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Abstract

This reports deals with the concept of resource-bounded measure that provides
a quantative approach to deal with many questions of Structural Complexity
Theory. In particular , we examine the consequences of the hypothesis that NP
does not have p-measure 0 which is is a stronger hypothesis than that of NP #
P.

In the first chapter , we introduce the concept of resource-bounded measure
and survey some basic results about it . We also give examples of clagses with
p-measure () or p-measure 1 . In particular , (a) we give a sufficient condition for
a clags to have p-measure 0 in E and (b) we define , for each infinite language
L € P, a class of languages X* that has p-measure 0 . In the second chapter
, we define a measure inside the class PSPACE . and survey some basic results
about it . In the third chapter , we study nice properties like P-immunity and
Incompressibility of languages in relation to resource bounded measure . Then
we have made a small observation that if Bertman-Hartmanis conjectuge is true
then the class NPC has p-measure 0'in E. Also we have shown that if Berman-
Hartmanis conjecture holds and for any two language L; and L, € NPI we have
L1AL; & NPC then NP can have either measure 0 or it is non-measyrable in
E. In the fourth chapter , we present a niotion of resource-bounded medsure for
P aad other subexponential-time classes and examine it’s basic propegties . In
Chapter 5 , we study the reasonableness and consequnces of the hypéthesis ”
NP does not have p-measure 0 ” .
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Chapter 1: Introduction and preliminaries

1.1 Introduction '

Resource bounded measure , introduced by Lutz { [Lutz90],[Lutz92} ) , is
a generalization of the Lebesgue meaure restricted to the closed interval [0,1]
, which can be identified with the set of all languages over {0,1} . Ii's for-
mulation is basically motivated by the desire to provide quantative means for
differnetiating various complexity classes such as P , NP etc .

In this survey , following [Lutz92) and [Mayo94| , we will introduce resource-
bounded measure from the scratch and examine how this concept is useful in
discussing various questions of structural complexity theory . In particular ,
we examine how it is useful to extend existence results of the form ”There is
a langauge L in C that is no in X ” to abundance result of the form ” most
languages in C are not in X ” , where C , X are complexity classes , e.g C=E ,
EXP , X=P etc.

Intutively , a class X has measure 0 in C when X[)C is negligibly small
compared to C. We will be basically interested in classes with measure 0 or 1
because all those classes in which we are interested , are closed under finite vari-
ation and from the resource-bounded version of Kolmogorov (-1 law it follows
that these classes can have either measure 0 or 1, if at all they are measurable

We will also study here the reasonabality and consequences of the hypothesis
"NP does not have measure 0 in E " .

In the course of study we have made a small contribution as described below.

(i) In Chapter 1 , {Proposition 1.1) , we have given a sufficient condition for
a class to have p-measure 0 in E . Also for each infinite language in P we have
defined , (Example 1.4) , a class of languages which has measure 0 in B .

(ii) In Chapter 3 , we have proved that (a) (Proposition 3.1} the class of
NP-complete languages has p-measure 0 in E assuming Berman-Hartmanis iso-
morphism conjecture i8 true , and (b) (Proposition 3.2) if

(i) Ly € NP1, Ls £ NP1 = L;AL; ¢ NPC and
(ii) Berman-Hartmanis conjecture holds , then either NP has p-measure
0 or it is not p-measurable .

1.2 Preliminaries

Let £={0,1} . A string is a finite sequence x €{0,1}* . We write |z| for the
length of x. The unique string of length 0 is A, the empty string. If x aad y are
two strings, then r < y if |z| < |y] or |z| = |y| and x precedes y in alphpbetical
order. We call this order relation on strings lexdcographical order. Let sg, s;
, S2 ... be the standard enumeration of the strings in {0,1}* in lexicogfaphical
order. A sequence is an element of {0,1}*°. If x is a string and y is a string or
sequence, then xy is the concatenation of x and y. If x is a string and k €NUco,
then x* is the k-fold concatenation of x with itself. If x is a string and y is a
string or sequence, then x Cy iff there exists a string or sequence z such that y
= xz, and |



xZyifxCyand x #y. If wis a string or sequence and 0 < ij |wp then
w(i] denotes the ith bit of w.

A language is a set of strings. A class is a set of languages. For each language
A and n € N we denote as A" the set of all strings in A of length n, and as
ASP the set of all strings in A of length less or equal to n. Given a set A, we
denote as p(A) the power set of A, that is, the set of all subsets of A.

We will use the characteristic sequence x of a language L, defined as follows:
xL € {0,1}* and x.[i] = 1 iff s; belongs to L.

We identify through characteristic sequences the class o({0,1}*) of all lan-
guages over {0,1} with the set {0,1}* of all sequences. Let w €{0,1}* . We
define C,, , the cylinder generated by w, as the class of languages {x€{0,1}°°:
wCx} The complement of a class of languages X is X ¢ = {0,1}*°-X. The com-
plement of a language L is L={0,1}*-L . For a class X C {0,1}*° , we define the
class of complements as co-X = {L | L € X} .

‘The symmetric difference of two sets A and B , denoted AAB , is defined by
AAB =(A|B)-{ANB) .

Let X be a class of languages. We say that X is closed under finite variations
,if A € X and |JAAB| < oo , then B € X. We say that X is closed under finite
translations if B € X and rhere exists w € {0,1}* such that A= w*B , then A €
X. |

Next we fix some notation on complexity classes. For a complete introduc-
tion to Turing machines and complexity classes see for instance [BalcDig]. Our
computation model is the muititape oracle Turing machine, with a read-only
input tape and a write-only oracle tape. We will work with oracle Turipg ma-
chines that halt on every oracle and every input. For a turing machine and a
language A, L(M) denotes the set accepted by M with the empty oracle, and
L(M,A) stands for the set accepted by machine M with oracle A. Given t: N
— N, we say that a Turing machine M recognizes a language L in time t when
on each input x, M halts with output L(x) in time less or equal than t(}z}).
Analogously, M recognizes a language L in space t when on each input x, M
halts with output L(x) using memory space less or equal than t([z{} . Here
L(x)=1if x € L and L(x)=0 if x¢L .

For each nondecreasing function t: N = N, we denote by DTIME(t) the class
of all ianguages that can be recognized by a deterministic machine in time t, and
DSPACE(t) the class of all languages that can be recognized by a determin.istic
machine in space t.

Let NTIME(t) be the class of languages than can be recognized by a nonde-
terministic machine in time t, and let NSPACE(t) be the class of languages that
can be recognized by a nondeterministic machine in space t. DTIMEF(t) and
DSPACEF(t) are the corresponding classes of functions that can be computed
in time ¢ and space t, respectively. Unless indicated otherwise, when we hound
the space used in the computation of a function we are also bounding the output
space. For each language A, let DTIMEF4(t) be the class of all fuctions that
can be computed by a deterministic machine in time t when having access to
oracle A ; and analogously we define DSPACEF4 (t). For each class F of func-
tions from N to N, we write DTIME(F) for J,. [DTIME(t) and analogously

3



for NTIME(F), DSPACE(F), NSPACE(F), DTIMEF (F) and DSPACEF(F). For
each language A, DTIMEF4(F) denotes {J,c xDTIMEF4(t) ,and in the same -
way we have DSPACEF4 (F). Leat C be a class of languages. Then DTIMEFC
(F) =, 1,_-,.]I.')T11\.{EF"‘l (F) and with a similar meaning DSPACEF(F) is de-
fined.Let be the class of recursively enumerable languages, and REC be
the class of recursive languages. We use the following notation for classes of

languages
P ﬁUkeNDTME(nk) E=U¢}0DTIME(2"")

Es =UixDTIME(2®') NP =), yNTIME(n*)

NE={],, ,NTIME(2")  LINSPACE =, DSPACE(cn)
ESPACE ={J,,,DSPACE(2™)  PSPACE =J, yDSPACE(n*)

E.SPACE =|J, . yDSPACE(2™")

Let all be the class of all functions f: {0,1}* —{0,1}* , and rec be the class of
recursive functions in all. We will denote different classes of functions as follows.

p =U,cvDTIMEF(n*)  pspace =|J, . yDSPACEF(n*)

P2=lJe yNDTIMEF((2!097)%) paspace=| |, . yDSPACEF((2'08)¥)

1.3 Resource-bounded measure

Qur goal is to define a measure in C, where C can be one of the fojlowing E
, E3 , ESPACE , E;SPACE and REC. Intuitively , a measure in C is g function
p:p{C)— {0, 1} with some additivity properties . Now given a class C wa can very
well define a measure i in C as a restriction of Lebesgue measure to C . But since
Lebesgue measure of any countable class has Lebesgue measure 0 and recursive
classes are always countable , thus ¢ = Q0 . Now to define a nontrivial measure
on countable classes Lutz considered an alternative but equivalent formulation
of the concept of Lebesgue measure in terms of the concept of a martingale and
then obtaining nontrivial measures on such classes by suitably restrieting the
martingales . We next give an exposition of this following [AmboMay] .

To introduce the concept of a martingale , let us consider a game in which
there is a player with starting capital 0 < cg € R and a hidden languagp L. The
player bets part of his money on the successive bits of x;, , making mopey on a
double or nothing fashion. (We can imagine an infinite number of boxes marked
with 0,1, 2 ... so that ith box contain Q if s; ¢ L and it contains 1 if s; € Lb .
Content of the ith box can be checked only after the player bets an amount of
his money either on 5; € L or on s; € L .) The game goes as follows.
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Step 0: The player bets ag , a part of cg , either that sy € or that so & L. If
he wins, he gets double, that is 2ag and his capital is now c; = ¢y + ag . If he
loses, he gets nothing and his capital is now ¢; = cg-ag.

Step n, n > 0: Now the player has got the information on [[se € L]} ...
[[sn—1 €L]] . Using this information the player bets a,, , a part of c,,, either that
sn €L or s, €L .If he wins he gets double ,that is If he loses, he gets nothing
and his capital is now 2a,, and his capital is now ¢4+ = ¢, + a, .If he loses .
he get nothing and his capital is now Cpq1 = Cp - ap.

The game goes on eternally,and we say that the player succeeds if

lim sup, ¢, =

The player tries to find a betting strategy that is always useful. A strategy
for this game is a function a: {0,1}* = {0,1} x[0,00 ) that tells the player
how much to bet, depending on the information the player has. That is, if
[(30 €L)) ... [[8n-1 €L]} = w, we {0,1}*,and a(w)=(b,u) ,the player should bet
an amount a,= u that [[s,cL]j=b,according to strategy a.

We can now compute the capital a piayer has when using this strategy a and
represent it via a function d,:{0,1}* — [0,00 ) with the meaning that, [[so €L]]
.+« [[8n-1 €L]] = w, we{0,1}*, then the player’s capital , after having bet on
S ... Sp—18ccording to a ,is cp= d 4 (W) ,we also have cg= d ().

From a we can compute d, and vice versa:

_ | (0,da(w0) = dg(w)) ifd (w0) > da(w),
alew) = { (&, da(w1) ~ da(w)  if d o(w1) > da(w).

let be {0,1}

_ dn(tﬂ) +u if H.(W)=(b, )1
dﬂ(wb) - { dn(w) e 14 ifa(w)=(1-ll;,u).

From now on we represent a strategy a by its capital function d, which we call
a martingale

Definition 1.1. A martingale is a function d: {0,1}* — [0,00 ) satisfying

_ d{wi)+4-d{wl
d(w)—--i }2( )

for all we{0,1}" |
Notice that if d is a martingale then for each w € {0,1}* d(w)< 2%1 . d(\).
Since d(wb) < 2d(w) where be{0,1} = d(w) < 2/®ld()).

'Déﬂnitiun‘ 1.2. A martingale d is said to be successful for a lanqﬁlage X

€{0,1}* iff limy_,o sup d(x[0...n]) = oo. |
We observe that the player can succed on a language x iff 3 a martingale d
such that

lim,,_, o sup d{x[0...n]) = oco.



For each martingale d, we denote the.set of all languages for which d is
successful as §°{d], that is S®[d]= {x | limp—e sup d(x[0...n]) = }. We
next give a characterization of the classes with Lebesgue measure O in terms of
the martingale.

Now , Lebesgue measure in the interval [0,1] can be defined in terms of the
basic open set8 B; = {y: yC x } and u(B:) = 2-% , for x € {0,1}* . From
following theorem , due to Ville , we get a nice characterization of sets with
Lebesgue measure 0 in terms of martingale .

Theorem 1.1. ( Ville[Vi39])

Let C be a class then u{C)=0 iff there exists a martingale which suceeds on
C.

Proof. See [AmboMay]

Definition 1.3. A class X C {0,1}* has Lebesgue-measure 0 iff there exists
a martingale d such that X , that X C §%[d] ,that is for any LeX, d is successful
for L.

Intuitively, a class X has measure 0 when there exists a single strategy that
is good for predicting any language in the class X.

Definition 1.4. A class X C {0,1}* has Lebesgue-measure 1 iff X¢ (the
commplement of X) has Lebesgue measure 0.

We only define measure 0 and measure 1 because , as mentioned eatlier , we
are always interested in classes that are closed under ﬁmte variations, and fmm
resource bounded version of Kolmogorov 0-1 law it follows that these classes
can only have measure () or measure 1, if at all they are measurable .

Going back to the initial problem of defining a non trivial measure inside
REC, E, E,, ESPACE or E,SPACE, what we do next is to restrict the mar-
tingales that can witness that a class has measure 0. We will require the mar-
tingales to be recursive and computable within certain time and space bounds,
depending on the class where we are defining a measure. Further we see that
it is enough to consider dyadic rational valued martingales as the lemma states
below .

Lemma 1.1. (Mayordoma {Mayo94] ) For each martingale d, there‘exists a
martingale d:{0,1}* - D such that $®[d] = 5[d).

Here , D = {m2™" : m.n € N } is the set of non-negative dyadic rational
numbers.

We now define the concept of resource-bounds that are classes of recursive
functions. By requiring the martingales to be in a certain measure resource-
bound we will define measures for different classes.

We say that a set F of functions from N to N is a family of bounds if all
functions in F are nondecreasing and for each f .,g €F , fogis alsoin F

Definition 1.5. A class I' C all is a measure resource-bound if p g " and
I is one of the following cases :



a) I'= all ' )

b) ['= DTIMEFC(F) for F a family of bounds and C a family of language,

¢) I'=DSPACEF“(F) for F a family of bounds and C a family of language.

Where all is the class of all functions f:{0,1}* -{0,1}*

We are specially interested in the following measure resource-bounds: p, pa,
pspace, p2space and rec, as we will see below.

As in the case of Lebesgue measure, there exists a resnurce-bnunded gener-
alization of the Kolmogorov 0-1 law by which classes that are closed under finite
variations can only be in one of three cases, namely being I'-measure (,being
['-measure 1 and being non-I-measurable. For this reason we only define to find
the appropriate ['-measure 0 and I'-measure 1.

Now for each measure resource-bound I'ywe define ur as a restriction of
Lebesgue measure to martingales in I''We then use ur to define a nontrivial
measure on a suitable recursive class C.

Definition 1.6. A class XC{0,1}**has I"-measure 0 (and we denote it
ur (X)=0) iff there exists 4 martingale de I' such that XCS*[d].

Definition 1.7. A class XC{0,1}* has I'measure 1 (and we denote it
ur(X)=1) iff X¢ has I'-measure 0.

Notice that taking I'= all we get back the definition of Lebesgue measure O
and Lebesgue measure 1 sets (which follows from the Theorem 1.1).
Throughout this chapter we will take I" to be a measure resource bound .

Definition 1.8. f €I is said to be a constructor iff Yw €{0,1}* w C f (w)
and w # f(w).

Definition 1.9. If h is a constructor in I’ ,then R(h) is the unique element
in {0,1}* such that ¥i h*(A\) C R(h).

Observation R(h)=lim;_,o, h*()).

Definition 1.10. R(I’) is the class of all languages {R.(h) | h is a constructor
in I" }.

Lemma 1.2. [Lutz90].
R( all}) ={0,1}*, R(pz ) = E2,
R(rec) = REC, R(pspace) = ESPACE, -
R{p) = E, R{pespace) = E;SPACE. (Mayordoma [Mayo%4] )
We will now use I'-measure to define a nontrivial measure on the class R(T')
. The justification of why the defined measure is nontrivial is given by the
following theorem which states that R(I") does not have ['-measure 0 .

Theorem 1.2. [Lutz92] (Measure Conservation Theorem) For every mar-



tingale d€ I' there exist a language L €R(I') such that d is not successful on
L. -

Definition 1.11. A set XC{0,1}°° has measure 0 in R(I") iff X [} R(I") has
I'-measure 0.This is denoted as pr{X | R{I'))=0.

Definition 1.12: A set XC{0,1}*° has measure 1 in R(T") iff X° [} R(T)
has I'-measure 0.This is denoted as ur(X | R(I'))=1.

We note that for each martingale d € I' the class S*°[d]{JR(T') has I'-measure
0 , where as R(I')-5°°[d] has I"-measure 1 .

We now state a few known results about I'-measure .

Lemma 1.3.

Let X, YC{0,1}*,

a}) Y C X and X has I™-mneasure 0 Then Y has I"-measure 0.

b) f Y C X and X has measure { in R(I') Then Y has measure 0 in R(I').
¢) if X has I'-measure 0 Then X has measure 0 in R(T).

Proof. Follows from definition.

Lemma 1.4. (Mayordoma [Mayo94]| )

Let n €N. If X, ... X, have measure ( in R(I") then Ui<i<n X; has measure
0 in R(T).

Thus we note that the measure that we are dealing with is finitely additive
but we see that it is not countably additive as example for each A € R(I')
{A} has Imeasure 0 in R(I') where as R(I") = {J ¢y {A} does not have
I'-measure 0 .

Lemma 1.5. (Mayordoma [Mayo94] )

Let X €{0,1}°° . Let I, I/ , be two resource-boundeds such that. ' C I'/ if
X has I-measure 0 then X has I'/-measure 0 , and If X has I'-measyre 1 then
X has I'/-measure 1. |

Proof. ¥ X has I'-measure 0 then clearly X has I'/-measure 0 . Now X has
[-measure 1 implies that X¢ has I'measure 0 so that X¢ has I'/-measure 0 and
hence X has I'/-measure 1. Hence the Proof.

We now give some examples of classes that are of measure 0 and of measure
1 in E=R(p).

Example 1.1 Let C ={L;, L, ... } be a countable class of langgauges Let
{nr}xen be such that for each i , either yz,[ne]=1V k or xz.[ng]=0 Vk . Note
that such a sequence exists by digonalization arguement . Further assyme that
the language M = {s,, : k > 1 } € P . Then C has p-measure 0. -

Proof. To see this note that , as C = C;| JC, where *

Ci={L:xy[nef=1vk}.
Co={L:xrox=0vk}.



Now the betting strategy for C, will be , for w € {0,1}* if w € M bet all the
money on w€ L othewise do not bet on that particular bit.

And the betting strategy for C; will be , for w € {0,1}" if w € M bet all the
money on w¢ L othewise do not bet on that particular bit.

Clearly C; and C; has p-measure 0 and so C = C,|JC2 has p-measure 0.

Thus we can state that

Proposition 1.1 Given a class of a language C if we can find a subsequence
ny of natural number such that for each L in C either xr [negj=1V k or x3[0z]=0
V k and if the language consisting L = { s,, k > 1 } is in P then the class C
has p-measure 0.

Example 1.2. [Mayo94] The class X = { A | there exist n such that |AS"|
is not a multiple of 3} has measure 1 in E.

Proof . We will show that the class Y = X° has measure 0 in E.

Let A be a language in Y . For every n €N, |AS"| is a multiple of 3. If we
know the value of |AS"-{1}| we can guess whether 1™ is in A or not since if
|AS7-{1™}] is a multiple of 3 then 1* must be out of A (if not |A<"|=3-k+1 for
some k which would be a contradiction) also if | AS"-{1%}] is a multiple of 3
plus two ,then 1™ must be in A

Thus a succesful strategy for Y will be to bet only on bits corresponding to
strings of the form 1* if |JA<"-{1"}| is a muitiple of 3 we bet all our maney to
1" ¢ A, else we bet all our money to 1™ € A.

Notice that s; is of the form 1" if and only if i is of the form 2™~2,

- We define a martingale d that corresponds to the described strategy.Let
d(\)=1. For each we{0,1}* We define d(w0) and d(w1) be as follows,
if jw| =2™~2 for some m then

_f 2-d(w) i 3 gciciu~1 Wl 1s & multiple of 3,
dwd) = { 0 otherwise.

d(w]_) = 2 d(w) if Eﬂ_{_i{fwj——l W[i] is not a multiple of 3,
R otherwise.

Else,if |w| is not of the form 2™-2 then d(w0)=d(wl)}=d(w).

Let us see that d is successful on all languagesin Y . Let A € Y, n € N. Then
A< =3 gciqam+r—2All] is a multiple of 3.if [A<™-{1"}]=) Jgcicont1 - JAfij isa
multiple of 3,then 17 ¢ A und A[2"+!-2]=0. By the definition of d then d(A(0..
2n+ =2, d(A[0.... 2°12-3]), if [A="-{1"}| is not a multiple of 3,then 17€ A
and d(A[0.... 2+1-2])=2. d(A[D.... 2°+1-3]).

Since we only bet on bits of the form 2™-2,then for each n>1 d(A0.... 2™F-
3]) = d(A[0.... 2"-2]).Thus d(A[0.... 27°*+1-2)) =2. d(A]0.... 2™-2)), limy»ep SUP

d(A[0...m])=00 and YCS™[d]

Also, d is a martingale in p, because for each input w we can compute
d{w) from d(wl[0... |w]-2]) just by checking whether Jw| is of the from 2™-
2,and the computing 3_o¢;<|yj—1 W{i,all of which can be done in time linear in
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|w!,computing d(w) requires computing d(u) for each u prefix of w, and can
thus be done in time quadratic in Jwj|. This proves that Y has p-measure () and
hence we have that X = Y* has measure 1 in E.

Example 1.3. [Mayo94]

The class X = {A | for every n€ N such that [A="| > 22" } has measure 0
in E .

Notice that for every A, |A="| < 2" for every n.

Proof . The only information about the language in X is that they have more
strings Our strategy is to bet half of our money on s; € A for any language A
€ X.

We define a martingale d as follows. d(A\) = 1 For each w € {0,1}*,

d(w0) = ;d(w) , d(wl) = 3d(w)

Let us see that d is successful on every language in X, If A €X then for each
nEN we have that

d(Af0..27+1-2])= (2)2(3)*d(A[O.. 2"-2])where a—IA"'"l and b=2"-a

>(3/2)‘(1/2)"d(A[0 .2"-2])where c=% 290 and d- 2n

>(2)4d(A[0...2"-2))

Thm implies that limm oo sup d(A[0...m})=00 .

Clearly , d is computable in linear time, thus X has p-measure 0. Therefore
, X has measure 0 in E.

We can make a slight generalization of Example 1.3 as

Example 1.4

The class XX = {A | for every n€ N such that (AN)L="| > % |L="| } has
measure 0 in E for any L € P such that |L| =

Proof. We define a martingale d¥ as follows, clL(A) = 1 For each w € {0,1}",

if w € L then

df(w0) = Ldi(w) , d¥(wl) = 3di(w)

d%(w0)=d%(wl)=d(w).

Clearly , d¥ is a martingale and d* € p.
Now . similiar calculation as that of Example 1.3 , we see that d* succeeds
for all languages in X~ whenever L € P.

1.4 Some technical lemmmas

In this section we summarize some technical results obtained by Lutz [Lutz92]
which are useful in checking whether a given class has measure 0 or measure 1
in R(T) .

Notation: Given twao sets X,Y , we consider each funcuon f: NxX —Y as
an enumeration of the functions fk, k € N where for each keN, fi : X =Y is

10



defined as fi(x) = f (k,x) for every x€X, In the same way we consides each
function f : N"xX —Y as an enumeration of the functions f; for k €N™ .

Definition 1.14. Let X be the cartesian product of a finite number of
factors of the form N and {0,1}” . A function f € I',f : NxX - Disarl-
computation of a computation of a function g:X—[0,00) iff | fi(w)- g(w)] <27*%
for all weX and ke V.

Notice that we are trying to approxiamate the function g by the sequence of
functions f, where f € ' ¥ k , however g may not bein I

Definition 1.15. A fanction g:X—(0,00) is [-computable iff there exists a
[-computation of g.

Lemma 1.7. Exact Computation Lemma. (Mayordoma {Mayo94] )

For each I'-computable martingale d there exists a martingale d in [' such
that S*°[d]= S* [d].

So if we can compute a good approxiamation of a martingale in bound
specified by I , that would be enough to serve our purpose.

Corollary. Let X be a class of languages , X has ['-measure 0 iff there exists
a I-computable martingale d such that X C §*°[d] .

Now , as we have already noticed , a countable union of I'-measura ( classes is
not necessarily of ['-measure 0 . We find a weaker version of countable additivity

Defintion 1.16. An n-dimensional martingale system (n-MS) is a funcion
d : N*x{0,1}" - [0,00)

such that dg is a martingale for every k € N*.

We now define a restricted notion of countable union , that is called I'-union.
This concept is only defined for I'-measure 0 sets.

Defintion 1.17. A set X is a I' -union of the I'-measure sets Xg X1 Xo. . iff
X:Uj;_.,_n X; and there exists a ['-computable 1-MS d such that for every j,

X; C §%[dyj.

Lemma 1.8. (I'-additivity Lemma.)

Proof. See (Mayordoma {Mayo94] )

If X is a I'-union of the I-measure sets 0,then X has ['-measure 0.

Thus we bave finally got a weaker notion of countable additivity for I'-
measure. o |

Definition 1.18. A set X is a [-union of measure 0 in R(T') sets X,, X;,
Xo...if X ) R(T') is a T-union of the I'-measure 0 sets Xy () R(I"), X; [ R(T"),
X‘.‘Z n R(F) $=

11



Corollary . If X is a '-union of measure 0 in R(I') sets,then X has measure
0 in R(I'}.

Now we give one exampie to show how the concept of I'-union is useful to
find out I'-measure of a given class .

Example 1.5. [Mayo94] |

The class X={A | for all but finitely many ne N , |[A="| > £2"} has p-
measure 0 .

Proof . We start by writing X as a countable union of classes. For each ieN
let

X; = {A | for every n>i ,|A™"| > 22" }

CIe&l‘ly X=U5Xi.

We want to show that X has p-measure 0 by proving that X is a p-union of
the measure 0 sets X;.Therefore we have to define a p-computable 1-MS d such
that for each i, X; C S*™{d;).

For each i€ N, d;()\)=1 and for each we{0,1}",
If Jw| > 2* -1 then

di(w0)=1d; (w) dy(w1)=2d;(w)
else if Jw| < 2* -1 then d;(w0)= d;(wl)= d;(w).

(Where d;(w)=d(i,w))

For each i€ N we note that X; CS™[d,].

To check whether [w] < 2°-1 we just need to write |w| in binary and count
the number of bits used ,comparing it with i.Thus d can be computed in time
linea in Jw|+i,is trivially p~computable and X has p-measure 0.

The next theorem has a number of interesting corollaries .

Theorem 1.3. (Mayordoma [Mayo94] ) Let I',['/be two measure resource-
bounds such that I'/contains a universal function for I'that is 3f € I'Vwith
'={f;|i€ N } .Then the class X=U,.(y)=¢ Y has I/ -measure 0.

Corollary . Let I',I'V/be two measure resource-bounds such that I'/ contains
a universal function for I'Then R(T") has I'/-measure 0.

We recall that a language is said to be I'-random if it belongs to all classes
which has I'-measure 1 .

Corollary . E has measure 0 in E5 . ESPACE has measure 0 in EsSPACE.
The class of p-random languages has measure 1 in E; . The class of pspace-
random languages has measure 1 in E;SPACE.

‘We see that most of the languages in E; are not in E .

Lemma 1.9. (Mayordoma [Mayo%4] )
For every ¢ > 0,

p(DTIME(27") | E) =0,
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and
#(DSPACE(2°") | ESPACE) = 0.

This shows that , for each ¢ > 0, DTIME(2°®) is a small class in comparison
to & , and DSPACE({2°") is a small class in comparison to ESPACE .

Lemma 1.10. (Classical first Borel-Cantelli Lemma.)

Let {X; C {0,1}* | j € N} sequence of Lebesgue-measurable sets such that

j=oPr(X; ) is convergent, then Pr((;2,)72,X;)=0

We notice that the class [);_,|J;2,X; consists exactly of those x that belong
to X, for an infinitely many n.

We are interested in classes of languages that can be represented with this
kind of expressions. To study their measure , an appropriate resource-bounded
version has been formulated . For a translation of the classical Borel-Cantelli
Lemma to I-measure we need resource-bounded version of idea of a family of
classes with Lebesgue measure decreasing quickly to 0. To do this, a way of
saying ” X has I'-measure smaller than x” has been introduced for a class X
and u > 0.

For each martingale d and r > 0 , we define the class

S™[d] = {A | limmed(A]0...m]) > d(A) 1)

We interpret X C S7[d] as X has measure smaller than 1 .
For resource-bounded version of the Borel-Cantelli Lemma a restrictive no-
tion of convergence of series is used. =~

Definition 1.19. Let {a, | n€N} be a sequence of nonnegative real numbers.
A modulus for the series }_°  a, is a function m:N — N such that 2 i) 8n

< 277 for all j € N. A series is I’-convergent if it has modulus that is in T.

Definition 1.20. Let {a;: | jk € N} be a sequence of non-negtive real
numbers.A Sequence 3.2 a;: (j=0,1,2,...) of series is uniformly I'-convergent
if there exists a function m:N? — N such that m € T and for each j € N,m; is
a modulus for the given scries.

Finally we state the resource-bounded generalization of the claspical first
Borel-Cantelli Lemma

Lemma 1.11. [Lutz92]. Let {X;; C {0,1}*™ |i,j € N }.If there exists d a
["-computable 2-MS such that

() Vij € N Xi; ¢ S%7™ [qy]

(ii) the series 3" 720d; ;i (A) (i=0,1,2,.. )

are uniformly I'-convergent,

then |

AT (U:uninu_?;xi,-j) =0

13



Proof. See {Mayo94] . -. ~.
In order to take full advantage of this lemma the following sufficient condition
for uniform I'-convergence is usefui .

Lemma 1.12. (Mayordoma [Mayo94] ) Let a;, € [0, oco) for all j, k € N.
If there exist a real € > 0 and a polynomial gz N = N such that a; 3 < € ~* for
all j, k € N with k > g(j),then the series

2 ko @k (j=0,1,2 ...}

are uniformly ['-convergent.

Let us see an application of the resource-bounded Borel-Cantelli Lemma

Example 1.6. [Mayo%4] The class X ={A | |A="] > 2"(3+1) for infinitely
many n} has measure 0 in E .

Proof . Foreachn € N, let

X ={A | |A™" | > 2%(3+1))

and let X;=0; if j is not a power of 2. Then by definition of X,

X= ﬂ t=ﬂU J_.t

We want to apply I‘-addltlﬂty lemma to this expression of X. Natice that
we do not have the outermost union. It is enough to define a 1-MS d such that

for each j, X; C S‘_‘?b-’ [d;] for each j € N such that j is a power of 2, w € {0,1}*
d(j,w) = Pr[x €X; | x € ], for the rest of j let d; = 277. By definition of
conditional probability , d is a 1-MS . We have to show that d is p-computable
and that condition (1) and {ii) of the above lemma hold . To see that condition
(i) holds, fix j € N a power of 2. and x€ X;.Since this condition x € X; is
only based on the prefix x[0...2j-2], and y € {0,1}* such that y € Czo...2i-2]

is also in X; and d(j,x[0...2j-2])=1,thus x € STt [d;]. To see that condition

(if) holds, we have to look at the series 3°> d;(A)= 322, Prx€X;]. for each

n€ N and j=2" Pr{xeX;] < e ~%7 thus there exists ¢ > 0 such that j > c then
Pr{xeX,;] < e~#" which shows that > i=0d;i(A) is p-convergent and condition
(ii) holds .

We need to check that d is p-computable .We can use binomial coaffiecients
to exactly compute Prixe X; | x€C,] in time polynomial in |w| +j,thus d € p
and we have the result.

1.5 ['-measurability ard the Kolmogorov 0-1 law

In this section we define the concept of I'-measurability and consider the
classes that have I'-measure u, for 4 any vaiue between 0 and 1. Then we see
that these new concept are not useful for classes that are closed under finite
vartations, rather we see that classes which are closed under finite variation
can have either measure 0 or measure 1 if at all the are measureable .. This is
stated as the resource-bounded version of the Kolmogorov 0-1 law, whlch is a
consequence of the classical Kolmogorov 0-1 law.

14



Definition 1.21. Let pp:{0,1}*° - p(]0,1]) be the function that for each
Xe{0,1}* is defined as follows
pur(X={y > 0 | there exists 1-MS de T such that for each k € N ,XC

§7%577 [4,]}.

Note that uf is a function mapping a langauge to a subset of [0 1] .
The next lemma states some basic properties of ur.

Lemmasa 1.13. |

(i) KX C Y then up(Y) C pp(X)

(ii) Let {Yo,...,Yn} be a finite sequence of pairwise disjoint classes If y; €
ut(Y;) for each i then S, v € up (UL, Yi

(iii)for every X , up(X)+up(X6)21

(iv)Let {Y; | i € N } be a sequence of pair-wise disjoint classes .If v; € ul;
then 3 ey % € uou(Uien Yi)

(v)If {a.,, | n € N } is a decreasing sequence such that {a, |n € N } C u5,(X)
and I=lim,_,a, then | € u7,(X).

Proof . See Mayordoma [Mayo94] .

Definition 1.22. Let X be a class of languages.We say that X is I'" -
measurable if there exists v € up(X),

v/ € pr(X¢) such that y+v/=1.

Notice that if X is [-measurable then there exists a unique v € us(X), v/ €
pr(X€) such that v4+v/=1. Since let 11 , v2 € pp(X) and §; , 62 € pp(X) such
that

n+d =1

72+02=1

Then by part(iii) of above lemma 71+43 > 1 and y+46; <= 71 +902=1 and
72-}'61:1 ( Since v, 40, +ye+dy = 2.

We denote ur(X)}=".

For I'=all this definition corresponds to classical Lebesgue measurability ,
which has been shown by Lutz [Lutz92] .

Lemma 1.14. Let I, I’/ be two measure resource-bounds such that I' C I/
If X is I-measurable then X is I'/-measurable and ,u[-(X)—pl-»; (X).

Proof. See Mayordoma [Mayo94]

We notice that if one can prove that a class of la.nguage has I'-measure 0
for some resource bound I' then X will have Lebesgue measure 0 , as example
all classes defined in example 1.4 have Lebesgue measure 0 , and there is no
obvious way to find out their lebesgue measure , thus some times we could
even try resource bounded measure for finding out whether a class has lebesgue
measure 0 .

Lemma 1.15. X has I'measure 0 iff X is I'-measureable and ur(X)=0
Proof. See Mayordoma [Mayo94] .
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This shows that Definision 1.22 is consistent with our earlier definition of I'-
measure 0 and I-measure 1 sets. Thus we can use any one of the two definition
for ['-measure 0 , 1 sets .

Theorem 1.4 (Resource bounded version of Kolmogorv 0-1 law).
Let X be a class of languages that is closed under finite variations. If X is

I'-measurable then either X has -measure O or I -measure 1
Proof. See Mayordoma [Mayo94] .
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Chapter 2: Measuring in PSPACE

2.1 Introduction

In Chapter 1, we have defined Lutz’s resource-bounded measure for classes
such as E, E2, ESPACE and E,SPACE . However, there are interesting problems
that can be formulated dealing with the estimation of the size of subclasses of P
or PSPACE. For instance, we may want to know whether most languages in P
are efficiently parallelizable, or whether self-reducibility is a typical property for
the languages in PSPACE. In this chapter , we describe how to extend Lutz’s
measure to the class PSPACE following the work of Mayordoma [Mayo94] .

2.2 Measure in PSPACE

Our definition of resource-bounded measure in Chapter 1 was restricted to
classes of the form R(I')for I" a measure resource-bound. In particular since
each measure resource-bound contains p, for any resource-bound I' we have E
C R(I).

In order to define a measure inside PSPACE we have to find a solution to the
equation R(I') = PSPACE and check that the corresponding I'-measure fulfils
the Measure Conservation Theorem, that is, PSPACE does not have I-measure
0. This time we can not require that I' is a measure resource-bound.

Let us look at the solution of the equation R(I")=DTIME(F) and R(I')=DSPACE(F)
for differnt families F that we used in Chapter 1, e.g for F=E the sdlution is p.

By analogy ,the class of polylogarithmic space computable flmctmns is the
natural candldate to define a measure in PSPACE .

Lemma 2.1. ( Mayordoma [Mayo94] ) PSPACE C R(polylogspace).
We see in the next theorem that R(polylogspace) corresponds to a class of
self-reducible languages that is expected to be different from PSPACE.

Definition 2.1. A language A is PSPACE-wdq-self-reducible (where wdq
stands for word-decreasing-queries) if A = L(M,A), where M is a PSPACE
Oracle Turing Machinc that makes only queries strictly smaller than the input
(in lexicographical order).

Balcazar has defined two types of self-reducibility, namely wdg-self-reducibility
and ldg-self-reducibility, /dq standing for length decreasing queries. The most re-
strictive one is ldq-self-reducibility, where all the queries must be stri¢tly shorter
than the input. Notice that wdqg-self-reducibility allows exponentially long de-
creasing chains to exist, while only linearly long chains can appear for the ldq

type.

Theorem 2.1. (Mayordoma [Mayc94] ) R(polylogspace) is exactly the class
of PSPACE-wdg-self-reducible languages.

In [Balc] it is proven that E, has <P -complete languages that are P-wdg-
self-reducible.

Since every P-wdg-self-reducible language is clearly PSPACE—wckl-self-reduclbie,
E; has <P -complete languages that are PSPACE-wdq-self-reducible, and we
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have the following result. )

Theoresn 2.2. { Mayordoma {Mayo94] } If PSPACE = R(polylogspace)
then Es = PSPACE.

And we know that E, = PSPACE is not likely to hold .

Now we consider only functions that are computable by on-line polylogspace

machines
Our model of on-line machine is based on that of Hartmanis, Immerman and

Mahaney in [HartImM].

Definition 2.2. An on-line Turing Machine is a machine that on input of
length n

(a) starts with log n blank spaces marked on one of the working tapes,

(b) reads the input tape once from left to right, and

(c) writes the output from left to right on a write-only tape.

Definition 2.3. Let plogon be the class of functions that are computable
by online machines with working and output space polylogarithmic in the size
of the input. In this case and for constructor functions only, we do not bound
the output space.

Theorem 2.3. (Mayordoma [Mayo94] ) PSPACE = R(plogoﬁ).

Thus we can define a measure in PSPACE _ﬁ'omkplﬂ'gon-measure.
2.3 I'-additivity in PSPACE

Definition 2.4. A set X is a I-ynion of the I-measure 0 sets X; , j € N|J{0}
iff X=U;:0 and there exists a ['~computable 1-MS d such that , for every j,X;
C §°°!d;]. (Notice that here I is not necessarily a measure resource-bound)

Lemma 2.2, ( Mayordoma [Mayo94| ) If X is a plogon-union of plogon-
measure ( sets , then X has plogon-measure 0.

We have studied PSPACE-wdq-self-reducibility in section 2.2, showing that
there are languages out of PSPACE that are PSPACE-wdg-self-reducible, unless
PSPACE = E; . We now look at a more restrictive form of wdq-self-raducibility,
where the machine used has a linear bound on the space and a restriction on
the order the queries are made.

Definition 2.5. A language A is LINSPACE-og-self-reducible (where oq
stands for ordered queries) if A = L(M,A), where M is a LINSPACE-oracle-
machine that for each input makes the queries in lexicographical :ascending
order, and all of them are strictly smaller than the input (in lexicegraphical
order).

Note that if A is LINSF .-\CE-wdq-se]f-reducible via a O(n)-truth-table LINSPACE-
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machine, then A is LINSPACE-oqg-self-reducible, because we can order the
queries before making them. In particular, most of the known selfreductions

for natural problems in PSPACE are O(n)-tt {even O(1)-tt) and computable in
LINSPACE.

Theorem 2.4. ( Mayordoma [Mayo94] ) The class of LINSPACE-og-self-
reducible languages has measure 0 in PSPACE.
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Chapter 3 .
Quantive Structure of Exponential time

3.1 Introduction. In this chapter we summarize some devolopments
concerning resource bounded measure of classes having certain nice properties
like P-bi-immunity , Incompressibility etc , within E and E; , and using these
it will be shown that "NPC is a small class in E ” assuming that the Berman-
Hartmanis isomorphism conjecture is true . Also we will show that , if (i)
Berman-Hartmanis conjecture is true and (ii) for L; , L, € NP1, [ AL, €
NPC , then either NP has p-measure 0 or NP is not p-measurable .

3.2 "Most is all”
To begin with we state a result , due to Regan , Sivakumar , and Cai {[RSC95]
which states that any "reasonable” complexity class that contains almost every

element of E (respectively E; ) , then it contains every element of E{respectively
Ey ).

Theorem 3.1 (Regan , Sivakumar , and Cai [RSC95) ). Let C be a class

of languages which is either closed under symmetric difference or closed under
(finite) union and intersection

L. pu(CIE)y=1then EC C.

2. B u,(C| Eg) =1then E; C C.

As an example if NP has p-measure 1 in E then E C NP , that is any
language that can be recognized in exponential time can also be recognized by
some non-deterministic polynomial time bounded turing machine . This would
be a very interesting relationship between deterministic and non-deterministic
time .

3.3 Incompressibility and Bi-immunity

First we introduce some basic concepts .
Definition 3.1. The collision set of a function f: {0,1}* — {0,1}" is

Cr={x€e {01} Ty < xfly)=f(x) }

Note that if f is one to one then C;= {.

Definition 3.2. A function f : {0,1}* — {0,1}" is said to be ane-to-one
almost everywhere if it’s collision set C; is finite .

Definition 3.3. Let A, B C {0,1}* andlet t: N - N | A Sﬁ““E(”-
reduction of A to B is a function f € DTIME(t) such that for all x' € {0,1}"

,x € Aifff(x) e B A _ﬂ_‘_’ﬂTIME ) _reduction of A is a function f that is a
< TIMEW)_radyction of A to f(A).
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Definition 3.4 Lett: N = N be a time constructible function . A langauge
A is said to be incompressible by <h! ME®) reductions if every <ol ME®
reductions of A is one to one almost everywhere . A langauge A is said to be in-
compressible by <P -reductions if it is incompressible by sﬁTIME('}—mductians
for all polynomial q .

Intuitively , if £ is a <27 MEM® reduction of A to B and Cy is large , then

Y, —m f 1

f compresses many questions of the form "x € A 7 ” to fewer questions of the
form "f(x) € B ? ” .If A is incompressible by <%, -reductions then very little such

compression can occur .

Theorem 3.2 (Juedes and Lutz ) [JL95a] . Let ¢ € Z* and define the sets

X ={AC{01}*| A is incompressible by iﬁTIMEm“) ]

Y={AC{0,1}"| A is incompressible by $E:TIME{T:} }

Then pp(X)=pp,(Y)=1.

DTIME(2°)

Thus almost every language in E is incompressible by <im -reductions,
and almost every langauge in E, is incompressible by g,ﬂ"’ IME(2™) reductions

Corollary. (Juedes and Lutz) [ JL95a]. Almost every langauge in E and
almost every language in E; is incompressible <P -reductions .

It had been known that there is a language A € E that is incompressible by
<? _reductions [Meyer77] . Thus the above corrollary strengthens this result .

Next we recall the definition of P-immune languages .

Definition 3.5. A language A C {0,1}* is P-immune if no infinite subset
of Aisin P . A language A C {0,1}* is P-bi-immune if A and A® are both
P-immune.

Intuitively , a language that is P-immune "cannot be non-trivially approxi-
amated from inside or outside ™ by any language in P.

The following theorem relates incompressibility by <Z -reduction to P-bi-
Immunity .

Theorem 3.3 (Ko and Moore[KM75] ). Every language that is incompress-
ible by <P -reductions is P-bi-immune.

The following results shows that almost every language in E is P-b¥immune.

Theorem 3.4 ( Mayordomo [May94] ) . The class of P-bi-immune language
has p-measure 1 , and hence p;-measure 1 .

Next we recall the notion of p-isomorphism and state the Berman-Hartmanis
conjecture . - |

Two languages L; and L2 are p-isomorphic if 3 a fuﬁctinn f: {0,1}* —
{0,1}* such that
l.xel, #f(x)ELz.
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2. fis bijective .
3. Both f and f~! are p-computable .

Berman-Hartmanis Conjecture . Any two NP-complete languages are
p-isomorphic .

Proposition 3.1 If Berman-Hartmanis isomorphism conjecture holds then
the class NPC has p-measure 0 .

Proof. We know that the language B = { a(A)©a(b) : all entries of A
are in {0,1} and all entries of b are 1 , and Ax=b has a binary solution } is
NP-complete . (See [Lepad] for a proof )

(Here a(A) the encoded form of matrix A and © is a special symbol which
does not occur in the encoding of A and b . )

We define a subset C of B such that

C={ a(A)©a(b) : A=1, , for somen > 2,1, being the identity matrix of
order n , for some n > 2 and all entries of b are 1. }

Clearly C C B and C is infinite which is in P . Thus B is not P-immune as
1t contains an infinite subset which is in P.

Now take any other language L which is NP-complete . If Berman-Hartmanis
isomorphism conjecture holds , then there exists a polynomial time computable
function h : C — L which is 1-1 and onto and whose inverse is also polynomial
time computable . So the set h(C)= { h{w) | w € C } C L and is infinite .

Now x € h(C) iff h~'(x) € C . Thus we see that h(C) € P so that L is
also not P-immune. Thus no NP-complete language is P-immune and hence not
P-bi-Immune . Hence , by Theorem 3.4 , the class NPC has p-measure 0 in E .
Hence the proof.

Remark. We also note that p,-measure of NPC in E2 is 0 assuming
Berman-Hartmanis conjecture is true . To see this note that the clasg PBI= set
of all P-bi-immune languages , has pp-measure 1 in E . Also no langnage in
NPC is P-immune as seen in the proof of Proposition 3.1 .

So NPC C E»({(PBI)° and hence NPC has p,-measure 0 in E; .

Proposition 3.2 . if
(i) Ly € NPI, L; € NPI = L;AL, ¢ NPC , and
(ii) Berman-Hartmanis conjecture holds , then either NP has p-measure
0 or it is not p-measurable .
Proof. Consider the class D = NPI |} P . D is closed under symmetric
difference since |
LeP MeP=LAMEP
LeP ,M¢c NPI = LAM € NPI
L € NPI, M € NPI = LAM ¢ NPC |
Also we know that , if Berman-Hartmanis isomorphism conjecture is true |
then NPC has p-measure ( (Proposition 3.1) . Thus if NP has to have p-measure
1, then NPI must have p-measure 1, that is D has p-measure 1 . Then by
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Theorem 3.1 we would have E C D which is a contradiction to the fact that the
language B considered in Propsition 3.1 is in NPCNE .

To see that B € NPCNE , first note that B € NPC [Lepad] . Next we show
that Be E .

(Recall B = { a(A)©a(b) : all entries of A are in {0,1} and all entries of b
are 1 , and Ax=b has a binary solution } )

For this ,note that given a string w , we can find out whether w is of the
form a(A}© a(b) in linezr time , and , if it is so , then we can extract A and
b from w in linear time . Now we have to check for atmost all x € {0,1}*,
where n is the column dimension of the matrix A , whether x is a solution of
Ax=b . Roughly speaking this can be done in O(mn2™) time , m being the row
dimension of A , that is O(2¢*!) time for some ¢ > 0 . Hence B¢ E .

Thus NP can have p-measure 0 or NP is non-measurable . Hence the proof.

3.4 Complexity Cores

Now we look at the complexity cores of languages in E . Roughly speaking
, @ complexity core for a language L is a set of input strings for which every
algorithm that recognizes L requires running time which is more than a specified
bound .

Definition 3.6. Let t: N — N be a time bound and let A , K € {0,1}*.
Then K is a DTIME(t(n))-complexity core of A |, if , for every ¢ € N and every
machine that accepts A , the fast set F , defined. as :

F={ x | Number of steps used in the computation of M(x) < ¢ t(lxl) +C }

satisfies |F{| K| < oo .

Definition 3.7. Let A , K C {0,1}*

1. K is a polynomial complexity core of A if K is a DTIME (n*)-complexity
coreof Aforallk e N.

2. K is a exponential complexity core of A if there is a real number ¢ > 0
such that K is DTIME(2™ )-complexity core of A.

The following result , due to Juedes and Lutz , shows that almost every
langauge in E (or E,) are <P -hard .

Theorem 3.5 (Juedes and Lutz [J L95a] ). Ift: N = N is time constructible
then every langauge that is incompressible by Sf;TIME(”-reductiﬂns hes {0,1}*
as a DTIME(t)-complexity core

- Corollary. (Juedes and Lutz (JL95a] ) Let ¢c € Z+ |

1. Almost every language in E has {0,1}* as a DTIME(2°")-complexity core.

2. Almost every language in E; has {0,1}* as a DTIME(2™ }-complexity

core.
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Measure on Small Complexity Classes and application to BPP

4.1 Introduction .

Here , following Allender and Strauss [AlleSt94]) , we present a notion of
resource-bounded measure for P and other subexponential-time classes. This
generalization is based on Lutz’s notion of measure, but overcomes the limita-
tions that cause Lutz’s definitions to apply-@uly to classes at least as large as
E. We present many of the basic properties of this measure, and which are used
to explore the class of sets that are hard for BPP. Bennett and Gill showed
that almost all sets are hard for BPP with respect to Lebesgue measure . Lutz
improved this from Lebesgue measure to measure on ESPACE. Using this , an
- improved result is obtained which shows that , for all ¢ > 0, almost every set in

E, is hard for BPP, where E, = |J; . DTIME(2"") . This is the best that can
be achieved without showing that BPP is properly contained in E. A number
of related results are also obtained in this way.

First we present the following important definition .

Definition 4.1. A demsity-system is a function d;, ... ;. : {0,1}* = [0, ) ,
where
1. The subscripts are natural numbers.

2. The argument is considered a partial characteristic sequence of a language.
3. d.(W) — d.!wﬂ!*i-li.!ﬂl!

2
A density-system is called an n-DS according to the number of subscripts.

A 0-DS is a density function. A density function covers X if X C Uvid(ew>1Co-

A null cover of X is a 1-DS such that for all k, di covers X and dg()) < 2%,

When faced with the task of defining measure on classes smaller than E,
it is natural to try to modify Lutz’s definitions, merely using smaller resource
bounds C. For instance, to define a measure on P, one would consider density
functions computed in DTIME(log®(}) n). This fails to work, because the usual
~ convention for having sublinear-time Turing machines compute some function
~ is.to have them recognize the language { x,i,b : bit i of f(x) is b} .

However , it is easy to see that the class of functions computed in this way
by, for instance, polylog-time-bounded machines, is not closed undér addition
and subtraction. which seems to be necessary for many constructiogs. Similar
problems arise when one uses the usual binary notation or scientiffc notation .
for the numeric values of the density functions. Our solution is to hgve the run
time bound the length of the output, and to express numbers as ihg difference
~ of two formal sums of powers of two, which allows us to perform the necessary
" arithmetic operations in the restricted time available. Using this replesentation
for numeric values, one obtains a system that quite possibly does define a mea-
sure on P. Unfortunately , it seems quite difficult to verify tha.t P lmlf does not
have measure zero .

The central problem lies with an observation made previously that the bmary
sequences that are constructible in DTIME(log©!!) n) correspond not to sets in
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P, but rather to “word-decreasing self-reducible” sets, some of which are harc
for E [Ba]. This motivates the notion of limiting the dependency set size, whicz
allows us to obtain subexponential bounds on the complexity.

4.2 Formal Definitions of the Measure .

The preceding paragrephs motivate some detailed definitions of a class =<
functions computed by sublinear-time Turing machines. In order for sublinear-
time machines to perform interesting computation, we follow the usual conven-
tion of providing these machines with random access to their input: that is, the
machines have an “address tape,” and if i is written in binary on the address
tape, then the machine can in unit time move its read /write head to bit po-
sition 1 of the input. Among other things, such machines can, in logarithmic
time, compute the length of their input ([Bu]).

We adopt the convention that a machine computing a k-ary function s
provided with k input tapes (with an “address tape” for each input tape). The
running time of such a machine must be polvlogarithmic in m, where m is the
sum of the lengths of its k inputs. (Note that by choosing a suitable eticodine.
such a machine can be simulated by a machine with a single input tape.) The
machines we consider will write their output on a write-only output tape; thus
the ocutput is restricted to be of length bounded by the running time.

Given a machine M and natural number n, define a dependency set Gasn =
{0 ... n } to be a set such that for each i € Gys, and each word w of length
n, M can compute M(wi{0 ...i}) querying only input bits in Gy, N {0 ... 2>
Note that for all M and n, there is a unique minimal dependency sdt for M
and n, which can easily be computed by expanding the tree of queries that one
obtains by assuming both possible values for each queried bit. In what follows.
we let Gas, denote this minimal dependency set. Given a function f computec
by machine M , we may use notation and speak of Gy , instead of G, ,

Note that our convention about paired inputs to M requires that if M com-
putes a subscripted function di . , G gets a cadre of subseripts matching d's
G |wi k,r fOr di (w): Often in practice G n i » is independent of k and r. iz
that case these subscripts will be suppressed. L

Given a complexity class C of the form DTIME(F) (where we will alwars
assume that F is a set of time-constructible functions such that f(n) € F
(f(n))? € F ), let A(C) be the class of functions computed by Turing rpachines
running in time f(log n) for some f € F , and let I'(C) be the class of functions
di, ...i. (W) computed by machines whose runtime and dependency set size zre
both bounded by functions of the form f(log(i; + ... + i + |w|)) for some 7 =
F. |

Note that if the functions in F are at least exponential, then A(C) = I'iC
If f is a function in ['(C) . where f: {0,1}* — {0,1} , then f defines a contructexr
¢, where §(w)} = wi(w). A constructor specifies the sequence that is the:limit as
j = oo of () . This gives rise to the class R(I'(C)) , which is the class whose
characteristic sequence are given by some constructor in I'(C) .
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Theorem 4.1 (Allender , Strauss [AlleSt] ) R(I'(C))=C. .

Thus we can think of defining I'(C)-measure in C.
We now make precise the notion of a density system (DS) being easy to
compute. A ['(C)-computation of an n-DS d;, .. ;. is an (n+1)-subscripted

function d;, ;. ., satisfying

di,.....i.r(W) is computable in [(C) , ( numeric output is represented as a
pair (a , b) representing the dyadic rational a-b , where each of a and b are
represented as a formal sum of powers of 2 ) , and

iy . (W) iy i (W) | < 2710
| For any complexity class C , we write X is ['(C)-null if there is a T(C)-

computation of a 1-DS dg(w) covering X such that dg{)\) < 27 * for all k .

If a class X has nonzero measure , we can talk about another set Y having
“measure 0 in X " and we write ﬂl"{C)(Y I X) = 0, if PI‘(C}(Y n X) = 0 or
measure 1 if Bro (YﬂX*“ - U, .

A set X is a C-union of I'(C)-null sets if X = U?iﬂxj and there is a 2-DS
d;« so that d;x covers X; with value 27* and d;; has a I'(C)-computation .

Some useful resuits are :

Theorem 4.2. (Alleneder , Strauss [AlleSt] ) For each L € C the singleton
set I'(C)-null. |

Theorem 4.3 (Alleneder , Strauss [AlleSt] ) If X is a C-union of I'(C)-null
sets , then X is ['(C)-null. |

Theorem 4.4 (Alleneder , Strauss {AlleSt] ) urc)(C) # 0.

Thus , on C we can define a I'(C)-measure which is nontrivial .

Note that one can also define a measure analogous to our measure on time-
bounded classes, using space bounds, as opposed to time bounds. In this way,
one can obtain a measure BT (PSPACE)

4.3 Elementary Facts Concerning the Measure

Theorem 4.5. (Alleneder , Strauss [AlleSt] ) Let C = DTIME(F). If f €
F , then prgc}(DTIEIE(f)=U.
That is DTIME(f) is a small class in DTIME(F) for any f € F.

Corollary. (Alleneder , Strauss [AlleSt] ) For all k, pr(p)(DTIME(n*)) =
0.

Corollary. (Alleneder , Strauss [AlleSt] ) Let 0 < n < € , and E. denote
& .
nﬁ{e DTIME(2" ) . then P'F{E,}(Eq) = 0. |

Theorem 4.6. (Alleneder , Strauss [AlleSt] ) Let C=DTIME(F) , where F
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contains no superexponential function . Let { X; } be a collection of sets ;where
X; is covered by d; for d € I'(C). Suppose m { a "modulus of convergence” ) is
an increasing function of the form f(logn) for some f € F and for all k we have

Z:??—'-m(k} d.?(}‘) <27k
Then

tr(c) NemolU ;=X 5) =0.

Theorem 4.7 (Alleneder , Strauss {AlleSt] ) The set SPARSE is not T'(P)-
null in P.

That is the set SPARSE is not small in P , so that we can even think of a
nontrivial measure in SPARSE{\P .

4.4 Robustness, Alternative Formulations and Auxiliary Axioms

There are many choices that must be made in making the notion of a mea-
sure precise. The definitions in the preceding subsections reflect one set of
choices, but it is instructive to consider other ways a definition ¢ould have
been formulated, to see if the class of measure-zero sets varies under these
changes. Juedes, Lutz and Mayordomo have previously shown that their notion
of resource-bounded measure is robust in the face of many modifications of the
definition of covers. As a practical matter, when trying to show that a class
does not have measure zero in E or some larger complexity class, it is very use-
ful to know that, in that setting, a null cover can be assumed without loss of
generality to satisfy all of the following “niceness” conditions

A density system d, is exactly computable if dg = dg - .

A density function is conservative if it satisfies the following “conservation”

) _. dlwd)+d{wl
property: d(w) = —(—}T-(-—l :

If the density system d k is of the form di = 2~*d for some density function
d then we say that d; is derived from the martingale d condition that di be a
null cover of

A set A is covered in the limit if there is a martingale d such that, for all w €
A, the sequence d(w{0...n]) has a limit of infinity, instead of merely an infinite
lim sup.

A density system is regular if dg(z) = 1 and z C w imply di(w) = 1.

When considering measure on subexponential complexity classes, there are
additional choices involved in the definition, concerning how (or if ) the length
of the input is provided, questions concerning how dependency sets should be
defined, etc , which raises the spectre that each of the 2° combinations of the
“niceness conditions listed above (not counting additional choices concerning pro-
viding the input length, etc.) would give rise to a different notion of measure.

It turns out that any null set can be covered by an exactly-computable
martingale, but surprisingly, assuming any of the other niceness conditions is
equivalent to assuming all of them. -
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That is, it can be shown that the notion of measure defined here is equivalent
to the definition that results frorn having the measure-zero sets be covered in
the limit by exactly-computable conservative martingales, where the machines
that compute the martingales are even more limited than the machines that are
considered here.

4.5 Hard Sets for BPP

It was shown in [BG] that for almost every A, BPP4 = P4 | Lutz showed
that almost every set in ESPACE has this property, and thus , in particular ,
almost every such set is hard for BPP.

Theorem 4.8 (Alleneder , Strauss [AlleSt} ) For almost every A € E, we
have BPP C P4 .
That is almost every language in E, is hard for BPP.

Theorem 4.9 (Alleneder , Strauss {AlleSt] ) For almost every A € PSPACE
we have BPP C P4 .

That is almost every language in PSPACE is hard for BPP.

Corollary . Let C be any of the classes E, EXP PSPACE or E, : If
ur(c){(NP | C) # 0 then BPP C pNP

We also see that almost every set A in E satisfies BPP4=P4 .

Theorem 4.10 (Alleneder , Strauss [AlleSt] ) For almost every A € E we
have BPPA=P4
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Chapter 5: If NP is not small )

5.1 Introduction

Many of the main open problems in Structural Complexity, such as whether
the class NP coincides with one of the classes P or E; , are instances of a more
general problem: the relationship between deterministic and nondeterministic
time.

In this chapter we summarize some devolopments concerning the reasonable-
ness and consequences of the hypothesis “NP does not have p-measure 0", which
is a stronger hypothesis than that of the classical complexity theory hypothesis
P # NP . Since , even if we assume that P # NP most of the open questions in
complexity theory still remain open , that is , we do not know how to use the
fact P # NP to solve other problems in this field . However , if we assyme ” NP
does not have p-measure " we can settle many open problems as for exampie
, we can prove the famous CvKL conjecture{ "Cook versus Karp-Lavin”) to be
true which is not known to follow from the fact that P # NP . Also we see that
if we assume "NP does not have p-measure 0 ” , then there is an NP search
problem which does not reduce to the corresponding decision problem .

Let us review the various concepts relevant to this chapter .

We know that , if we can recognize a language A with an oracle B , then B is
at least as hard as A , since an algorithm for B would produce an algarithm for
A . This defines a partial preorder denoted as <7 and called Turing reducibility

We say that a language L <P reduces to a langauge A when L cam be rec-
ognized in polynomial time using A as oracle and with the access rkstriction
indicated by r . We say thit a language A is <P -hard for a class C , when every
language in C reduces to A and A is said to be <2-complete if A is <?-hard and
A € C . The most common polynomial time reducibilities are <% | which is ob-
tained when we do not give any restriction on oracle access , <P -commpleteness
arises when we allow only one query per input and with the additional restric-
tion that the input is accepted iff the query is in the oracle . A <§ B iff A
<F. via a machine which writes down all the queries to be made before the first
ward is queried .

<? a(n)— ¢~ Teducibility is <l.-reducibility where maximum number of queries

allowed on an input of length of nis g(n) <P . -reducibility is <7-reducibility
where maximum number of queries allowed on an input of length of n is g(n)

The polynomial time truth-table reducibility is defined as follows . A <},
B if and only if A <!, B via a machine that on each input queries the oracle
at most k times where k is a constant independent of the inputs . A <%, B if
and only if A <}, B via a machine that accepts the input exactly when all the
queries have been answered positively by the oracle .

An oracle is positive iff A C B = L(M,A) C L(M,B) . The positive Turing
reducibility is defined as follows A <,,, B if A = L(M,B) for some positive
oracle machine .

A language A is said to be polynomial time nondeterministic Turing re-
ducible to B ( denoted as A <¥¥ iff A=L(M,B) for some nondeterministic
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polynomial time oracle machine M . : “

For a language A we define P(A)= { L: L <% A} and NP(A) = {L: L
<FUAl,

Intuitively , Aadecision problem can be described as a set of valid inputs (
graphs , numbers , mathematical expressions , etc ) and a certain property that
some of the inputs may satisfy ( being connected , containing a hamiltonian
path , being a prime , satisfying certain equations , etc ). The problem consists
in deciding whether a given valid input satisfies that property . But a search
problem consists in finding a set of valid inputs for which given property may
hold .

Finally , we recall

CvKL Conjecture (“Cook versus Karp-Levin”). There exists a language
that is <¥.-complete, but .ot <% -complete, for NP,

5.2 If NP does not have p-measure (

We note that P = NP = (3¢)NP C DTIME(2") = u,(NP) = 0, u,(NP)
=0= up,,(NP) =0 u(NP |E; ) = 0= u(NP | E} = 0.

Lutz has conjectured that NP does not have measure 0 in E (denoted u(NP
| E) # 0) and that NP doesg not have measure 0 in E» (denoted u(NP | E2 ) #
0).

Now let us see the reasonableness of the hypothesis "NP does not have p-
measure (} ” By the definition of p-measure, we know that NP has p-measure 0 if
and only if there is a single martingale d € p that succeeds on every lahguage A
€ NP. Since d € p, when betting on the condition “x € A” d requires only 2¢#
time for some fixed constant ¢. On the other hand, for all k € N, there exist
languages A € NP with the property that the apparent search space (space

of witnesses) for each input x has 2i* "* elements. Since c is fixed, we have

2n & 27" for large values of k. Such a martingale d would thus be a very
remarkable algorithm! It would bet successfuily on all NP languages, using far
less than enough time to examine the search spaces of most such languages. It
is reasonable to conjecture that no such martingale exists, i.e., that NP does
not have p-measure (.

Next we describe some consequences of the hypothesis that NP does not
have p-measure 0.

Theorem 5.1. ( Mayordoma [Mayo94] ) If NP does not have p-measure 0
then NP contains a P-bi-immune set. If NP does not have measure 0 in E, then
NP contains an E-bi-immune set.

Definition 5.1. An infinite set K C {0,1}* is an exponential camplexity
core for a language A if there is a real number € > 0 such that for every machine
M that accepts A there are at most finitely many x € K such that the time of
machine M on input x is smaller than 2/*!"
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(Intuitively, an exponential complexity core for a language L is a set of ‘very
infeasible’ inputs for every algorithm that correctly recognizes L.)

Theorem 5.2. [JuedLu94a]. If NP does not have p-measure 0, then every
<m-complete language A for NP has a dense exponential complexity core.

Thus, for example. if NP is not small, then there is a dense set K of Boolean
formulas in conjunctive normal form such that every machine that is consistent
with SAT performs exponentially badly (either by running for more than 2!=!"
steps or by giving no output) on all but finitely many inputs x € K. (however
it was known that hypothesis P # NP implies the weaker conclusion that every
<fa-complete language for NP has a nonsparse polynomial complexity core.)

The third consequence of up(NP) # 0 to be mentioned here concerns the
density of hard languages for NP. Let us consider the usual polynomial-time
reducibilities ranging from <%, to <} . If <? is any of these reducibilities, ail
known <7-hard languages for NP are dense. Efforts to explain this observation
(and similar observations for other classes and reducibilities) have yielded many
results. Berman and Hartmanis conjectured that no sparse language is <P -hard
for NP, unless P = NP. This conjecture was subsequently proven correct.

Theorem 5.3. [Maha]. If P # NP, then no sparse language is <P, -hard
for NP. That is. P | # NP = NP ZP,{SPARSE):

Theorem 5.3 was extended much later to truthtable reducibility with a
bounded number of queries:

Theorem 5.4. (Ogihara and Watanabe [OgihWa)). If P % NP, then no
sparse language is <j,,-hard for NP. That is, P # NP = NP € Py, (SPARSE).

One is thus led to ask whether there is a reasonable hypothesis 8 such that we
can prove results of the form 8 = NP € P.(DENSE¢® ), for various choices of the
reducibility <?. (Such a result is much stronger than the corresponding result #
=> NP Z P(SPARSE). because there is an enormous gap between polynomial
and 2™ growth rates.)

Now we define

EE = U,cn U,exy DTIME(22"") |
NEE = {J,cn Uney NTIME(22™%) |

Lemma 5.1. [Mayvo94]

1. If NP contains a P-bi-immune language, then E # NE and EE # NEE. 2.
If NP [ co-NP contains a P-bi-immume language, then E # NE (N co-NE and
EE # NEE () co-NEE.

Theorem 5.5
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1. If NP does not have p-measure {}, then E # NE and EE # NEE. .

2. If NP () co-NP does not have p-measure (, then E # NE () ¢co-NE and
EE # NEE () co-NEE.

Proof . This follows immediately from Theorem 5.1 and Lemma 3.1.

Corollary . If NP does not have p-measure (0, then there is an NP search
problem that does not reduce to the corresponding decision problem:

Proof . Bellare and Goldwasser [BellGoj have shown that, if EE # NEE, then
there is an NP search problem that does not reduce to the corresponding decision
problem. The present corollary follows immediately from this and Theorem 5.5.

5.3 Separating completeness notions in NP
In this section we preseat main consequence of u,(NP) #0, that is:

Theorem 5.6. If NP does not have pmeasure 0, then there is a language C
that is <?_,~complete,but not <?_,,-complete,for NP.
This theorem implies that if u,(NP) # 0 then CVKL conjecture holds.

5.4 Separating reducibilities in NP

In this section, assuming that NP is not small, we establish the distinctness
of many polyhomial-time reducibilities in NP , that is we will see completeness
notion under different reducibility are different .

Theorem 5.7. (Selman{Selm82]) Assume that NP does not have p-measure
0. There exist A, B € NP{Jco-NP such that A<% B, but AL>

Proof. Selman [Selm82]

Similarly, we have the following.

Theorem 5.8. Assume that NP () co-NP does not have p-measure 0. There
exist A ,B € NP such that A <}B but A £ B. There exist A ,B € NP such
that A <,B but A £8,_..B.

Proof. See Selman({Selm82]

The rest of our results concern the separation of various polynomial-time
truth-table reducibilities in NP, according to the number of queries.

P
pos—T

Theorem 5.9. If NP does not have p-measure 0, then for all k € N there
exist A,B € NP such that A<} ,_,, Bbut A<} _,, B.

Proof. See Mayordoma [Mayo94] .

Theorem 5.10. If NP does not have p-measure 0-and qr: N - N are
polynomial-time computable query-counting functions satisfying the conditions
a(nm) € o(y/(r(n)) and r(n) € O(n), then there exist A ,B € NP such that A
<P ) —ee UL A 5:(:1}—;:

Proof. See Mayordoma [Mayo94]

Theorem 5.11. If u(NP | E2 ) # 0 and g is a polynomialtime computable
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querycounting function such that q(n) € O{log n), then there exist A, B € NP
such that A< g{"}ﬂ ;¢ Dut Aﬁq{"} ., £(n)), then there exist A,B € NP such

Proot. See Mayordoma [Mayo94]

Theorem 5.12. If u(NP | E; ) # 0 and q,r :N —+ N are polynomial-time
computable query-counting functions satisfying q(n) € o(y/r(n)) then there ex-
ists A,B € NP such that A'(r(n? .. B but qu(n}_ﬂ :

Proof. See Mayordoma [Mayo94]

5.5 Fiirther results and open problems

Now we summarizes the consequences of the hypothesis NP does not have
measure { in PSPACE ° known so far. Notice that if y(NP | E» ) # 0 then
n(NP | PSPACE) # 0.

Theorem 5.13. If NP does not have measure 0 in PSPACE then

(i) NP contains a DLOG-bi-immune language.

(ii) NP contains a language that is not LINSPACE-og-self reducible.

We have seen that for each of the treated questions, the hypothesis “NP
does not have p-measure 0” gives the answer that seems most likely, relative to
our current knowledge. Further investigation of this hypothesis and its power
to resolve other questions is clearly indicated.

Now we review polynormial time hierarchy . The polynomlal time hierarchy
is the structure formed by the classes TF | ¢ and A for each k > 0, where

1. 2§ = 1§ = Aﬂ =P .

ZEHI-—-\IP{ Jfork > 0.

3. ﬁkﬂ --P(f.\f yfork > 0.

4. ©F  =NP(Z{ jfork>0.

As noted in section 5.2, all known <%.-hard languages for NP are dense,
i.e., our experience suggests that NP  P(DENSE€®). This suggests two open
questions. Karp and Lipton [KarpLi] have shown that

o # IIf = NP ¢ P(SPARSE).

The first question posed by Selman , is whether the strong hypothasis u(
SP\IIT | Ez) # 0 can be used to combine these ideas to get a conclusion that
NP ¢ P(SPARSE)

The second quesman is suggested by the first. A wellknown downwa.rd*fsepa-
ration principle [StocT7! says that , if the polynomial time hierarchy separates
at some level , then it separates at all lower levels. Thus , for example , £f #
I1 implies that P # \P Is-there a “downward measure separation principle ”
stating that P(Ek-n tr1 1 E2) # 0= p(TO\IDF | E) # 0 7 In particular ,
does (X3 \II7 | Ez) # O imply that u4(NP | Ep) # 0.

The next immediate open problem involves the further separation of ¢om-
‘pleteness notions in NP. We have seen that the hypothesis u,(NP) # 0 sepasates
<! _p~completeness from <§_,,-completeness in NP . However there is a lprge
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spectrum of completeness notations between <7 and <§, . Watanabe([Wata87a]
, [Wata87b]) and Buhrman , Homer , and Torenvliet [BuhrHoT] have shown that
nearly all these completeness notions are distinct in E and in NE , respectively.
In light of the results of sections 5.3 and 5.4 above , it is reasonable to conjecture
that the hypothesis “NP does not have p-measure 0” yields a similarly detailed
separaiion of completeness notions in NP. Investigation of this cﬂn_]ecture may
shed new light on NP-completeness phenomena.

We finish by looking al the Berman-Hartmanis isomorphism conjecture for-
mulated in 1977 , namely that all NP <? -complete sets are polynomial time
isomorphic [BermHa]. Most researchers now believe that the isomorphism con-
jecture as stated by Berman and Hartmanis is false. It would be very interesting
to obtain results of the form “If NP does not have p-measure 0 then the iso-
morphism conjecture is false for <?-complete sets” , for different reducibilities
<P .

Conclusion.

Resource bounded measure has been shown to interact in quantative ways
with polynomial time reductions , bi-immunity , complexity cores , completeness
and many other studied structural aspects of various complexity classes .

Resource-bounded measure is a powerful generalization of Lebesgue mea-
sure . There is reason to hope that it will be as fruitful in complexity theroy
as Lebesgue measure has been in analysis and mathematical physics . Many
investigators will have to ask and answer many question in order for resource
bounded measure to achieve its full potential.
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