixed size systolic array, IEEE Transactions on Computers, Vol.C-35, No.1,
Jan.1986, pp.1-12.

. Utpal Banerjee et al., Automatic program parhllelisation, Proceedings of

IEEE, Vol.81, No.2, Feb.1993, pp.211-243.

. H. T. Kung, Let’s design algorithms for VLSI systems, Pfoceedings of Caltech

Conf. on VLSI, Jan.1979, pp.65-90.

. H.'T. Kung, The structure of parallel algorithms, Advanced Computing, Vol.19,

1980, pp.65-111.

. Manas Ranjan Jagadev, Semi-automatic parallelisation of iterative algorithms,

M.Tech. Dissertation Thesis, I.S.I., Calcutta, Jul. 1997.

. B. P. Sinha et al., A parallel algorithm to compute the shortest path and diame-

ter of a graph and its VLSI implementation, IEEE Transactions on Computers,
Vol.C-35, No.11, Nov.1986, pp.1000-1004. |

. B. P. Sinha et al., Fast parallel algorithm for binary multiplication and their im-

plementation on systolic architectures, IEEE Transactions on Computers, Vol.38,
No.3, Mar.1989, pp.424-431.

L. J. Mordell, Diaphantine Fquations, New York,Academic Press,1969, pp.30-33.
Kai Hwang, Advanced Computer Architecture, McGraw-Hill Inc. , 1989,

Kai Hwang and F. A. Briggs Computer Architecture and Parallel Processing,
McGraw-Hill Inc.,1988. |

M. J. Quinn, Designing Efficient Algorithms for Parallel Computer, McGraw-Hill
Inc.,1988. |

28

CHAPTER 7. BIBLIOGRAPHY 29

14. Selim'G. Ak, The Design and Analysis of Parallel Algorithms, Prentice Hall. 1989.

15. CheinrMin Wang et al., Efficient processor assignment algorithms and loop

transﬁ:jrmations for executing nested parallel loops on mul tiprocessors, IEEE Transactions
on Parallel and Distributed Systems, Vol.3, No.1, Jan.1992, pp.71-82.

16. Dan I. Moldovan, Cbmputational models for VLSI systems, Rep. DIM-82-3,1982.

