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Introduction

Development of coprocessors for performing specific set of the
host processor's operations has been a good choice for improving the host
processor's performance. Arithmetic operations like addition and multiplication
-~ of redundant radix - 4 numbers can be done in O(1) time and O(log n) time
respectively [1].This gives the motivation to develop a high speed redundant
radix - 4 coprocessor (RR - 4 coprocessor) which can perform all arithmetic
operations of the host processor. A detailed account of RR - 4 arithmetic,
binary to RR -4 conversion and the re-conversion is given in [1] and will not be
repeated. Logic for addition, multiplication also has been developed [1]. We
consider a closely coupled configuration of the host processor and the
“ coprocessor wherein both the host processor and the coprocessor share the
same bus control logic and clock. This report deals with the various aspects of
design of coprocessor and the implementation details. Some code segments are
also included for reference purpose. Implementation has been done in Verilog
Hardware Description Language[2]. The model coprocessor does only integer
operations and hence division operation has not been implemented due to

floating point considerations, Veriwell Corp.'s Evaluation compiler for verilog
was used for simulation purpose.



Design

The host processor and coprocessor operate in parallel by sharing the
same address and data bus. The external bus control logic controls the sharing
of the bus between the host and the coprocessor. Only the coprocessor design 1s
dealt with and the external bus control logic is not deait with here . The host
processor and coprocessor also exchange control signal for proper
synchronization of operations. Fig 1. shows the details of the communication
‘between the host and coprocessor and also with the bus control logic. It can be

seen that this design assumes that both the host and coprocessor are driven by
the same clock.

Host 4—-‘
Processor

i System External Co -
Clock }  Bus Logi

Co- |
——p Pmc&ss::r l—

Fig. 1 Closely coupled configuration

The coprocessor runs as an independent processor which means
that it has its own instruction set and just needs to be invoked by the main
processor. The remaining like decoding instructions and other operations are

taken care of by the coprocessor itself. Fig 2. shows the pin-out details of the
proposed coprocessor's design.

The data lines and address lines are both 16 -

- bit wide. The following gives the description of signals that are found in the
pin-out diagram in the next page. |
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Fig. 2 Pin-Out diagram of RR -4 Coprocessor

Clk - System clock drives both the host and coprocessor.

Ready - Signal from the host to invoke the coprocessor when it needed
to be brought into service. This signal is asserted when the host comes across a
special instruction.

Power - Common signal to both the host and coprocessor and initializes
the state of the coprocessor by de-asserting all it's control signals.

Reset - Signal from the host to reset the coprocessor, Asserted signal.

Inta - Interrupt acknowledge signal from the host in response to an
interrupt request from the coprocessor.

Gt - Signal from the external bus control logic indicating that the bus 1S
available for the coprocessor during the current clock cycle.

Rq - Asserted signal to the external bus control logic requesting control of
bus for memory operations. |
M - Asserted signal to indicate memory operation. The host can use this
signal to place its request for the bus to the external bus logic.
Rd - Asserted signal to the external bus logic which indicates a read
operation to the memory.
Wr - Asserted signal to indicate a memory write operation.
Busy - Asserted signal used by the processor to wait upon.
Ack - Handshake signal in response to the ready signal from the host. _

Int - Asserted signal to indicate the processor that the current assigned jo
is complete.



The coprocessor has its own set of instructions which it can decode.
The host processor invokes the coprocessor to do some specified operation
when it encounters the special instruction - START. This instruction is 5 byte
long with one byte for the opcode and the remaining two words specify the
starting and ending address of the code scgment for the coprocessor. When the
host processor encounter's an START instruction it issues a READY signal to
the coprocessor. The subsequent clock cycles are used by the host processor to
transfer the two words to the coprocessor. The coprocessor is now ready for
independent operation. The first word which is the starting address of the
coprocessor's code is placed in the Program counter. The second word is placed
in a temporary register. After each instruction is executed the program counter
is incremented. The contents of the program counter are begin compared with
that of the temporary register at the beginning of each clock cycle. If they are
equal then BUSY is pulled low and an INT is issued to the host processor
indicating that the job is complete. The coprocessor then goes back to the
initial state expecting the next READY signal.

Since the bus is not used by the host processor at all times, the
coprocessor also steals some bus cycles to perform its memory operation, a
process known as cycle stealing. The coprocessor has to explicitly place a
request for the control of the bus to the external bus control logic by asserting
it's RQ pin. It monitors GT pin before any memory operation 1s made, so as to
check if it has the permission to use the common bus. The external bus logic
~ decides when to grant the control of the bus to the coprocessor. The RQ pin of
the coprocessor is maintained high when it needs to do any memory operation.
It is pulled low when the GT pin is asserted by the external bus logic.
Otherwise, the RQ pin is low. Once the coprocessor is ready for executing its
required job, the BUSY pin is made high and remains high till the current

execution is complete. On receiving the INTA signal the INT pin of the
coprocessor is made low.

Whenever the host processor uses the result of the operation done
by the coprocessor, then it has to WAIT for the coprocessor to finish its job.
Hence, a special instruction WAIT has to be included in the host processor’s
instruction set. When the host encounter’s a WAIT it tests the BUSY pin of the
coprocessor to see if the current job is finished. If yes then the host proceeds
with its execution or else waits till the completion of the task.



The above synchronization between the host and coprocessor can be
inferred from the following figure also.

Host Coprocessor

Instructions Instructions
Invoke

Coprocessor

Ready Signal m
START Start Job

Execute
Job

Host
Ins{ructions

A 4
Finish

Interrupt Host

Continue Host Instructions

This gives an overview about the design of the coprocessor.



Architecture

The architecture of the RR - 4 coprocessor is very simple with
minimum number of registers. It differs from an 8085 processor in the fact
that all the operations in ALU are performed using RR - 4 logic. To facilitate
this, the architecture includes a binary to RR -4 conversion unit and an output
unit which converts the RR - 4 number to binary. Fig. 3 shows the block
diagram of the proposed architecture.

Extemalfata Bus
| Memory Bufler
Register
16 — bit Internal Bus t
Register Ii}ck Control icgistcrs
e v h
- General Purpose I IR / 16-bit X / 16-bit
{ Registers / 16 - bit -
Output | .
Converter

l I R / 16-bit

General Purpose ]
Registers / RR - 4 CONTROL Z / 16-bit

27-bitl TZ?-bit NI ¢ \

) ) Memory Address
Arithmetic & Logic ¢ ¢ ¢ ¢ ¢ Register
Unit

Control Signals ¢
External Address Bus

Flags

Fig.3  Architecture of RR — 4 Coprocessor

The instruction register (IR), program counter (PC), index register
(1X), temporary registers (R & 7Z), memory buffer register (MBR),



memory data register (MDR), ali are 16 - bit wide. The register Q is used to
hold the most significant 27 - bits of an RR - 4 multiplication. All the genergl
purpose RR - 4 registers are 27 - bit wide. The Z register holds all the 16 : bit
immediate operands of the instructions. The flag register is a 2 - bit register
used to hold the overflow and zero flag.

The register block houses all the four general purpose
registers and their RR - 4 counterparts. When a LOAD instruction 1s decoded
the corresponding 16 - bit register is being enabled and the data is transferred
to that register. It is then converted to RR - 4 number by the binary to RR - 4
converter module and then stored in the equivalent RR - 4 register. Fig 4

shows the details for a single register.

16 — bit_Internal bus_

l

16 — bit Register

Binary to RR -4

Multiplexer

RR-4 Register \
Decoder
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- [ T
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alu_in Lo l — mov_in

iy

Fig. 4

The conversion of the 16 - bit number to RR - 4 number and
storing it 1n the equivalent RR - 4 register is done in a single clock cycle. A
multiplexer selects among the three inputs. The alu in input to the RR -4
register from the ALU after the completion of any ALU operation, where this
register is the destination for storing. The mov_in input is the input during a



MOV operation in which an operand is moved into this register from another
register. The third input is for the load instruction, which loads a data into the
RR -4 register.,

A decoder at the output also serves a similar purpose as above. The
bus_out line transfers the contents of the RR - 4 register to the output unit
during a STORE instruction. Alu_out line makes the contents of the RR - 4
register available to the ALU for arithmetic operations. Mov out line is used
to move contents of the RR - 4 register to the another register when this
register is the source during a MOV operation.

Four sets of the above blocks are combined to make the entire
Register block unit. The outputs and inputs to these four blocks are also
controlled by externals multiplexers and decoders.

The output unit has the RR - 4 to binary re-conversion module and a
temporary register to hold the reconverted 16 - bit binary number. Any input
RR - 4 number is reconverted to binary during a STORE operation.

The ALU operates using RR - 4 logic for all arithmetic operations and
this logic can be found in [1]). Each of the modules which perform an
arithmetic operation are being selected using decoders and multiplexers which
can be enabled or disabled. The ALU is implemented more like an
- conventional ALU. More details are found in the implementation section. The

'ALU also has the ROM modules which are required for addition operation.

The control unit which synchronizes all the register transfer operations

and other control signals will be explained along with the implementation
sections.



Instruction set

The RR -4 coprocessor operates only on signed two’s complement
integer inputs. The design considered here hence does not include division
operation which requires floating point representation. The instruction set does
not include division operation. The instruction set is a minimum subset of
8085’s arithmetic instructions. Each instruction is 2 byte long or 4 byte long.
All immediate operands are two byte long.

There are four general purpose registers available to the user for
programming and one index register which can be used as a pointer. Each of
the 16 - bit registers is converted into an equivalent RR — 4 register internally,
i.e, loading a 16 — bit register with a number is same as loading the RR - 4
register with the equivalent RR — 4 number. The subsequent -operations of
addition, multiplication etc. are performed using RR — 4 logic [1]. The four
general purpose registers are AB, BB, CB, DB and their RR — 4 counterparts
are AR, BR, CR, DR. IX register is the index register holding the pointer.

Data transfer instructions

The data transfer instructions move data from one register to another.

LOAD reg, addr - reg can be any of the four general purposc registers
and addr is the 16 — bit address where the operand can be found.

MOV vreg 2, reg i1 - reg 2 destination register and reg ! is the sourcc
- register for data transfer.

MVI reg, immediate operand - 16 — bit immediate operand is moved
to the reg. |

LDX addr - Loads a pointer into the index register.
STORE reg, addr - Contents of the reg are stored in the location addr.

MVX reg - Contents of the memory location pointed by the index
register is moved into reg. |

No status flag is affected in the above operations.
Arithmetic instructions

The set of arithmetic instruction include addition, multiplication and
increment instructions.

ADD reg 2 reg 1 - Contents of reg 11s added with that of reg 2 and the
result of the operation is in reg 2



ADI reg, immediate operand - 16 — bit immediate operand is added
with the contents of reg and the result is available in reg.

SUB reg 2, reg 1 - Contents of reg I are subtracted from the contents reg2
and the result 1s in reg 2.

MUL reg 2, reg 1 - Contents of reg 1 are multiplied with that of reg 2 and
the result can be found in reg 2 and another internal register.

INC reg - Increments the value of reg by one.

DNC reg - Decrements the value of reg by one.

INX - Increments the index register by one to point to the next location.
NEG reg - Negates the contents of reg.
SOR reg - Squares the contents of reg .
CLR reg - Sets the contents of reg to zero.

All the instructions affect the zero flag, overflow flag and sign flag.

The subtraction and multiplication operations also have immediate operand
instructions.

Control instructions

In the case of RR — 4 logic due to redundant representation, there is
frequent chances for overflow eventhough the binary equivalent of the RR - 4
number may be within limits. Hence, instruction which transfer control on
detecting overflow is included. It is also a good practice to test for overflow at
the end of every arithmetic operation. Since the carry out of any arithmetic
operation is not used, no instruction for checking carry is included.

JZ addr - Jump to the location addr if the zero flag is set, z = 1.

JNZ addr - Jump to the location addr if the zero flag is not set, z = 0.
JO addr - Jump to the location addr if the overflow flag is set, Ov = /.
JNOQO addr - Jump to the location addr if the overflow flag is not set,Ov = 0.

10



Timing and Control

The coprocessor is run by the system clock which also runs the host
processor. Hence it is easy to synchronize the host with the coprocessor. Any
signal either from the host to the coprocessor gets activated only when the
clock is high. The basic instruction cycle is divided into Fetch and Execute
phases. The decoding of instruction is integrated with the execution phase.
When the host processor invokes the coprocessor, the initial few clock cycles
are used for the transfer of the start address and end address of the code
segment of the coprocessor. Here we will discuss the micro-operation
sequence for the various instructions in the instruction set.

When the host encounters the START instruction, it issues the
READY signal to the coprocessor. The following sequence of micro-
operations is executed.

T,: Ack « 1 (inresponse to Ready signal )
T,: MBR « Start Address ( 16 - bit), Ack « 0
T,: Busy « [, PC « MBR

T,: Busy <« 0, MBR < End Address (16 - bit)
Ts: R « MBR

Each T; is a clock cycle. BUSY signal goes high so that the host can delay
- the input of the end address while the start address is begin processed.

Once the coprocessor has been invoked, it is ready for independent
operation by stealing bus cycles and decoding its own instructions. Every
Instruction is preceded by the FETCH phase, hence the later micro-operation

sequences will exclude it. The following is the sequence of micro-operations
for fetch phase.

T,: MAR « PC
T, : tf (GT)
RD «~1,M « 1 goto T,
else

RO « 1 goto T,

11



T,: RD <0, M « 0, MBR « [MAR]
T.: IR < MBR,PC < PC+1
WAIT STATE T, : if(GT)
RO « 0, goto T,
else repeat ..

During fetch operation, the coprocessor should have the control of the
bus else it enters a wait state.

LOAD reg, addr

T,: MAR « PC

T,: RD« 1, M « I, MBR « [MAR]

T,: MAR « MBR,RD « 0, M« 0

T.: RD« I, M « I, MBR « [MAR]

T,: reg «— MBR, PC « PC + [
STORE reg, addr

T,: MAR « PC

T,: RD« I, M« 1, MBR « [MAR]

T,: MAR < MBR,RD ¢« O, M« {

T,: MBR « reg

T: WRe— I, M 1, PC« PC+1

In both of the above instructions the memory operation will be

successful only if the GT pin is high. The other instructions like ADD,
SUB,MUL require only a single clock cycle in which the approprnate control
signals are generated to perform the required operation.

LDX addr
T, : MAR « PC
T,: RD« I, M« I, MBR « [MAR]
T,: IX~MBR,RD « O, M« 0
MVX reg

T,: MAR « IX
T,: RD « I, M« 1, MBR « [MAR]

12



T,: reg« MBR,RD 0, M« 0
ADI reg, immediate operand

T,: MAR « PC
T,: RD « I, M « 1, MBR < [MAR]
T,: reg < MBR,RD «— 0, M « 0

The other immediate instructions have similar timing sequences and
can be easily written down.

13



Implementation

Here we will discuss about the implementation details of the
project. Since the processor is a simple one to look at, the coding for it 1s very
large. We shall start with the basic blocks first and then move on to construct
complex circuits out of it. This implementation has been done in Verilog
language [2]. Verilog is very much C - like. The basic building block of the
language is a Module. A module represents a black box with some inputs and

outputs, if any. Every circuit is described as a module in terms of its basic
functionality. Most of the logic used for the ALU can be found in [1], where
the RR - 4 arithmetic has been discussed in detail. The input to the
coprocessor are 16 - bit binary numbers and the output is also 16 - bit number.
All intermediate operations are done using RR - 4 logic.,

Binary to RR - 4 Conversion

The algorithm for converting binary to RR - 4 1s discussed well
in [1]. For any 16 - bit input number we assume that the number is represented
in signed two's complement form. Hence the msb is the sign bit and the
remaining bits constitute the data bits. The following logic converts a 2- bit
binary number with its sign bit and sign bit from the previous digit position
into an RR - 4 equivalent number. The first step is to convert each two bit
binary number along with its sign bit into an equivalent RR - 4 carry and sum
digit. Let s, a, a, be the input two bit binary number and s, the sign bit. Also,

. let s, be the sign bit of the previous digit position. The output RR —~ 4 carry is
'8, Co ¢y and sumiss,d,d,.

L: s¢c= sasp
co=10
c] =5qSp+5q'sp (ag+aj)
sd=sp' (ag +aj)
do=agaj’ +ag(sp Dsg) +ag'aj (sp &sg)
d}] =aj

The above logic has been implemented as an module. The inputs will be s,
a,5,a, and outputs are s, ¢,,c, and s,, d,,d,. ® represents the ex-nor operation.

14



We use the basic block for building a bigger module which will convert an
input 16 - bit signed bit binary number into RR - 4 carry vector and sum
vector.

The generated RR - 4 sum and carry vectors have to be added using a carry
propagation free adder to get the final equivalent 9 digit RR- 4 number.

RR - 4 to Binary conversion

The method to convert RR - 4 to binary has been described in
[3]. The algorithm described in [4] has been used to add two binary numbers
in O(log N) time. The logic for this has also been given in [4] and will not be
dealt here. The output unit consists of a temporary register and RR - 4 to
binary converter. Here a problem to be noted i1s Overflow. Since the msb of
the reconverted number has to be the sign bit and the remaining 15-bits are the
data bits. When the re-conversion is made, check for overflow has to be made.
Hence, it 1s advisable to do a overflow check after any arithmetic operation.

Register block

This has been explained earlier in the architecture section and
the implementation is similar to the diagram given there. Here the basic
registers are implemented using the always construct of Verilog. Each register

has an input enable , output enable. This sample code shows how a 16 - bit
register is implemented.

/16 - bit register
// Inputs are 16 - bit data, in_en - input enable , out_en - output enable
// Outputs are 16 - bit data
module reg_16(in,out,in_en,out en);
input [15 :0])in;
input in_en,out_en;
output [15.0] out;
reg [15:0] temp;
always @(in or in_en) // Whenever the input or input enable changes

begin
if(in_cn)
temp = 1y
end
assign out = (in_en == 1'bl) ? temp : 16'h0000;
endmodule '-



The multiplexers and decoders also can be modeled in a similar
fashion.
I/ Multiplexers 4 by 1
/{ Input 16 - bit I,,1,,15,1,, Output Out, Selection - Sel
module Mux 4_1(1,,1,,1;,1,,0ut,Sel);
input [15:011;, L, Ly, 13
input [1:0] Sel;
output Out,
reg [15:0] temp;
always @(1, or 1, or I; or I, or Sel)
begin
case(Sel)
2'b00: temp = I;;
2'b01 : temp = I,;
2'b10 : temp = I;;
2'bll; temp = I
endcase
end
assign Qut = temp;
endmodule

!/l Decoder 16 - bit

// Input 16 - bit In, Output 0,,0,,0,,0,, Selection - Sel, Enable - En
module DEC 1 4(In,0,,0,,0,,0,,5¢l,En);

input {15:0] In;

input [1:0] Sel,
output [15:0] 0,,0,,0,,04;

assign O, = ((Sel == 2b00) && (En = 1'b1)) In : 16'h0000,
0, = ((Sel ==2'b01) && (En = 1'bl)) In : 16'h0000,
O, = ((Sel ==2'b10) && (En = 1'b1)) In : 16'h0000,
0, = ((Sel ==2'b11) && (En = 1'bl)) In : 16'h0000;

endmodule

Arithmetic and Logic Unit

The basic module of the adder can add four RR - 4 digits and the
output is a carry and sum. This is done by using ROMs which store the

16



corresponding values of carry and sum and can be found in [1]. The size of
cach ROM is 4K x 6 bits. The input to each ROM is 12 bit through the
address

lines and the output is the 6 — bit RR — 4 carry and sum. Since the size of
the

ROM is very large, it cannot be directly implemented. Here we add the four
RR ~ 4 number using normal signed bit addition to produce a signed 5 — digit
binary number. This can be sent into the address lines of the reduced size
ROM (132 x 6 bits) and the corresponding carry and sum can be obtained.

For example,

it 1, 2, 3, 1 are to be added then in the normal case, the
input to the ROM is 12 bits. The underlined numbers represent negative RR —
4 numbers. But in this implementation we just add the four RR — 4 numbers
using signed bit addition and the result is expressed as a five bit signed
number. The sum of the above four numbers is 1 which is 00001 and the carry
and sum is stored in this location. This reduces the size of the ROM for
implementation purposes i.e, we require to make only 32 entries. But in reality
the ROM is size is the same. The output of the ROM has to be rectified before

it can be used for other operations, the logic of which can be found in [1].
Hence the basic adder consists of the ROM and the rectifying module.

Using this basic adder, the 9 — digit RR - 4 adder can be constructed.

The increment and decrement operation can be easily implemented using the
adder. The subtraction operation can be done using the adder by just negating
‘the sign bits of the RR — 4 subtrahend. The multiplier. uses the adders

extensively for performing multiplication in O(log N) time using RR - 4
logic. |

Control Registers

The control registers PC, IR, IX and MAR define the status of the
coprocessor. I'ig ** shows how these are connected to facilitate the transfer of
data between them. The signals En _pc¢ and Incr_pc are for enabling the PC
register and incrementing the PC and similar is the case with IX and IR.
Mar_out drives the address bus with the contents of MAR. The MBR which is

~ a bi-directional port is also modeled using the always construct in slightly
different manner.

Control Unit

17



The control unit is generally implemented using flip-flops and other
state machine circuits. Here also the control unit for processor is implemented
as a single state machine with various states. Based on the current state contfol
signals are generated and given to the various components. The state machlqe
is entirely specified for its next statc and it runs continuously till the job 1s
finished by the coprocessor. The implementation state diagram depends on the

instruction which is begin currently executed. Based on this the different
control

— J_G_b.u_LmsmalBus

En ir | En_pc Incr_pc

v +v‘+ R

IR l pC >‘
| En_ix +lncr“_ix DECODER

1X ” I

To Control Unit l Mar_out

4

MAR J

Address Bus
Fig.  Control registers
signals are generated.

The following is a state diagram for LOAD instruction.

Start

Fetchl FetchD__pCetchD_pé etch4

v b

F'lil sl /:E,xeﬂ Exec§




Each state represents a particular clock cycle in the micro-operation
sequence. Based on these states the implementation uses another state
machine which will produce the required control signals.
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Results

The design explained in this report for RR - 4 coprocessor has
been simulated using verilog language. The various modules - Binary to RR
_ 4 converter , RR — 4 to binary converter, the control unit , the register
block ,all have been simulated . Later, the integration of all the modules into

the RR — 4 coprocessor module also was simulated. The processor was able
to add two signed bit input numbers. Exact simulation would require the
external bus control logic which was excluded in this simulation. The

simulation does not guarantee the timing constraints required for running of

the coprocessor. Floating point operations also can be implemented in this
design by including some extra modules.

19



Conclusion

The idea to implement the RR — 4 coprocessor is very good one.
Computations can be performed at a faster rate especially, addition and
multiplication. In normal processor, the delay is more for adding two binary
numbers but the hardware required is less. In the case, of RR -4 coprocessor,
the various modules developed shows that the amount of hardware needed for
the coprocessor is more. Hence, there is tradeoff between speed and space.
Also it might be possible that the delays in these hardware elements can
overwhelm the fastness in computation provided by the algorithm. A clear
view can be obtained when the coprocessor is actually designed using the
timing constraints. |
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Sam;{le Codes

/* Module to convert two binary bit with sign bit and sign bit
from previous digit position.*/

module two bit rrd{a,sc,b,c):

input sc; /* sc is the sign bit from previous digit
position */

input [2:0] a; /* al2] is the sign bit al[l]l,a[0] are the
binary bits */

output [2:0] b,c; /* b and ¢ are the RR - 4 carry and sum
respectively */

assign b[2] = {(al[2] & sc);

assign b{l] = 0;

assign b(0] = b{2] | ((~a[2] & (~sc)) & (a[l] | al0]));

assign cf{2] = (~ sc) & (a[l] | al0]);

assign c[1] = ({~ af0l) & all]l) | (all]l & (af2] ~ sc)) |
({~a[1] & a{0]) & (~(al2] "~ sc}));

assign c[0] = al0];

endmodule

/* Module to convert 16-bit binary to RR-4 CARRY VECTOR and
SUM VECTOR */

/* All input binary numbers arxe signed 2's complement number
*/

module bin 8 rrd{a,r,c);

Cinput [15:0] a; /* Input 16 bit binary number
the sign bit */

output [23:0] r,c; /* r is sum vector and c is carry vector*/

, al[l5] 1is

wire [16:0] t;

assign t{l5:0] = {al[l5] == 1'bl) ? {1'bl,~a[14:0]}
(1'b0,a[14:01}1} ;
assign t[16] = {afl5] == 1'bl) ? 1'b0: 1'bl;

/* Instantiation of two bit binary to RR - 4 converters */

two _bit rrd Bi({a[l15),t[1:0]},tl1l6),c[2:0],x{2:0]);
two bit rr4 B2 ({all5],t(3:2)1},rl2],cl[5:31,r[5:31):
two bit rr4 B3({a[15],t([5:4]},rc[5],c(8:6],r{8B:6]):
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two bit rr4 B4({af{l5],t(7:6]1},r(81,c(11:9),{11:9)};
two bit rrd4 BS5({a{l5],t[9:8)},r[11},c[14:12],r(14:12));
two bit rrd4 B6({a[15],t[11:10)},r[14],c[17:15],r(17:15
two bit _rrd B7({a(15],t({13:12]},r(17],c(20:18]),r[20:18
two bit rrd4 B8({a[l5],t[15:14)},r[20],c(23:21],r([23:21

- e 1

b ]

-

endmodule

/* Stimulus for testing the above module */
module stimulus;

reg [15:0] in;
wire [23:0]) sum,carry;
integer 1i;

initial begin

#1 in = 16'b0010111011011010;
#1 in 16'b0001101001101011%;
#1 in 16'b1001010101101010;

#1 in = 16'b0101101011010100;
end

i

bin 8 rr4 Bl (in,carry,sum);
initial begin

i = $fopen("ml.dat");

Sfdisplay (i, "Input 1lé-bit signed number RR-4 Carry
RR-4 Sum");
Sfmonitor(i,"” %b $b $b ", in,carry, sum);
end |
endmodule
[
/* Module for carry propagation free addition of two rr - 4

numbers */

-

module carry prop free add(d,a,b,c,s};

input [2:0] d,a,b; /* d - carry from previous digit either

1,0,-1 */

/* a,b - RR - 4 digits to be added */
ocoutput [2:0] ¢, s; /* ¢ - Carry to next digit, s - sum of
d,a,b */ |
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wire tl1,tZ2;
wire [(2:0] templ, temp2, x,y;

assign tl = {(a[2] & d{2)) | (b[2] & (~d[2])}:
assign templ = {(t1l == 1'b0) ? a:b;

/* Module adds two RR-4 digits to produce a sum nd carry */
module rr4 two digit sum sl(d,templ,x,y);

assign t2 = ~tl;
assign tempZ = (t2 == 1'bl) ? bra;

rr4 two digit sum sZ2({temp2,y,C,s};
endmodule

/* Module to convert 16 - bit binary number to 9 digit RR - 4
. number */

"include "bin 16 sum carry.v"
"include "rr4 2digit sum.v"
"include "carry prop free.v"

module final rrd(p,s):

input [15:0] p; /* Input 16 - bit binary number with a[l5] as
sign bit */

output [26:0} s; /* Output 9 digit RR -4 number */

wire [2:0] t;
wire [26:0] 1;
wire [(23:0] r,c;

/*Module converts the input binary number to rr - 4 carry and
sum vector */

bin 8 rr4 Bll(p,r,c);

assign t =(p[l5] == 1'bl) ? 3'® 001:3'b 000: /* Two's
complement addition adjustment */

/*Module performs the carry propagation free addition rr -4
sum and carry vectors */

carry prop free add cl(3'b 000,r(2:0],t,1[2:0],s([2:0]);
carry prop free add c2(l[2:0],r[5:3],c[2:0],l[5:3],s[5:3]];
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carry_prnp_free#add c3{l[5:3],r[8:6],c[5:3],l[8:6],s[8:6]}; |
carry_prnp_freeﬂadd c4(l[B:G],r[ll:B],0[8:6],1[11:9],5[11:9]),
carry prop_free_add
05{1[11:9],r[14:12],c[ll:9],1[14:12],5[14:12]);

carry prop free_ add
c6(1[14:121,r[17:15],c(14:12],1[17:15],s[17:15}};

carry prop_ free_add
c7(1(17:15],r(20:18],c([17:15],1[20:18]),s(20:18]);

carry prop_free_add
cB{l[ZO:lB],r[23:21],c[20:18],l{23:21],5[23:21});
carry prop free_ add
c9{l[23:21],3'b000,c[23:21],1[26:24},5[26:24]};

endmodule

/* Stimulus for the above module * /

module stimulus;

req [15:0] a;
wire [26:0]) s;
integer myfile;

initial

begin
#1 a= 16'b0011001101011011;
#1 a= 16'b0110010100101091;
¥1 a = 16'bi01010010010010G;
#1 a= 16'b1001010010101110;

#1 a = 16'b010101111010111;
end

final rr4 rl(a,s});

initial
begin
myfile = $fopen{"m3.dat”);
Sfdisplay(myfile, ™ Input 16 ~ bit binary number
RR - 4 NUMBER "1
$fmonitor (myfile, " %b b ",a,s);
end
endmodule
/* ROM module takes an 12 - bit input and gives. a 6 - bit
output*/
/* Implements the addition of 4 rr-4 digits */
"include "sign add.v" /* Modiule to add two sign-digit

number of 4-bits */
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‘include "sign add 4.v" /* Module to add two sign-digit
number of 5-bits */

/* Signed addition of input rr-4 nunbers is done to reduce the
size of

ROM for implementation purpose */
module rom mem{a,b);

input [11:0] a; /* Input 12 - bits i.e, 4 rr - 4 digits */
output [5:0] b; /* Out put rr - 4 sum and carry v/

reg [5:0] romadd[0:31]); /* ROM memory */

wire [3:0] templ, templ;
wire [4:0] rom in;

sign_add sl({a[5:3],a{2:0],templ);
sign_add s2(a(ll:9],a(8:6],temp2);

sign_add 4 s3{(templ,temp2Z, rom in});
initial
begin

Sreadmemb ("in.dat", romadd); /* Binary patterns are read
from the file */

end /* in.dat to load the ROM with
appropriate values */

assign b = romadd(rom in}; /* Output the carry and sum */
endmodule
/*Stimulus for the above module */

module stimulus;

reg (11:0] in;
wire [5:0] out;

integer myfile ;
initial begin

#1 in = 12'b001011010101;
#1 1in = 12'b101010001110;

#1 1in = 12'b101010011111;
#l in = 12'b110001101011;
#1 in = 12'b001010011101;
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end .
rom mem rl(in,out);
initial begin
myfile = $fopen("md.dat”™);

$fdisplay(myfile, " Inputl Input2 Input3 Inputid Carry
Sum"} ;
Sfmonitor {myfile, " b %b &b 3b $b

$b",in{11:9],in(8:6]1,in[5:3],
in[2:0],out{5:3],0ut{2:0]);

end

endmodiule

/* Module to perform signed addtion of two 4-bit numbers */

module sign_add 4{a,b,c);
input [{3:0] a,b;

output [4:0) c;

wire flag;

wire [1:0] t;

wire [2:0]1tl,t2;

wire [3:0] t3;

assign t[1:0] = {a[3],b(3]};:

assign t1{2:0] = (t == 2'b1l0)? (~a[2:0] + 1) : a[2:0};
assign t2[2:0] = (t == 2'b01}? (~b{2:0] + 1) : b[2:0];
assign t3[3:0]= t1[2:0]}] + t2[2:0];

assign flag = (~ t3(3)]) & (al3] ~ bil3]});

assign c[4] = (al3] & b[3]) [ {(~t3[3]1)& (a[3]) | bi(3])):
assign c[2:0) = (flag == 1'bl} ? (~t3[2:0] + 1) : t3[2:0];
assign ¢[3] = t3[3] & (~(al3]"b[3])):

eﬁdmmdule

/* Module for signed addition of two three bit numbers */
module sign add(a,b,c);

input [2:0] a,b;
output {3:0] c;
wire flag;

wire [1:01 t,tl,t2;
wire [2:0] t3;

reg [1:0) out;
assign t[l1l:0] = {a[2]},b[2]};
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assign tl1[{1:0] = (t == 2'b10)? (~a{l:0] + 1) : a(l:0];
assign t2[{1:0) = {(t == 2'b01)? (~b[1:0] + 1) : b[1:0);
assign t3{2:0]= t1[1:0] + t2[1:0]);

assign flag = (~ t3{2]) & (af2] ™ bl2]):

assign c[3] = (a[2] & b[2]) | ((~t3({21)& (al2] | b[2]))}):
assign cl[l:0] = (flag == 1'bl) ? (~t3(1:0] + 1) : t3{1:0];
assign cf[2] = t3[2] & (~(a[2]*bi{2])):

endmodule
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