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Chapter 1

Introduction

Many real-life applications such as Digital Signal Processing, Image Processing, weather fore-
casting, neural pracessing, etc. require large amounts of computations to be performed in an
acceptable time frame. It is here that parallel machines provide much superior performance
compared to conventional sequential machines (Von-Neumann Architecture). The demand
for increased performance appears to have no upper-bound in the present day context. Re-
search and Development activities world wide have led to faster and faster processors for
meeting ever-increasing demand for better performance. Major technological breakthroughs
in the form of VLSI have brought about a revolution in miniaturising compuneﬂt size and
achieving even higher speeds. But their is a fundamental physical limit to Spéed whereby
nothing can move faster than light. With today’s technology, computers have reached close
to this fundamental limit. Hence, there is a limit on the number of floating point 0peré.tions
that can be executed on such processors per second. Parallel Processing has been accepted

as the most important architectural approach to overcome the technological barrier.



Parallel Processing is currently a hot research topic with wide research being carried
out by world’s leading scientists and professors. Their remains a lot of scope for improve-
ments and more efficient algirithms keep coming not withstanding the fact that a quantum
leap has already been mabe In design of parallel machines. Parallel machines are being
forseen as the future generation machines. While the architecture for supporting parallel
computation is an issue, it is certainly not the major problem. There are also issues relating
to the prbgrammability of the parallel machines. For effectively utilizing the features offered
by parallel architectures, the synergism among architectures, algorithm and programming

should be properly fostered.

Parallel Processing has been inherently used in some form or the other to increase
pefféi*mance of computers ever since their emergence as computing devices. It is the per-
formaiice that sets an index to commercial existence of a computer. In this direction, ca-
pabilities for bit parallel arithmetic, develbpment of I/O co-processors, cache and content
addressable memories and applications of pipelining, vector processing, time sharing, mul-
tiprogramming, multiprocessing, all strive to achieve optimal performance from a computer

exploiting inherent parallelism.

In Parallel Processing we use multiple processors to execute a single task.This 1s
achieved by parallel algorithms which distribute a single task among all processors. These
processors then communicate with each other using shared variables in shared memory mod-
ules after calculating the intermediate results. Proper synchronization is needed to preserve
semantic dependence in order to guarantee the expected results. This is what makes the
parallel computation more complicated. The interconnection mechanism used to connect
processors to memory modules must be fast enough to guarantee _t'ha.t the time taken for

communication does not nullify the advantage achieved by parallel computation.



The following are the major issues to be considered before one decides to go ahead

with paraliel system :-

o Firstly, we must decide whether the parallel system should support the illusion that

the processor or system is actually executing the program using a single control point.

e Secondly, we must find whether a particular problem or task can be 1mplemented
effectively in a parallel environment. At the same time we need to preserve the system
functionality of the task. An algorithm must be found to distribute a big task among

several processors and synchronize the execution.

e Thirdly, we need to devise a control mechanism to coordinate parallel activities.

-eo-and Lastly, we need to exercise special care to implement an application efficiently,
especially if the system’s parallelism is not completely hidden by the illusion of a

single point of execution.

A shared memory multiprocessor system consists of a set of processors {P, Py, ..., Pn}
and a set of memoéry modules {M;, M, ..., M,,} . The processor memory communications
are established either through a set of switches or through a global shared (multi) bus. Both
types of connections will be called under the generic name interconnection network. A logical

diagram of such a shared memory system is shown in fig. 1.1.

The interconnection mechanism should allow efficient resource sharing among the
processors. Conflict arises when more than one processors attemp to access memory modules
using the same path or switching module in the network. The primary goal of interconnection
mechanism is to minimize this conflict. In our discussions we assume that the interconnection

mechanism is free from any contentions.
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Figure 1.1: Logical Diagram of Processor Memory Intercosnection

Bandwidth is defined as the average number of busy memory modules in each mem-
ory cycle. Ofcourse the Bandwidth ( henceforth denoted by BW ) is also dependent on the

request rate of the processors. It gives an indication of the rate a which the requests are

getting served.

The memory reference patterns of the processors can be -uniform or non-uniform.
The reference pattern is uniform if all processors have the same probability of accessing any
memory module. This is a valid assumption if address interleaving on the lower order address

bits are used. Without this kind of interleaving, however, the memory reference pattern will



be non-uniform in most cases and will depend on the locality of reference.

Uniform Memory Access Patterns (UMA)

Here the physical memory is uniformly shared by all the processors. All processors have equal
access time to all memory words. Each processor may also use a private cache. Peripherals
are also shared in the same fashion. When all processors have equal access to all peripheral
devices, the system is called a symmetric multiprocessor. The UMA model is suitable for
general purpose and time sharing applications by multiple users. It can also be used to
speed up the exqcution of a single large program in time-critical applications. To coordinate
parallel events, synchroization and communications among the processors are done using

shared variables,

Non-Uniform Memory Access Patterns (NUMA)

The NUMA multiprocessor system is a shared memory system in which the access time varies
with the location of the memory word. The shared memory is physically distributed to all
proessors, called local memories of the processors. The collection of all local memories forms
a global address space accessible by all the processors. Obviously, any processor accesses 1ts

local memory faster than it accesses any other memory module. The delay will be due to

the interconnection network.

In a shared memory multiprocessor system having N processors and M memory mod-

ules, contention arises when more than one processor generate requests for the same module,



in the same memory cycle. This contention is measured in terms of memory bandwidth of

the system ,ie., the number of modules busy in the same cycle.

Some authors have used a uniform memory-reference model in determining the an-
alytical performance of the system (1]—[3] . But practical situations show that memory
references in a multiprocessor system are not necessarily uniform. The non-uniform memory
access patterns can be intra-cycle or inter-cycle [8]. There are four types of intra-cycle non-
uniformities. In the first type, each processor may have a fdvoﬁte module which it accesses
more frequently than other modules [4] [5]. In the second type, all the processors may access
a particular module or a class of memory modules more often than others. This particular
module(s) is(are) calied Hotspots. This phenomenon was first observed by Pfister [6]. The
third type assumes that the module that a processor is accessing in present cycle will be
accessed by the same processor in the next cycle with a probability ¥ > ;. The fourth type,
also called spacial non-uniformity, is defined when the events that a particular module has

atleast one request are not independent of each other [7].

We classify each memory module as one of the following types, H (Hot), F (Favorite),

NH (Non-Hot), NF (Non-Favorite). Now we can have an environment with any one of the
following four combinations of memory modules : (NH, NF), (H, NF), (NH,F) and (H, F).

In this work we deal with the problem of memory access contentions for a shared
memory multiprocessor system for all the four types of memory modules environments,
with the assumption that the processor-memory interconnection network does not create
- any bottleneck. We use an Approzimate Queueing Model for our analysis. In an earlier
~ vear, analysis of (NH, NF) and (H, NF) classes has been carried out by Mr. Rajarshi
Choudhary [9]. We suggest small improvements in the expressions dérived earlier and proceed
to carry out the analysis further for the (NH, F) and (H, F) environments. We show that the

presence of multiple hot spots in the system leads to an overall improvement in the system

8



performance in the (HF) environment. We also show that the Bandwidth increases with no.
of hot spots only to a particular value. This limit is called saturatiopn value. We also show

that if processors access their favorite memories with high probability, an improvement in

Bandwidth is observed.

‘We have also simulated a shared memory multiprocessor environment where N pro-
cessors produce requests to memory modules at the begining of a memory cycle. The request
generated are in a random order and independent of requests generated in any eatlier cycle.
Implementational aspects are discussed 1n brief in chapter 7. We then compare the results
obtained by analytical expressions with those obthined by simulation. These are shown

graphically in Appendix A.



Chapter 2

Model Used in Analysis

This chapter provides the basic model used and the assumptions made for the remainder
of discussions. It also lists the symbols used in the work along with their meanings. The

assumptions we make are as follows:

1. The system consists of n identical processors and M globally accessible identical mem-
ory modules. Usually, N>M.

9 There is no contention in the interconnection mechanism.

3. The system is synchronous, ie., all requests made by the processors are at the begining
of a memory cycle with a probability m.

4. All memery'rne;:lules hae a constant cycle time.

5. Each processor generates random and independent memory requests, If two or more

processors make simultaneous requests directed to the same memory module, only one

10



memory requests -

A = m)qodf f \
- —__)
AVDmem
)
_ Pfﬂﬂ
T “____ ( ) ,
Aproc = (1 = m))l‘wr | \
processing AV Dproc

Figure 2.1: Aggregated Queueing Model

—_—

~..of these will be served in that cycle. The remaining requests will be queued up in the
memory queue of that module. Obviously a processor produces next request only when

1ts current sequest has been served.

6. If there are XK hot modules in the system, they are all identical and memory reference
is uniform among them. So, a processor accesses a particular hot module with a

probability 7~ provided that it produces a hot request.

7. The reference pattern among non-hot, non-favorite modules is also uniform.

The nomenclature we use in the following chapters are as shown in table 2.1.

The model we use in our analysis is the Approximate Queueing model shown in fig.
2.1. We use the ﬂow equivalent aggregation to find the average delay of memories as a
function fo mémor_y request rate. For simplicity we assume m=1, ie., the probability of a
processor producing a request at the begining' of a memory cycle is 1. We also assume that

therequest arrivals at the memory modules follow a Poisson’s distribution.

11



Table 2.1: Nomenclature used in the Analysis

Descriptinn

P ei——, .w_ e ——

Number of Preeessers

Ay el

Number of Memery Medules

——

| Number ef Hot Medules

Prebablhty with which a Processor produces a Memory request

| at the begu:ung of a cyele

v
BW

AV D,
AV Dy

Memory Cycle Time

Probeblllty with which a Processor produces a Het Memory Request
| (in other words Hot Memory Request Rqte for each Processor)

Favorit¢ Memory Request Rate for each Processor.

Bandw dth

Load-d¢pendent average delay in a Hot Module as seen by each Preceeeor

Lead-dependeut average delay in a Favorite Module, as seen by each Precesser

AV D¢ | Load-dependent average delay in Non-Hot,Non-Favorite Medule,

‘ \ (as seen by each Processor) -

Ah
/\nh

0;

_ Anhf | Total arrival rate of request at each Non-Hot, Non—Fe.vente Medule

Total arrival rate of request at each Hot Module

Total arrival rate of request at each Non—Hot Module

—

Total service rate  of requests at i® Memory Queue

7 i Utlhzatron Factor ' ~

12
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M | } ( )
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Am — L _ - - <___/ Om
dule M oM
module

Figure 2.2: Decomposed Memory Model

All”;;rocessors place their request for memory at the begining of a cycle. If more than
oné Tequest arrive at a memory module , only one of them is served and the rest are queued
up in the memory buffer (queue). In fig. 2.1, d,, is the rate of service of memory requests
from the aggregated memory queue. &,oc is the rate at the processor end. Ap, is the rate at
which a processor sends a request to the aggregated memory queue. If Ajgop is the rate of

request across the processor-memory loop then Ay = MAjo0p-

Fig 2.2. shows the decomposed memory queue. Note that this is the decompsed
model for the case that there are no Hot or Favorite memory modules. Then the rate of

request at each memory module will depend on the reference pattern among processors. This

will be dealt with in detail in subsequent chapters.
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Chapter 3

An Expression for Bandwidth

"
-,
—,

In this chapter we lay the foundaion for our analysis in terms of basic expressions which will
be used in futura discussions. We state an equation for bandwidth in terms of the average
request rate of each processor. We start by finding an expression for average delay seen by

each processor.

The probability that there are j requests in a memory queue is given as p; = (1 — vV
10], where ; is the utilization factor for the " memory module. y; is given by v; = -’}l
where ); is the rate at which request arrive at the queue and §; is the service rate at the
queue front. Usually we have, v; < 1. This is obvious because otherwise the queue will go

on getting filled indefinitely.

The total delay that a memory request experiances when there are already j request

in the queue is (j + 1)3, where 3 is the memory cycle time. Then, the average delay in that

14



module is given by N
AV Dy, =Y _ p(j)delay(j)

j=0

On simplification we get in general,

We have 3 = 1/4;, assuming that all modules have same service time 3. So we have,

- _F 1
AVD; = 1=53 (3.1)

Total average delay across the loop is given by

AV Digop = mMAV Dy + (1 = M)AV Diproc

If Mipop is the loop rate, then, it is given by,

_ NI
%% ™ AV Dioop
Since we assumed m=1, we get
1
Am = Moo = 2D
So, in general we may write,
M
_51_ = AVD,, = " p(i)AVD, (3.2)
m _ i=1

where, AV D, is given by eq. 3.1.

A simple expression for Bandwidth follows once we have calculated A,. Note that
since a processor produces a request once its previous request is served, the rate at which

requests are served will be the same as the rate at which they are effectively produced by

processors. So Bandwidth is given by

BW =N\a ' (3.3)

15



Chapter 4

Analysis of (NH, NF) and (H, NF)

Classes

—

In this chapter we discuss the environments when there are no favorite modules. We use
the results derived in last chapter and find expressions for throughput of the multiprocessor
system which is ofcourse measured by Bandwidth. We also see that the presence of Hot-
spots improves the performance by increasing the effective bandwidth. We see that beyond
a saturation value, there is no increase in performance if we increase the no. of hot spots.

Let us start with the simplest case when no Hot-spot and no Favorite modules are present.

4.1 (NH, NF) Class

We work on the assumtion that all processors and memory modules are identical. Thus,

when a processor produces a request, the probability that it goes to a particular module is

16



. So, refering to equation 3.2, p(i)’s for all modules is 1/M . The rate of request arriving

at all modules is the same. When a processor sends a request, the delay it sees is due to the

request rates of the remaining N-1 processors. So,

_ (N —1)n
- M
Thus,
L A
Am 1-Nf T 1 - Eel
Or,
\ M
" (M+N-1)p
Thus, VN
WwW=——-—rr—moerr———
S _B (M+N-1)8

4.2 (H, NF) Class

Again all the Hot memory modules are identicle. Requests coming to Hot modules are
uniformly distributed over all Hot modules. Similarly for non-Hot modules. The part of the

request generated by a processor going to Hot modules is pyAm and that to non-Hot modules
18 (1 o ph)/\m-

We now consider a single processor sending request at a rate A,. The average delay

this processor sees is given by,
AVD,. = pnAVDs + (1 —pa)AVDuy (4.1)

where, AV D, and.AVDnh are the average delays seen in Hot and non-Hot modules respec-

tively. This equation also follows from equaion 3.2 since p(i)’s for all hot modules is p, and

17



p(i)’s for all non-Hot modules is (1 — ps). From equation 3.1 we calculate th_e average delays

as, ; 5
AV Dr 1 - Ainf’ T 1= AinnB
The request rate at any hot and non-hot modules due to N-1 processors are respectively
given by, |
(N — 1) AmpPs (N = 1)Am(l - Ph) 4.3)
Ain = ik = ;= (4.
K M-K

Solving equations 4.1,4.2 and 4.3 we get a quadratic equation of the form

aXl, +bApm +c=0

where, |
o o = pa(1 = p)BA(N — 1)(M + N - 1)
o b=—BK(M+N —1— K)— Bpa(N —1)(M — 2K)
¢c=K(M - K)
We then get
v - —b — Vb — dac
mT T 2a

The other solution is neglected as it does not fall in the range 0,1]. Bandwidth is now given
by BW = N\,. By plotting the values of bandwidth against the number of Hot modules
we observe that it increases with number of hot modules upto a saturation value. Thereafter

it rapidly falls. The calculated and simulated results have been shown in appendix A.

18



Chapter 5

Analysis of (NH, F) Class

.
TN e,

In this chapter we analyze the case when only Favorite modules are present. We start with
a special case that the number of processors and number of modules are both same and
then proceed to the more general case. Each module is favorite to only one processor. The

probability with which a processor accesses its favorite module is 7.

5.1 Equal Number of Processors and Modules

There are N Processors and N Memory Mndulss. Each processor accesses its favorite module
| wit.h a probability v and any non-Favorite memory with probability %:_'—"11 When a processor
" sends a request, it encounters delay due to requests from other processors. When it sends
a request to its favorite module, the number of requests arriving at that module from other.
N-1 processors is much less than the those arriving from it. So the rate of request at its

favorite module due to oher processor is quite less. Thus it sees lesser delay whenever it

19



request its favorite module. But when the processor sends request to a non-favorite module.
the rate of request there is high. Most of it comes from the processor which favours that

particuler module. iSo it sees a larger delay. The average delay it sees is thus given by,

AVD,, = yAVD; + (1 - 7)AVDnf (5.1)

where, AVD, and AV Dy are respectively the delays seen in favorite and non-favorite mod-
ules. Let A;; be the rate of request arrival at any module from those N-1 processors which do
not favour it. This rate will contribute to delay seen by a favorite request. Let Ainy be the
rate of request at a module from the processor favoring it and from remaining N-2 processors
(since this excludes the processor which makes the request). This will be the rate as seen by

a processor requesting a non-favorite module. };; is given by,

S f\-;f — L{Y “_1))\111(

1-7) _ 3
N -1 - )‘m(l T) . (52)

since the requests come from N-1 processors and are distributed uniformly among N-1 mod-

ules. A,y is given by,
(N — 2)'\111(1 = 'Z_)_

inf = m 5.3
Again the average delays are given by,
g g
AVD; = AVD,t = —— 4
f 1 _ /\if, D f 1 _ Ainf (5 )

Solving equations 5.1 5.2 and 5.4, we get a quadratic equation

a)l +bAm +c=0

- where,

a = pgf* +qvB* + (1 - ")pf"
b= —ﬁ[l + p + Q]

c=1

20



and p = (1—7) and ¢ = [0 4 4]

A is again found as in earlier cases and the expression for BW follows. If we consider
the case when v = 1 we notice that, A;; becomes 0 and we get Ay, = 1. This is expected
because in this case all processors request their respective modules and produce new request

in each memory c¢ycle. They see no delay due to the other modules. Then we get BW = N.

5.2 Number of Processors more than Number of Mod-

ules

We assume that there are N processors and M modules (N > M). Each module is favorite
to only one processor, and each processor has only one favorite module. Remaining M-N
processors do not have favorite memories. This case is more complicated as the processors
are not all having identicle reference patterns. Let A,, and A,,, be the average request rates
of processors with favorite modules and those without them respectively. Then bandwidth
1S given by,

BW = MM, + (N - M)A\ (5.5)

Aif and A, get modified as follows:

= e G20 7 o1

Ainm is the rate of request at a module due to all remaining processors as seen by a

21



processor having no favorite module. This is given by,

(N — M — DAnm (N=M-Dlim
M M (5:8)

[ (M-1)(1-7)]
AIr‘l'i’-rl'il’ln"""' F},+ M""'l

Am

The average delay seen by a processor having favorite modules is given by,

1 _"Yﬁ

A 1— i

+

(1-19)8
W | (5.9}

1 g
= : 5.1
A*rmr; 1 - )‘inmﬁ ( O)
| Solving equations 5.6 to 5.10 we get two quadratic equations in two variables which
can béhms_ql_}red to obtain expressions for A, and A.;,. The bandwidth will then be given by
equation 5.5. The values of bandwidth found by solving the above equations (by computer
program) hgve been plotted against the simulated results.
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Chapter 6

Analysis of (H, F) Class

L,

L Tpe—

In this chapter we analyse a more general case. The memory modules could be either Hot
or Favorite or neither of them. We however assume that a particular module can be favorite
t0 one processor ody; Similarly each processor has only one favorite module if it at all has.
There are M modules out of which K are Hot, F are Favorite and rest M — F — K are neither
of these. Among N processors, F will have corresponding favorite modules and rest N — F
have no favorite memories. Again as in (NH ,F) case, the processors have different reference
patterns. So, the effective rate of request for the F processors having favorite modules will
be different from the effective rate of request from the other NV — F' processors. Let these be

. respectively As and Any.

Average delay seen by any of F processors (AV Dy) is given by,

23



AV Dy

3'3

yAV Dy + (1 —7)(1 — Ph) [
+ (1= 7)pnAV Dy
(6.1)

N

where, AV D(;,) is the average delay seen by the processor in its single favorite mod-
ule, AV Doy is delay in non-hot, non-favorite module, AV Dys,¢-1) 18 the delay seen by it
in remaining F — 1 modules and AVDj is delay in hot module. If the processor does not
produce a request to favorite ot hot module ( with probability (1 — 4)(1 — pn)) then it get
dlstnbuj:ed uniformly among M — K — 1 modules which are neither hot nor its favorite. This

explains.the above equation.

Similarly the expression for avarage delay seen by any of the N — F' processors 1s

given as,

1 (M-F-K F
T\I}"'(l_p")[ M-k VPwt TR

AVD(- 1, n] + pa AV Dy, (6.2)

Note that AV D(ns sy and AVD( f.7—1) Which are request rates from N — I processors
to favorite modules, and from F processors to F' — 1 non favorite modules are approximately
the same. The expressions for average delays mentioned are based on equation 3.1 with
corresponding A; values being different for each of the cases above. Following the same

subscript notation we calculate the A; values as follows:

24



(N — F)ps (1—7)pnF
Ath_‘[ K }An +["'k" ]Af (65)
Aoy = [(1}'__— 5)_511;_- p,.)] Ay + [w)____%:_z%)f.] \ (6.6)

We'obser.vef-.-that the average delays AV Dinps and AV D;; gm1) are vey nearly the same.
If we treat them as same we get two cubic equations in two variables ( A; and Ay ) after
simplification of aquations 6.1 to 6.6 and using equation 3.1 as a general expression for
average delays. The cubic equation involves cross-products of variables and can best be

solved nwmerically (by programming). The Bandwidth is then given by
BW = FAs+ (N ~ F)ny

The results obtaiged by simulation are compared with those obtained by numerically solving

the above equations and shown graphically in appendix A.
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Chapter 7

Implementational Aspects of Our

Simulation

In this chapter we present a brief description of our simulation which we used to compare
our analytical results with. The simulation was done on Sun Microsystem workstation which
provide facilities to run niore than one program at the same time and view the intermediate
outputs on the same screen. Debugging and testing during intermediate stages would not
have been possible without these facilities. The simulation consists of mainly two programs
(written in C) which run simultaneously in synchronism. One program, process.c, simulates
the processor side by producing requests for memory modules in a random fashion. The other
program memory.c simulates the memory queues by éerving the requests and also counting
the number of requests served. The two processes share some common files described later.
They also share common variables which are included in header.h file. To simulate the

four different classes, the same basic structure was used with small modifications in different

directories. We now describe the the two programs in brief. -

26



Process.c

The progré.m genehtes random requests from N processors (labelled from 1 to N) to M
memofy modules (l#belled from 1 to M). It accepts a seed value as an argument to executable
file which enables t¢ produce different éé_-quences of random numbers each time it is run. The
process calls a delay routine request.delay which produces a delay of a fixed duration (defined
in header.h) each tifne before producing the next set of requests. This is used to synchronize
its execution with jthe memory process. It calls the routine place_reg which generates the
random request set and places it in the file Requests. The routine place_req takes care of
the different refererice patterns among the processors. We present in figure 7.1 a part of this

routine for the (H, F) environment. The code for the rest of cases is similar to this one.

The code shown in 7.1 assumes that the first NO_ FAVMOD memory modules are
favorite, next NO_HOTMOD modules are hot spots and the remaining are neither. Similarly
the first NO_FAVMOD processors are having favorite modules and the rest have none. Before
producing the requests, the routine reads the Ready file which contains the information
about the previous request produced by processors. If their earlier request is served then

they produce new one, else they produce a request to 0** module (which is nonexistent and
so) later discarded.

The main program puts a request in a file called Requests and puts 1 in a Status file.
It then waits until the memory process has read the new request set. It then produces new

request set. This is repeated over a pre-defined number of cycles.
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place_req()
{

for(i=1;i<:NU_PﬁCSRS;i++)
{ | |
fseek(ready_f y1*gizeof (int),0); | |
fread(&prc_rezﬁy,sizeof(int).l,ready_fp);
if (prc_ready=+1)
{
seek(ready_fp,i*sizeof (int),0):
fwrite(&zero;sizeof(int),i,ready_fp);
rewind(ready_£p) ;
if (i<=NO_FAVNOD)
{
if ((prob=drand48())<PROB_FAVMOD)
rand_no=i;
else if((prot:drand48())<PHDB4HOTHBB)
i ,

rand_no=( (ifrt) (drand48() sNO_HOTMOD) +1) + NO_FAVMOD -
-glse

do |

rand_no=((int) (drand48 () *NO_MEMMOD)+1) M

while((rand _no==i)|! (( rémd_no)NU_FAVHOD)ﬂ(rantt:_noﬁm_.ﬂm-hm_HﬂTMDD) ));
}

else
{
if((proh=drand48())<PRDB_HDTHOD)

rand_no=((int)(drand48()*N0_HDTMUD)+1) + NO_FAVMOD
else

do
rand_no=(int)(drand48()*N0_HEMMOD+1) ;

while((rand_no>NO_FAVMOD) &g ( rand_no<=NO_FAVMOD+NO_HOTMOD) ) ;
} /* end if x/ |

requests{il=rand_no:
Ty h

else requests{i]=0:
} /* end if */

fwrite(requests,sizeof(int),NU_PRCSRS+1,req_fp);
}

Figure 7.1: A Code Segment to Generate Random Requests
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memory.c

This program reads the request-profile of the processors and adds the requests to respective
memory queues along with the processor numbers. It then calls the routine process.request
which deletes one raquest from each queue and also counts the no. of requests served in each
call. It also places approprate values in the Ready file to indicate that a processor whose
request was just served is now ready to produce another request in the next cycle. The
routine also calls a delay routine to properly synchronize with the process program. Total

number of requests served are counted by the main program which also keeps a track of total
number of cycles to find the average Bandwidth. This program also places a 0 in the Status
file to indicate to process routine that it has read this request and is ready to receive the

next set.

The averaga is calculated over 300-500 cycles. All the parameters such as number of
H.: modules, Probabilities of references, cycletime etc. are kept flexible to get bandwidth

variation with several parameters. All these are shown in Apvoendix A.
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Chapter B

Results

The values obtained by analytical calculations have been plotted along with those obtained
by simulation. These plots indicate the variation of Bandwidth with with various parameters.

They also give a measure of accuracy of our model and the correctness of the expressions we

derived. We note that for (NH, F) and (H, F) classes, the equations obtained were involved

but can be solved by programming.

We observe from the graphs in appendix A. that our Approximate Queueing Model
slightly underestimates the Bandwidth. The reason is that, when we calculated the expres-
sions for average delay seen by a processor at a memorj module, which is caused due to
request rate of all other processors, we assumed that its request was the last to be served
among those which were produced in that particular cYclé. This assupmtion was essential to
avoid too many complications. We however get values quite close to the simulation values.

Also the nature of the curves are identicle for both the plots.

We observe that Bandwidth increases significantly with no. of memory modules. This

~ i8 certainly expected. Bandwidth also increases with no. of processors. But his increase is

30



.~ significant only for small values. For large no. of processors the increase is not significant.

For the HNF' environment, we observe that Bandwidth increases significantly with
" number of i—Ic;t IIlOdlilES upto a saturation value and then falls rapidly. This is because when
.the no. of hot modukbs become large, the probability that any one of t]:}em is refered becomes
significantly less. The very advantage‘(")_f having hot modules is then lost. We also observe
that as probability p, increases, Bandwidth increases and then decreases slightly. This is
because, higher probability of reference to Hot module causes crowding of memory queues

and consequently more average delay.

In NHF environment, we see that as the probability of reference to favorite modules
is increased, bandwidth increases and when v = 1, A also becomes 1 (for the case that
number of modules is same as number of processors). This is indicated in the corresponding
graph. This is expected as each processor sends requests to its module only and there is no

contentions from other processors.

In the HF environment we observe that Bandwidth increases with increase in proba-
bility of favorite module reference v, keeping pj fixed. It varies only slightly with probability
of hot-module reference ps, when we fix . Infact it decreases slightly if py is high since it
causes crowding of hot modules queues. Also, if we increase the number of hot modules we

get significant increase in the bandwidth. But at larger values, the increase is not significant.
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Chapter 9

Conclusions

In this work we have studied the performance of general (N,M) multiprocesor system under
various forms of non-uniform memory access patterns. We used the Approximate Queueing
Model approach to analyse the system performance and proposed expressions for bandwidth
for NHNF and HNF classes. For the NHF and HF classes we propmd equations in terms
of known parameters, which can be solved numerically to obtain the value of Bandwidth.
The analytical results were found to be closely in agreement with the simulated values as 1s
evident in graphs in appendix A. We notice that the bandwidth increases if we have more
hot modules in the system provided saturation value is not reached. Bandwidth increases if
we have more processors having favorite modules. So, we conclude that in a system with hot
spots, it ia better to distribute shared variables in more than one module as long as saturation
is not reached. Also, if a processor needs a certain set of variables more frequently than other

processors, it is best to have them all in one module, which becomes its favorite module.
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