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Abstract

A two layer neural network model is designed which
accepts image coordinates as:the input and learns the
parametric form of conoidal shapes (lines/circles/ellipses)
adaptively. It provides an efficient representation of vi-
sual information embedded in the connection weights and
the parameter of the processing elements. It not only re-
duces the large space requirements as in classical Hough
transform, but also represents parameters with high pre-
cision, even in presence of noise. The performance of
the methodology is compared with other existing algo-
rithms and has been found to excel over those algorithms

N many cases.
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Chapter 1
Introduction

Hough transform [4,5], developed by Paul Hough (1962) [4], is a method to
detect parameterized models (e.g. curves and features) in data by mapping
data features into manifolds in the parameter space. The parameters, that

are consistent with many of the manifolds correspond to curves in the image
and thus methods that find peaks in the pargmeter space can be used to

detect the image curves.

It has a wide range of applications in medical sciences (e.g. detection of
chest ribs [30], breast cancer cells [31]), in molecular biology (e.g. detection
of shapes of microbes [32]), in image processing (e.g. detection of edges [33],
corner points, 3-D shape {34), in segmentation techniques [35], detection of
“motion parameters [36]), in automatic guided vehicles (detection of roads,
islands at the cross points [37]), in satellite picture processing (e.g. time do-
main analysis of solar coronal structures [38], target detection and tracking
[39]), in data analysis (e.g. estimation of regression parameters, detection
of echelle orders [40,41] ), in pattern recognition (e.g. automatic recogni-
tion of Hebrew letters [42], ridge counting in fingerprints [43]), in geography
" (e.g. matching subgraphs derived from geographical maps [44]), in data com-
pression (e.g. contour or waveform data compression [45]) and many other
fields. ’

1.0.1 How Hough Transform works

Let us explain the way of computing classical Hough transform for lines,
circles etc. Note that, if a curve in the image space is continuous and second
order differentiable, then the points lying on the curve will lie in a contiguous
space after Hough transformation. Let a shape be represented parametrically
as f(z,y,0) = 0 where © = [, 63, ..., 8,] is a parameter vector. For example,
a straight line can be represented as

rcosg+ysing —r =0 (1,1)



Here © = [¢, r]. Similarly a circle can be represented as
. ($“Cl)2+(y'—(}2)2 ~7¢=0 (1.2)

M{@g, ¢3) i8 center and r is the radius. Here © = |c;, ¢, rl. In similar
way an ellipse can be parameterized as

ez’ + by’ + 292+ 2fy +c=0 (1.3)

Here ® = [a,b,g, f,c]. Given an image with set of object pixels X =
(21, ®3,...,2n], the task is to find out the parametric shapes depicted by
the pixels in the image by mapping the object pixels into parameter space.
In order to do that an accumulator array A(€©) is maintained. For each
object pixel (z;,y;) all the parameter space is searched to find out © such
that f(zi,1,©) = 0 The accumulator array A is updated using equation
A(B)—A(B) + ¢, where c is the contribution present in each slot corre-
sponding to a particular curve segment by that pixel. Thus an object pixel
in the image space is transformed to the parameter space such that, the

pixel votes for a particular parametric curve in the parameter space. Thus
for a subset of object pixel forming a parametric shape in image space all the
cumulative parametric curves will pass a single point ©' in the parametric
gpace. This ©’ is a unique parameter vector, which lie on intersection of all
parametric curves passing through the object pixel. Actually, object pixels
are clustered around local peaks in the accumulator. The task is to identify
this peaks in the parameter space. Algorithmically, [algorithm A.0.1]

Step 1: Create a set of coordinates from the object pixels in the image.
Step 2: Transform each coordinate in (z,y) into a parameterized curve in
the parameter space.

Step 3: Increment the cells in the parametric space determined by the para-
~ metric curve.

' Step 4: Detect local maxima in the accumulator array. Each local maximum
may correspond to parametric curves in the image space.

Step 5: Extract the curve segments using weing the knowledge of maximum
positions. :

1.0.2 Advantages and disadvantages of Hough Trans-
" form

Advantages

Since Hough transform is based on accumulating evidence of the presence
of the shape in the image space, it works fine even if broken, deformed or

fragmented segments are present in the image. In order to detect lines or
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curves present in the image, continuity is not essential. It works gracefully in
case of occlusion. The method is very robust to the addition of random data
produced by poor image segmentation. In addition to this, the contribution
A(O) = A(®) + c (step 3 of algorithm CHT) can be modified to incorporate
- gray values also where ¢ represents contribution depending on the gray value.
Thus Hough transform can be applied on gray images directly, without going
through any prior image segmentation.

Again, each object pixel is treated independently, therefore the method
can be implemented using more than one processing unit, i.e. parallel pro-
cessing of all points is possible.

Disadvantages

Peak detection in the accumulator space is one of the major problem of
Hough transform. In order to identify the peaks suitably, selection of a
suitable threshold is mecessary. However the threshold may depend on im-
age quality (presence of noise in it). Beside this, the method requires large
amount of computational time and space. Computational time is propor-
tional to the size of the image and grows exponentially with no. of elements
in the parameter vector. Accuracy of finding the parameters is limited by
the resolution of accumulator array.

1.0.3 What and why Neural Networks

 The neural networks are massively parallel interconnection of simple process-
ing elements called neurons, intended to interact with environment in a way
the biological nervous systems do. Artificial neural networks (ANN) or sim-
ply neural nets, are also known as connectionist models, parallel distributed
processing models, neuromorph models. Different applications of ANN in-
clude speech and image recognition (which includes surface interpolation,
edge detection, shape from shading, velocity field estimation, color determi-
‘nation, structure from motion [26]), optimization problems (e.g. travelling
salesman problem [20]), dynamic robot motion planning [18], various control
system schemes [19).

The simplest node sums N weighted inputs and passes the result through
a nonlinearity (e.g. hard limiters, threshold logic elements and sigmoidal
nonlinearities). The node is characterised by an internal threshold or offset
¢. Neural network models are specified by the network topology node char-
acteristic and training and learning rules. This rules specify initial set of
weights and indicate how weights should be adaptive during use to improve
performance.

The potential benefits of neural networks are : first, they are capable of
learning situations adaptively after being trained on a number of examples
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Figure 1.1: Simplest Neural Network

of a relationship, as the network designer chooses the weights a priori or just
random. In the second case the network performs desired computation by
iterative adjustments of weight strengths by (a) supervised learning, where
learning is done on the basis of direct comparison of the output of the net-
work with known correct answers and (b) unsupervised learning, where only
avnﬂnhh information is in the correlation of the input data or signals. Sec-
ond, their ability to generalize to new situations since, after being trained on
a number of examples of a relationship, they can often induce a complete re-
lationship that interpolates and extrapolates from the examples in a sensible
way. The third is their high computation rates provided by massive par-
allelism, since activation value in each node can be changed independently.
The fourth is their fault tolerance, since, if some spurious activation exist in
the parameter space, they would loss in competition in associating the pixels
~ and would not get further support from those pixels.

Their main drawback is the long training tijme - required particularly for
problems of large dimensionality. This is in mﬂﬁtﬂst to the -human vision
system which is capable of learning from a small niitmber of examples. An-
other problem with ANNs is the lack of any theoretical guidance concerning

the choice of number of nodes, activation functions etc.

1.0.4 Contributions in the dissertations

A neural network model is designed to identify straight line, circle, ellipse seg-
ments preseat in the image (or hyper-planes, hyper-spheres, hyper-ellipsoids
in multidimensional inputs). A two layer neural network model is pro-
posed: which: accepts image coordinates as the input and learns the paramet-
ric form of conoidal shapes (lines/circles/ellipses) in the image (or planes/
spheres/ellipsoids/ hyper-planes/hyper-spheres/hyper-ellipsoids in higher di-
mensiomal models) adaptively.

The learning rule of Hough transform network is extended to accept
conoidel shapes in addition to straight line segments. Also a new way of
reducing localization error has been devised. The problem of detection of
various parametric shaped segments is classified according to the level of
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difficulty, and a few typical resuits are presented. The outputs are then
compared with different existing algorithms including classical Hough trans-

sofCHT), randomised Hough transform(RHT), adaptive fuzzy c-shell clus-
tering adgorithm with unconstrained shape & orientation matrix (AFCS-U).
The metwork is again extended to learn parametric shapes in gray level images

1.0.5 Summary

In this chapter the classical Hough transform is described and its problems
are mentioned. The relevance of attacking the problem of determining para-
metric shapes using neural network model is argued, and possible advantage
and disadvantages are stated. Finally the present contributions in the disser-
tation are presented and its advantage over the other models are mentioned.

In the next chapter the existing neural network implementation of Hough
transform and other variations of the transform is described.



Chapter 2

Literature Survey

2.1 Hough transform Network to detect straight
lines

A two layer neural network model viz. Hough transform network has been
proposed [1,2] to detect straight lines in image (or planes/hyper-planes in
higher dimension).

Network Architecture

The network consists of two layers, viz. input and output layer. Each input
node is connected to all cutput nodes. The number of input nodes is equal
to the dimensionality of input space. For example the network consists of
only two input nodes when it accepts the image coordinates in the object
region as the input. The number of output nodes is chosen to be equal to
the number of straight line segments in the image. The connection weights
~from the input layer to any particular node along with the threshold of the
output node represent the parameter values of the corresponding straight line
segments in the image or the hyper-plane on the case of higher dimensional
input. The network accepts image coordinates sequentially as the input and
learns adaptively the paramecter values in the form of connection weighits
in an unsupervised mode. The activation in the output layer indicates the
straight line segments (or hyper-plane) to which the input pixel (or vector)
belongs.

Philosophy behind the Network

A straight line can be parametrically expressed as

T1CO8¢ + Tosing =7 (2.1)



where x = (x,,72) is the coordinate of any point on the straight line and
(r,9) are the parameters of the straight line. Eqn. (2.1) can be represented

as :
Y wiz =6 | (2.2)

where x = (x;,12} is the coordinate of a pixel in the object region of the
image. Corresponding to x, the input to the neural network, the output
vector y is given as

y = f(u) = [f(w), f(ua), ..., f(um)] (2.3)
where u is the input to the output neurons, given as
u=Wx-6 (2.4)

f(.) is a bell shaped transfer function with peak at zero. A Gaussian forin
of the function is chosen i.e.

Ui — e:rp(-——uf/f) (25)

If x belongs to the i** hyper-plane then u; = 0 and y; = 1, otherwise y; < 1.
To learn W and © the objective function (a continuous and differentiable

one)

£=(]a - Wl ' (2.6)

1=1

1s chosen, such that it is zero when y; is zero for any :. The parameter o > 0
determines the steepness of the function near minima(i.e. a fixed point).
As o increases, the steepness decreases. The weight matrices W and © are
updated in order to decrease E.

Learning Rules

Following the steepest gradient descent rule the weight updating or the learn-
ing rules for W and © are

( )(1 _——y (;))[:UJ( ) wi.f(t)(“i(t) + ai(t))]

Awg(t) = .
5() 2&24;&%)2 fog( m)“‘ + X — (ux(t) + 0:(2))?] (2.7
u (B
Ad;(t) = t(f)(l—m(t)), (2.8)

20y, (49 ) log (K -+ X — (ux(t) + 8x(1))?)
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The updating rules reveal the fact that, the changes in the parameter
values are independent of the selection of \. The parameter A is however
implicitly embedded in the output of the network. Initially, when the pa-
rammeter values are far from the fixed point, the denominator is very small.
To aecount for this situation, the learning rate is clamped to a constant value
when the denominator is very small. Near the optimal solution, the learning

rate changes according to the equation (2.7) and (2.8).

2.2 Variations of Hough Transform

Two methods that have been widely used are mapping sets of image pixels

into the parameter space and randomization.

Shapiro [22] first considered a variation of Hough transform where the
edge points are mapped into all of the curves in the parameter space that
satisfy the error model for the edge point. Shapiro’s application of these
ideas was to use the accumulator method, with the modification that all
of the accumulator cells consistent with the error model for a particular
point receive votes. This process has extreme computational requirements.
Shapiro suggested the use of large grid cells to reduce this problem, despite
the inherent loss of resolution and curve discrimination performance.

Stephens [43] formulated a variant of the Hough transform in terms of
maximum likelihood estimation. A probability density function for the fea-
tures is used that has a uniformm component modeling the pixels that are
not on the curve and a component that falls off as a Gaussian with the dis-
tance from the curve to model the pixels that are on the curve. This method
vields correct propagation of localization error in terms of a Gaussian error
distribution, but it is computationally expensive.

Breuel [46] described a line detection technique related to the Hough
- transform that searches hierarchical subdivisions of the parameter space us-

ing a bounded error model and thus avoids some of the problems of the
accumulator method. In this technique, the parameter space is divided into
cells that are tested to determine whether they can contain a line that passes
within the bounded localization error of a specified number of pixels. If the
cell cannot be ruled out, the cell is divided and the procedure is repeated
recursively. This continues until the cells become sufficiently small, at which
point they are considered to be lines satisfying the output criterion.

Murakami et al. [15] described algorithms for performing straight line
detection using a one-dimensional accumulator. One of the algorithms maaps
pairs of feature points into the one-dimensional accumulator by taking the
angle of the line between the points. The algorithm is structured in such a
way that only the pairs containing one of the feature points are examined
in each iteration. This can be viewed as a precursor to the decomposition



techadgues that we describe. Unfortunately, this algorithm had O(n?) com-
plemifg, whiere n is the number of image features and did not consider the
eliontioof dacslization error.

m Cja [7] deseribed the randomized Hough transform (RHT) where,
lilireet was to reduce computation time of Hough transform by randomly

wolsg & subset of object pixels in the image. For the detection of curves
wit‘ ﬁwmeters, they map sets of N image pixels into single points in the
partmster space and accumulate votes in a discretized version of parameter
space. The pixel sets that are mapped into the parametér space are thogen
randemly and the votes are accurnulated until a sufficient peak is found or
some. threshold number of sets have been examined. They also described a
robust stopping criterion for this procedure and they approximated the time
required by the algorithm by modeling it as a generalized Bernoulli process.

Liang [14] discussed a Hough transform technique where sets of image
pixels are mapped to single points in a discretized parameter space by fitting
curves to the pixels in small windows of the image. This method allows a fast
implementation and a low storage requirement, but detection performance
will degrade in the presence of image noise, due to poor local fits, and in
cluttered images, due to distractors present in the image windows.

Bergen and Shvaytser [17] gave a theoretical analysis of the use of ran-
domization techniques to speed up the Hough transform. They considered
both mapping individual pixels and mapping sets of pixels into the parame-
ter space. Their method achieved a computational complexity independent
of the number of edge pixels in the image, but with two caveats. First, only
curves that represent some predetermined fraction of the total number of edge
pixels are found. Second, the method is allowed to be in error by a fractional
parameter all of the time and by greater than this fractional parameter with
some small frequency. The practicality of this method is questionable, since
the constant number of random samples that must be examined is often very

‘large. In fact, this number may often be larger than the number of different
samples that are possible.
"~ Kiryati [9] et al. used randomization to imiprove the running time of
the standard Hough transformm. They simply subsampled the edge pixals
in the image and proceeded with the standard algorithm. Their analysis
implies that the computational requirements of the Hough transform can be
improved, while the performance is degraded little.

Califano and Bolle [17] used a multiple window parameter transform to
exploit long distance information in the extraction of parameterized objects
from image data. Lateral inhibition is used in a connectionist-like framework
to improve the accuracy. In addition, a radius of coherence is defined for
each pixel to reduce the computation time required by the method.

Leavers [11] described a technique called the dynamic generalized Hough
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transform{DGHT), where she used the technique of mapping image pixels
into & single point in the parameter space and, furthermore, in each iter-
ation selected a single image pixel to constrain the transform, which must
be present in each of the sets of pixels that are mapped into the parameter
space.

C.F. Olson [8] found a similar technique viz. ‘Constrained Hough trans-
form’ , which describes techniques to perform fast and accurate curve detec-
tion, where localization error can be propagated efficiently into the parame-
ter space. Here, Hough transform is modified to allow the formal treatment
localization error. Hough transform can be subdivided into many small sui>-
problems without a decrease in performance, where each subproblem is con-
strained to consider only those curves that pass through some subset of the
edge pixels up to the localization error. This property allows to accurately
and efficiently propagate localization error into the parameter space such
that curves are detected robustly without finding false positives. The use of
randomization techniques yields an algorithm with a worst-case complexity
of O(n), where n is the number of edge pixels in the image, if we are only
required to find curves that are significant with respect to the complexity of
the image.

leavers [12] used a storage efficient voting mechanism in a discretized
parameter space, where the votes are projected onto each of the parame-
ter space axes and several one-dimensional accumulators are kept. While

this method of accumulating votes reduces that amount of memory that is
required, it may exacerbate problem of false alarms if the votes in the pa-

rameter space are not sparse. Olson [8] found an additional technique that
has proven in the efficient implementation of Hough transform techniques
is a multi resolution or coarse-to-fine search of the parameter space to find
peaks. For example, Li, Lavin & Master [14] recursively divided the param-
eter space in hyper-cubes in a coarse-to-fine hierarchy. At each level of the
hierarchy, only those hyper-cubes that receive enough votes to surpass some
_ threshold are passed on to the next level for examination.

(Galambos et al. [23] presented a variation of Hough transform algorithm
referred to as Progressive probabilistic Hough transform (PPHT). Unlike the
probabilistic HT where classical HT is performed on a pre-selected fraction of
input points, PPHT minimises the amount of computation needed to detect
lines by exploiting the difference in the fraction of votes needed to detect reli-
ably lines with different numbers of supporting points. The fraction of points
used for voting need not be specified ad hoc or using a priori knowledge, as
in the probabilistic HT; it is a function of the inherent complexity of the
input data. The algorithm is ideally suited for real-time applications with a
fixed amount of available processing time, since voting and line detection is
interleaved. |
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Kazuhide Sugawara {24] extended the Hough transform to incorporate the
notion of weight, and apply it to reducing spurious line detection caused by
the presence of large non-text areas with many black pixels. The weighting
function is defined according to the proportion of black pixels in the area,
giving a low weight to an area with an extremely high proportion of black
pixels. |

Soodamani and Liu [25] found an efficient method known as fuzzy Hough
transform(FHT) of updating fuzzy evidences which enhances recognition of
approximate shapes. They found that the global evidence can be found
from local support through a sliding window, from local statistical variability
measure and also by some fuzzy support measures.
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Chapter 3

Detection of Conoidal
Structures

3.1 Parametric Shapes

Before going into the description of the neural architecture and its learning
rules, let us provide here briefly the mathematical form of the parametric
shapes to be detected by the network.

Definition 1:The hyper-ellipsoidal shell prototype, S4 at center v having
size r i8 the set

Sal(v, r_._iA) = {x € RP|(x — v)TAi(x — v) = r?} (3.1)

where A is a p X p symmetric positive definite matrix.

Note that, any conic sectional shape can be parametrically represented
in generalised 2-dimensional equation as

A11($1 - ‘U1)2 -+ (Ailz + AQ])(J;l — 'Ul)(Ig — 'Ug) + Agz(ﬂ,‘g — Uz)z = T‘2 (32)

If A is a positive definite symmetric matrix (which means A = AT), then
the eguation will represent an ellipse, where x = (,,Z2) is the coordinate of
any point on an ellipse with center at v = (v;,v2).

If we scale down A; by r;, and fix r; to 1, we get a five parameter rep-
resentation of an ellipse. In specific case, when A is an identity matrix, the
equation will represent a circle.

A double straight line of equations

Z-un)taly—v)=Fk (3.3)
and |

(z—n)taly—v) = -k (3.4)
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can be represented jbintly as

[(z — 1) +aly —w)]* =F (3.5)
Comparing the coefficients of the above equation with equation. we get
1 o
A= [cr 32: (3.6)

Definition 2: The hypershell prototype, S4, at center v(vERP)} is the
set

Sa(v,A) = {xeRP|(x — v)TA(x - v) =1} (3.7)

where A is a pxp symmetric positive definite matrix. This matrix accounts
for the size, eccentricity and orientation of the ellipsoid.

Definition 3: Distance Dy of point z; from the i** hyper-spherical shell
prototype Si(v;, A;) is defined as

(Dik)2 = ([(xk — vi)TAi(xk — Vi)]% - 1)2 (38)

Let x = (z,,z2) be the coordinate of a pixel in the object region of the
image. In the case of higher dimensional input x = (z1, z3, .....Tn) represents
the variable on the hypershell to be identified. The distance D; of point k*
feature point x; from-the :** hypershell prototype Sa(v;,7i, A;) is defined as

Dy = [(xi — vi)TAi(xx — vi)]"° — 74 (3.9)

where v, and r; are center and radius of the protdl;}'pe.

3.2 Network Architecture

The proposed network model consists of two layers, viz. input and output
layer. Each input node is connected to all output nodes. The number of input
nodes §s equal to the dimensionality of input space. For example. the network
consists of only two input nodes when it accepts the image coordinates of
the object pixels. The number of output nodes is chosen to be equal to
or more than total number of circle/ellipse segments in the image or total
number of hypersphere/hyperellipsoid segments in case of multidimensional
input. The network accepts image coordinates sequentially as the input and
learns adaptively the parameter values in the form of connection weights and
thresholds in an unsupervised mode.

Each output node ¢ stores a vector v; representing the center of the para-
metric shape (e.g. circle or ellipse). The output node also stores a matrix

14
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Figure 3.1: Network Architecture

A; to reflect the orientation and size of the parametric. shape. Note that this
kind of architecture is analogous to radial basis function networks (RBF)
where the hidden nodes represent certain receptive fields given by certain
basis function ¢;(]|la — u;|l/c¢j), 7 = 1,2,...,J and the normalizing factor o;
decides the range of influence of the 7** unit. Here, the k** unit in the out-
put layer of the network is given by b' = ;=0 wy,h; where h; = ¢;(.) and
ho(= —1) is the output of the bias unit, so that wyg corresponds to the bias
on the k** output unit. The nonlinear basis function ¢,(.) of the j** hidden
unit is a function of the normalized radial distance between the input vector
a=(ay, ay, ...,ap )7 and the weight vector u;=(u;1, tjo, ..., #jp)? associated
with the unit, u, is analogous to v;, weight vector of the proposed model.
However the present model does not provide any supervised information like
RBF in the output layer.

The vector centers and the matrix A; are adaptively updated in unsu-
pervised ‘manner. The output vector y = [y1, %2, ..., Yn], cOrresponding to x
is given 88 y; = f([(xx — vi)TAi(xx — vi)]°® ~ r;) where r; is a threshold
of output node %; i.e. f(u;) = [f(u1)f(uz)...f(um)] where u; is the internal
state which correspond to the distance D in equation (3.9) and m is the
number of output nodes. f(.} is an on-centre bell-shaped function. f(.) can
be chosen as a Gaussian basis function i.e. y; = exp(—u2/)?). Note that f(.)
can have other forms also including Cauchy distribution function of the form

Ui = Ii;— [2]. The parameter A determines the width of the bell shaped
function. For small values of A the activation function is highly localised.
Therefore the hypershell becomes slightly perturbed by the distant points.

This is necessary when the dynamics of the network settles to the desired
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Figure 3.2: Gausian form of function f

stable state. On the other hand for large A the attraction of the hypershells
towards the distant points are high, thereby making the network inefficient.

If x = (x1, 22) belongs to the ** hypershell then y;x == 1 otherwise yiu < 1.
The activation in the outptit layer indicates the line/circle/ellipse segments

(or hyperplane/hypersphere/hyperellipsoid) to which the input pixel (or vec-
tor} belongs.

3.3 Learning Rules

To learn v and r, a continuous and differentiable objective function

E=([]0-w) (3.10)

3=1

is chosen such that it is zero when y; is 1 for any i. The parameter @ > 0
determines the steepness of the function near local minima. As o increases,
steepness decreases. v and A are updated in order to decrease E. Following
the steepest gradient descent rule, the weight updating is given as

i}

ﬁ\ﬁ' -~ -—133"‘_ (311)
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where £ is the constant of proportionality. From (3.11), Av; can be written
as,

Av; = - y,)f (u‘) v, (3.12)
where, v = aff and
| gv"f oy A v + (A~ AT)(x - i) (3.13)

If A; is a symmetric matrix, A; = A7. Similarly change in A; can be given
as

vE
(1 — y:)
When A, is a symmetric matrix,

Ou; 1

—6-1—; = 2(11'—-_*_';‘—)[2()[ v,)(x Vt)T - dtﬂg[(x vl)(x vl) ]] (315)

where diag(M) is a diagonal matrix containing only the diagonal elements
of M.

ou;

AA; = EYN

| f () 5z (3.14)

3.4 Selection of Learning Rate

If learning rate -y is very small then the network will converge very slowly, on
the other hand if v is very large, then there will be an oscillation, and hence
the network will not converge to desired parametric shapes. Therefore the
solution of the optimal learning rate - is essential. v in every updating step
should be selected in such a way that E goes to a minimum level. If E(¢) is
present value of E at { then E(¢t) + AE(t) =0, . AE(t) = —E(t). |

To eliminate v from (3.12), (3.14) we have, change in output y; due to
small change in u; given by, |

2u,y;
Ay = - Au, (3.16)
where
Au; = (Q—E)T&v + trace({ —— o, JTAA;) (3.17)
5‘V,‘ : BA '

Changed objective function E for small change in output of #** node Ay; can
be written as

&y,
— Y

E(t +1) = E(t) [H(l " )] ('3.13)
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Near convergence, this can be written as

Ay;
E(t +1) = 1—az __yy (3.19)

E(t + 1) being optimised right hand side of (3.19) can be equated to zero,
hence

1
— =~ (3.20)

s0, from eqn (3.12), (3.14), (3.17), (3.20), we have

g’ = 1 3P [ OP - (3.21)
2 adm log(;-) (755 )2(4- )2 &) (5;)T + trace(WTW))

1—4

where W = 2XX" — diag(XXT), X = (x — vi), P = (x — vi)TAi(x - v;)
and BP = —2A;(x — v;). Thus finally learning rules are given by,

‘I

() (G55 ) (—2AX)

&vi —_ l"‘ﬂi L 1 +r'l-

ad " log wﬂ)z(_m_):’[(a%_) )2 )T+trm(W)] (3.22)

_yi

(5 (557, ) (2XXT — diag(XXT))

M T o) (o (N (B )T + trace(WTW)] ¢

3.23)

The updating rules reveal that the changes in parameter values are inde-
pendent of the selection of A. The parameter A is however implicitly embed-
ded in the output y of the network. Initially when the parameter values of
the network are far from the fixed point, the denominator is very smal. To
account for this situation the learning rate is clamped to a constant value
when the denominator is very small. Near the optimal solution the learning
rate changes according to the eqn.s (3.22) & (3.23) respectively.
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Chapter 4

Implementation and
Comparison

4.1 Implementation and Experimental Results

It is found that the learning rate of cluster center matrix v and cluster
orientation and size matrix A are not same. Hepce, to define the rate of
learning of the parameters of the model two multiplication constants are
chosen heuristically, in such a way that, the model works most efficiently and
the distance definitions are meaningful, that 1s A; remains positive definite.
Here, while keeping r fixed the two heuristic values chosen are 7’% for matrix

A and VK for matrix v where K is the average distance of feature points
from the origin, so that the ratio of two learning rates rémain in the order
K. The constant ¢ is found to be approximately equal to 0.5.

Note that, the heuristic values provide desirable output for a wide range
of image sizes. It is also found experimentally that the network performance
is not very sensitive to the selection of ¢ so long as it is close to 0.5. Further
investigations can be made to justify why these heuristic values provide good
performance.

The straight lines appearing in an image is considered as a double straight
line will be represented as in equation (3.5). Thus one extra line will appear
in an image, which may not be present at all. However this is considered
as a similar case of detecting a partial circular or elliptic shapes and can
be eliminated, checking limit of the shapes depicted in the image. This
discussion is out of the scope here.

Detection of circular shapes can be viewed as a special case of detec-

~ tion of elliptic shapes where A is taken as identity matrix. A circle can be
represented as

(z-v1)*+ (y—v2)? =1 (4.1)
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whese v = (v, v;) denotes the cluster center and r denotes the cluster radius.
S0 W detect a circular shape it is sufficient to learn only three parameters

vis, (vl,vg, r). For a circular model S4(v;,r;) distance from point x to it*

hypershell is given as
Uy = [(J( — V,')T(x — Vi)]ﬂ'a - Ty (42)
So the learning rules will become

OB _ 0B 3y 0u,
Avi = ﬁav: B ay‘.l aut (43)

 OE _ 8Edyou,
A= o = P g ou; o, (44

To eliminate 8 we use eqn. (3.19) and

Ju,

31!1,1

Ay, = ( )Tﬁ\’, I Br‘_ )TAT,* (45)

where 24 = —1 and %—:T = —&‘;—‘;‘3;
'yE' 1 - (4.6)

A 4037 log( )2 Hlx — villP ¥ (s + 7)) *
Thus the learning rules become
X — V; |
&vi ( .!JL)Q(uﬁr:)(z ) - = (4.7)
20 ) iy log () (78~ )2 (557 )2lIx — vill? + (ws + 74)?)]
Uy

&Ti ( —y.) (48)

2a ) ., log(:- )(—.‘f‘;';)z(,.i+,.i)2[|lx = Vill? + (wi + 1y)?]

Even for detection of ellipses and straight lines we can start with Iearmng
(v1,2,7) till a limited error. However if number of straight lines in the
image are known separately, we can start with constraining the matrix A as
in eqn. (3.6) for those segments and for the rest of the segments learning
the parameters of the circle. For elliptic model S, we start with this center
(v1,v3), assume cluster radius as r and initialise matrix A to LT where I is
an identity matrix.

A partial ellipse segment may be identified as a segment of a hyperbola,
which is a perceptible pattern. To avoid any extra segment from other the
half, which is not a meaningful segment, we can apply another constraint on

20
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Figure 4.1: Output of network with excess no of output node

the matrix A. To force the matrix A to be positive definite, we introduce a
matrix B, such that BBT = A. In this case the learning rule becomes

AB, = OE ﬁaE dy; Ou

8B~ "8y, ou; 0B; 49)
where g—%:— = m[(x — vi){x — ?i)TBi]

The figure 4.1 shows a case where the no. of output nodes selected, was
more than the number of segments expected in the image. Note that in
most of the cases two of the segments detected by the network point to same
segment.

According to level of difficulty we classify our problem into seven stages,
in a hierarchical fashion. L
1. Detection of circular shapes (Full & partial) from dense clustering.

2. Detection of a mixture of line and circle segments from dense clustering.
3. Same as 1,2 from sparse clustering.
4 Detection of complete & partial ellipses from dense clustering.

. Detection of a mixture of ellipse and circle segments, or ellipse and line
segments from dense clustering.

6. Detection of a mixture of lines and full or partial circular or elliptic shapes
from dense clustering,

7. Same as 4,5,6 from sparse clustering.
The outputs of each classes are shown in figure 4.2-4.8 respectively.

During its convergence, the network may encounter several problems
which are as follows.

1. Conflict between minor and major axis of a partial ellipse:- When
only a partial information of an elliptic shape is present, there may be a con-
flict between the major and minor axis, where the converged ellipse chobses

minor axis of original elliptic shape as its major axis or vice-versa. However
both the results are perceptually acceptable. [fig 5.2:right]

2. Detection of spurious ellipses:- Spurious ellipses may be detected
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Figure 4.4: Case 3
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Figure 4.8: Case 7

intersection of several ellipses. However this may be a perceivable pattern.
3. Effect of Dominance:When a complete segment, having a large pixel
count including cluster noise, is present side by side a smaller or partial seg-
ment, having a very small pixel count, the network may however sometimes
ignore the smaller segment and moves to the larger one. In that case after
complete convergence we have to check separately whether any more seg-
ment is present in the image and the network is run again ignoring the pixels
nearing to the detected segments.

4.1.1 Local minimization error

It has been observed that the performance of the network is dependent on the
situation of A. For a large value of A the detected parameter shapes interfere
with each other and thereby causes poor localization. On the other hand, for
a small value of A initially it is very difficult to attract the distant points i.e.
the basis of attraction of the solution space becomes verv narrow. In order
to take care of thlS situation initially A is chosen a large value and then it is
decreased as se(175) Where 7 is the number of iteration at the stage. Note
that, this is anajogous to scheduling the temperature in simulated annealing
and also the scheduling the mutation probability as in the case of genetic

algonthms. Initial value of A is taken as 45 and it is reduced up to 10. Few
more outputs are in figure 4.9-4.11,
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Figure 4.9: Typical example with error plot
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Figure 4.11: Typical example and error plot
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Figure 4.12: Applying classical Hough transform

4.2 Comparisons

4.2.1 Comparison with classical Hough transform

CHT is implemented for detection of circular shapes, using 3 parameters.
In. a noiseless image as in fig 4.12:left we see that CHT has detected the
parameters correctly. However in case of fig 4.12:right it detects a spurious
circle. In case of 10% noisy image as in fig 4.13 it has detected a few spurious
circles, but none were correct.

CHT requires memory in the order of image space and hence it is unre-
alistic. For a typical 256 x 256 image, if we want to detect an elliptic shape,
and if we assume accuracy of two pixels in center location, two pixels in radii
determination and 2 degrees in angle calculation, and if no prior informa-
tion about the range of these parameters are available, the accumulator size
will be 128x128x64x64x45 i.e. 6000MB using short integer array. Thus
space requirement increases exponentially with no. of parameters and the
calculation becomes intractable.

4.2.2 Comparison with Randomised Hough transform

RHT [6,41] accumulates points in a parameter space by randomly choosing
n-tuples of pixels from an image and computing the parameters of the object
which passes through these pixels. To detect a circular shape, from the
feature set we choose 3 points randomly and at each point local tangent is
found out by the method of least squares. Parameters of the unique circle
which pass through these 3 points is determined. If lines joining the center
and those 3 points remain perpendicular to local tangents and the center lie
on the line joining the midpoint of any two selected points and the point
where tangents at those points meet, we accept those parameters, else we

26



Mo

. 4 A e - d — | .
2 4D 80 20 100 120 140 P 40 40 [ ) 100 120 7]

Figure 4.13: Detected by CHT: too many spurious outcome
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Figure 4.14: Detected by RHT: sparse clustering (precision may be low)

reject the 3-tuple and choose new one.

Fig 4.14:left shows the output of RHT in case of sparse clustering. Since
the output depends only on final chosen tuples, the precision may not be high
as in hgure 4.14:nght. Also this algorithm may work poorly when cluster
noise is added to the shapes as in figure 4.15, because it makes increasingly
difficult to find local tangents, the problem is severe at crosspoint of segments.

4.2.3 Comparison with Adaptive fuzzy c-shell cluster-
ing algorithm

xT=elapsed cpu time.

*P = F‘;(Hil(l — y:)),where N=no. of object pixels. xA = 45 is the basis.
Based on the definition(1) of the prototype and the distances a c-shell

functional is formulated [2]. Given a set of n points, x = {z,,Z2,...,Ta} C

RP. where z; is the k** feature vector in set X the problem of detec-

tion of ellipse segments boils down to finding c-cluster prototypes as well
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Figure 4.15: Detected by RHT: dense cluster noise leads to failure
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8 & c-partition of X. The prototypes are defined using v; from the set
Ve {nmn vy Ul €MRPY, and r from the set R = {r),ry, ..., rlri€R*}.
The partition may be either hard or fuzzy. Let M sc and M. denote sets of
all bard and fuzzy c-partitions respectively with Ue M; or Ue M, Then the
fanctional J, is deﬁned as

J,(U,V,R, A) = Z ) (ua)™(Dy)? (4.10)

where ug, is the membership of the k** feature vector in the i** cluster, with
exponent m € [1,00]. If the membership is fuzzy then u; [0, 1};otherwise
ua€{0,1}. Assuming that A; is fixed, the sets U,V, R are the variables of
the functional, and the functional is minimised with respect to them. A
constraint is imposed on the membership as follows:3 ;_. u;x = 1 Based on

- the definition (2) and (3) of prototype and distances the functional of {4.10)
IS written as

J(U,V, A) = ZZ uix)™(Dix)? (4.11)

1=1 k=1

Thus the functional is optimized with respect to ug, v; and A;. Following the

optimization conditions, for cluster centers v; and norm-inducing matrices
A, for either case of memberships

g(ua)m%ﬁ(& -4} =0 (4.12)
' Z(ﬂik)m%f(ivk —vif{ze —v) =0 (4.13)
k=1 |

are satisfied.

The comparison shows that, AFCS-U algorithm works efficiently, when
number of object pixels are less and noise level is low. It can recognise
partial segments with exceptional efficiency. However in presence of noise
the algorithm performs poorly, and when the no. of object pixels are very
high as well as noise is present, performance and precesion is low. The
performance is also poor in complicated cases of overlapped ellipse segments

where fuzzy-c-means and linear AFCS fail to provide good initialization to
AFCS-1 algorithm.
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Figure 4.17: Failure of AFCS-1 to provide good initialisation to AFCS-U :
high sensitivity to noise |
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pter 5

Extension of the Network to
Gray Level

The connectionist model is extended in order to detect conoidal shapes in
gray level images. Conventionally the darkest pixels have the lowest gray
value, and vice versa. The normalized gray values of the pixels are scaled
in the range [0-1] and divided into 3 partitions on the basis of preselected
thresholds. Note that, the thresholds selected may vary for different images,
particularly depending on the quality and contrast. For example, if the
chosen thresholds are th; and ths then the gray values in the three partitions
are [0, 2h,); [thy, tha); [tha, 1].

The network structure for this pattern is modified as figure 5.1, where
number of nodes in the input layer becomes 3 and all the input nodes are
connected to output nodes. Thus the input layer takes 3 parameters from
the image (viz z;,Z3,9), where g is the normalised gray level pixel value.
The output of the network is calculated as y; = g; f(u;) instead of eqn. (2.3).

The pixels belonging to the first partition (containing the darkest pixels
of the inage) are fed to the network first keeping the learning rules same as
(3.22) & (3.23), since constant normalised gray value g; is assumed. After the
network converges with a sufficient number of input patterns, we go for the
second partition. The normalised gray values in the second partition [th,, ths)
are again subdivided into a set of smaller partition [th,th, + €); [thy, thy +
2¢); ...[thy — €,thy). The object pixels in the sub-partition [th,,th; + €) are
then appended to those in the first partition and the network is retrained.
After convergence the pixels in the second sub-partition ([th; +¢, th; +2¢)) are
also fed to the network along with the pixels in [0, th; +¢). The process is thus
continued by feeding pixels in sub-partition in regular intervals along with
current pixels. This method is adopted in order to reduce the computation
time. The object pixels belonging to the third partition is simply ignored.
Thus, darkest object pixels are used maximum number of times for training
purpose. The experimental results are shown in figure [5.2-5.3].
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Figure 5.1: Network Architecture for detecting shapes in gray level images
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Figure 5.2: Applying to gray level images
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Figure 5.3: Applying to gray level images
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Chapter 6

Discussion and Conclusions

The network model designed here is able to learn the parametric forms of
various parametric shapes in unsupervised manner and to provide an efficient
model for learning and representation of visual information. Its performance
is compared with those of some existing algorithms like classical HT, ran-
domised HT, AFCS-U algorithm and it is found that it excels over these
algorithms in many cases. Particularly in noisy environment the present al-
gorithm works gracefully than the other algorithms. The network is able to
detect any conoidal structure in a gray image, and it can also be used to detect
partial segments from a very sparse clustering. The parameters are repre-
sented here with a very high precision, because unlike classical Hough trans-
form this method does not need any quantization of the parameter space.

The network however has its own limitations. A few examples are shown,
(noise level is 415 pixels), where the network falls behind ideal human vi-
sion system 6.1. To improve capability of the network, certain co-operative
computational mechanism may be incorporated.

Besides this, other future scopes of investigations include, () providing
the justification of the learning ratios, (#¢) extending the network in multi-
dimensional models on gray level, (i7:) demonstrating its other applications
like detecting sinusoidal shapes, boundaries and reflectional symmetry.
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Figure 6.1: Failures of the network
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Appendix A
Algorithms

Algorithm A.0.1: CHT(x,y)

comment: Computes classical Hough transform

global
N = No. of object pixels in the image
Kinreshota = Threshold for accumulator array
oulput =
RESOLUTION; = Resolution of §; in parameter space
A(8)<(0V8 ¢ parameter space
(z;,vi) = *» image pixel coordinates
for each icN

compute © such thatf(z;, 1;,0) =0

do for k<1 to size(6)
do lerwnd(ek/RESOLUTIONk)

A(B) « A(O) + 1

for each & € parameter space

do if A(e) > Kt.hre.shold
then output+outputUu®
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Algorithm A.0.2: YUEN HT(X)

comment: Detects Ellpses in image using Yuen's modiication of HT

The Hough transform algorithm stated below, does not consider the case
of concentric ellipses at different orientations, but avoids too many compu-
tations. The technique mentioned here utilizes the center finding approach,
along with a version of the backprojection technique for peak sharpening and
feature point labelling.

For finding the rest of the parameters Muammar and Nixon’s tristage
Hough transform technique for multiple ellipse extraction is utilised. For
finding orientation, a pair of points equidistant from the center but not hav-
ing the same magnitude of the slope are considered. For concentric ellipses,
having different orientations, there would be multiple dominant peaks in this
histogram. Once centers and the orientation are found, a two dimensional
accumulator array can be utilized to find major and minor radii. For con-
centric ellipses of different sizes, there would be multiple peaks in the array.
1.Accumulation: For each pair of points, find the line MT, and find the
votes along the line in the accumulator array ACCI.
2.Peak Sharpening: For each point i, by inspecting all the cells that re-
ceived contribution from all the pairs, that i was included in, find the cell
location that received the maximum number of votes. Increment that loca-
tion in a second accumulator array ACC2. Also note this location for point
s in tracking array.
3.Peak detection: Search ACC2 for the highest peak. Repeat to find the
next peaks by zeroing out the peak location along with its neighbourhood.
until no peaks are present that meet a minimum threshold.
4.Feature labelling: For each peak, identify the points that contributed to
the peak by examining the tracking array. This will segment the data set.
5.0rientation: Increment the orientation accumulation array for each pair
of points equidistant from the centre. Find the highest peak, which gives the
orientation of a candidate ellipse.
6.Major/minor radii: Increment the two dimensional radius array for each
pair of points. Find all the dominant peaks.
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Algr;rithm A.0.3: RUNNETWORK(X, NUMsegment )

comment: Computes Parametric shapes using 2-layer ANN

count<No. of object pixels in X
A¢—45; T1; count, 1 K40.01; nepp ¢ 1; testy1; c~0.5
for i<1 to num,.gmen:
do ﬂA,f—I
while (n.,,)
| n,,,;,,.{-—CmvergenceCmdition(test £3T, Neprs A)
X Random Permute(X)
TT+1
for var+1 to count
x+X(var,:)
for i1 to num,eement
ui{—(x — vi)T&(x — V,‘) —T;
if (imag(u:) # 0)
do ui+(x — vi)T(x - v;) —
yiezp(—(u;/A)*)/* Activation funtion*/
E«[[T(1 - y)]°
for i<-1 to ﬂﬂﬂl,wt
R{-——(x — Yi)
M+ — 2AR + (A, — A,{)R
W2RR’ — diag(RRT)
Gi—(MMT) + trace(WTW)
do ! do { denomea T log(L) (1 )2(p)2G,
comment: Calculate Learning Rates

do

do for :«1 to NUMegment
R—(x —v;)
do { Avie- (1) (o) (ZB)
—y * RR" —dia
AA (7l ) (- ) (BB SRR )
comnment: Updation rule of v&A
VitV + \/?AV,.’
A; A + #QA,
testh«testE + E
testE«—testE /count
tests¢—testE
test E+-0
if (count, = 0)&.’:(H_,:,"'_":Iljr > 10)
then A< ool )

count.«—rem(r, 15num,eoment)
if CheckdAnySegmentLeft() = TRUE
| { X< RemovePointsNear DetectedSegments(X)
then

NUM segment ¢~ 1 39
RunNetwork(X, num,eoment)



Algorithm A.O:I: "CONVERGENCE CONDITION OF NETWORK(nﬂ

procedure CONVERGENCECONDITION{test;, k, array, A)
LimitQO f Array«15
- ArrayFillFlag+0
if A> 20
then ¢« 10-%
else e«—10-8
if (k < LimitQO f Array)
then array(k)«test;
ArrayFillFlag«1
else ¢ k1 +rem(k — 1, LimitO f Array)
{arruy(k)':-test ;
if (ArrayFillFlag)
s¢-sumlarray)
epstesty — 8/ LimitO f Array
then < if (abs(eps) > ¢)
then y«array
else y+ o
else y—array
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Algorithm A.0.5: RHT (x)

while (Output = @)
Randomly choose three pixels from the Image
comment: Obtain estimates of tangent at each pixel

for 1 =1to 3
W A small neighbourhood (say 5x35)
around the pixel z;
/*Find the line of best fit to those pixels within
the neighbourhood (using least squares method)*/
mi+ LeastSquare(x;)
tangent(z;)+{(m;, )
comment: Finding the center

for first with a=(1 2)& then with a=(2 3)

Take two points on an ellipse z,,, Z,,
M{—Lfﬂ;it“} /* Finding midpoint */

T +intersection of tangent(a,) & tangent(a,)
comment: The ellipse center (v, vo) will lie on

line TM.

do /*Since transformation mapping a circle onto
ellipse is affine, this maps lines to lines, tangents to
tangents & intersections to intersections */
Intersection of the two lines gives an estimate of the
center of the ellipse.
comment: Finding the remaining three parameters

do

do

Translate the ellipse on the origin

This reduce egn(1) to az? + 2hzy + cy* =1

Substituting in the coordinates in the three pixels

X: = (z1, 1), X2 = (22, ¥2), X3 = (73, ¥3) and solving this
for a,b,c get the remaining 3 parameters of ellipse.

if (ac — b > 0)

{comment: The parameters represent a valid ellipse

output (a, b, ¢, vy, v2)

/* Either 3 pixels do not lie on the same ellipse,
else { or the estimates of tangent were in accurate.
In either case the parameters are discarded */
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Algorithm A.0.6: AFCSU(X, c)

comment: Detects Ellpses in image using AFCS-U algorithm

Fuzzy c-means algorithm:
. Initialise Uu, Chm c,m,c.
. Compute all c- cluster centers v; .
. Compute all cxn membership v ; and update all c cluster centers v; 4.
. Compute E;.
. If E; < ¢ then stop, else return to 3.
Algorithm 1:
1. Fix the number of clusters ¢, 2<c < n, where n is the number of data
points. Fix m = 1 for hard memberships or 1 < m < oc for fuzzy mernber-
ships. |
2. Set iteration counter j = 0. Initialize the c-partition U?.
3. Calculate v; and r; by solving the nonliner systems of equations

v G2 BN et

o

Z(ua)’" O (xg —vi) =0 (A.1)
= dix
Y (i)™ Dix = 0 (A.2)
=1

with d from
(di)? = (x — vi)T Ai(xk — Vi) (A.3)

and D{k from
(Du)? = ([{xx — vi)TAi(xx — vi))'/2 — 13)? (A.4)

4. Calculate (1),7,,;_—)2 as in (4)
5. Calculate S,ﬂ (01' S,1) using

n

2) i
Ssi = z(“ik)m—m'(xk —vi)(xg — i)' (A5}
k=1 d‘k
and A, using
det(A}) = [pidet(Syi)] P (Sy) 7}, 1<i<c (A.6)
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6. Update the membership U7, at the j* iteration, using for fuzzy member-
ships,

1
Iy = ¢=uy = 21[%];1__1 (A.7)
or, [x#¢=u, = 0,Viel, and
iu,—; = 1,Vicl, (A.8)
i=1
For hard memberships.
ik = 0, ¥irkd, upe = 1,3 = min(d) (A.9)

7. If converged, stop. Otherwise set j = j + 1 and goto step 3.

Algorithm 2:
1. Fix the number of clusters ¢, 2<¢ < n, where n is the number of data
points. Fix m = 1 for hard memberships or 1 < m < oo for fuzzy member-
ships.
2. Set iteration counter j = 0. Initialize the c-partition 7.
3. Calculate A, v; and r; by solving the nonliner systems of equations

Z(um)"‘%(xk -v;)=0 (A.10)
k=
Y " (ux)™Dix = 0 (A.11)
k=1
| Z(Hik)m%(xk -v;)'=0 (A.12)
k=1 '

4. Update the membership U4, at the j* iteration, using (A.7),(A.8) and
(A.9).
5. If converged, stop. Otherwise set j = j + 1 and goto step 3.

AFCS-U Algorithm:

1. Fix the number of clusters ¢, 2<¢ < n, where n is the number of data,
points. Fix m = 1 for hard memberships or 1 < m < oc for fuzzy member-

ships.
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2. Set iteration counter j = 0. Initialize the c-partition U’.

3. Apply Algorithm 1 until convergence is achieved.

4. Use uy and A, (scaled down using ri)from step 3 as an initial guess for
uix and A, for the following step.

5. Calculate A, and v, by solving the nonliner systems of equations

n Dl
Z(m)’"f(xk ~vi)=0 (A.13)
k=1 k
- mDﬂ-‘ T
3 (wig)™ S (xe — Vi) (xi = vi)T =0 (A.14)
k=] tk

6. Update the membership U7, at the j** iteration, using (A.7),(A.8) or

(A.9).
7. If converged, stop. Otherwise set j = j + 1 and goto step o.
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