CACHE CONSCIOUS ALGORITHMS FOR
ALL-PAIRS SHORTEST-PATHS PROBLEM

By

Chinmay Mahata

Dr. Srabani MukhOpaq_%raya Dr. KrisnenduMukhopadﬂ%aya |

Research Associate Associate Professor

Advanced Computing and Microelectronics Unit
Indian Statistical Institute
- Calcutta 700 035

CERTIFICATE OF APPROVAL

This is to certify that this dissertation titled Cache Conscious Algorithm for All-
Pairs Shortest-Paths Problem submitted by Chinmay Mahata towards partial ful-
fillment of the requirements for the degree of M.Tech. (Computer Science) at the Indian
Statistical Institute, Calcutta, embodies the work carried under our supervision. His work

is satisfactory.
WWV\/\/W
h

Dr. Srabani Mukhopac}lyaya Dr. Krisnendu Mukholaa yaya
Date: ' Date: {7 -0 — ‘Z,OOO

(Bcmal Examins)

ACKNOWLEDGEMENTS

I am deeply indebted to the Advanced Computing and Microelectrenics Unit, Indian
Statistical Institute, Calcytta and to my guides Dr. Srabani Mukhopadhyaya and Dr. Kris-
nendu Mukhopadhyaya, for their constant encouragement and valuable guidance throughout
this dissertation work. | .

I would like to acknowledge the members of A.C. M.U. of ISI, for offering their valuable
resources , agvice and help for completion for this work. I would like to tbank Mr Subhasis

Banerjee for providing me with many valuable suggestions. I would alai like to thank Mr
Arijit Bishinu for ‘bs help.

[take this of portunity to thank all my classmates.

ISI, Calcuttg;.;__;_ Chinmay Mahata
July, 2000. |

Contents

1 Introduction

1.1 Role of Cache on Optimizing Algorithms

1.2 Caches

ii
1

2 Floyd’s All-Pairs Shortest-Paths Algorithm

2.1 Unoptimized Version of Floyd’s Algorithm

iiiiiiiiiiiiiiiiiiiiiiiiii

2.2 Upper Bound On Attainable Speedup

3 Overview of Related Works

3.1 Related ‘Worh on Optimization of Cache Performance B

llllllllllllllllllllllllll

3.2 Previous Moﬂs on Floyd’s Algorithin

4 Blocked Version of Floyd’s Algorithm

4.1 'T'he Algorithm

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

4.2 Optimal Blocking Factor

5 Implementation

5.1 Design and Evaluation Methodology

5.2 Algorithm

5.3 Experimental Results 0 . L e e

12
12

13

15

15

19

20

22

Introduction

1.1 Role of Cache on Optimizing Algorithms

Traditional algoritm design and analysis has, for the most part, ignored caches. Algorithms are
developed, analyzed, and optimized for the RAM computer model in which a computer has a single
uniformly accessible memory. Comtemporary computers, however, have multiple levels Iof memory
and the memory access time varies significantly from one memory level to the next. So, ignoring

cache behavior can result in misleading conclusions regarding an algorithm’s performance.

Contemporary SUN workstation has an L1 cache, 1.2 cache and a main memory (Figure 1).
Typically, it takes 1 cycle to access data from L1 cache. When the desired data is not in L1l
cache, we experience an L1 miss and the data is brought from L2 cache to L1 cache using 6 to 10
cycles. If the desired data is not in L2 cache either, then we experience an L2 miss and data is
fetched from main memory into L2 cache at a cost of about 50 cycles, and from there to L1 cache,.
Since the introduction of caches, main memory has continned to grow slower relative to processor
cycle time. Cache miss penaltics have grown to the point where good overall performmance cannot
be achieved without good cache performance. as a consequence-of this change in computer archi-
tectures, algorithms that have been designed to minimize instruction count may not achieve the
performance of algorithms that take into account both instruction count and cache performance.

We can reduce run time by organizing our computations so as to minanize the number of L1 and

L2 cache misses.

In our work we propose a blocked formulation of Floyd’s dynamic programming algorithm to find
the lengths of the shortest paths between all pairs of vertices in a directed graph. In the process we.

develop some simple analytic techniques that enable us to predict the memory performance of these

3

4 CHAPTER 1. INTRODUCTION

Mnin

L] L Me
oo ko ot -

810 Cychos 80 Cycles

Figure 1: A Computer With Two Levels of Cache

algorithms in terms of cache misses. Cache misses cannot be analyzed precisely due to a number
of factors such as variations in process scheduling and the operating system’s virtual to phyéical
page-mapping policy. In addition, the memory behaviour of an algorithm may be too complex to
analyze completely. For these reasons the analyses we present are only approximate and must be
validated emperically. In this paper, our experiinental cache performance data is gathered using
trace-driven cache simulation tool Shade. Cache simulations have the benefit that they are easy to

- run and the results are accurate.

1.2. CACHES 5

1.2 Caches

In order to speed up memory accesses, small high speed memories called caches are placed between
the processor and the main memory. Accessing the cache is typically much faster than accessing

main memory. Unfortunately, since caches are smaller than main memory they can hold only a
small subsct of its contents. Memory accesses first consult the cache to see if it contains the deﬁired
data. If the data is found in the cache, the main memory need not be consulted and the access is
considered to be a cache hit. If the data is not in the cache it is considered a miss, and the data
must be loaded from main memory. On a miss, i:he block containing the accessed data is loaded
into the cache in the hope that data in the same block will be accessed again in the future. The hit

ratio is a measure of cache performance and is the total number of hits divided by the total numbeér

of accesses.

The major design parameters of caches are:

o Capacity, which is the total number of bytes that the cache can hold.

¢ Block size, which is the number of bytes that are loaded from and written to memory at a

time.

e Associativity, which indicates the number of different locations in the cache where a partic-
ular block can bé loaded. In an Nway setassociative cache, a particular block can be loaded in
N different oache locations. Directmapped caches have an associativity of one, and can load
a particular block only in a single location. Fully associalive caches are at the other extreme

and can Joad blocks anywhere in the cache.

o Replanmment policy, which indicates the policy for deciding which block to remove from
the cache when a new block is loaded. For the directmapped cache the replacement policy is

simply to remove the block currently residing in the required location of the cache.

In most modern machines, more than one caches are placed between the proccssor and main memory.
These hierarchies of caches are configured with the smallest, fastest cache next to the processor and
the largest, slowest cache next to main memory. The largest miss penalty i3 typically incurred with

the cache closest to main memory and this cache is usually directmapped. We will assume that the

cache parameters, block size and capacity, are known to the programier.

6 CHAPTER 1. INTRODUCTION

High cache hit ratios depend on a program’s stream of memory references exhibiting locality. A
program exhibits temporal locality if there is a good chance that an accessed data item will be
accessed again in the near future. A program exhibits spatial locality if there is good chance that
subsequently accessed data items are located near cach other in memory. Most programs tend to
exhibit both kinds of locality and typical hit ratios are greater than 90%. With a 90% hit ratio,
cutting the number of cache misses in half has the eflect of raising hLit ratio to 95%. This may not

seem like a big improvement, but with miss penalties on the order of 100 cycles, normal programs

will exhibit speedups approaching 2:1 in execution time. Accordingly, our design techniques will

attempt to improve both the temporal and spatial locality of the Floyd’s all-pair shortest-paths

algorithm.

Cache misses are often categorized into compulsory, capacity, and conflict misses. Compulsory
misses are those that occur when a block is first accessed and brought into the cache. Capacity
misses are those caused by the fact that more blocks are accessed than can fit all at one time in
the cache. Conflict misses are those that occur because two or more blocks that map to the same

location in the cache are accessed. In this dissertation we address techuniques to reduce the number

of both capacity snd conflict misses for the Floyd’s all-pair shortest-paths algorithm.

Chapter 2

Floyd’s All-Pairs Shortest-Paths
Algorithm

2.1 Unoptimized Version of Floyd’s Algorithm

Let G = (V, E) be a directed graph with n vertices. Let cost be the cost adjacency matrix for G. So

cost(i,i) = 0,1<i<n;:

cost(i, 7) length (or cost) of edge (i,j), if(i,j) € E(G) ;

00, if 1 # J and (1,7) € E(G).

In the all-pairs shortest-paths problem we are to a matrix A4 such that A(i, j) is the length of a
shortest path from i to 5. When G has no cycle whose length is less than 0, the matrix 4 may
be computed using dynamic programming. Let A*(i,) be the léngth of a shortest path from i to
j under the constraint that the path contains no intermediate vertex whose index is more than k.

It is easy to sce that A(7,j) = A™(4,j). When G has no cycle with negative length, the following

dynamic programming recurrence is valid:

A%(i, 5)
A*(3, 7)

cost(i, 7) | . (2.1)
min{A* (4, 7), A*1(i, k) + A¥ Yk,)}, k > 1 (2.2)

Equations 2.1 and 2.2 lead to the algorithin of figure 2 to compute A. This algorithm is known as
Floyd’s algorithm. It may be shown that A11Pairs makes n passes through the matrix A. During
each pass, we bring in the entire matrix. The floyd’s algorithm is an O(n®) time algorithm for

finding all-pairs shortest paths.

8 CHAPTER 2. FLOYD'S ALL-PAIRS SHORTEST-PATHS ALGORITIIM

function AllPairs (int A, int n)

{

/¥ A[il[j] = cost(i, j) initially =/
/* A[i]l[j] is the length of shortest i to j path on termination */

/* n = the number of vertices in the graph */

for (k = 1; k <= n; k++)
for (i = 1; 1 <= n; i++)
for (j = 1; J <= n; j++)
Ali1 (] = min(AC1) (5], ACi) (k] + A[k]C5));

Figure 2: Floyd’s shortest-paths algorithm

2.2 Upper Bound On Attainable Speedup

We compute an upper bound on the maximum speedup attainable by rearranging the computation

of figure 2 so as to aptimize cache usage. In computing this bound we assume that any rearrangement

of the computatiy

will not decrease the no of accesses made to the elements of the array A.

por

We first obtﬂ_ig al equation to estimate the execution/run time of Floyd’s algorithm of figure 2.

The execution time of a program is given by the following equation:

ezecution time = (CPU clock cycles + memory stall cycles) x clock cycle time (2.3)

Where memory stall cycles is the number of cycles of the CPU spends waiting for a memory reference

to complete.

We also know the following equations:

C' PU clock cycles

i

CPI x IC (2.4)

memory stall cycles = number of L1 misses X L1 miss penalty (2.5)

2.2. UPPER BOUND ON ATTAINABLE SPEEDUP 9

number of LI misses = 1C x L1 misses per instruction (2.6)

L1 misses per instruction memory references per instruction x L1 miss rate (2.7)

Where

IC : instruction count,
CPI : clock cycles per instruction,
L1 miss penalty : number of cycles the CPU waits when there i3 an L1 cache miss and

L1 miss rate : number of L1 misses per memory reference.

From these equations we get :

execution time = (CPI x IC + IC x L1 misses per instruction x L1 miss penalty)

xclock cycle time - (2.8)

We also know that

" L1 miss penalty = L2 hit time + L2 miss rate x L2 miss penalty ~ (2.9)

- Where

| L2 hit time : mmﬁer of cycles to load an L1 cache line from L2 cache and

L2 miss penally 4 imemory Ait time : number of cycles needed to load an L2 cache line from main
o ':-h o i. % | ' |

memory.

We use eqmas and 2.9 to estimate the run time of Floyd’s algorithm.

Now we can olitain a lower bound on the run time of a cache optimized version of Floyd’s algorithm.
Substituting eguation 2.7 into equation 2.8 and making the reasonable assumption that cache op-
timization will not decrease the total number of memory references (i.e., the number of memory
references for the cache optimized code is at least IC X memory references per instruction whére

IC and memory references per instructions are for A11Pairs) yields

execution time > (CPI x IC + IC x memory references per instruction

x L1 miss rate X L1 miss penalty) x clock cycle time (210)

10 CHAPTER 2. FLOYD'S ALL-PAIRS SHORTEST-PATHS ALGORITHM

Substitnting the right side of equation 2.9 for the L1 miss penalty into equation 2,10, we get

Cezecution ttme > (CPI x IC + memory references per instruction x I1C x L1 miss rate X

(L2 hit time + L2 miss rate. x L2 miss penalty)) x clock cycle time (2.11)

‘We may obtain a lower bound for the L1 and L2 miss rate by determining the minimum number of

L1 and L2 misses that every reorganized version of Floyd’s algorithm must take.

For the analysis we assume that A is an integer array and that each integer is 4 bytes. Since Floyd'’s
algorithm accesses each of the n? elements of A, all n? clements of A must get to L1 cache at some
time. Each L1 cache miss brings in exactly 32 bytes of data (i.e., 8 elements of 4). Therefore, the
number of L1 cache misses is at least n?/8. By a similar reasoning, the number of L2 cache misses
is at least n?/16. Further, Floyd'’s algorithm makes 3n? read access to A (i.e., in the right side of
“the min statement of figure 2) and n® write accesses (the left side of the min statement). We note
that when the min statement of figure 2 is coded as an if statement, write accesses are made only
when the new a{i] [j] value is smaller than the old one. In this case the number of write accesses
ranges from 0 to n3. To keep the analysis simple, we use n? as the write access count. So the total

number of accesses to A (read and write) is 4n®. Therefore,

L1 miss rate L1 misses per A reference > n*/8/(4n’) = 1/(32n) (2.12)

!

L2 miss rate

L2 misses per A reference > n®/16/(4n®) = 1/(64n) (2.13)

‘The equality between the miss rate and the misses per A reference follows from our assumption
that variables other than A will be register variables and so all memory references are to elements
of A. Since we assume that cache optimization does not reduce the number of A references, these

bounds apply to all cache optimized versions of Al11Pairs.

Substituting the bounds of Equations 12 and 13 into Equation 2.11, we get the following lower

bound on the run time of a cache optimized version of Floyd’s algorithm.

execution time > (CPI x IC + memory references per instruction x IC x 1/(32n) x

(L2 hit time + 1/(64n) x L2 miss penalty)) x clock cycle time (2.14)

Dividing Equation 2.8 by Equation 2.14 yiclds the following bound on the speedup obtainable by

optimizing cache utilization,

2.2. UPPER BOUND ON ATTAINABLFE SPEEDUP 11

speedup <

CPI+ L1 miases per instruction x(L2 hit time+ L2 miss ratex L2 miss ena.ltg) (2 1 5)
CPI+memory references per instructionx1/(32n)x (L2 hit time+1/(64n)x L2 miss penaity) ’

Chapter 3

Overview of Related Works

3.1 Related Works on Optimization of Cache Performance

La Marca and Ladner [2] developed a model for a single-level direct-mapped cache. They use

this model to analyse the performance of binary heaps and cache-aligned d-heaps, Table 1 gives
the speedups exhibited by heapsort when using a cache-aligned 4-heap vs. a binary heap. These
speedups are from (2] and are for sorting 1,000,000 uniformly distributed 32-bit integers. The re-

ported speedup generally increases as the number of elements to be sorted increases.

Table 1: Speedup of cache-aligned 4-heap relative to a binary heap

[Machine | Speedup |

| Pentium 90 1.70 |
Power PC 1.62
Alphastation 250 | 1.46 |
Sparc 20 1.38

LaMarca and Ladner [3] optimized the cache performance of several scirt.ing methods. Table 2

gives the measured speedups for sorting 1,000,000 uniformly distributed integers using cache opti-

mized versions of heap sort and merge sort versus traditional implementatians of these sort methods.

12

3.2. PREVIOUS WORKS ON FLOYD’S ALGORITHM 13

Table 2: Speedups for cache-optimized heap sort and merge sort

: ‘ Speedup |
Machine - Memory-tuned heapsort | Tiled mergesort
Sparc ¥ 1.86 | 1.38
Power PC 1.65 1.10
Pentium PC 1.75 1.15
Dec Alphastation 250 1.58 1.90
Dec Alpha 3000/400 1.62 - 1.32

Lam, Rothberg and Wolf [9] have considered the cache performance of a blocked matrix multiply
code relative to a traditiona! matrix multiply code. Table 3 gives the measured specdup of their

blocked matrix multiply code for a matrix of size 300.

Table 3: Speedup of blocked matrix multiplication

Machine [Speedup ‘

DECStation 3100 | 4.3
IBM RS/6000 | 3.0

* Al-Furaih and Ranka [5,8] have studied cache optimization methods for sorting and unstructured

iterative computations.

3.2 Previous Works on Floyd’s Algorithm

Venkatarainan, Sahni and Mukhopadhyaya {8] proposed a blocked formulation of Floyd’s dynamic
programminig algorithm to find the lengths of the shortest paths between all pairs of vertices in
a graph [4]. Théir blocked (or tiled) algorithim provides a speedup (ml'ﬂ,tive to the unblocked
algorithm) between 1.6 and 1.9 on a Sun Ultra Enterprise 4000/5000 for graphs that have been
between 480 and 3200 vertices. The measured speedup on an SGI O2 for graphs with between 240

and 1200 vertices is between 1.6 and 2.0.

The Sun and SGI workstations, they used, have an L1 cache, an L2 cache and a main memory.
The L1 cache in a Sun Ultra Enterprise 4000/5000 is 16 KB, the L2 cache is 4 MB, and the main

memory is in excess of 100 MB. For the analysis of their blocked algorithmn they used data gathered

using the cache simulation tool Shade [10, 11].

Since the L2 hit time and L2 miss miss penalty are architecture dependent and not available, they

14 CHAPTER 3. OVERVIEW OF RELATED WORKS

used typical numbers for these (the L2 hit time is assumed to be between 6 and 10 cycles and the
L2 miss penalty is assumed to be 50 cycles). For the L1 misses per instruction and the L2 miss rate

they used data obtained by using the cache simulator SHADE on Floyd’s algorithm. The cache

simulator gave 0.35 as the memory references per instruction.

For the analysis they used the cache characteristics of the SUN Enterprise 4000/5000 that are shown
in Table 4.

Table 4: Cache characteristics of the Sun Enterprise 4000/5000

Cache type | Associativity | Cache size | Line size |

Direct mapped 16KB 32:lzaytes
Direct mapped 4MB 64 bytes

il

In their blocked version of Floyd’s algorithm they used 32 as the blocking factor B to get the max-
imum speedup on & Sun Ultra Enterprise 4000/5000 for graphs that have been between 480 and
3200 vertices.

Table b: Speedup of cache-optimized (blocked) All-Pairs Shortest-Path Problem

[No. of vertices in the graph (n_) _=S]Je19dl.£ (a;pg*ox.) 3
| n = 480 T 1.62

n = 800 1.68

n = 1600 1.70

n = 2400 1.76

n = 3200 1.82

The speedups they obtained is fairly close to the maximmm possible.

Chapter 4

Blocked Version of Floyd’s Algorithm

4.1 The Algorithm

We partition the cost adjucency matrix into submatrices of size B x B, where B is called the block-
ing factor. Although this is not necessary, we assune, for simplicity, that B divides n. Figure 3(a)

shows a blocked 16 x 16 matrix, the blocking factor is B = 4.

block(1,1) | block{1,2} | bleck(1,3} | block(1,4)
hfork(2.0) | Mlork(2,3) | block(2,9 | Wock(2,4)
block({3,1} | black(3,2} | Block(3,3) | blork(3,4)
block(4,1}) | block(4,2) | block{4,3) | block(4,4)

Figure 3(a) : Blocked Matrix

Our blocked version of Floyd's algorithm will perform B iterations of the outermost loop of Figure
2 on each B x B block of A before advancing to the next B iterations. It is convenient to think of .
cach set of I3 iterations as divided into three phases.

In phase 1 of the first set of B iterations, Equation 2.2 is used to compute D* = A*, 1 < k< B
for the elements in block (1, 1), we say that block (1, 1) is a self-dependent block in the first B

iterations.

In phase 2 of the first B iterations a modified Equation 2.2 is used to compute D*,1 < k < B for

15

16 - | CHAPTER 4. BLOCKED VERSION OF FLOYD’S ALGORITHM

the remaining blocks (1, *) and ("\%1) that are on the same row or columnn as the self-dependent

block. For the remaining (1, *) blocks the modified Equation 2.2 is

D*(i, j) = min{D*=\(i, 5), D®(i, k) + D*"'(k,)}, %%} 1 (4.1)

where D°(3, §) = A%(4, j).
'For the remaining (*, 1) blocks the mpdified Equation 2 is

D*(i,_ i) = min{D*"'(i,5), D*'(i,k) + DP(k,5)}, k> 1 (4.2)

In phase 3 *D.k" | 5k SB is computed for the remaining blocks (i.é., for blocks that are not on the

~ same row or cﬁlumn as the Belf-depgndﬂnt block). This computation is done as

D(i,5) = min{D*"\(3,), D(i, k) + DB (k,)}, k > 1 (43)

Pha&ﬂiﬁ is followed by the next round of B iterations. These are also done three phases. This time
block (2 2) is f-dependent blod D* B < k < 2B are computed for the self-dependent block
“ in pha.se 1 uﬁg Ete equatmn

¥

D*(i, j) = mm{p’“*l(i, i), D* 14, i:) + D"“l(k; N} (4.4)'

In phase 2 D" B <k< ZB are computed for the remaining blocks that are on the same row or
column as the self-dependent block and in phase 3 D*, B < k < 2B is computed for the biocks that

‘are not on the same row or column as the self-dependent block. The phase 2 computation uses the

following equation for the (2, *) blocks

D*(i,) = min{ D*~'(i, j), D*"(i, k) + D¥ &k,y)} (4.5)

The (*, &) blocks use the following equaton

D*(i, j) = min{D*"'(i, §), D*"'(i, k) + D*¥(k, j)} (4.6) |

4.1. THE ALGORITHM 17

And the phase 3 blocks use the equation

D¥, j) = min{D*"'(3,5), D**(i, k) + D**(k, 1)} (4.7)

Fingure 3 shows the blotks computed in each phase when block (¢,) is the self-dependent block.
The following :aquations:ii are used to compute the (t, *), (*, t) and phase 3 blocks, respectively.

D¥(i, j) = min{D*"'(z,5), D*’(i,k) + D*"'(k,)} (4.8)
D¥ (i, 1) = min{ D*~' (4,), D*"\(i, k) + D*®(k, j)) (4.9)
D*(i, j) = min{D*"1(4,), D*B(i, k) + D'B(k, 5)} (4.10)

18

CHAPTER 4. BLOCKED VERSION OF FLOYD'S ALGORITHM

. currently computing

| cumputa;iun over

EI' computation to be done -

Phase 3

Figure 3: Blocks computed in each phase

4.2. OPTIMAL BLOCKING FACTOR 19

4.2 Optimal Blocking Factor

When computing the D values in a block during any round (i.e., an iteration of the outermost
loop) of function BlockedAllPairs, at most three blocks are active. The computation for the seif-

dependent block accesses elements only in the self-dependent block. So during the self-dependent

block computation only 1 block is active.

The computation for a block M that is on the same row or column as the self-dependent block |

accesses elements in M as well as elements in the self-dependent block. Therefore, 2 blocks are

active during the computation for M.

For a block M that is not on the same row or column as the self-dependent block, BlockedAllPairs
accesses elements from 3 blocks—block M, the block that is in the same row as the self-dependent

block and the same column as M, and the block that is in the same column as the self-dependent

~ block and in the same row as M.

Therefore, L1 cache misses are minimized by choosing the largest block size B such that 3: blocks
of the array D can fit into L1 cache. Suppose that the elements of D are 4-byte igntegers and the .
L1 cache capacity is C bytes and each L1 cache line is S bytes lbng. We must choose B to be the '
largest integer such that 3B? x 4 < C = B < ,/C/12 and B is a multiple of it S/4. The second

requirement is necessary as the smallest unit of data brought into L1 cache is S bytes and these §

bytes are contiguos bytes of memory.

For SUN Ultra Workstations C = 16K and § = 82. Therefore, the blacking factor should be the .

largest integer that is < \/ C/12 = 37 and is a multiple of 32/4 = 8. That is, we should use B = 32
as the blocking factor.

Chapter 5

Implementation

5.1 Design and Evaluation Methodology

When spatial and temporal locality can be improved at no extra cost it should always Be 'done_.'
In this dissertation, however, we develop techniques for improving loqality even when it results in
an increase in the total number of executed instructions. This represents a significant departure
from traditional design and optimization methodology. We take this approach in ord.er to show
how large an impaf:t cache performance can have on overall performance. Interestingly, many of the

design techniques are not particularly new. Some have already been used in optimizitig compilers,

in algorithms which use external storage devices, and in parallel algorithms.

As mentioned earlier we focus on three measures of performance: instruction count, cache misses,
and overall performance in terms of execution time. All of the dymamic instruction counts and

cache simulation results were measured using SHADE(10, 11].

Shade is an instruction-set simulator and custom trace generator. Application programns are exe-
cuted and traced under the control of a user-supplied trace analyzer. To reduce communication
costs, Shade and the analyzer are run in the same address space. To further improve performance,

code which simulates and traces the application is dynamically generated and cached for reuse.

Here we tried to develop the algorithm in such a manner that it exhibits temporal locality i.e., there
is & gﬁml chauce that an accessed data itemn will be accessed again in the near future. We tried
to increase the hit ratio as much as possible. This may not seem like a big improvement, but
with miss penalties on the order of 100 cycles, normal programs will exhibit significant épeed'upai

Accordingly, our design techniques will attempt to improve the temporal locality of the Floyd’s

20

8.2. ALGORITHM - 21

all-pair shortest-paths algorithm.

5.2 Algorithm

Input.: The directed graph with n vertices i.e., The cost matrix Afi,j).
Output : The shortest-path between any two vertices i.é., The matrix D(%, j) where (i,j)th entry
is the shortest path between the ith and the jth vertices.

function BlockedAllPairs (int A, int n, int B)

{
/* A[il[j] = cost(i, j) initially,

A[il[j] is the length of shortest i to j path on termination,
n = the number of vertices in the graph,

B = the blocking factor. »/

for (pass = 0; pass < n; pa;s +B)
{
/* self-dependent block (r, r) */
for (k = pasa; k < pass +B; k++)
for (all i and j in the self-dependent block)
Alil[j] = min(A[i]) (], ALid (k] + ALk](jl1);

/* remaining blocks */

do the fdllowing for remaining blocks, one block at a time and in the order:
phase 2 blocks which are in the same row as the block (r, r) and
the direction of computation is from left to right;
phase 2 blocks which are in the same column as the block (r, r).ggg_

the direction of computation is from bottom to top;

phase 3 blocks and the direction of computation i$ starting at top-left

or top-right corner, then in a snake like manner.

for (k = pass; k < pass +B; k++)

22 CHAPTER 5. IMPLEMENTATION

for (all iand j in the current block)
AL11(J] = min(AL1] (3], A[41Lk] + AEX]IL[3i1);

Figure 4: Bloeked Version of Floyd's All-Pairs Shortest-Paths Algorithm

5.3 Experimental Results

Since we intend to declare 1, j, k as register variables , references to these variables do not access
cache and so do not cause any cache misses. Therefore, we focus on cache misses attributable to the

array A. For our analysis we have used the different cache characteristics. And we took matrices of

different sizes.

Along with our algorithm we also implemented the algorithm given by G. Venkataraman, S. Sahni,
and S. Mukhopadhaya in their paper [8].We have studied a comparison between them.

‘Table 6: Cache characteristics (L2 includes L1).

Cache type ssociativity Cache size Line gize
L1 Direct mapped 16KB 32 bytes
- L2 Direct mapped 4MB 64 bytes

We used the cache characteristics of Table 6 and got the following results for the two algorithms

which are in the Table 7 and Table 8 for n = 480 and in Table 9 Table 10! for n = 800:

Table 7: OQutput of our Algorithin given by Figure 4 when n = 480.

Cache | I-misses
10345380}
11825

27596567 .
2232688

Table 8: Output of the Algorithm given by {8] when n = 480,

Cache_l I-misses | D-misseﬂ

L1 [12148426 | 29909072
L2 | 1873 | 1078267

5.3. EXPERIMENTAL RESULTS 23

Table 9: Qutput of our Algorithm given by Figure 4 when n = 800.

[45518361 | 91715827
1829 6188253

Table 10: Output of the Algorithm given by [8] when n = 800.

Cache | I-misses | D-misses

L1 [48534963 | 29
L2 1388 6819678
Next we took the cache characteristics given by Table 11 bellow. And similarly got the outputs for

different matrix size (n) in the Tables 12-15 :

Table 11: Cache characteristics (L2 includes L1).

Cache type [Associativity | Replace. algo | Cache size | Line size |
L1-Instruction | Direct mapped N/A 32 bytes
L1-Data Fully-Associative LRU 16KB 32 bytes
L2 | Direct mapped N/A 4MB 64 bytes |

Table 12: Output of our Algorithm given by Figure 4 when n = 320.

D-misses

Cache | I-misses

L1 1690620 |
L2 | 1286 | 998570

Table 13: Output of the Algorithm given by [8] when n = 320.

I-misses | D-misses

661185 | 1903571
1325 | 484866

Table 14: Output of our Algorithm giveh by Figure 4 when n = 480.

| Cache | I-misses | D-misses |

L1 052504 | 4253515 |

L2 1588 | 2232576

24 CHAPTER 5. IMPLEMENTATION

. Table 15: Output of the Algorithm given by {8] when n = 480.

o Y Sy

Cache | I-misses | D-mlsses
L1 | 1464211 | 4731940
L2 1636 | 1078164

Next we took the cache characteristics given by Table 16 bellow. And similarly got the outputs for
different matrix size (n) in the Tables 17-20 : .

Table 16: Cache characteristics (L2 includes L1).

Cache type 'Associqt_i_:rity ‘ Replace. algo I Cache size I.Line gize \
L1 4-way ~ LRU 16KB | 32 bytes
L2 Direct mapped [~ N/A 4MB | 64 bytes

Table 17: Output of our Algorithm given by Figure 4 when n = 320.

Cache | I-misses | D-misses

2215459
L2 1281 320378 (o

Table 18: Output of the Algorithm given by [8] when n = 320.

Cache | I-misses | D-misses |

43949 | 1977504
1327 | 833864

Table 19: Output of our Algorithm given by Figure 4 when n = 480.

D-misses
481779
209358

' Cache | I-misses

Table 20: Qutput of the Algorithm given by [8] when n = 480.

Cache 'I-misse_s_[D-misses |
L1 45280 [4273124
L2 1876 1863702

5.3, EXPERIMENTAL RESULTS 25

Next we took the eache characteristics given by ‘Fable 21 bellow. And similarly got the outputs for

the matrix size n = 480 in the Tables 22-23 :

Table 21: Cache characteristics (L2 does NOT include L1).

Cache type Associativity

L1 | Direct mapped
L2 4-way

Replace. algo | Cache size | Line size |

N/A - 16KB 32 bytes
64 bytes

27619414
| L2 | 1000 | 2231754

Table 23: Output of the Algorithm given by (8] when n = 480.

Cache | I-misses L_l?-misses

12151588 | 29925376
1056 | 1077348

So from the Tables above we can see that we are getting better performances in the L1 cache both
for the instructions and for the data. But in the L2 cache we are getting better performances for

instructions but not for the data except one cache characteristics in the Table 16.

- Bibliography

[1] D. Patterson and J.L. Hennessy, Computer Architecture: A Quantitative Analysis. Morgan
Kaufmann, San mateo, CA, 1996.

2] A. LaMarca and R.E. Ladner, “The influences of caches on the performance of heaps”. The
ACM Journal of Ezperimental Algorithms, 1(4),1996.

[3] A. LaMarca and R.E. Ladner, “The influences of caches on the performance of sorting”. The

ACM-SIAM Symposium on Diacrete Algorithms, pages 370-379, New Orleans, Louisiana, 5-7
January, 1997.

[4) E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms. Computer Science Press,
New York, 1998.

[5] I. Al-Furaih and S. Ranka, “Memory hierarchy management for itarative graph structures”.

Proc. 12th International Parallel Processing Symposium 1998. (IPP§98), Orlendo, Florida.

[6] 1. Al-Furaih and 8. Ranka, “Practical Algorithms for Internal and External. Sorting”,
Proc. the Second International Conference on Parallel and Distributed Computing and Net-
works(PDCN’98), Brisbane, Australia, 14-16 December 1998.

[7} T.H. Cormen, C.E. Leisersan; and R.L. Rivest, Introduction to Algorithms, McGraw-Hill, Mas-
sachusetts, 1994.

(8] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya, “A Blocked All-Pairs Shortest-Paths

Algorithm”, Proc. 7th Scandinavian Workshéips on Algorithm Theory (SWAT2000), July 5-7,
2000, Bergen, Nofway.

9] M.S. Lam, E.E. Rothberg and M.E. Wolf, The cache performance and optimizations of blocked
algorithms, ACM, 26:63-74, 1991.

20

BIBLIOGRAPHY 27

(10] Introduction to Shade V5.33A, Sun Microsystems Labboratories Inc, Mountain View, CA
94043. 1998.

[11] Shade User’s Manual V5.33A, Sun Microsystems Labboratories Inc, Mountain View, CA 94043,
1998.

