Genetic Algorithms: Stopping Times
and A New Model

M.Tech Dissertation Report
by
Privankar Ghosh

under supervision of

Prof. C. A. Murthy
Machine Intelligence Unit (MIU)
Indian Statistical Institute, Calcutta

July 22, 2000

“ .
._'\I:L- -’




Certificate of Approval

We the undersigned, hereby certify that Mr. Priyankar Ghosh of Indian Statistical
Institute, Calcutta, has completed this dissertation on “Genetic Algorithms: Stop-
ping Times and A New Model” as a part of the M.Tech(Computer Science) course,
to our satisfaction.

External Examiner

Supervisor
Dr. C. A. Murthy



Acknowledgement

I would like to express my sincerest gratitude towards Dr. C. A. Murthy for providing
me with a very interesting and challenging dissertation problem. He has helped me a
lot and guided me with his brilliant ideas for which I was able to sail smoothly even
in troubled waters. Also, I owe a lot to him for helping me in this report writing

Process.
I am obliged to my friends Mr. Sanjay Dutta, Mr. Sasthi Charan Ghosh for helping

me prepare the TEX output of this dissertation.

With regards

) Méf{ Ay,
%kﬂr osh



Contents Page No.

Chapter 1: Introduction 4
1.1 Description of Genetic Algorithms 5
1.2 Issues regarding GAs 10
1.2.1 General Problems in applying GAs 10
1.2.2 Specific Problems attempted 11
1.3 Data Sets used 11
Chapter 2. eOptimal Stopping Time for MEGA Model | 14
2.1 Description of MEGA Model 14
2.2 Meaning and Definition of e-Optimal Stopping Time 16
2.3 Finding the actual e-Optimal Stopping Time for MEGA Model | 18
2.4 Experimental Results _ 25
Chapter 3. A New Proposed Model of EGA 28
3.1 Description of the New Model 28
3.2 Rationale behind the Model 29
3.3 Experimental Results 30
Chapter 4: Conclusion, Discussion and Scope for further work 33
Bibliography 35



Chapter 1

Introduction

Mankind has been trying to solve optimization problems in different spheres of
life. There have been several ways in which those problems have been attempted
previously. Some of these are:

e Calculus based techniques: use indirect methods where a set of non-linear equa-
tions is solved or direct methods which are tools like hill climbing.

e Enumerative techniques: conceptually very simple, involving evaluation of ob-
jective function at every point of the search space.

e Random techniques: search space is investigated at random.

Genetic Algorithms(GAs) are stochastic search methods belonging to the last
category, random techniques. They perform a multi-dimensional search in very large,
complex and multimodal search spaces in providing an optimal solution for evalua-
tion{fitness) function of an optimization problem. The idea of GAs originated from
the principles of natural genetic systems, particularly from the theory of evolution.
G As are empirically found to provide global near optimal solutions to various complex
optimization problems when the search space is discrete.

Genetic Algorithms came into existence since researchers wanted to simulate the
natural genetic systems on computer. Applying GAs to solve optimization problems
became a natural use of GAs since the human genetic system is suppased to be the
best in the world and it evolved over various generations. While solving an opti-
mization problem using GAs, each potential solution is encoded as & string(called



“chromosome” ) of finite length (say, L} over a finite alphabet 4. Each string or chro-
mosome is considered as an individual. A collection of M(M is finite) such individuals

is called a population. Usually, three naturally occurring phenomena are incorporated
in GAs. The three phenomena are

¢ Reproduction/selection
e Crossover

e Mutation.

The above biologically inspired phenomena are applied on the chromosomes to yield
potentially better chromosomes. In each generation(mathematically “iteration”) a
new population of the same size is generated from the current population using the
above phenomena and this new population is then used to generate another popu-
lation. Note that the number of possible populations is finite as M, L,and A are finite.

Some of the application areas of GAs include operations research, pattern classi-
fication and feature selection, image processing[10] and scene recognition, rule gener-
ation and classifier systems[9], neural network design{8|, scheduling problems, VLSI

design, path planning[7] and the travelling salesman problem[6], graph coloring(5],
numerical optimization.

There are several problems in applying genetic algorithins for real life appl ications.

The problem of finding the stopping time for GAs and obtaining a new model in this
regard are attempted here.

1.1 Description of Genetic Algorithms

A genetic algorithm for a particular problem is described here’mnsidering a

problem of maximizing a function f(z), £ € D where D is a finite set. The problem
here is to find z,, such that

-f(mtmt) > f(z), VzeD

Without loss of generality, we assume f(z) > (0, V x € ). This can be achicved
by using transformations. Since D is finite, D is a discrete domain. It can also be a

5



subset of any finite dimensional space. In general, if 4 is the number of parameters

to be found using Gas and A; represents the finite set of possible values of the "t
parameter, then D = A,xAsx. .. xA;.

Notations:

M: population size, a finite integer
L: string length, a finite integer

p: crossover probability, p € (0, 1)
g: mutation probability, ¢ € (0, 1)

Each potential solution z € D is encoded as a string over a finite set of alphabet
A. This encoding is called chromosomal representation of solution z. Each string S
corresponds to a value z in D and is of the form

S = (IBLﬁL""l . *)8251)1 )813 & -/4: Vi

The total number of strings i.e. the number of different values for the variable z

is a”. L is chosen such that a’~! < |D| < a’. It is also to be noted that the total
nember of strings(i.e. a’) varies with L.

For simplicity, we take .4 = {0, 1}, i.e. a binary string of length L is a chromoso-
mal or string representation of a possible solution.

| The evaluation function plays the role of environment and it ranks the solutions
in terms of their fitness. The fitness function is chosen depending on the problem to
be solved in such a way that the strings(possible solutions) representing good points
In the search space have high fitness values. This is the the only information(also
known as the pay-off function) that GAs use while searching possible solutions.

Here evaluation function or fitness function fif for a string S is equivalent to the
function f i.e.

fit(S) = f(z)

where the string S corresponds to z in D.

Each chromosome actually refers to a coded possible solution and is considered as
an individual. A set of such chromosomes in a generation is called a paopulation, the

6



size of which may be constant or may vary from one generation to another. Here we
keep the population size fixed throughout, though the assumption of fixed population
size is not realistic in natural genetic systems. A genetic algorithm starts with a
population of M potential sulutions in the form of chromosomes or strings. Each
string of the population is evaluated to give some measure of its fitness in terms of
fitness function fit. A mating pool(a tentative new population) is formed by selecting
the potential(more fit) individuals from the current population. Members of this

population undergo reproduction by means of crossover and mutation operation to
form a new population of solutions for the next iteration. A common practice is to
choose the initial population randomly. Let, at iteration ¢, the population be

P® = {5 s ... 5y,

Now we discuss how the operations selection, crossover, mutation are performed on
a population.

Selection: This operation is an artificial version of natural selection, a Darwinian
survival of the fittest among string creatures. In this process, individual strings of

the current population are copied into a mating pool with respect to the empirical
probability distribution based on their fitness function values. Here we consider the
following strategy for generating mating pool.

e Calculate the fitness value fit(S;) for each chromosome S; (i =1,2,--., M)

e Find the total fitness value of the population, Fit = Y22, fit(S;).

e Calculate the probability g; of selection for S;, ¢; = { ";Eﬁ‘)- (:1=1,2,-+-, M)
e Calculate cumulative probability G; for S;, G; = ijl g; 1=1,2,---,M)

Now the selection of M strings for the mating pool is performed in the following way.
Forj=1,2,..- M

¢ Generate a random number rnd; from [0, 1].

e If rnd; < G, then select Sy; otherwise, select S; (2 < i < M) if G;_; < rnd; <
(.

In this process some chromosomes would be sclected more than once and the chro-
mosomes with low fitness values are expected to die off. Several other strategies for

7



the generation of mating pool are available in the literature.

- crossover: The main purpose of crossover is to exchange information between
randomly selected parent chromosomes by recombining parts of the corresponding
strings. It recombines genetic material of two parent chromosomes to produce off-
spring for the next generation. Single point crossover is one of the most commonly

used schemes and between two chromosomes

B = (PLBr-1- )

Y= {YLYL-1"" ‘Y1)

it is performed in the followinh way.

Generate randomly an integer position pos from the range {1,2,---,L — 1}. The
two chromosomes 8 and - are replaced by a pair A’ and 7’ where

B = (BLBi-1 - - 'ﬁpus'}'pas+1 tee '72’71)

’}"r = (’YL’}‘tul ‘ "}’paaﬁp_m-ﬂ . 'ﬁzﬁl)-

Crossover operation on the mating pool of size M(M is even) can be performed in
several ways. One of the ways is described below.

e Choose two strings(a pair) randomly from M strings. Choose again a pair of
strings from the remaining (M — 2) strings. Repeat this process to obtain -"32"'-—

palrs.

e Let p be the probability that a given pair of chromosomes take part in the
crossover operation. For each pair of strings, generate a random number rnd
from [0, 1]. If rnd < p, perform above crossover scheme beteen the pair of
strings; otherwise no crossover is performed.

The crossover operation between two strings, as stated above, is performed at one
position and that is why it is called single point crossover. Some ether forms of
crossover operation are also available in the literature.

Mutation: The main aim of mutation is to introduce genetic diversity into the

population. sometimes, it helps to regain the information lost in earlier generations.
Like natural genetic systems, mutation in GAs is usually performed occasionally.

8



Mutation is performed on each character bit of a string with probability ¢{20). Every
character 8;, 1 = 1,2,...,L in each chromosome(generated after crossover) has an
equal chance to undergo mutation. Mutation is performed in the following way. For
every character bit B; at the i™" position in a chromosome

e generate a random number rnd from [0, 1].

e if rnd < ¢, mutate the character 8; by replacing it with a randomly selected
member from the set (A — {5;}).

Note that any string can be generated from any given string by mutation operation

only. In case of binary chromosomal representation, mutation operation is performed
by negating the bit value with probability ¢.

Alg-1: The basic steps of Gas are described below.
1. Generate an initial population Q of size M.

2. Construct a mating pool from () using above mentioned selection operation.

Perform crossover and mutation operations on the strings of the mating pool
and obtain a population Qgny-

3. Calculate the fitness value of each string of (¢, and find the best string Spe,:
of Qmp- 1f the best string is not unique, then call anyone of the best strings of
thp a8 Spest.

5. Go to step 2. &
Note that steps 2, 3 and 4 together make an iteration.

Note: Other models of Gas are variations of the above mentioned model. The
variation may occur in the variations of the three operators, viz, selection, crossover
and mutation or in the introduction of any other new operator. One such strategy is
as follows. The knowledge about the best string obtained so far is usually preserved
within the population. Genetic algorithms with this strategy i.e. maintaining the
best string within the population are referred as genetic algorithms with elitist model
or EGA. Other variations may occur in the choice of the alphabet A on which the

strings are to be coded i.e. the chromosomal representation of strings may not nec-
essarily be binary.



1.2 Issues regarding Gas

There are several igsues to be resolved while applying genetic algorithms for real
life applications. They are discussed below.

1.2.1 General Problems in applying Gas

It may be noted that no mention has been made about the number of itera-
tions needed to stop the process in Gas(Alg-1) for obtaining optimal or near optimal
solution. Usually, Gas run for a fixed number of iterations or terminate if no im-
provement, is found for a fixed number of iterations. We don’t know whether the Gas
will converge or not, i.e. whether the Gas will produce the best string or not. That
is, the convergence of Gas is not guaranteed. Gas have been successfully modelled
as Markov Chains. Bhandari et. al.[2] preserved the knowledge of the previous best
in their model and proved the convergence of Gas to optimal string. In their model,
the knowledge about the best string obtained so far is usually preserved within the
population. This strategy is called elitism. A way of implementing elitism is that
the best string of the current population is copied into the the new population by
replacing the worst if the fitness values of all individuals in the new population is
less than the previous best. Genetic algorithms with this strategy i.e. maintaining
the best string within the population are referred as genetic algorithms with clitist
model or EGA. Henceforth, we will stick to elitism strategy to ensure the convergence. -

The convergence of EG A has been proved(i.e. an EGA will result in the best
string as the number of iterations n goes to oo) mathematically. The literature on
stopping times of EGAs is sparse and the existing stopping times are not satisfac-

tory|2]. More specifically, the problem is to find a value for » which will provide the
best solution.

Sometimes, it may happen that no improvement is found for many consecutive
iterations, but we are not sure about the optimality of the best string obtained so
far. We really don’t know what move we should adopt to resolve this problem. -

The values for the genetic parameters L, M, p and ¢ have to be chosen properly
before performing genetic operations. When the search space is continuous, we have
to make it discrete by digitizing the continuous space and then we have to decide on
the value of L and the alphabet A on which the strings will be coded. Higher value of

10



L corresponds to a bigger size of domain and hence the choice of L inherently provides
a measure of precision for the solution. It has already been stated that M is taken
as an even integer. No guidelines exists in the literature for choosing the appripriate
value of M. It is not known to us how to select the crossover probability p and
the mutation probability ¢. Since mutation occurs occasionally, it is clear that the
probability of performing mutation operation will be very slow. A varying mutation
probability with respect to iteration number may be useful in faster convergence of
the process[2, 3]. we have no clear idea how to define the crossover and mutation
operation in different problems.

1.2.2 Specific Problems attempted

In this work, we tried to find an e-optimal stopping time for EGAs. In other words,
we tried to find termination rules which provide near optimality mathematically. The
work stated in this dissertation is based upon the concept of e-optimal stopping time,
defined theoretically for any EGA. In the literature, two types of stopping times are
available—pessimistic and optimistic[2]. Pessimistic stopping time is derived with the
assumption that every iteration starts with the worst population and thus the number
of strings searched in this case is larger than the number of strings in the-search space.
Hence, this is not useful in practice. On the other hand, optimistic stopping time is
derived with the assumption that the fitness function is well related with respect to the
Hamming distance[2]. This assumption may not always be satisfied for an arbitrary
fitness function. So, this is also not useful in practice. Also, we have proposed a new
model of Gas in this regard so that the convergence is likely to be faster and it is
likely to work for larger class of problems.

1.3 Data Sets used

For our experimental work with different models of genetic algorithms, the following
fitness functions and data sets have been used.

Function 1

. . kn (k4 1)m

t = —, 2

fit(z) = (k + 1)Sin(2mz), =z € [m - ]
where £k =0,1,2,...... - m= .5,2,8

we have taken the range of z as [0, 32) in each of the following three cases and

I



we have digitized the interval into 2% equally spaced points where L is the string
length.

Function 1(a): For m = .5
fity(x) Sin(z) , z€[0, 2n]

25in(z) , z €[2r, 4n]

3Sin(r) , z € [4nr, 6n]

Here L =15and M =10.  Maz{fit;} =5

Function 1(b): For m = 2

i) = sintn) . 2e o, 3
== 25373(437) y T € [% ' ﬂ-]
= 3S5in{dzx) , x¢€ [’“’* 3‘2?[]

Here L =25 and M =30.  Maz{fit,} = 21
Function 1(c): For m = 8

fits(z) = Sin(16z) , z €0,

- YEY
Le——

}

25in(16x) , z € [-g— , 33-’5]

{

3Sin(16z) , z€ (%, &

8 ' B

Here L =50 and M = 50. Maz{fity} = 82

12



Function 2

1
l1—-2x

Here L = 50. So, the number of digitized points= 2° for the interval [0 , 1).
M =50. Maz{fits} is very close to one.

fit4(.‘1,‘) = ESER(

), z€]|0, 1)

Function 3 (a minimum deceptive problem)
L = 50 and the best string among the 2% binary strings is S* = 111...11(50 times)

fits(S*) =L +1
fits(S) = D(S, §*), S # S"

where Hamming distance D(5, $*) = number of bits at which the two strings S and

S* are different. Note that the function takes only L + 1 values and Maz{fits} = 51
in this case.

The utility of varying mutation probability with respect to the iteration number
has already been stated in the previous section. In our experiment, we shall vary the
mutation probability with respect to the iteration number as shown in the following
figure:

A - G
o F Iy T
» Jt
where q: mutation probability, It: iteration number and T: total iterations. &

Chapter 2 deals with the stopping timme for Mirror model|4] of EGAs and chapter
3 deals with a new proposed model of GAs.

13



Chapter 2

e-Optimal Stopping Time for
MEGA Model

The utility of optimal ﬂtﬂpping times for genetic algorithms has already been stated
in the previous chapter. This chapter deals with finding the e-optimal stopping time
of a particular model, namely Mirror model[4] of EGAs(call it MEGA model).

2.1 Description of MEGA Model

This model is applicable for binary chromosomal representation of strings. Here we
use the word “complementation” — the complement of a string is a string obtained by
negating each bit position of the given string. This model is based on elitism strategy
also.

Alg-2: Basic Steps of the model:

1. Generate an initial population @} of size M by choosing -2"‘1- strings randomly
and taking the complementation of those randomly chosen % strings, thus

2
giving rise to M strings in total .

2. Calculate the fitness value of each string S of ) and find the best string Sg,m
of Q). If the best string is not unique, then call any one of the best strings of ()
as Sbeat-

3. Construct a mating pool from @ using the selection operation. Thenperform the
crossover operation on the strings of the mating pool. Construct a population

14



Qimp of size M by taking and complementing the first 4 best strings among
the generated strings after crossover operation.

4. Perform mutation operation on the strings of G, to give rise to a population

Q'

5. If the fitness value of each string of )’ is less than fit(5;.s), then replace the
worst string(may be any string) of (' with Sy.,; otherwise, no replacement
takes place in @’. Then construct a new population Q" of size M by taking and

complementing the first % best strings of Q'.

6. Set Q =Q". Gotostep 2. &

Rest of this chapter deals with finding the ¢-optimal stopping time for the above
mentioned model of Gas. The proof of convergence of EG A has been provided in
[1]. The above model is a variation of EGA model. An EGA will result in the best
string as the number of iterations n goes to co. But the process needs to be stopped
for some finite value of n. The value of n at which the process is stopped is called
the stopping time of the process. The objective here is to determine the value of n

which is in some sense 'optimal’. More specifically, the problem is to find a value for
n which will provide the best solution.

Note that, for starting population (), Gas can result in many populations after
n iterations. Thus, if the process is to be stopped after a specific number of itera- -
tions, it may not always be guaranteed that optimal string is obtained. The following
lemma|2] stated below indicates that there is a positive probability of not obtaining
the optimal solution after any finite number of iterations.

Lemma: Let the fitness function is such that there exists a string Sp which is not
an optimal string (there always exists such an Sy as the function is not constant).
Let us consider the population @ such that () contains M copies of 55. Then the
probability that the process will remain in @) after n iterations is positive(>0) for all n.

So, it follows from the above lemma that no finite stopping tirne can guaran-
tee the optimal solution. On the other hand, the process is to be terminated after
finitely many iterations with the expectation that the process has achieved the op-
timal solution. Thus any decision regarding the stopping time should necessarily be

15



probabilistic, since GA is a stochastic process. Now we discuss the meaning of e-
optimal stopping time below in the context of Gas.

2.2 Meaning and Definition of e-Optimal Stopping
Time

In this section we shall provide the definition of e-optimal stopping time[2]. Ge-

netic algorithms search over a space S of 2% strings and eventually provide the best
string with respect to the fitness function fit.

Let C = {fit(S) : S € 8§} and the number of elements in C be s (s < 2%). Then
C can be written as

C = {Fl,FQ,...,F,} where F1 > Fo > ... > E.
Let us also assume, without loss of generality, that F, > 0. A population @ is a

collection of M strings, where each string is taken from S. Note that Q@ may con-
tain multiple copies of one or more strings. ‘Therefore, the total number of distinct

populations is

M

and let Q be the collection of all such distinct populations.
I'itness function value of a population (Q is defined as
fit(Q) = Ma:l:s._.;qu't'(S), Q€ Q.
Then the populations can be partitioned into s sets E; where
Ei={Q : QeQand fit(Q)=F;}, Vi=1,2,...,s.

Let e; be the number of elements in E;, i = 1,2,...,s. In an iteration or gen-
eration, the genetic operators(selection, crossover, mutation) create a population
G € By, | =1,2,...,ex and k = 1,2,...,s from some Qi; € E;. This gen-

16



eration of a population @y from ; is considered as a transition from @;; to

4%

Let pi;x denote the probability that the genetic operators result in the pop-
ulation Qu € Ex from Q;; € E; where j = 1,2,...,¢;; | = 1,2,...,e; and
i,k =1,2,...,8 Then the probability of transition from @;; to any population in
F;. can be calculated as

€ . : .
Dije = Etilpij.kl; J = 112:*-*161'; 31k= 112:*”:3

Clearly, by construction, for all 7 =1,2,...,¢;and ¢ =1,2,...,s

Pija >0, 1fk<i
= (0, otherwise

as we are following the elitisim strategy.

Let pﬁi, be the probability that GA results in (Q; after n iterations given that

(n

the initial population is €);; and let pij,.)l: denote the probability of reaching one of
the populations in Ey from );; at the n,,, iteration. Then

Pigk = Li%1 Pijk -
Theorem : lin1,,_+m;u£;';)l =1, V3=12,...,¢andi=1,2,...,s.
Now, we are in a state for defining e-optimal stopping time.

Let Q;; € E; and QE;’J denote the population that is obtained after n iterations
of the genetic algorithms with the starting population as (;; . Let q,(_;‘ ) denote the
fitness function value of the population QE}” . Let £ (gg‘)) denote the expected value

(r)
of g;;° . Then
E(Qi(;')) = Ei:l FkP,(:;)t: :

Let ¢ > 0 and Ny be a positive integer. Then Ny is said to be an e-optimal
stopping time for a GA if

17



n>Ny = E(g)>Fi—¢, Vi,j
In particular, if € = 0, Npis called 0-optimal stopping time or simply optimal stopping

time. Note that, the above the definition can not be used directly for Gas as we don’t
know the value of F;. So, we use the following.

Definition(c-optimal stopping time) : Let ¢ > 0 and IV be a positive integer.
Then Ny is said to be an e-optimal stopping time for Gas if

n>N = E@P)>F(l-¢, Vi,j (1)

Note that Fj is used in the above definition too. But the following manipulations
remove the dependency of F) on the e-optimal stopping time. Clearly,

E(9l))) = Thar Fepijk 2 Fipijy, Vi, (2)
From (1) and (2), N needs to be found such that
n2N = pi>1-¢, Vij.

Note that, if N is an ¢-optimal stopping time for a GA, then any N; > N is
also an e-optimal stopping time for the GA. Thus, for a given ¢ > (1, we want to find
the minimal e-optimal stopping time for GA, i.e. we want to find Ny such that, if ¥V

is an e-optimal stopping time, then any N < Ny would imply V is not an e-optimal
stopping time for the GA.

Now, the problem is to find the values for pg‘)l for any initial population Q; .

2.3 Finding the actual ¢-Optimal Stopping Tlme
for MEGA Model

In {2], it has been proved that the probabilities of reaching to a population
containing one of the best strings will be higher if the number of strings having the
highest fitness futnction value is more. Let f, be a fitness function, which assumes dis-

18



tinct values Fi, Fy, - - - F, defined on 8. Let 9; and Sy be two different strings such that

f1(81) = fi(S2) and fi(S) < f1(S)), VS €S.
Let us now define f; on & as follows :
f2(8) = f1(S), ¥V S # 53 and f»3(S2) = F; for some 7 > 1.

Then e-optimal stopping time for the function f; is also an e-optimal stopping time
for fi. Thus, in this section, we deal with the functions which possess exactly one
optimal string. Such fitness functions are termed as single optimal fitness function.

In the MEGA model, every iteration starts with a population of size M in which
%_;’-— strings are complementary strings of the rest —"25- strings. Let S* € S be the optimal
string for a single optimal fitness function, i.e.

fit(S*) > fit(S), VS€S, S#S*

Let us consider a population Q' of size M such that

1. —‘Z—’- strings are complementary strings of the rest —‘“24 strings.

2. Hamming distance D(S,5*) = 3, VSe Q'

2 b
In any population having only property(1), the M strings can be paired into —“2-{ pairs,
each pair contains the complementary string of the other string in the pair.

Let A; be the event that at least one of the strings in the #*# pair is transformed
into the optimal string $* with mutation operation only, i =1,2,---, -*5”— Let us also
assume that one string in a pair has Hamming distance z (0 < =z < L) from the
optimal string S* and hence the other string in the pair will have Hamming distance
L — z from the optimal string S*. From the probability theory,

P(A;)) = ¢*(1-q)* " +q"*(1-9)* —¢*(1 — ¢)*%.¢L2(1 - ¢)*

= ¢"(1-9" " +¢"*(1-q)" —¢g"(1-q)"

Hence P(A;) will be minimum when the function

19



f@) = g*(1 - 9)t=% + ¢~=(1 — g)?
is minimum, as the term q%(1 — ¢\? is independent of z.
Lemma : P(4;) is minimum for z = £ .
Proof : We shall minimize f(z) where

f(z) = ¢*(1 —g)*~* + ¢*%(1 — ¢)°

So, £f(z) = £¢*(1 - )L+ £gt2(1 - g

¢"(1 — ¢)**{log(q) — log(1 — q)} + ¢“~*(1 — q)*{log(1 - ¢) — log(q)}
= {log(q) — log(1 — ¢)}{q*(1 - ¢)L~* — ¢L2(1 — ¢)*}

Generally, mutation probability g lie between 0.0 and 0.5 | i.e. ¢ < 1—q which implies

log(q) — log(1 ~ q) <0

Observations:
l. Forz=3, ¢(1-q)f2=¢l"2(1-q)* = Lf(z)=0.
2. Forz<g, ¢*(1-q)f*>¢*(1-¢g)* = <Lf(z)<0.
3. Forz>2, ¢°(1-q)t*<q¢l-?(1-¢q)* = L f(z) > 0.

Clearly, at z = 2 , f(z) is minimum. Hence, P(A;) is minimum when one of the
strings in the i** pair has Hamming distance {;— from the optimal string.

Theorem : Let sg; represent the probability of reaching a population contain-

ing 5% from any arbitrary population Q having property(1) In one iteration with
mutation operation alone. Then

8Q1 2 8¢, VQ

20



Proof : From the principles of probability theory,
8q1 = P(UfilAi)
= P(AMUssi A7)
= P(A)+ P(Ujz A;) — P(AiN(U;2: 4j))
= P(A)+ P(Uju A;) — P(A)P(U,; 4 Aj)
= P(A){1 - P(Ujzi Aj)} + P(Ujz: 45)

Note that the events A;, i=1,2,- — are independent. Now, if we consider
P(U;#i Aj) is constant, then 3Q1 w111 be minimum when PP(A;) is minimum, i.e.

when one of the strings in the i** pair has Hamming distance ’5 from the optimal
string.

Thus, sq, will be minimum when Q =Q' ,ie. sg, > sg.u, VQ.

Theorem : Let pg; be the probability of reaching a population containing the
optimal string S* from any arbitrary population @ in one iteration using selection,
crossover and mutation operations in the  MEG6A  model of GAs. Then

oy = Hgr ¥4

Proof : Let Q = {51,5,---,Su} be the given population and let p; (i =

1,2,---, M) represent the probability of selecting the string S; to the mating
pool. Then 3

0<pi <1l and 2,_1,0,_1.

Let, after selection, the possible number of mating pools be 7 and they may be
represented by Q;, @2, --+,Q; .

Note that the probability of obtaining a population Q; = {S;;, Siz, - - -

,Sis} where
S,'J' €EQ,Vijis

HJ lth? VIi‘-'-.']-|2|'“17-

21



Then, Y[, ]'[J-ﬂ‘_"'__1 pij = 1.

Given any mating pool @;, 1< i < 7, the possible number of populations those
may be obtained after crossover operation be V; and they may be represented by

Qi1, Qi -+, Qivi . Let the probability of obtaining the population ();; from Q) by
using the crossover operation alone be represented by W,;; where

0<Wy;<1, Vi=12---,V and i=1,2,---,7

and TE Wy =1, Vi=12-7

After the crossover operation, the population @);; will be transformed into a popu-

M

lation Q; where % strings are complementary strings of the rest %f- strings.

Then the possible populations that may be obtained after selection and crossover
operation are QEJ- , J=1,2,.--,V;; i=1,2,..-,7 with probabilities W, l'[le Pik

Note thﬂt, ZEI Z;f.‘_:l W;J l_lfle Pik — 1.

Then 2 v y

Pga = 2z 2jma Wi k= PikSQ,..1
> TR sV owo M .
- Z;:; Ej:l t) nkzl Pik3SQ.1
- f 1] i W..TIM . .
= 3Qu Zizl Ej=l 1) Hk:l Pik
= 8qQ'.1

Now we can compute sg, . Let us denote a = q%(l ~ q)% . From the

probability theory

22



SQ'.1 = (AIJ) o — ()124) o’ + (A:;I) ad — ... + (_1)M—1 (%) oM

|
Y
i<
N
X
e
Q
D
Z
L

i
.
|
=
|
£

S

= 1-(1-q¥(1-¢g)%)"

Note that the probability of not reaching a population containing the optimal string
S* in n iterations from an initial population Q is (1 - p, )"

Now  po12sgu = (1-pg )" <(1- Sq1)”.

Let 0 < e < 1. The minimum value of n for which (1 — 55, )" < ¢ gives
an upper bound for e-optimal stopping time for MEGA  model of GAs.

Now
(1 — SQIJ)" < €

=> (1 - q%(l *--ut:)r){"‘)MH < €

1 Mn |
= > 1
(I—Q'E(I—Q]F) €

- log -i-

n> YT Y 2
Mlﬂg(—_;‘_l_;) og{l—g%(1-q
1-¢ 4 (1—g)}

Let  N(e,M,q L) = '“5;

M log(1-¢ % (1-g) ¥)

Note that, given e, M, gand L, N(e,M,q,L) isan upper bound for e-optimal
stopping time by construction. Since we have no knowledge of mmimal e-optima)l

23



stopping time, in the subsequent analysis we assume that N(e, M,q, L) iterations
will be performed during the process.

Remarks :

1.

9.

For a given e, M, qand L, N(e, M,q,L) isindependent of the characteristics
of the fitness function, crossover probability and the selection procedure.

. Note that, if the starting population is not ', then also N(¢, M,q,L) many

iteration will be sufficient.

Given ¢, ¢ and L, N(e, M,q,L)M (product of N(e,M,q,L) and M) is a
constant. Note that, in each iteration of MEGA model, 2M strings are eval-
uated. So, the number of strings searched upto N(e, M,q, L) many iterations

is 2MN(e, M,q,L) which ig also a constant, independent of population size
M.

. It can be seen that, for given M, ¢, L

€] < € =2 N(E],M;Q,L) > N(£21M1qlL)'

It implies that the number of iterations required is more to obtain a more
accurate solution,

It is also clear that, given ¢, q, M

Li>Ly, = N(e,M,q,Ll) > N(E,M,Q,Lg).

This also coincides with our intuition that, for a fixed ¢, if the length of
the strings increases, the required number of iterations also increases.

From the literature[2], the pessimistic e-optimal stopping time is

Npen(f: M,q,L) = M ]n:!(slf__qrj

Note that

as

N(e,M,q,L) < Np.(e,M,q,L) for ¢ < 0.5



g<l—q = qi<(l-q)% = ¢"<qt(1—¢)?

For pessimistic e-optimal stopping time, the number of strings searched upto
Npeo(€, M, q, L) iterations is
loge
log(1 — ¢*)
and for our e-optimal stopping time, the number of strings scarched upto N(e¢, M, g, L) it-
erations is

2loge
log(1 — q%(1 - ¢)7)
Now
2]oge | log ¢
¥ Iy < | I
log(1 — ¢¥(1 —q)7) log(1 ~ ¢")
holds

if 1-—q%(1__q)§ < (lmqb)2=1—2qb+q2"-‘
ie if gb(1 - Lqt) < Lg3(1-gq)%

ie if (Z£)¥(1-3¢Y) < }

which holds good for moderately large values of L for ¢ < 5 . Hence, the number
of strings searched upto N(e, M, q, L) iterations is also less for MEGA model.

2.4 Experimental Results

We have experimented the MEGA model with the fitness functions, as given in
section 1.3, once with fixed mutation probability(¢ = 0.2) and the other with varymg
mutation probability. The experimental results are given below.

29



fitness actual | number of | value obtained value obtained
function | optimum | iterations ‘ from MEGA with | from MEGA with
| value i fixed mute. prob. | varying mute.prob.
fit, 5.00 50 | 4.999930 4.999999
I 4.999984 4.999099
| 4.999995 4.999999
J f 4.999953 5.000000
4.999994 4.999999
Fit. | 5.00 | 100-" 3999999 | 5.000000
| 5.000000 5.000000
4.999999 5.000000
4.999009 4.999999
i | 1 | 5.000000 5.000000
fit, 21.00 100 20.999984 | 21.000000
( 20.996787 21.000000
21.000000 21.000000
H 20.999651 20.999999
B 20.999992 21.000000
fit, 21.00 200 20.999954 21.000000
21.000000 21.000000
20.999995 21.000000
20.999999 21.000000
B | 21.000000 21.000000
fits | 82.00 200 81.996205 82.000000
81.999983 82.000000
81.998(91 82.000000
81.999990 82.0600000
| N 81.999959 82.000000
fits 82.00 500 81.999958 82.000000
82.000000 82. 000000
$2.000000 82.000000
| 81.999959 82.000000
] ~ 81.996550 82.000000

26




—lrragrs

fitness actual | number of | value obtained value obtained
| function | optimum | iterations | from MEGA with | from MEGA with
value | fixed mute. prob. | varying mute.prob.
fitq very | 500 |  0.998853 0.999858
close 0.998305 0.999914
to 1 0.999377 0.999646
(0.998439 ().G99883
0.998273 0.999749
fitq very | 2000 0.999634 0.999979
close 0.999526 (0.999907
tol 0.999567 (0.699995
0.999859 0.999927
0.999096 0.999903
fits 51 [ 200 | i1 51
42 51
39 51
41 534
| 40 19
fits 51 500 42 51
43 01
42 51
4() 01
41 51
fits 51 5000 | 46 51
| s 44 51
| 46 51
45 o1
47 51

The above experimental results reflect the fact that the varying mutation probabil-

ity is useful in faster convergence and the model works for a larger class of problems,
even for minimum deceptive problems.

27



Chapter 3
A New Proposed Model of EGA

We have proposed a new model of genetie algorithms, which will be deseribed
and discussed in this chapter. Our expectation to this model is that it will converge
to optimal string faster and work for a large class of problems, even for minimum
deceptive problems.

3.1 Description of the New Model

This model is applicable when the chromosomal representation of strings is binary.
We also follow elitism strategy in this model. |

Alg-3: Basic steps are:

1. Generate an initial population @) of size M by choosing M strings randomly
from the search space.

2. Calculate the fitness value of each string S of @) and find the best string Spe,s Of
(. If the best string is not unique, then call any one of the best strings of Q)

as Sbeat-

3. Construct a mating pool from () using selection operation. Then perfdrm
crossover operation on the strings of the mating pool and obtain a population
thp of size M.

4. Construct a population ¢/ of size 2M comprising of all the M strings of (2 and
all the M strings of @', i.e. Q' = Q U Qynp.

28



. Construct a new population by taking and complementing the first é‘— strings
—‘2”#
Q.

. Perform mutation operation on the 2M strings of Q' to give rise to a population

QH‘

. If each string of @” has fitness value less than fit(S;.,:), then replace the

worst(may be any) string of @” with Sp.,; otherwise, no replacement takes
place in ",

of Q", thus giving rise to ¥ strings. Then choose another

randomly from the search space. Call this population of size M as

strings

. Set @) = Q.
. Go to step 2. ‘.

Note: Steps from 2 to 8 together make an iteration. Steps 6 and 7 can be imple-
mented in such a way that in each iteration we evaluate only 2M strings.

3.2

Rationale behind the Model

In the above model, we are incorporating the effects of

Elitism strategy

Selection, crossover and mutation operations

Random method

For mutation operation, we are considering the srings generated after the crossover
operation and the strings of the current population. ”Complementation” technique
also generates new strings which will be useful for minimum deceptive problems, as
we shall have no idea about the fitness functions while applying GAs. The strings
generated by complementaion technique may have lower fitness values and hence, by
selection operation, they might die off. That is why we are considering those strings
directly for the mutation operation.

29



Also, note that the crossover operation may change the strings radically and
new strings are generated. It may be the case that in the current population some
strings are near to the optimal strings, but they differ from an optimal string by
only a very few bit positions. So, in this case, the crossover operation on these
strings may create problems. This is also the reason for considering the strings of
the current population for mutation operation. Though the selction and crossover
operations generate new strings for the next population, we are not sure about their
performance with respect to the convergence of GAs to an optimal string.

3.3 Experimental Results

We have applied both the ordinary model of EGAs and our new model of EGAs
on the fitness functions, as given in section 1.3, with varying mutation probability.

We present below a comparison between the two models of EGAs with respect to
their performances.

30



fitness actual | number of value obtained value obtained
function | optimum | iterations | from ordinary model | from New Model
value of EGAs with of EGAs with
varying mute. prob. | varying mute. prob. |
fity 500 | 25 | 4.996295 4.999994
| 4.989751 4.999995
| 4.992678 5.000000
| | 4.983751 5.000000
] ‘ 4.993158 4.999999
fit, 500 | 50 | 4.999950 5.000000
| 4.999191 4.999999
4.994375 5.000000
| 4.998578 5.000000
| | 4.999276 5.000000
fits 21.00 100 20.999983 21.000000
20.999959 21.000000
I 20.999324 21.000000
21.000000 21.000000
20.999883 21.000000
Fits 21.00 200 | 20.999993 21.000000
| 21.000000 21.000000
20.999976 21.000000
| | 20.999902 21.000000
21.000000 21.000000
fita | 82.00 | 200 |  81.993959 82.000000
| 81.999760 82.000000
81.999651 82.000000
81.992735 82.000000
4 81.997697 82.000000
fits 82.00 } 500 81.9999590 82.000000
81.999960 82.000000
82.000000 82.000000
| 81.999997 82.000000
i 81.999951 82.000000

31




fitness ( actual | number of value obtained value obtained
function | optimum | iterations | from ordinary model | from New Model
value of EGAs with of EGAs with
| | varying mute. prob. | varying mute. prob.
fit, very | 500 0.988305 0.999646
close 0.998273 0.999586
to 1 0.997352 0.999863
0.989325 (0.999952
(.999449 0.999842
T fit, very | 2000 0.009863 (.090997
close (0.999799 (.999899
to 1 (0.999954 (0.999988
(0.999980 0.999942
0.999899 0.999987
fits 51 100 36 51
| 34 51
38 51
4() 49
. | | - 35 | 51 H
fits 51 200 41 51
| _ 37 51
39 51
4() 51
) # 42 ol
fits 51 5000 | 50) 51
49 51
| 50 51
l 50 51
- 1 _ o0 _1 é.lr_

The experimental results reflect the fact that the convergence of our new model
is faster. The number of strings evaluated in each iteration of the new model is twice
the population size. In spite of that, the new model is superior to the ordinary model
of EGAs with respect to the performance. Also, the new model works very good for
fits() which coincides with our intuition that this new model will also work for a
larger class of problems, even for minimum deceptive problems.

32



Chapter 4

Conclusion, Discussion and Scope
for further work

In this dissertation work, the problem of finding termination rules mathemati-
cally, which provide near optimality, for elitist model of genetic algorithms has been
attempted and we have succeeded to find an e-optimal stopping time for Mirror model
of EGAs{MEGA) from the pessimistic point of view as we have assumed in the deriva-
tion of e-optimal stopping time that the process starts with the worst population.
Here binary representation of chromosomes is discussed and we have explored the
role of complemented strings in this model. We have also shown that this e-optimal
stopping time is better than the existing pessimistic e-optimal stopping time. The
experimental results reflect that the varying mutation probability with respect to the
iteration number is useful in faster convergence of the process.

We also tried to find a new model of EGAs, whose convergence would be faster,
though the convergence of EGAs has already been proved. So, we tried to improve

upon the ordinary model of EGAs and a new model came out. The rationale behind
our new model has been discussed. The experimental results show the coincidence
with our intuition that the convergence of this new model of EGAs is faster and the
model works for a larger class of problems, even for minimum deceptive problems.

Further mathematical investigations are necessary to provide more general and re-
alistic versions of stopping times for EGAs. Investigations are also necessary to judge
theoretically the effect of varying mutation probability on stopping times as varying
mutation probability with respect to the iteration number may be useful for faster

33



convergence of the process. We have proposed the new model, but we were not able
to find a good stopping time for this model. Here, the mathematical investigations
are also necessary to judge the performances of the new proposed model of EGAs.

34



Bibliography

{1} D. Bhandari, C. A. Murthy, and S. K. Pal, “Genetic algorithms with elitist model
and its convergence”, Int. J. of Pattern Recog. and Art. Intell., vol. 10, pp. 731-747,
1996.

2] C. A. Murthy, D. Bhandari, and S. K. Pal, “e-Optimal Stopping Time for Genetic |
Algorithms”, Fundamental Informaticae, vol. 35, pp. 91-111, 1998.

13] C. A. Murthy and N. Chowdhury, “In search of optimal clusters using genetic
algorithms”, Pattern Recog. Lett. , vol. 17, pp. 825-832, 1996.

[4] Rajeev Ayyagari, “e-optimal stopping times for GAs”, M.Stat II dissertation,
Indian Statistical Institute, 1898-99,

[5] L. davis, ed., Handbook of Genetic Algorithim. New York: Van Nostrand Reinhold,
1991. | |

(61 J. J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic algorithms
Tor the travelling salesman problem”, Proc. 1st Int. Conf. Genetic Algorithms, pp.
160-168, Hillsdale: Lawrence Erlbaum Associates, 1985.

[7] T. Cleghorn, P. Baffes, and L. Wang, “Robot path planning using a geaetic algo-
rithm”, Proc. SOAR{Houston), pp. 81-87, 1988.

[8] S. Bornholdt and D. Grandenz, “General asymmetric neural networks and struc-
ture design by genetic algorithms”, Neural Networks, vol. 5, pp. 327-334, 1992.

9] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems and genetic
algorithms”, Art. Intell., vol. 40, pp. 235-282, 1989.

[10] A. Hill and C. J. Taylor, “Mcdel-based imnage interpretation using genetic algo-
rithms”, Image and Vision comput., vol. 19, pp. 295-300, 1992.

30



