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Abstract

A fuzzf knowledge-based neural network is generated using rules extracted from fuzzy
ID3. The ﬁzw decision tree can handle numeric features and for linguistic features and
class membership values, while fuzzy entropy i used at the node level. A new measure
is developed to evaluate the goodness of the decision tree. Linguistic rules are extracted
and quantitatively evaluated. An optimal fuzzy knowledge-based network is automatically
generated using the extracted ~les. The effectiveness of the system, in terms of recognition
score, performance of rules and size of network, Is demonstrated on a vowel recognition
problem.

Keywords : Fuzzy IDS, rule generation, classification, rule evaluation, network map-

ping, neuro-fuzzy compuling.



Chapter 1
Intrqduction

One of the most significant methods in the area of pattern recognition and classification is the
delta rule, which is used for the back-propagation in the training of multilayer perceptrons
[1]. However, there is no standard way of generating such a neural network architecture and
it 1s mostly relied upon empirical methods to find a suitable neural network architecture. In
the generation of a neural network architecture two fundamental questions arise

e What is the number of nodes required in a hidden layer ?

e What is the nu:qber of hidden layers required ?

To help in determining a feedforward neural network architecture, it was shown that a
four-layered network with two hidden layers can solve arbitrary classification problems [2].
Irie and Miyake [3] proved that a three-layered back-propagation uétwork with an infinite
number of nodes in hidden layer can also solve arbitrary mapping problems.There exist
several approaches for dynamically generating the network architecture using growing and for
pruning of nodes and links. However, the determination of an optimal feedforward neural
network architecture remains an important research area [4, 5]. We directed our studies to
incorporate the aspect of maximum information gain in the generation of a neural network
architecture. t

Using information entropy is common in machine learning algorithms. One such effi-
cient machine learning for classifying symbolic or non- numeric patterns is ID3 (Interactive
Dichotomizer 3) {6]. The ID3 algorithm dynamically generates a decision tree using in-
formation theoretic concepts. Studies of the ID3 algorithm and back-propagation neural
networks revealed strong evidence that ideas similar to the ID3 algorithm may be used
to answer the above two fundamental questions concerning the generation of optimal neural
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network architecture {7, 8] . Conventional ID3 can be very effective under certain conditions,
but has a few serious drawbacks, viz.,

e it handles categorical or non-numeric or symbolic attributes only;,
e jt cannot deal with partial information and

e its efficiency is less for overlapping classes.

Schemes have been proposed in literature [9] to partition the input features into intervals
determininé appropriate thresholds. Generally artificial neural nets (ANNSs) consider a fixed
topology of neurons connected by links in a pre-defined manner. These connection weights
are usually initialized by small random values. Recently, there have been some attempts in
improving the efficiency of neural computation by using knowledge-based nets. This helps
in reducing the searching space and time while the network traces the optimal solution.
Knowledge-based networks [10, 11, 12] constitute a special class of ANNs that consider
crude domain knowledge to generate the initial network architecture, which is later refined
in the presence of training data. Such a model has the capability of outperforming a standard
MLP as well as other related algorithms including symbolic and numerical ones {10, 11].

We have designed a fuzzy ID3 algorithm capable of handling numeric and/or linguistic
attributes.the linguistic partitions along each feature are automatically determined depend-
ing on the distribution of pattern points in the feature space. The concept of fuzzy entropy
is used at the node level to determine the tree structure. Pruning is used to minimize noise,
resuiting in a smaller decision with more efficient classification. A new measure is developed
to judge the performance of the tree both in terms of performance and size. A smaller tree
leads to the generation of more meaningful linguistic rules.

The rules are evaluated using quantitative measures. A new measure to estimate the
coverage of these rules is defined. The extracted rules, representing domain knowledge, are
mapped to an MLP. This leads to the automatic generation of a fuzzy knowledge-based
network. Different mapping schemes are developed and compared. The proposed algorithm
leads to a smaller and more efficient system. The effectiveness of the model is demonstrated
on a speech recognition problem.



Chapter 2
ID3 and Incorporation of Fuzziness

This chapter begins with the conventional ID3 algorithm which suffers from the drawbacks
of |

e infeasibility of handling non-numeric data and
e inefficiency in classifying overlapping classes.

To overcome these shortcomings a few alternate fuzzy ID3 algorithms have been proposed
and tested on vowel data during this dissertation work. This chapter discusses these algo-
rithms incorporating fuzzines at the input, output and node levels. A new metric, named

T-measure, is designed to evaluate the efficiency of the decision tree. The chapter concludes
with the results obtained from all the above algorithms.

2.1 ID3 algorithm

The ID3 [13] approach to classification consists of a procedure for synthesizing an efficient
discrimination tree for classifying pattern that have non-numeric values. The ID3 approach
makes use of labeled data and determines how features might be examined in sequence until
all the labeled examples have been classified properly. If the data set used to construct the
tree 1s a representative of the much larger ensemble of patterns comprising the original b{;dy
of the data, then we expect a very large gain through the use of ID3.

An important property of these algorithms is that they implicitly attempt to minimize the
size of the tree while optimizing some local quality measure - such as entropy or information
content.



The tree is constructed in a data driven manner using depth first. The information

content is measured according to [14].

Entropy = - ) pilogp;

i=1
where [ is the set of decisions, and p; is the probability that a training sample in the node

represents class i.

Algorithm 2.1: ID3 Algorithm

In the t;a.iniiig set there are N patterns from classes C;,2 = 1,2,...,[. Each class C; has
N; patterns and each pattern has n attributes.
1. Calculate initial entropy.

Initial entropy:

N
Ent(I) = Z * log, — k

{
= — ) pilog;p; (2.1.1)
k..l k=1

where p; is the a priors probability of the ith class.

2. Select a feature to serve as the root node of the decision tree.

2.1 For each feature f;,3+ = 1,2,...,n, partition the N patterns into two according to
their values (0 or 1).

2.2 For any branch population n;; (i for pattern number, j for left or right branch), the
number of patterns belonging to class Cy is n;;(k). |
Entropy of branch j:

Ent(1, fi,J) = -Zn"(k) log, i (k)

k=1 THj Nij

The entropy of the system after testing on attribute f;:

2

Tlij :
EtI,i= EtI, i .
nt(I, f;) ,-Zﬂ‘zjmj nt(1, f;, 5)

2.3 Change in enti'opy after testing on feature f;:
AEnt(f;) = Ent(s) — Ent{l, ;) (2.1.2)
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2.4 Select a feature fi such that

ﬁEﬂt(fk) > Eﬂt(fi) (2.1.3)

foralli: =1,2,...,,i # k.
2.5 Fea;turé'ﬂ is then the root of the decision tree.

3. Build the nezxt level of the decision tree.
Select a feature from the remaining ones, for which the change in entropy is maximum,
as the node of the next level.

4. Repeat steps 1 through 3 until either all features are exhausted or sub-populations vanish

or change in entropy is zero.

2.2 Fuzzy Sets

In this section.we provide some facts related to the fuzzy sets and membership functions.
The concept of fuzzy sets was introduced by Prof. L. A. Zadeh [15], to quantify vague
human perception in terms of mathematical framework in the classical set theory (which is
also known as crisp set) an element may or may not belong to a particular set but in the
fuzzy domain each element has an associated membership value which. indicates the degree
of belongingness of an element in that fuzzy set. Formal definition is as follows :

DEFINITION 2.2.1. A fuzzy set A in a space of points R = {r} is a class of events with
continuum of grades of membership and 13 characterized by ¢ membership function p,@(r)
that associates with each element in R a real number in the interval [8,1] with the value of
Ba(r) at r representing the grade of membership of r in A . Precisely , a fuzzy set A with
its finite number of supports ry, T2, ...., Ty 18 defined as a collection of ordered PGITS

A = (pa(r),r),i=1,2,...,n
— (ﬂA(Ti)/Ti),i=1,2,...,ﬂ



where the support of A 1s an ordinary subset of R and is defined as
S(A) = {r|r € R and p4(r) > 0}.

Here p;(r;), the grade of membership of r; in A, denotes the degree to which an event r;
may be a member of .A or belong to .A. For a crisp set

1ifr;€ A
pi(ri) = :
OlffiéA.

In pattern classification problems we often need to represent a class with fuzzy boundary
in terms of a function. Membership functions can be triangular or trapezoidal representation.
One can also use standard S and 7 functions [16].Each function can be defined in terms of
a centre and a crossover point, with membership values 1 or 0.5 respectively.

2.3 Fuzzy ID3

In order to handle numeric or continuous attribute values, some investigations have been

made. These include them Fuzzy ID3 [17], RID3 [18], Neuro-Fuzzy [17]. Here we present
some fuzzy versions of ID3, focusing mainly on handling linguistic attributes and providing
immunity to noise. This-is done by

¢ calculating the input fuzzy membership using periition values and

¢ pruning the decision tree.

As we have already discussed, ID3 algorithm for generating decision trees requires discrete
valued attributes. So, if the patterns are of continuous valued attributes then there must be
a way to discretize them. We propose a way to do so in terms of linguistic variables viz.,
low, medium and high. This is achieved in two steps,

o the first step involves in calculating the input membership values of each feature into
the fuzzy sets low, medium and high. Thus, each n — dimenstonal pattern F; =
(f1, f2,---, fa) is converted into a 3n-dimensional feature

F;, = (Flaw(fl): l-“med:it:m(fl): o« v :phigh(fn))



e The second step is converting each membership value into binary values by considering

an appropriate threshold, .

The algorithm for discretizing the continuous valued patterns is given below. Here we
partition each feature into three triangular partitions using only two parameters. We do
not consider the arithmetic mean as in [19], but use guantiles or partition values' instead,
in order to avoid considering noise patterns. Note that one of the strongest drawbacks of
arithmetic mean is that it is very much sensitive to large values (noise). The membership
values of the ]iﬁguistic variables low, medium and high is represented in Fig.2.1.

1.0

Figure 2.1: Membership Function.

Algorithm 2.2: Algorithm for discretizing continuous features

for each attribute f; do

begin

Aﬂja

min{ f1;, faj, ..., fnj}
first partition{ fijs Jajy - - s f Nj}
second partition{ f1;, faj,-- -, fni}

mm{flj: fojy-es fNj}
fjmin + PJI
2
fil -+ sz
2
Pi2 + fimes
2

lQuanElu or partition va..-l-ues are the values of a variate which divide the total frequency into a number

of equal parts.



(N is the total number of patterns in the training set)
end _'

for each pattern F; do

begin
for each feature f;; do
begin
1 for fij < Aﬂjl
Hiow; (Fi) = p?i::{;j:: for Av;; < fij < Pj2
0 otherwise,
(2.3.4)
0 for fij < .le
Avje— fij
et (F) = { Fn=p o7 P S fy < Aoy
Fji!;#ﬂ for A‘Ujg ﬁ f,‘j < Pjg
0 otherwise,
(2.3.5)
0 for f,‘j <P 71
Ju-FiL for Py < fii < Av;
. (F) = Avjs—PFji 3= I 33
high; () 1 otherwise.
(2.3.6)
For each linguistic feature in the above equations
For = 0 if fiow; (F) < Tj OF pimedium; (F;) < Tj OF pinign; (F3) < T;
9 1 otherwise
(2.3.7)

for (m = 1,2, 3) corresponding to low, medium and high.
end
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end.

Now we focus on the problem of improving the ID3 algorithm to classify the overlapping
pattern classes. In ID3 algorithm the sample space is partitioned to form a decision tree.
When two sample points from two overlapping classes lie in the Intersecting regions ihe
corresponding attributes for these samples are expected to be the same. This implies that
both the sa.mpias travel through the same path to the same node. Further splitting is not
possible since AEnt will be zero, which is a stopping condition for constructing the tree.
Thus, ID3 fails in an overlapping regions.

In order to achieve further resolution we take the help of membership values of each pat-
tern into each of the classes. These values reflect the relative proximity of the patterns to each
of these classes. We assume that the points nearer to the class centers have higher chance
of belonging to that class or cluster. So, our membership function is based on distance of
a pattern under consideration from the cluster center. Following is an algorithm for this [20].

Consider an I-class problem domain. The membership of the ith pattern in class k, lying in
the range [0, 1], is defined as [21, 22]

p(P) = Ty (239

where 2, is the weighted distance of the training pattern F; from class Cy, and the positive
constants fy and f, are the denominational and exponential fuzzy genefh.tors controlling the
amount of fuzziness in the class membership set.

Fuzziness is incorporated into the ID3 algorithm at the node level by modifying the de-
cision function with classical Shannon’s entropy by the inclusion of fuzzy entropy functions.
The fuzzy entropy measure considers the membership of pattern to a class and helps en-
hancing the discriminative power of an attribute. The fuzzy ID3 algorithm for constructing
the decision tree is provided below. The salient features of this algorithm are as follows.

¢ The input membership is calculated in a way to eliminate noise by using partition
values;

e different entropy functions are investigated to give proper weightage to the classical
entropy and fuzzy entropy in order to construct good decision trees; and
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e while constructing the tree some nodes are pruned by thresholding on the fraction of
patterns reaching that node in order to reduce noise.

Algorithm 2.3: The Fuzzy ID3 Algorithm

In the training set there are N patterns from classes C;,1 = 1,2,...,1. Each class C; has
N; patterns and each pattern has n attributes.

1. The features of the training patterns are discretized using Algorithm 2.2.
2. Calculate the class memberships of the patterns using eqn(2.3.8).
3. Calculate initial entropy Ent(I).

4. Select a feature to serve as the root node of the decision tree.

4.1 For each feature f;,s = 1,2,...,n, partition the N patterns into two according to
their values (0 or 1).

4.2 For any branch population n;; (¢ for pattern number, j for left or right branch), the
number of patterns belonging to class Cy is n;;(k).

Entropy of branch j = Ent(l, f;, j)-

The entropy of the system after testing on attribute f;:

2

Ent(l, f;) =Y —2—Ent(1, f,, j).

=1 3 n"J

4.3 Change in entropy after testing on feature f;:

AEnt(f;) = Ent(i) — Ent(l, f,).

4.4 Select a feature f; such that
AEnt(fy) > Ent(f;)
foralli1=1,2,...,1,51 # k.

12



4.5 Feature f; is then the root of the decision tree.

5. Build the next level of the decision tree.

Select a feature from the remaining ones, for which the change in entropy is maximum,
as the node of next level.

6. Repeat steps 3 through 5 until either all features are exhausted or their number is
less than a predetermined threshold or change in entropy is zero.

Here we provide the various entropy measures used in step 3 of the fuzzy ID3 algorithm.
Let these be denoted as cases a-g. Note that y;; is calculated by eqn(2.3.8). Here p; is the
a priors probability of the kth class and p;; denotes the member of the jth pattern to the

tith class. We prune a branch if the number of patterns going down that branch is less than
a threshold t.

Case a.
~ N 1LY
Eniropy = _Z AT 1952 N N Z Z [F:j logy pij + (1 — pij) loga(1 — pij)]  (2.3.9)
) t—l 3=1
N
= —Z pilogypi — — Z Z D-hj log, Hij + (1 _ P"IJ) ]052(1 F‘U)]
:_..1 J=1
Case b.

Same as Case a, but without pruning.

Case c.

Entropy = —— Z(Z 1i;) log, Z 1is) (2.3.10)

r-l =1

Case d.

Entropy = --E o, (= )-—-—-—):1 gm,)logz(zm,) (23.11)

13



- = -—Z p,loggpi - -'E(Z i5) 1082(2 Bhij )

i=1 :——1 j=

Case e.
Entropy = -—-— Z(Z Hij) 1032(2 1)
l—l J=1
N E Z [1i5 logg pij + (1 — #:J) logy(1 — pij)] (2.3.12)
t-l 1=1
Case f.
‘. N, Ny 1 e .
Entropy = —Z I—V-]ogz (—N—) - ZE man(pi, 1 — pij) (2.3.13)
I 1 l N
= —Z pilﬁggpi - EZZ m"n(l‘u: 1 — p‘J)
=1 i=1 j=1

Case g. Conventional ID3 algorithm

‘. N, N;
=2 —N—-logz (F) {2.3.14)

i=1

E ntrapy

—Y pilog,p;

i=1

2.4 A Measure for Evaluating the Performance of the

Decision Tree

Decision trees generated by different algorithms may vary in size and structure, and this
affects the effectiveness of the decision tree and rules extracted from it. So, how do we
evaluate the efficiency of a decision tree 7 We propose a new measure, named T-measure,
for evaluating the efficiency of a decision tree keeping in mind the following few points :

e the lesser the 'depti:ls of the leaf nodes of the tree the better it is since it takes less time
to reach to a decision,

¢ the existence of unresolved leaf is undesirable , and

14



o the distribution of labeled leaf nodes at different heights affects the performance of

the tree; a tree whose frequently accessed leaf nodes are at lower depths is efficient in
terms of time.

DEFINITION 2.4.1. The T-measure, T, for a decision tree is defined as

2n — ﬂm' id; |
T = < g;—_l : ot (2.4.15)

and

= ¥ (2.4.16)

v — % for a resolved leaf node
' N+ Otherwise,

where n s the number of binary attributes of a pattern, d; is the depth of a leaf node, Ninodes
13 the number of leaf nodes, N is the total number of patterns in the training set and N; s

the total number of patterns in the training set that percolate down to the ith leaf node.

The value of T lies in the interval {0,1). A value 0 for T is undesirable and a value close
to 1 signifies a good decision tree.
Now, we demostrate the evaluation of the T-measure with an example. Consider a two class
problem, with two — dimensional patterns, with the two decision trees in Fig. 2.2 from two
different algorithms, say.

For the decision tree in Fig. 2.2a

2%x2-05%x1—-04%X2—0.2x 2
2x2-~1

T =
= 0.77

and for the decision tree in Fig. 2.2b

2x%—05x2—&4x1—&2x2
2xX2-~-1

T =
= 0.70.

Here we see that the first decision tree is better than the second one since the Eraction of
training set patierns in node of depth one is more in the first case.

Theorem: The value of T-measure lies within 0 and 1, i.e.,0 < T < 1.



Figure 2.2: Evaluation of T-measure.

Proof:
Let us first establish the upper limit. Since

2N;

%"} for a resolved leaf node
wy = |
N Otherwise

N
w; > -F’,i =1,2,... Minodes (2.4.17)

and

di>1,i=1,2,..., Ny, (2.4.18)

Hence

> widi > > ~ | (2.4.19)

3. €.,

since

So,

2n— 3 wd; < 2n—1 (2.4.21)



1.e. |
2n — ZNI“M” w,-d,- <

T = =1 |
2n — 1 .
Now, we check the lower bound for T. We have
2N; .
w; < _j'v_t':‘=1:2:- :Nlnadca
and
d:ﬂﬂ-:‘:l:z:- :Nlnodea
S50,
Ninodes Ninodes IN:
Z wid; < Z L 2n
=1 1=1 N
1.€.,
Nlnodu
0<2n -~ Z w;d;
3.€.
— 2n — 1 '
Thus,
08T «1
2.5 Results

Here we present some results demonstrating the effectiveness of the revised fuzzy ID3 al-
gorithm on:a set of 871 Indian Telugu vowel sounds [20] The vowel sounds, collected by
trained personnel, were uttered by three male speakers in the age group of 30 to 35 years,
in a Consonant-Vowel-Consonant context. The details of the method are available in {23].
The data set has three features; Fj, F; and F3 corresponding to the first, second and third

vowel format frequencies obtained through spectrum analysis of the speach data. Note that
the boundaries of the classes in the given data set are seen to be

17
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Figure 2.3: Vowel diagram in F, — F, plane

ll-defined (fuzzy). Fig. 2.3 shows a 2D projection of the 3D feature space of the six vowel
classes 9, @, 1, u, e, 0 in the F|, — F; plane, for ease of depiction. The recognition scores (%)
and T-values for the different models of the fuzzy ID3 models, for both training and test

sets, are given below. The results in the table shows that the Fuzzy ID3 with the Entropy
measure a gives the best performance.
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PERFORMANCE ON TRAINING SET

i Model | Train size Score (%) T-measure

(%) 1. 2 3 4 5 6 Total

10 79.24 | 69.91 | 89.00 | 83.59 | 81.48 | 72.17 | 81.09 0.70

20 84.73 | 66.89 | 89.65 | 87.59 | 70.32 | 65.63 | 77.56 0.69

a 30 77.66 | 61.67 | 91.41 | 87.26 | 69.67 | 63.50 | 75.91 0.68

40 78.03 | 56.15 | 90.12 | 86.88 | 69.37 | 63.18 | 74.73 0.67

50 79.66 | 57.29 | 94.19 L91.03 61.76 | 64.26 | 74.91 0.67

| 10 (8934|6445 | 89.83 | 87.39 | 72.34 | 60.65 | 77.24|  0.53

120 | 90.25| 5342 | 91.95 | 87.88 | 68.51 | 52.87 | 73.46 0.53

b . 30 88.56 | 62.51 | 94.08 | 89.60 | 54.98 | 43.39 | 69.89 0.53

40 91.15 | 53.62 | 95.45 | 92.55 | 46.63 | 31.79 | 65.60 0.53

50 90.08 | 52.55 | 94.86 | 91.56 | 41.84 | 25.93 | 62.07 | 0.53

10 | 87.15 [ 71.07 | 91.31 | 84.26 | 73.87 | 70.03 | 79.45 | 0.7

20 82.39 | 57.84 | 89.11 | 87.79 | 73.68 | 62.17 | 76.11 0.69

c 30 79.01 | 62.44 | 91.38 | 86.38 | 65.96 | 62.84 | 74.79 0.70

40 76.46 | 55.49 | 91.85 | 86.46 | 65.52 | 63.10 | 74.05 0.69

50 79.85 ! 51.28 | 93.14 | 87.80 | 61.18 | 62.88 | 73.17 0.67

10 | 83.22|67.90 | 82.65 | 80.55 | 77.17 | 62.23 | 7687 | 0.6

20 | 80.82 | 65.74 | 93.78 | 89.90 | 66.75 | 61.72 | 76.35 0.70

d 30 77.81 | 60.22 | 94.22 | 90.90 | 63.23 | 65.40 | 75.75 0.69

40 77.50 | 52.84 | 94.60 | 91.01 | 62.55 | 65.31 | 74.80 0.68

| 50 77.50 | 55.50 | 94.06 | 90.02 | 50.86 | 64.05 | 73.88 0.68

| 10 83.41 | 58.70 | 87.77 | 85.98 | 78.74 | 70.19 | 79.02 0.71

20 82.32 | 6242 | 88.47 | 80.28 | 71.72 | 68.74 | 76.28 0.71

e | 30 76.85 | 57.65 | 89.47 | 82.65 | 68.19 | 63.97 | 74.15 0.69

40 79.79 | 55.84 | 94.22 | 90.16 | 60.65 | 65.58 | 74.49 0.68

| 50 17499 55.51 L 94.52 | 89.34 | 50.92 | 66.05 r74.05_ 0.69

10 31.50 | 12.86 | 78.29 | 71.02 { 69.70 | 77.38 | 65.98 0.64

20 43.44 | 1544 | 80.77 | 68.32 | 54.29 | 75.26 | 61.32 0.61

f 30 13800 | 9.06 | 80.60 | 68.06 | 4481 | 7497 | 58.12 |  0.60

40 31.09 | 16.27 | 82.73 | 70.02 | 39.38 | 79.34 | 58.89 |  0.60

50 27.06 | 14.67 | 82.97 | 70.87 1 41.30 | 80.06 | 58.84 0.60

10 28.39 | 1545 | 79.25 | 65.76 | 74.29 | 74.52 | 63.25 0.64

20 17.03 | 16.89 | 79.40 | 54.22 | 61.54 | 73.25 | 57.72 0.61

g 30 13.54 | 6.08 | 82.82 | 60.72 | 52.34 | 77.69 | 57.05 0.60

40 14.39 | 7.70 | 78.36 | 61.32 | 56.72 | 76.62 | 57.24 0.60

50 14.30 | 7.92 | 79.58 | 60.94 | 52.69 | 76.34 | 56.48 0.56

Table 2.1 Performance of the fuzzy ID3 on training set.
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PERFORMANCE ON TEST SET

Model | Train size Score (%)
_ (%) 1 2 344J5J6]Tﬂtal
10 16543 | 50.31 | 85.35 | 82.89 | 70.91 | 68.70 | 72.75
20 |69.42 | 59.26 | 88.81 | 79.79 | 67.81 | 61.96 | 71.87
a 30 [ 7253 | 59.00 | 87.89 | 84.70 | 63.23 | 65.35 | 72.55
40 | 74.80 | 49.19 | 91.75 | 89.01 | 59.26 | 58.82 | 71.01
50| 73.06 | 50.97 | 91.34 | 80.36 | 58.77 | 66.53 | 73.14
| 10 | 6863|5030 | 82.87 { 84.84 | 68.26 | 60.73 | 70.66
20 | 71.45 | 53.92 | 88.20 | 84.28 | 62.14 | 51.82 | 68.83
b 30 | 7420 | 54.23 | 87.95 | 85.05 | 53.08 | 39.42 | 64.52
40 | 81.60 | 55.43 | 92.37 | 88.70 | 46.80 | 28.28 | 62.84
50 | 82.42 | 55.26 | 93.65 | 91.95 | 40.20 | 25.47 | 61.62
10 |61.74 | 5168 | 87.00 | 8238 | 67.21 | 6159 | 70.41
20 | 65.12 | 58.00 | 89.40 | 81.53 | 63.48 | 57.61 | 70.04
c 30 169.80 | 5457 | 90.01 | 84.99 | 50.26 | 60.93 | 70.37
40 | 72.02 | 48.05 | 91.90 | 89.37 | 59.48 | 57.37 | 70.62
! | 50 {70.05 | 54.88 | 90.01 | 84.63 | 64.50 | 68.33 | 73.09
10 |66.91 | 52.84 | 90.07 | 87.37 | 57.94 | 55.60 | 63.95
20 | 70.25 | 53.01 | 90.49 | 89.42 | 61.89 | 55.15 | 70.49
d 30 | 67.20 | 53.97 | 89.97 | 85.65 | 61.17 | 58.88 | 70.41
40 | 66.94 | 50.67 | 92.18 | 88.30 | 61.87 | 63.65 | 7185
50 | 67.17 | 53.76 | 92.46 | 88.09 | 61.90 | 67.88 | 73.5
' l 10 [65.19 | 47.28 | 87.03 | 86.79 | 66.11 | 59.04 | 70.27
20 | 7145 | 5150 | 86.92 | 84.50 | 66.17 | 62.07 | 71.49
e 30 | 70.97 | 56.71 | 90.82 | 84.73 | 57.23 | 60.87 | 70.34
40 | 7231 | 5745 | 89.72 | 84.84 | 60.53 | 60.85 | 71.07
50 | 7292 | 50.60 | 91.70 | 8682 | 56.82 | 61.11 | 70.20
10 27.53 | 77.14 | 74.04 [ 64.31 | 72.99 | 63.57
20 23.89 | 87.68 | 71.10 | 50.05 { 85.19 | 64.47
f 30 | 20.41 | 82.46 | 72.79 | 44.33 | 85.05 | 62.28
40 | 3085 (22.16 | 81.53 | 72.50 | 38.47 | 86.94 | 60.42
50 | 31.02 | 18.46 | 81.08 | 72.09 | 30.13 | 88.22 | 60.65
10 [13.20] 24.50 | 68.67 | 6373 | 61.01 | 48.78 | 52.69
20 [ 19.65 | 23.46 | 68.15 | 65.41 | 51.00 | 51.40 | 51 49
g 30 11081 19.75 | 76.44 | 72.14 | 47.06 | 32.20 | 48,08
0 | 966 | 21.93 | 76.62 | 72.63 | 44.82 | 34.46 48.39
50 5.32 | 18.06 | 74.52 | 72.75 | 30.81 25.53 | 44.54

Table 2.2 Performance of the fuzzy ID3J on test set,.
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Chapter 3

Rule Generation

3.1 Algorithm

To generate the architecture of a neural network and to encode it with a priors knowledge,
we need to know the rules extracted by the fuzzy ID3. The path from the root to a leaf
can be traversed to generate the corresponding rule for a class labeled by that leaf node.
In this manner one extracts a set of rules corresponding to different pattern classes in the
conjunctive form of the attributes or features encountered along the path. The ith feature
is marked as A; or A; depending on whether the traversal is made along the right or left
branch of the node in the decision tree. Each rule is also Iﬁarked by its frequency (number
of patterns)and the class(es) it corresponds to.

Algorithm 3.1: Algorithm for Rule Generation
for each path from root node to leaf do
begin
rule = ¢:
current node = root.node;
do while (current_node # root_node)
begin
if the leaf is in the left subtree and node has decisive feature F;
rule = rule AT,
- else

rule

rule A f;
end
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assign the decision of the rule by the label of the leaf node.

assign the frequency of the rule by the number of patterns in the leaf
node.

end.

The scheme of extracting the rules from the decision tree is shown below with an
example. Suppose the training set consists of 21 patterns, from three pattern classes,
with three features fi,f; and f;5. After splitting each feature into the three linguistic
vaniables low, medium and high resulting in nine — dimensional symbolic features, viz.,

Ly, My, Hy, Ly, My, Hy, L3, M3, H, the decision tree has been constructed as the one depicted
below.

Figure 3.1: An example of a decision tree.

By the above algorithm the following rules are extracted:

1. LinH; = C, 2

2. LAM3AM, > C; 6
3. LiAM3AM, o C,C, 3:
4. LiAM3AL, — C, 5;

3. IiAM3ALy— (;'3 0;
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3.2 Quantitative Measures for Performance Evaluation

Some quantitative measures have been calculated for the rules extracted above to compare
their performances. A new measure, which is denoted here as Coverage, has been introduced
here. We provide these measures below-

Let N be an I x | matrix whose (3, 7)th element n;; indicates the number of patterns
actually belonging to class i but classified as class 3.

DEFINITION 3.2.1. Accuracy: It is the correct classification percentage, provided by the

rules on a test set defined as s where n; is equal to the number of points in class i and r;,
of these points are correctly classified.

DEFINITION 3.2.2. User’s Accuracy: If n! points are found to be classified into class 1,
then user’s accuracy (U) is defined as U = Ye . This gives a measure of the confidence that

a classifier atiributes to a region as belonging to a class. In other words, it denotes the level
of purity associated with a region.

DEFINITION 3.2.3. Kappa [24]: The coefficient of agreement called “kappa” measures the
relationship of beyond chance agreement to ezpected disagreement. It uses all the cells in
the confusion matriz, not just the diagonal elements. The estimate of kappa (K) is the
proportion of agreement after chance agreement is removed from consideretion. The kappa
value for class i (K;) is defined as ‘

K = PeMhe— n;.n;

= 2.1
n.n — n.n - (3.2.1)

The numerator and denominator of overall kappa are obtained by summing the respective
numerators and denominators of K; seperately over all classes.

DEFINITION 3.2.4. Fidelity : This represents how closely the rule base approzimates the
parent decision tree model. This is measured as the percentage of the test set for which tree

and the rule base output agree. Note that fdelity may or may not be greater than accuracy.

DEFINITION 3.2.5. Confusion [24] : This measure quantifies the goal that the “Confusion
should be restricted within minimum number of classes”. This property i3 helpful in higher
level decision making. Let 1i;; be the mean of all ny; for i # j. Then we define

Conf - Cﬂrd{mj n‘l_; 2 ﬁij:i #J}

for an 1 class problem. The lower the value of Conf, the lesser is the nymber of classes
between which confusion occurs.

(3.2.2)
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DEFINITION 3.2.6. Coverage: We define it as the ratio between the total number of pat-
terns associated with the rules corresponding to resolved nodes to the total number of patterns
in all the rules and hence the leaf nodes.

In a training set where the rules can perfectly classify all the patterns this value is 1. and if

they cannot classify any pattern then it is 0. For example, in the above example the measure
of coverage is.

2464+54+5 18
Coverage = =

24+6+3+5+5 21

3.3 Ewvaluation of Rules

The above measures are evaluated for the rules extracted by models a, b, f (section 2.3)using
the vowel data. )

Model | Train sm(%-) | Accuracy(%) | User Accuracy(%) | Kappa | Confusion | Coverage I_I“jd;lity l
| 10 63.20 | 72.67 0.67 | 2.30 080 | 85.57
.20 62.70 73.15 0.67 2.37 0.78 84.69
a 30 59.74 75.47 0.70 2.37 0.72 | 81.37
40 59.62 77.14 0.72 2.20 0.73 78.91
50 60.06 75.40 0.70 2.34 0.75 75.51
10 60.33 71.45 0.65 2.54 0.76 | 75.72
20 60.14 73.58 0.67 | 2.24 0.79 75.95
b 30 60.52 77.63 0.72 2.26 0.73 77.57
40 59.46 79.36 0.75 2.38 0.69 74.12
50 60.18 80.65 0.77 | 2.06 0.72 73.05
10 60.69 77.22 0.72 | '2.19 0.71
20 59.70 71.80 0.67 | 189 0.60
f 30 53.59 74.64 0.70 1.93 0.54
40 53.39 73.95 0.69 1.99 0.52
50 53.27 72.71 0.68 1.92 0.52

Table 3.1. Quantitative measures for the rules.

24




Chapter 4

Mappihg of Rules to Neural Network

Architecture

4.1 Multilayer Perceptron (MLP)

A multilayer perceptron is one of the most powerful ANN models for pattern classification.
An MLP is represented by a labeled directed graph where each node can perform some

calculations; and each connection or link conveys a signal determined by the welght of the
link.

Consider Fig. 4.1.The output of a neuron in a layer A of a multilayer perceptron (MLP),
except the input layer (where h = 0) is

1 .
‘*.‘ = "
T TY exp [~ (net; + 048] (4.1.1)

where

net; = Z i wih ' (4.1.2)
4 .

6" serves as a threshold or bias, 37~! is the state of the ith neuron in the preceding (h—1)th
layer, w3™! is the weight connection from the itk neuron in (h — 1)tk layer to Jth node in

the hth layer. |

Before a neural network can be used for pattern classification, it must be trained to ad-

Just the weights. The back-propagation algorithm is central to much work on learning neural
networks and has been used in this dissertation work.



1 } '- (L
D T O P _ Outpuat layer

7\
Mm it e

., SO T .
( Biaz cell )

LY » X3 Xn-1 Xp

Figure 4.1: A Multilayer Perceptron (MLP).

Let {(x',d"), (x*d?),..., (x®,d®)} be a set of p training patterns (input-output pairs),
where x{¥) € R" is the input vector in the n — dimensional pattern space, and d¥) 0,1]¢
, an | — dimensional hypercube. For classification purpose, { is the number of classes. The
squared error cost function most frequently used in the ANN literature is defined as

1 L4 AL
E= 13 |ly®— v (4.1.3)
- =1

The back propagation algorithm is a gradient descent method to minimize the squared
error cost function in the above equation. Backpropagation algorithm is given below :

Algorithm 4.1:Back-propagation algorithm
1. Initialize the weights to small random values.

2. Randomly choose an input pattern x(#).

3. Propagate the signal forward through the network.

4. Compute §;" in the output layer (o; = y¥).

6 = f'(gh) |d? - uF] (4.1.4)



where h; represents the net input to the ith unit In the Ith layer and f’ is the derivative of
the activation function f.

0. Compute the ds for the preceding layers by propagating the errors backwards;
& = fl(gh 2wyl (4.1.5)
7 |

for h=(H—1),....1.
6. Update weights using

Awy; = péfyh-! (4.1.6)

7. Go to step 2 and repeat for the next pattern until the error in the output layer is
below a pre-specified threshold or a maximum number of iterations is reached.

4.2 Mapping of Rules

Now we discuss the details of the knowledge encoding scheme, used in this work, employing
the rules extracted from the decision trees. Let ri; be the ith rule for class Ci with frequency
f'si- Rule involving only one class are selected and the rules corresponding to unresolved
nodes of the decision tree are discarded. If there are two rules for a single class C, the rule

involving the highest frequency is considered. The rules from Fig. 3.1 are considered here.
they reduce to

1. LI/\H;;AHI—') Cg 6;
2. LIAM;;AE—') Cl 5,
3. L1/\M3AL3-—} C, 9;

Let ry; be the ith rule for class C; with frequency f';;. each rule is mapped using a single
hidden node, in order to model the conjunction between the attributes in the rule. Here we
compare the results of three methods of mapping the rules.

4.2.1 Model I

The weight wy;, between output node k (class C}) and hidden node i (rule ry;), is set at
f'xi+e€, where € is a small random number: and f'si = 1. The weight w4, between attribute

27



A; and hidden node i is clamped to E’“‘%L';‘) + €. Here Card(ry;) indicates the number of

features/attributes encountered along the traversal path from the root to the leaf containing

the pattern corresponding to rule ri; a of class Ci. An example illustrating this scheme is
provided in Fig. 4.2 for class C,.

Figure 4.2: Weight encoding using Model L

4.2.2 Model 11

Here a factor K = Zt?'_ is used to indicate the importa.ﬁce of a rule for a particular class
k

Cy among all rules determining the whole network. The scheme for mapping weight w? A; 18

the same as in Model I. An example illustrating this scheme is prowded in Fig. 4.3.

Figure 4.3: Weight encoding using Model I1.
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4.2.3 Model IIT

Here, as in Model 11, a factor K = ff}": 1s used to indicate the importance of a rule for
a particular class Cy among all rules determining the whole network. But the scheme for
mapping weight w&j depends on the importance of feature A; in the corresponding decision
tree. While constructing the decision tree the feature associated with a node is chosen on
the basis of maximum information gain. Hence the attributes/features appearing in the
beginning should be given more weightage in the descending order. Consider Fig. 3.1. We
note that the attributes are selected in the order L;, M5, L; for class C,. So the weight w),

C —i+1
1s assigned with cﬂf&:’f({éﬂ-ﬂ: ,))+1)K It is to be noted that

e 2(Card(ri) — i+ 1)
Z Card(ri)(Card(ri;) + 1)

=1

K=K (4.2.7)

A salient feature of this method is not allowing the Initially nonexistent hidden output
layer (having very small absolute values) to grow while the training goes on. In these models
the number nodes in the hidden layer is equal to the number of classes.An example illustrating
this scheme is provided in Fig. 4.4.

—

Hiddan | ayer

Figure 4.4: Weight encoding using Model IIL

4.3 Comparing the Performance of the Neural Net-

works

A comparison of the performance of the ordinary neural network and the three knowledge-
encoded models have been made on the the vowel data as given in the tables below.
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Models Data, Train Score (%) | No of
size (%) 1 2 3 4 5 6 Total | Links

10 | 7217 | 9821 | 89.13 | 89.30 | 9933 98.12 | 93.33 | 9045

TRAINING 20 96.57 | 91.40 | 78.22 | 84.08 | 98.12 | 98.02 | 87.50 | 91.20

M SET 30 | 3860 [90.79 | 66.23 | 75.74 | 97.74 | 98.79 | 82.61 | 9135
L [ 40 12375 |89.19 | 62.50 | 60.81 | 96.49 | 97.74 | 76.81 | 91.80
P | 10 3593 |86.93 | 80.95 | 8274 | 81.39 | 84.49 | 78.88 | -
TEST 20 | 31.78 | 86.54 | 74.56 | 74.97 | 89.75 | 92.60 | 7961 |
 SET 30 [ 2837 8531|6822 7501|9434 | 9410 | 70.44 |
| 40 [22.8487.01 6511 | 66.65 | 94.96 | 96.35 | 7764 |

| 10 | 56.96][86.59 ] 8525 | 91.02 97.59 | 97.92 | 89.43 | 65.60

TRAIN 20 | 4265 | 88.85 | 79.03 | 81.23 | 96.31 | 97.85 | 85.63 | 65.60

SET 30 | 2492 | 89.50 | 76.32 | 78.14 | 95.49 | 97.25 | 82.99 | 6520

Model 40 | 1494 | 87.44 | 73.97 | 75.93 | 96.30 | 98.94 | 81.47 | 6770
1| | 10 | 27.69 | 84.38 | 80.40 | 80.55 | 8507 87.03 | 7895 | -
TEST 20 | 2516 | 84.60 | 76.98 | 78.21 | 90.19 | 91.86 | 79.70 | -
SET 30 | 1878 | 83.02 | 75.25 | 75.46 | 92.95 | 95.27 | 7956 |
|40 | 1010 | 82.75 | 73.78 | 73.33 | 93.44 97.94 | 78.88 | -

| 10 [1123]8056 | 7451 | 71.37 | o2.22 98.30 | 78.30 | 66.50

TRAIN 20 14919 | 90.59 | 84.72 | 90.44 | 97.59 | 97.92 | 88.85 | 65.20

SET 30 1647 | 89.23 | 77.06 | 78.70 | 95.40 | 97.62 | 82.70 | 63.10

Model | 40 | 3.38 | 85.16 | 71.57 | 73.88 | 92.69 98.81 | 78.56 | 66.10
II 10 | 27.8484.13 | 80.40 | 80.63 | 84.79 | 86.15 | 7865 |
TEST 20 | 2585 |84.45|77.04 | 78.23 | 90.02 | 91.87 | 7970 | .
SET | 30 11797 (831675257499 | 93.02 | 95.19 | 7042 |
40 | 9.35 | 81.64 | 73.69 1 73.32 | 93.17 | 98:23 | 7868 | -

10 | 5174 [ 91.96 | 85.91 | 86.59 | 97.29 | 94.28 | 85,68 | 63 60

TRAINING | 20 | 37.65 | 91.58 | 80.53 | 84.69 | 95.67 | 98.04 | 86.03 | 68.25

SET 30 12590 | 87.59 | 75.49 | 77.46 | 96.33 | 98.46 | 82.91 | 66.50

Model 0 | 2281 | 82.96 | 75.26 75.13 | 94.88 9‘?._79__ 80.76 | 64.15 |
I 10| 27.98 | 86.20 | 78.50 | 83.56 | 84.11 | 8455 | 78.49 | -
TEST | 20 25.99 ( 86.03 { 77.17 | 77.37 1 90.57 | 93.27 | 8030 |

SET 30 | 1857 | 8447|7410 | 76.71 | 92.80 | 96.42 | 8016 | . 1
1 | 40 |1768]|se67 7331 7364 | 9253 | 9563 | 79.01 | -

Table 4.1. Comparision of performance of knowledge-encoded models with MLP.
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Chapter 5
Conclusion

The work done in this dissertation is two-fold and has been tested using the vowel data. The
hirst part involved developing a fuzzy version of ID3 to gain higher accuracy in classification
by minimizing noise. The decision tree so constructed is optimize by elimination of noise
by appropriate choice of linguistic functions and followed by pruning. However, methods of
finding a good fuzzy entropy and keeping a good balance with its classical counter part, say,
Shannon’s entropy, is not known. In this work, this aspect has been analysed by proposing
a few entropy functions. It was observed that the elimination of nojse while constructing

the decision tree plays an major role in improving the performance of the algorthim over the
previous ones it is based upon.

A measure denoted here as T — measure, for evaluating the performance of the decision

tree 1s proposed.This measure considers both the accuracy of classification and time com-
plexity of the decision tree while making a decision.

The next step involves extracting the rules from the decision trees. A new measure,
denoted here as Coverage, has been introduced to access the amount of data the rules cover.

Finally, a new way to map the rules into the neural network has been proposed. It gives
higher weightage to the attributes in descending order of their appearance in the rules. The
network so generated has 1-2% improvement over the ordinary neural network with similar
number of layers and number nodes in each layer. However, the number of links in the

generated (knowledge encoded) network is about 30% less than that in the ordinary neural
network.
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