ID3: Incorporation of Fuzziness and
Generation of Network Architecture

a dissertation submitted in partial fulfillment of the
requirements for the M. Tech. (Computer Science)
degree of the Indian Statistical Institute

By

Pawan Kumar Singal

Under the Supervision of

Dr. Sushmita Mitra Prof. Sankar. K. Pal

Associate Professor Distinguished Scientist

Machine Intelligence Unat, .
N

o~
f..r-"

[ ] -Jl_r'

i.
INDIAN STATISTICAL INSTITUTE
203, Barrackpore Trunk Road
Calcutta - 700 035

g
ot \CAD TN -
5 e
\ Vree
- ‘*__."qr.q__ "
-



Certificate of Approval

This is to certify that the thesis titled ID3: Incorporation of Fuzziness and
Generation of Network Architecture submitted by Pawan Kumar Singal
towards partial fulfillment of the requirements for the degree of M. Tech.
(Computer Science) at the Indian Statistical Institute, Calcutta, embodies

the work done under our supervision. His work is satisfactory.

'- o g_&.%?-??
Mﬁ&ﬁ.i%

Dr. Sushmita Mitra Prof. Sankar. K. Pal



A cknowledgements

At the outset, 1 express my sincere gratitude to Dr. Susmita Mitra and
Prof. Sankar. K. PPal for their invaluable guidance, innovative suggestions
and encouragement. At every stage of this work - from the initial planning
of work upto the final preparation of report, they made serious eflorts to
improve the quality of the work.

In doing this project, a number of individuals have rendered their helpful
suggestions, comments and encouragement; for them 1 would iike to express
my grateful thanks.

First, I am thankful to Dr. D. P. Mandal, for his help and encouragement
through out. Special thanks are due to Mr. B. Uma Shankar for helping

with many technical details. I would like to thank all staff members of MIU
for supporting me during this work. |

- I am also thankful to Mr. Sounak Mishra and Mr. Pabitra Mitra for their
help. I also like to offer thanks to Mr. Hare Krushna Patel and Mr. Rajiv
Verma, my friends and seniors for their valuable suggestions when I was new
to this course.

My sincere thanks are due to Mr. Parveen Gupta, my friend, whose lot of
time has been killed by me during my stay in 1SI.

Finally, I wish to pay my regards to my parents for their patience and devo-
tion.

Pawan Kumar Singal.

11



Contents

1 Introduction

2 ID3: Rule Generation and Network Architecture

3

2.1 Decision Trees
2.1.1 Domain Types

2.1.2 Algorithm 1D3

IIIIIIIIIIIIIIIIIIIIIIIIIII

iiiiiiiiiiiiiiiiiiiii

2.1.3 Handling Continuous Attribute . . .. .. e e e

2.2 Artificial Neural Network

lllllllllllllllllllll

2.2.1 Networkj Pruning . .. ... . ...

2.3 Algorithm for Discretizing Continuous Attribute

2.4 Rule Generation and Mapping onto the Neural Network . . . .

2.4.1 Neural Trees

2.4.2 Proposed Mapping Scheme

ID3: Incorporation of Fuzziness

i1l

llllllllllllllllllllllll

1()

12

13

15

16

20



3.1 Incorporation of fuzziness
3.2 Rule Generation

3.3 Mapping of Rules

4 Results

5 Conclusinns and Discussion

6 Bibliography

llllllllllllllllllll

llllllllllllllllllllllllll

lllllllllllllllllllllllll

Y

31

38

40



List of Figures

2.1 Decisiontree. . . . . . . . . o i o 0 e e e e e e e e e 18
22 Mappedmnetwork . .. .. ... ... .o 19
3.1 Decision tree generated by revID3 . ... .. e 27
3.2 Mappednetwork . . ... .. ... ... ... 00 29
4.1 Vowel diagramin F; — Fyplane ... ... ... .... ... 32



Abstract

A new method of generating fuzzy knowledge-based network is described.
Crude domain knowledge is extracted using the /D3 algorithm. The ID$
approach to classification consists of a procedure for synthesizing an efficient
~discriminatory tree for classifying patterns that have non numeric values.
One of the problems with ID3 is that it cannot deal with numeric (continuous)
data, which most practical pmblems have. In our work a method to use /D3
in continuous attribute case is proposed. The rules are generated in linguistic
form. They are mapped to a fuzzy neural network. Topology of the layered
network is automatically determined and the net is finally pruned to generate
an optimal architecture. The frequency of samples, representative of a rulé,
is also taken into consideration.Fuzzy membership concept is incorporated at
the sample level to handle uncertainty. This involves changing the decision
function at the node level. A novel approach to map confidence factors of

unresolved/ ambiguous n;ﬁdes directly into a fuzzy neural network is also
~ described. |

The effectiveness of the algorithm is demonstrated on a vowel recognition
problem.



Chapter 1

Introduction

Today, in the mass storage era, the knowledge acquisition process represents
a major knowledge engineering bottleneck. Computer programs extracting
knowledge from data successfully attempt to lessen this problem. Among
such systems, inducing decision trees for classification is very popular. The
resulting knowledge in the form of decision trees are found to be quite com-
prehensible. Quinlan popularized the concept of decision trees by inducing
ID3 [1], which stands for Interactive Dichotomizer 3. Systems based on this
approach use an information theoretic measure of entropy for assessing the
discriminatory power of each attribute. ID3 is a popular and efficient method
of making decision for classification of symbolic data. A decision tree as-
signs symbolic design to new samples. ‘This makes it inapplicable in cases
where a numeric decision in needed. As a matter of fact, most of the real
life problems deal with non symbolic (numeric, continuous) data. Recogni-
tion problem with continuous-valued attribute must, therefore, be discretized
prior to attribute selection. Another problem with ID3 is, it can not pro-

vide any information in the intersection region when the classes are highly
overlapping.

In recent years, neural networks have become equally popular due to their
relative ease of application and ability to provide gradual responses. The
‘back propagation algorithm [2, 3] is central to much current work on learning



in neural network. There are many theoretic questions concerning what a
multi-layered perceptron (2, 3] can do and can not do; how many layers are
needed for a given task; how many units per layer are necessary; and so on.
It has been proved that with at most two hidden layers, arbitrary accuracy
is obtainable given enough units per layer. It has also been proved that only
one hidden layer is enough to approximate any continuous function. The
utility of these results depends on how many hidden units are necessary and

this is in general unknown. In many cases it may grow exponentially with
the number of input units.

In this work we propose a scheme for discretization of continuous attribute so
that the ID3 algorithm can be used in continuous attribute cases. Fuzziness
is incorporated in the classical algorithm such that in the crisp cases when the
classes are not overlapping it will boil down to the classical ID3. In the case
of overlapping classes it provides extra information regarding the overlapped
region. Keeping the decision tree generated by IDJ in the background we
propose a scheme to generate a neural network architecture and a method
for initial weight encoding. The method enables automatic generation of the
appropriate number of hidden nodes and layer of the network. This is unlike

the use of random initial weights in the conventional neural network.

The report consist of five chapters. In Chapter 2 a brief introduction
to ID3 and related work is given. The scheme to generate rules from the
decision tree is also _expl_iﬁined. Method to map the generated rules on to the
generated neural network architecture is discussed. In Chapter 3 the way of
incorporation of fuzziness in ID3 is discussed. This is used to generate modi-
fied ID3 rules that are mapped onto the generated layered network. Chapter

4 gives a brief idea of results on Indian Telugu Vowel sounds. Conclusion
and discussions are included in Chapter 5.



Chapter 2

ID3: Rule Generation and
Network Architecture

In this chapter we discuss about ID3, Neural Network (in particular feed
forward network), back-propagation algorithm, rule generation from ID3 and
mapping of these rules onto the neural net whose topology is a.utomatica.lly
defined. The chapter consist of four sections. Section 1 describes the decision
tree, ID3 and some related works. In Section 2, a brief introduction on neural
networks, particularly on MLP, is given. Section 3 deals with the proposed
method of dlSCI‘BtlZatIOD of continuous attributes so that ID3 can be applied
In such cases also. Rule generation from decision and mapping these rules
onto the net in the form of weights is discussed in Section 4.

2.1 Decision Trees

- Decision trees have extensively been used as classifiers in pattern recognition
[4]. By applying the decision tree methodology, one difficult decisions can be
broken into a sequence of less difficult decision. Because of the tree structure,
only some of all possible questions are asked in the process of making the final
decision. The final decision is made at the terminal node, which is reached



by traversing the tree, starting from the root as indicated by decision made
at the internal nodes. The design is performed in top-down fashion. The
nodes are split during the design procedure according to some criteria. Each
node in the decision tree is either a leaf node (decision node) or an internal
node (a testing node). Each leaf node represents a class (unique). If any data
point reaches this node after traversing from root of the tree, we conclude
that the class of the data point is that represented by the leaf node. On the
other hand, each internal node will represent a test with respect to a feature.
There are many algorithms in the literature to generate classification or the
decision trees. Among them ID3 [1] and CART [5] are the two most
important discriminative algorithms working by recursive partitioning the
sample space. The basic ides is the same: partitioning the sample space in
data-driven manner and representing the partition as the tree. An important
property of these algorithms is that they attempt to minimizes the size of the
tree simultaneously they attempt to optimize some quality measure. Since
n any pattern recognition problem 6] any object is characterized by a set of
features, it is better to discuss about the domain type of the features before
going into the detail of the said algorithm .

2.1.1 Domain Types

In general there are two, different kinds of domains for features : discrete and
continuous. In the disérete case each feature can have a number of values
called attribute values, and an object or an data point is characterized by
the values of these attributes. Continuous values of features have a proxim-
ity relation between them. In general a discrete domain may be unordered,

partially ordered or totally ordered whereas the continuous domain is always
totally ordered.

ID3 assumes discrete domains witi;n small cardinalities. This is a great ad-
vantage as this increases the comprehensibility of the induced knowledge.
But this algorithm requires priori partitioning. On the other hand, CART
algorithm does not require prior partitioning. The conditions on the tree
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are based on thresholds (on continuous domain) which are dynamically com-
puted. Because of that, a condition on a path can use a feature a number of
times with different thresholds and the thresholds on the different paths are
very likely to be different. This idea often increases the quality of the tree
but at the cost of comprehensibility. 1t is to be noted here that CART can
be used in case of continuous attribute value but ID3 can not.

QOur objective is high comprehensibility along with processing of continuous
value. This is accomplished with the help of the ID3 algorithm. So before
proceeding further we introduce the 1D3 algorithm [7, 1]. This is followed by a.
brief discussion on the related work of handling continuous valued attributes.

2.1.2 Algorithm ID3

In the fraining set we have N patterns partitioned into sets of pattern be-
longing to class C;,% = 1,2,...I. The population in class C; is N;, and each
pattern has n attributes.

input: Data file Dy with n-dimensional attribute, labeled data.
output : Decision tree.
method :

1. Calculate initial value of entropy.

For the training set, the class belonging of each pattern point is

known. The initial entropy for the system consisting of N labeled
pattern i1s :-

Ent(I) = 3oy —(3) log, ()

= Y k1 ~p; log, pi,

where pg is the a prié}ri probability of the k** class.

2. Select a feature to serve as the root node of the decision tree

7



(a) for each feature F,1 = 1,2,..,n, partition the original popula-
tion into two sub partitions according to the values a;; (j=0 or 1,
stands for the feature value 0 or 1) of the feature F;. There are
n;; patterns in a;; branch, but these patterns are not necessarily

of any single class.

(b) for any branch population ny;, the number of patterns belonging
to class Cy, is ni;(k). Evaluate the entropy of the branch using

Ent(f, F”J) = Eic:l (n:::;}')logz (“ij(h) )

ﬂ{j

The entropy of the system after testing on attribute F; is then
e 2 i -
Ent(I, F;) = Y5, Z"IJ'E x Ent(I, F;, 7).

(c) The decrease in entropy as a result of testing feature F; is AEni(i) =
Ent(I) — Ent(I, F,)

(d) Select a feature Fj that yields the greatest decrease in entropy,
that is for which AEnt(k) > AEnt(i), foralli = 1,2,..,1 , 1 # k.

(e) The feature F} is then the root of the decision tree.
| |

3. Build the next level of the deciston tree.

Select a feature Fi to serve as the level 1 node such that after
testing on Fy: on all branches we obtain the maximum decrease
in entropy.

4. Repeat step 1 through 3

Continue the process until all subpopulations reaching to a leaf
node are of any single class or the decrease in entropy, i,¢, A Ent
1S zZero.



5. Prune the leaf node which contains no pattern point.

2.1.3 Handling Continuous Attribute

In order to treat numeric (continuous) attribute value many investigations
have been done. Among them includes Fuzzy ID3 (8], RID3 9], Neuro-fuzzy
ID3 [8]. In Fuzzy ID3 the numeric range of the attribute is divided into several
fuzzy intervals. The information gain AEnt is calculated by incorporating
membership function of fuzzy sets. In that work the a priori probability is

replaced by relative frequency. The relative frequency of class C), at node b
is defined by:-

2

where

Dtis the data set whose elements belong to class Cy at node b,

Dbs the data set at node b,

| D} |= Yeep, [iijreq 16, (2)-

| D* |= zep [Li.5)eq #4s (z)

i denotes membership value of the i** attribute to the

7th fuzzy set. i

Q is the set of pair (i, j) along the branch from root node to node b.
D is the set of all data elements.

D, is the set of all data element belong to class Cy.

The entropy Ent, gain in entropy AEnt, etc are calculated in the same
" manner as in original 1D3.

'a_
In RID3 {9, first of all features are extracted using the fuzzy c-means (FCM)
algorithm [10]. Then feature ranking is done with the principle that good
features should not show much variation within a class but should have sig-



nificantly different values for different classes. After this, the sampie space
is partitioned to form a deecision tree.

Ichihashi et. al. (8] proposed a slightly revised version of 1D3. They find
out the membership of each sampled data belonging to (all possible) pat-
tern classes using a B-spline membership function of degree 3. Then they
apply the fuzzy ID3 algorithm followed the ID3 algorithm with the modili-

cation that the decision will be taken after solving a nonlinear programming

problem:- :
MAT k- —Pk 1083 Pk

subject to 3.4, M) £ Ygen, V(i € 1)
and Ekfz‘li D = lrpk 2> 01

where A; is any subset of the universal set X and m(c) is the probability
assignment to c¢. In one of his works Janikow [11] discussed a way to incor-
porate fuzziness to the decision tree to handle the continuous attribute case.
His way of tree building procedure is the same as that of ID3. The only
difference is that a training example can be found in a node to any degree.

Wang et.al {12] in a very recent work proposed a scheme to handle the con-
tinuous case by discretizing the attribute. A continuous valued attribute is
discretized during decision tree generation by partitioning the range into two
intervals with the help of a threshold value T. A threshold value T for the
continuous attribute A is: determined and the set (A < T) is assigned to
the left branch while the set (A > T) is assigned to the right branch. This
threshold is selected among several possible ones subject to the condition
that the class entropy of the partition induced by the chosen point attains a
minimum among all class entropies of different threshold choices. One disad-

vantage of this scheme is that in the process one attribute may make more
than one decision in a path from the root to a leaf.

2.2 Artificial Neural Network

There was an explosive growth in the field of neural networks in the last
two decades, because it is one of the best and highly useful techniques for
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machine learping. An artificial neural network is represented by a labeled
di:rected graph, where nodes perform some simple computation and each
connection or link conveys a signal from one node to another, labeled by
a number called the strength or weight of the link indicating the extent to
which a signal is amplified or diminished by the link.

Before the neural net is able to give any decision, it must be trained with
the training samples. In general there are two difierent learning paradigms
12, 3], namely supervised and unsupervised. In supervised learning the net-
work has its output compared with known answers and receives a feedback
about any error. On the other hand in the unsupervised learning scheme
the network must discover for itself interesting categories or features in the
input data. In our work we shall be dealing only with supervised learning
mechanism. Among different network architectures the feed-forward network
2, 3] is the most important. The back-propagation algorithm [2, 3] is central
to much current work on learning in neural networks. The aigorithm gives a
prescription for changing the weights wp, (weight on the link from node p to
node q) in any feed-forward network to learn a training set of input-output
pairs. The basis of the algorithm is simply gradient descent which suggests
changing each weight w;, by an amount Awy proportional to gradient of E
(the error) at the present location, e,

ey OF
AWik = ~MN gy

where 7 is a parameter called the learning rate of the network and its value
lies between 0 to 1.

The weight wy will be updated by the following equation:

W . ,p0ld
w}}:"‘ = Wi + Awik.

:_i
The computation done at each node can be expressed by the sigmoid function.

1
g(h’) "— i+exp(—28h)’

11



where 3 is called the steepness factor and is often set to 1 nr%.

To avoid oscillation near some local minima some inertia or momentum is
given to each connection weight. This scheme is implemented by giving a
contribution from the previous time step to each weight change:

Awy(t+ 1) = ?] + alAwi(t),
where a is called momentum pammeter a,nd its value lies between 0 to 1.

2.2.1 Network Pruning

The above obtained network is pruned by doing the sensitivity analysis [13].
In this method we check which are the node active at any particular time.
The nodes which are not active are pruned. The measure of relevance p of

any node is calculated by inducing a gating term x for each unit such that

0; = Q(Zi ‘lﬂjixiﬂi)

where o; is the activity of the node j. The important of the unit is then
approximated by the derivative

{
(g;‘:‘ ) |XI'_1

where E' = 3 (| tp; — 0p; |)
which is computed by back propagation.

When g; falls below certain threshold the unit can be deleted.
To suppress the fluctuation we use

pi(t+1) ='-=,\0.Bpi(t) + 0. Qgi

12



2.3 Algorithm for Discretizing Continuous At-
tribute

As mentioned in Section 1, ID3 algorithm for generating decision tree requires
discrete valued attribute. If the pattern recognition problem characterized
by comtinuous valued attribute, then the attribute must be discretized ap-
propriately. Here in this section we describe a new way of discretizing the
continuous attribute. Linguistic terms like low, medium and high are used in
the process. This is done in two steps. In first step an n-dimensional feature
space is translated to a 3n-dimensional feature by using three equidistant
I membership functions [14, 15]. In step 2, 3n-dimensional features with
continuous domain is translated to 3n-dimensional binary valued features by
using appropriate threshold on each dimension. The detailed algorithm of
the above mentioned steps are given below:

Given an n-dimensional pattern F = [, F, ...., F,] , it is transformed into
a 3n-dimensional vector as 14, 15]

F = [ﬂlmu(Ft): Hmed(Fy)s <+ ”hiQ(Fn)] = [y, 41, s Yn]

Where p value indicates the membership functions of the corresponding lin-

guistic Il-sets low, medium, high along each feature axis. The algorithm to
calculate the membership of the pattern point is:-

!
f

calcInputMembership()

input : A data file D, consist of n-dimensional attribute, labeled data.
output : A data file Dy consist of 3n-dimensional attribute, labeled data.

method :

for each attribute F; do
begin
find Fipnin = min{Fy;, Foj, ... Lkj}

13




Fimaz = max{Fl.‘f! Fj, '"Fk.‘:‘}:

where k is the total number of samples in the input data file.
find mean m; of {F\;, Fy;, ...Fy;};
find mean m;; of the attribute whose value lies in [Fjmin, m;);
find mean m; of the attribute whose value lies in [m;, Fimaxz);
Centers C;,, = m;, Cji = mj, Cjp = My,
Radius Aj =2 % (Cy, — Cg)

Ain = 2% (Cr — Cp)

AI*(FJ_THH:E_CTH) b AR *(Con — r}min)
ijuz—‘rjmtn

H(F:n Cjn’\Jt)_ 2% (1 - "ri;cﬁ )2 Jor —%" < “FJ - Cﬁ” < )‘ﬁ
“1—2*(115 C‘" )% for 0 < || F; — Cjif| < ééi

= 0 othermse

Ajm =

(for + = low, medium,high.}
piryy = IL(Fj, Cji, Aji)-
end

discretized()
input : data file D;with n-dimensional attribute labeled data.
[Tl, Tz, covny T3H]3n-dimensi0na.l threshold vector.

output : data file D; with 3n-dimensional attribute with binary value.
method : |

Get data file D4 containing 3n-dimensional membership value by using
algorithm calcMembership() with input file D;.

for i = 1 to k do (where k is the total number of pattern points in data file D;)
begin |
for =1 to 3n do

begin |

if Fj; <T; \
then write F;; = 0 in file D,

else write Fi; = 1 in fhle D,

end

14



end

2.4 Rule Generation and Mapping onto the

Neural Network

Now we are in a position to formn a decision tree for any kind of data. Once
the decision tree is ready, rules from the tree can be generated in conjunctive
normal form by using the proposed algorithm. Before going into further
detail let us describe related literature on neural trees.

2.4.1 Neural Trees

Both decision trees and neural networks are most commonly used tools for
pattern classification. In recent years enormous work has been done in an
attempt to combine the advantage of neural networks and decision trees.
The new architecture so obtained is called a neural tree. The neural tree
architecture reporfed in literature can be grouped according to the learning
paradigm employed for thefr training. Most of the existing neural tree archi-
tecture were directly or ilndirectly related to feed-forward neural networks. In
fact, the characterization neural tree was indistinguishably used to describe
approaches using feed-forward neural network as a building element in order
to improve the decision of decision tree, along with approaches employing
decision tree as a tool for building and training feed-forward network.

In the first family of approaches, one attempts to develop a tree structure
containing a feed-forward neural network in the nodes. Some of the remark-
able work in this area are Sankar and Mammone’s neural tree network (NTN)
[16] and competitive neural trees by (CNeT) Behnke et. al[17]. The architec-
ture of NTN consists of single layered neural network connected in the form
of tree. On the other hand CNeT has a structured architecture and performs



hierarchical clustering by employing unsupervised learning at node level.

In the second family of &pproaches attempt 1s made to build neural networks
either by developing tree structured neural network or by mapping decision
trees to multi layer neural network. Sethi [18] proposed a procedure for
mapping a decision tree into a multi layered feed-forward neural network

with two hidden nodes. The mapping rules described there can be stated as
follows:

The number of neurons in the first hidden layer equals to the number
of internal nodes in the tree. Each of these neurons implements one of
the decision function of the internal nodes.

The number of neurons in the second hidden layer equals to the number
of leaf nodes in the tree.

The number of neurons in the output layer equals to the number of
distinct classes.

This method of mapping the tree onto the neural network produces a net
with very high complexity.

2.4.2 Proposed Mapping Scheme

The algorithm used for rule generation is as follows:

Algorithm ruleGeneration()
input : Decision tree.
output : Set of rules.

method:

for each path from root to leaf do
begin

16



rule = ¢; current_node =root_node;
dowhile{current_node # leal_node}
begin
if the leaf node lies in the left subtree to the node having decisive feature £;
rule = ruleA F;
else rule =ruleA F;
end
assign the decision of the rule by the representative class of the node

to which it takes the sample point.

frequency of the rule is the number of pattern points reaching to the node
in training data assign the frequency to the rule.
end.

Now we will illustrate our scheme of mapping the decision tree into the neural
network by the following example.

Let the training set consist of 10 sample points, to be classified into two
classes according to two continuous valued feature ¥ and Fs. These features
must be discretized before being fed to the algorithm. By using the algorithm
discretized() we get 6-dimensional features. Ly, M\, Hy, Ly, M3, H,. With
these feature let us generate a sample decision tree shown in Fig. 2.1.

The rule corresponding to the decision trees are:-

f

1. E — Cl; 4 'ﬁ
2. LAM\AM, — Cy; 2

4. LAMIAM;, — Oy 1

Note that the number to the right of a rule indicates the number of pattern
points satisfying that rule. Each rule corresponds to one hidden node.

The corresponding mapped neural network is given n Fig.2.2:

17



Figure 2.1: Decision tree

As class C; has two rules with frequencies 4 and 2, we choose 2 hidden nodes
with initial output layer weights respectively,

1

ol ——

o 2
442

442

3 | I

b

L3 | —

These percolate down to the weights in the input layer in proportion to the
number of inputs attribute connected to that hidden node. Hence rule 1,
with L, provides a weight of —3— (taking account of the negative attribute
1—) Sm:ula.rly the second rule of C, has 3 attribute. Hence the weights are
| 9,4} = g, ;_% = —} respectively. The same holds for the class Cy. This
corresponds to the 1n1t1a1 weight encoding. Backpropagation is used to train
the network further. Note that the remaining links not (specified by the

rules) are initiated by very small random numbers. _ &

In the proposed algorithm we handle continuous valued attribute using hn-
guistic labels. These are mapped onto a layered network. The weight encod-
ing procedure has been explained with an example. However, some issues
like handling of overlapping classes could not be tackled. To circumvent this
problem we designed the fuzzy version of the algorithm, which is discussed
in the next chapter.

18



-Figure 2.2: Mapped network
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Chapter 3

1D3: Incorporation of Fuzziness

In Chapter 2 we have shown how the ID3 algorithm can be used in the con-
tinuous domain case by applying our proposed scheme. Another stringent
requirement for ID3J is that, the classes must not be overlap. In case of over-
lapping, I1D3 fails to give any decision. In this chapter we propose a revised
version of the ID3 algorithm by incorporating fuzziness at the sample level
and at the node level, such that the proposed algorithm will boil down to
classical ID3 in the crisp case. Moreover when the classical ID3 fails to give
any decision, our algorithm will provide more information about the over-
lapping area, this is usefﬂl while mapping the tree onto the neural network.
This chapter consist qu two sections. Section 1 deals with the incorporation
of fuzziness into the ID3. Section 2 we describe the rule generation method.

Section 3 provides in brief the method used to map the revised algorithm to
a fuzzy MLP.

3.1 Incorporation of fuzziness

HI
s

Let us concentrate on why 1D3 fails to give any information when There

are overlapping pattern classes. In ID3 algorithm we partition the sample
space in the form of a tree by using attribute values only. When two sample

20



points fram two different overlapping classes lie in the intersection region,
the corresponding features for these samples are expected to be the same.
Which implies they will travel through the same path in the decision tree
and finally land onto a same node. We cannot further split the node because
for such a node the gain in entropy AFEnt will be zero, which is one of the
stopping criteria during tree building. Thus in the overlapped region an at-
tribute value fails to provide any decision about the leaf node. In order to
get more information we have to dig the data further. Intuition tells us that
the pattern points of any particular class must be clustered around some
characteristic prototype or cluster center. We want to exploit the fact that
the points nearer to the cluster center have high proximity with the cluster
center as compared to the points further from it. Once we know the cluster
center, we can compute the distance of any sample point from that particular
- center. Then conclude this less is the distance, the more is the chance of the

point belonging to that cluster. Taking these facts into account we compute

the membership of each patiern into any of the class using the following al-
gorithm [14, 15]

calcClassMembership()

input: data file D; with n-dimensional attribute labeled data,
number of classes : 1 |

output : data file D, containing class membership of each pattern.
method : |

for each class Ci do
begin
Calculate n-dimensional vector O = [Oy,, Oka, .-, Oxn] and Vi = [Viy, Via, .., Vi)
where Oy; is the mean of features i belonging to class Cy,

Vi; 18 the standafd deviation of features i belonging to class Cy
Calculate the weighted distances of the training pattern F; from the class C, as:

2
— n F5j —Ogj
Zik — JZj:l [ LV;,_,; l]

21



Calculate the membership of the i** pattern in the &t class as

ﬂk(ﬂ) = l+(%"-)ﬁ

end

Once the membership is calculated we are in a position to decide whether
we can make any decision or not. Mandal ef. al. [19] provides a scheme
to calculate the confidence factor (CF) and rule base to infer whether the

sample point belongs to a particular class or the other. We adopt this notion
of CF as:-

OF =4[+ b5 5o (4 = )
where {ux} are the class membership of the pattern to k®» class, and u' is

the highest membership value. Note that we compute CFy and C'F; (wlhen

second choice is necessary), such that ' refers to first and second membership
values respectively.

Rulebase:- CFy denotes the CF corresponding to class Ci

1. If 0.8 < CFy < 1.0 then very likely class Ckx and there is no second
choice.

2. If 0.6 < CFy < 0.8 then likely class Ci and there is second choice.

3. If0.4 < CF;., < 0.6 then more or less likely class C}, and there is second
choice. -

4, If 0.1 < CF,0,4 then not unlikely class Cy and there is no second
choice.

0. If CF, < 0.1 then unable to recognize class Cx and there is no second
choice.

In our case we calculate the CF corresponding to the class with highest and
second highest membership value%. In case of single choice (when rule 1 fires)
we update the confidence factor to one and an aggregation has been made
at the node level. This is given in the following algorithm. Fuzziness is in-
corporated at the node level by changing the decision function from classical
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entropy to a fuzzy measure which is defined in the algorithm itself. Property
of this function is that it gives more weightage to that attribute which has

a higher discriminating power. The function is designed in such a way that
when the class memberships are zero or one it will boil down to classical
entropy. The detailed algorithm is given below:

In the training set we have N pattern from ! classes C;,i = 1,2,...I. The
population in class C; is V;, each pattern has n attributes.

rev_ID3()

input : Data file D, with n-dimensional attribute, labeled data.
output : Decision tree.
method :

1. Generate data file D, with discrete 3n-dimensional attribute by using
algorithm Discretize() with input file D,.

2. Generate data file D; having class membership to each class by using
algorithm calcClassMembership(} .

3. Calculate initial value of Fuzziness measure (FM)

After step 2 fm: the training set, class membership is known for
all the patterns; also the class belonging of each pattern point is

known. | Thé initial FM for the system consisting of N labeled
pattern is :-

PMUI) = Shes (e Shettems minimes L) = () oz (35))
— Zi::l (# g:l&c:rk min(/—"mm I - ﬂ'mc) — Pi 1052 Pi)

where pi is the a prior probability of the £ class and Uine
denotes the membership of the m** pattern to ct* class .

4. Select a feature to serve as the root node of the decision tree
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(a) for each feature F;,i=1,2, ..., n, partition the original population
into two sub partitions according to the values a;;(=0 or 1, stands
for the feature value 0 or 1) of the feature F;. There are Thi

patterns in a;; branch, but these patterns are not necessarily of
any single class.

(b) for any branch population nij, the number of pattern belonging
to class Cy is ny(k). Umk; denotes the membership of the mt"
pattern in the k™ class. Evaluate the FM of the branch using

FM(I, F, j) =

"i;{k)

k=1 (n—;}' Y e 18ccmks TN Ly 1— Prnei ) —( e ) log, (=& )) The
F'M of the system after testing on attribute F; is then

FM I,Ft)z J"—“IZT—JE;*FM(I’E’J)

(c) The decrease in FM, as a result of testing feature, F; is
AFM(i) = FM(I) - FM(I, F)

(d) Select a feature Fj that yields greatest decrease in FM, that is for
which AFM(k) > AFM(i), forall s = 1,2,..1, i * k.

() The feature F; is then root of the decision tree.

5. Build the next level of the decision tree.

Select a feature Fis to serve as the level 1 node such that after

testing on Fis on all branches we obtain the maximum decrease
in F'M.

6. Hepeat step 3 through 5

Continue the process until all sub populations reaching to a leaf
node are of any single class or decrease in FM, i,e, A FM is zero.
Mark the node which have more than one class pattern point and

which is a leaf node as a unresolved node.
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7. (a) for each unresolved node calculate the confidence factors [19] CF
and CF, as:-

for each pattern reaching to that node calculate
CF = %IJ:"I + I_}i' Elzl{’f - ﬂk}]
where {1} are the class membership of the pattern to kg, class.

if i = maz{px} then CF = CF) if 4 = second maximum of { i}
then CF = CFg

(b) Identify the class corresponding to which there is at least one C'F
or C'F, in the node.

(c) for each pattern point in the node

i. ifCF, 2 0.8 then put CFy=1,Cfy =1
and consider the class wise summation of th CF value of the
classes found above and take the average.

ii. Mark the class getting maximum and second maximum CF

value.

iii. Declare the node as the representative of the classes found
in the above step with membership corresponding to the CF

values.

8. Prune the leaf node which contains no pattern points.

3.2 Rule Generation

The algorithm ruleGeneration() described in Chapter 2 is modified for gen-
erating rules from the decision tree obtained by the algorithm rev_1D3.

Algorithm rev_ruleGeneration()

input : Decision tree.
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output : Set of rules.

method: for each path from root to leaf node dp

begin
rule = ¢; current_node =root_node:
dowhile{current_node # leaf node)
begin
if the leaf node lies in the left subtree to the node having decisive feature F;
rule = ruleA F;
else rule =ruleA F;
end
in training data, assign the frequency to the rule.
/* Frequency of the rule is the number of pattern points reaching to the node */
For the rule which takes the sample point to the leaf node and is
not marked in step 6 of the algorithm rev_ID3(),
assign the confidence of the rule as 1 and decision of
the rule by the representative class of the node .
For the rule which takes the sample point to the leaf node which
is marked in step 6 of the algorithm rev_ID3(),
assign the confidence of the rule by CF, and CF, and
the decision of the rule by the classes having these

confidence factors. Also assign the frequency of the
correspondiqg satistying this rule.
end.

3.3 Mapping of Rules

Now we will illustrate our scheme of mapping the decision tree obtained from
rev_ID3() into the neural network by the following example.

Let the training set consist of 15 sample points, to be classified into three
 classes according to two continuous valued features Iy and F5. These fea-
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tures must be discretized before being fed to the algorithm. By using the
algorithm discretized() described in Chapter 2 we get 6-dimensional features:
Ly, My, Hy, Ly, My, Hy, With these features let us generate a sample decision
tree shown in Fig. 3.1.

Figure 3.1: Decision tree generated by rev_ID3

Let, the data points in the unresolved node represented by " U” be d;, ds, ds.
The following table indicates the membership of these data points in the
three different classes:

C, Cp C;
d; 080 0.60 0.02
dp 0.70 0.50 0.13
d; 0.16 0.90 0.10
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The CF; and CF;, (sample level) of dy,d,,ds corresponding to the classes
with highest and second highest frequencies are given in the table below:

CF, CF,
di 0.645 (C,) 0.395 (Cs)
dy 0.51(C,) 0.291 (C;)
d, 0.835 (C3) -0.09 (C;)

As row 3 has CF; = 0.835 (> 0.8 by step 7(c) of algorithm rev_ID3), hence
CFy =1and CF; = 0 Aggregated CF for class C; is (0.645 + 0.54 + 0)/3 =
0.365 while that for class Cj is (0.395 + 0.291 + 1)/3 = 0.562. As class C;

has a higher membership we put CF| for node ”U” as 0.562 for class Cs and
CF; = 0.365 for class C;.

The rules corresponding to the decision trees obtained from rev_ID3 algo-
rithm are:-

1. E ~ 01;4,1.
2. MIALIAM‘J — 02;4, 1.
3. MIAL, = Cy4,1.

4. MiANL A, - 3,0.562, 0.365, Cs, C,. 1. 2.

Note that:

a) the two numbers to the right of a rules (1-3) indicate the number

of pattern points satisfying that rule and the confidence of the rule
respectively

l.

b) in rule number 4 the entities after ” — " indicate respectively the
Irequency of the rule, first and second confidence factors, classes corre-
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sponding to these confidence factors and the frequency of the sample
belonging to these classes which satisfying this rule respectively.

The corresponding mapped neural network is given in Fig.3.2;

Figure 3.2: Mapped network

Since there are four rules generated in total, we have four hidden nodes. As
class C) has two rules with frequency 4 & confidence 1 and frequency 2 &
confidence 0.365, the output node will be connected to 2 hidden nodes with
initial output layer weights

s*1 =2 240365 = 0.121 respectively.

If there is only one output node connected with any hidden node, the weight
on the hidden-output link will percolate down to the weights in the input layer
in proportion to the number of input attributes connected to that hidden

- 2
node. Hence rule 1, with L;, provides a weight of - (taking into account of
the negative attribute L,).

5.

When there are more than one output nodes connected to a single hidden unit
(corresponding to unresolved nodes) then the maximum of all the weights on
the links from that node to all connected output nodes is taken. This will
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percolate down to the weights in the input layer in proportion to the number
of inputs attribute connected to that hidden node. For example rule 4 shows
that two output nodes denoting class C; and class Cs will have a connection
with one common hidden node with weights 0.121 and 0.112. Maximum of
these is 0.121. Hence the weights are: 212 = g 4, %121 _ 0.04, 2L — _p.04

3 3 3
respectively.

Now we train the MLP for the class membership of the pattern. Inferencing
18 done with the principle that the node which fires with higher confidence
1s the winner. L

In the proposed algorithm we are able to handle the cases overlapping classes
by incorporating fuzziness to ID3. Rules are generated from the new decision
tree. These are mapped onto a fuzzy MLP. The welght encoding procedure
has been explained with an example. The following two chapters deal with
the result and the concluding remarks.
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Chapter 4

Results

Here we present some results demonstrating the effectiveness of the algorithm
on a set of 871 Indian Telugu vowel sounds [14, 15]. As a comparison, the |
performance of the conventional MLP has also been provided.

‘The vowel sounds, collected by trained personnel, were uttered by three male
speakers in the age group of 30 to 35 years, in a Consonant-Vowel-Consonant
context. The details of the method are available in [14]. The data set has
three features; F1, Fy and F3 corresponding to the first, second and third
vowel format frequencies bbtained through spectrum analysis of the speech
data. Note that the béundaries of the classes in the given data set are seen
to be ill-defined (fuzzﬂr). Fig. 4.1 shows a 2D projection of the 3D feature

space of the six vowel classes (a,1,u,e,0) in the Fy — F, plane, for ease of
depiction.

Tables 1-3 provide the performance of the networks initially encoded using
ID3 and revID3 (involving fuzziness). Comparison is made with the con-
ventional MLP, initialized using random weights. Different training set sizes
10%, 20%, 30%, 40%, 50% are used. Recognition scores (classwise and over-
all} for both training and test sel (100% -training set) are provided. The
mean suqare error (mse) and number of training sweeps are also included.
Classes 1-6 indicate the six vowel classes mentioned above. The mse is used
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Figure 4.1: Vowel diagram in F;, — F, plane
as the stopping criterion.

Tables 1 and 2 involve algorithm ID3 with no fuzziness. However, the fre-
quency of the training pattern is taken into account while computing the
initial weights. Table 1 considers 9 rules for the six classes. This is mapped
to 9 hidden nodes. Table 2, on the other hand, considers 15 rules. Note that
we consider only high frequency rule in Table 1. It is observed from Table 1
that the proposed algorithm gives better results, both in terms of recognition
scores and number of training sweeps. This is because the encoding of prior
knowledge results in a'faster convergence. The gain in terms of recognition
score is however not that explicit in Table 2 involving 15 hidden nodes.

Table 3 demonstrates the performance of the network using rev_ID3, that
incorporates fuzziness in the decision tree. The use of confidence factor
resulted in the generation of 25 rules. Here unresolved nodes of the decision
tree were also taken into account. The performance is always better in terms
of the number of training sweeps. | The gain in terms of recognition score is
not as evident as in Table 1. Thls leads to the conclusion that the smaller
the network, more noticeable is the improvement of the proposed algorithm.
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Table 4 shows the result using pruning. A training set size of 20% was
used. It is observed that pruning results in smaller network when one uses
knowledge encoding. However, the performance is not always better. More

studies need to be made in this regard.
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Chapter 5

Conclusions and Discussion

A novel method of using the ID3 algorithm to initially encode the connection
weights of an MLP has been described. Continuous valued attributes are

handled by the method. Crude rules are extracted from the data set using
the decision tree-based approach. The rules are generated in linguistic terms,
enabling a more natural representation. The frequency of the sample points,

representative of a rule, is taken into account while mapping the rule onto
the neural network. |

Fuzziness is incorf;orated at the node level to tackie unresolved nodes. This
novel method helps one to model real life ambiguous data involving uncer-
tainty in the region of ci;verlapping classes. The concept of confidence is used
to arrive at a suitable decision. This scheme is directly mapped onto a fuzzy

neural network architecture. Each rule corresponds to a separate hidden
node.

Lucid examples are used to illustrate the mapping process. It is observed
that the effectiveness of the algorithm becomes more evident in the smaller
network. In other words, the fewer the number of hidden nodes, greater is the
improvement shown by our algoriifllm as compared to that of conventional
MLP involving random initial weights. This fact has also been established
earlier by Banerjee et. al. {20]. In general, the performance is found to
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improve in term of both recognition scores and as the number of training
cycles.

Using the fuzzy version of ID3 resulted in a larger network. Hence the im-
provement is less marked. However, that the mapping procedure used can
be modified in the future to generate a more compact network architecture.
This would help in highlighting the utility of this fuzzy version.
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