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Chapter 1

Introduction

Stream ciphers form an important class of secret-key encryption schemes.
They are widely used in applications since they present many advantages: they
are usually faster than common block ciphers and they have less complex hard-
ware circuitry. Moreover, their use is particularly wellsuited when errors may
occur during the transmission because they avoid error propagation. In a binary
ad ditive stream cipher the ciphertext is obtained by adding bitwise the plaintext
to a pseudorandom sequernce s, called the key stream (or the running-key). The
runningkey is produced by a psendorandon; generator whose initialization is the
secret key shared by the users. Most attacks on such ciphers therefore consist in
recovering the initialization of the pseudorandom generator from the knowledge
of a few cipher text bits (or of some bits of the running-key in known-plaintext
attacks).

Linear feedback shift registers (LFSRs) are the basic componeénts of most
keystream generators since they are appropriate to hardware implementations,
produce sequences with good statistical properties and can be easily analyzed.

Linear Feedback Shift Register (LFSR) is a system which generates a pseudo-
random bit-sequence using a binary recurrence-relation of the form

On = Clln-1 TC28n2 + - + Cho18@n—fy 1 + Ckn_s (1.1)

where ¢, = 1 and for 1 <i < k , ¢ € 10,1}, The length of 3 LFSR, correspond
to the order £ of the linear-recurrence-relation used. The number of taps f of an
LFSR is the number of non-zero bits in { ¢1,¢2,---, cx}. The successive bits of
the LFSR are emitted using the chosen recurrence relation after intialising the
seed {ag,ar,as, - ,@x--1) of LFSR.

The (1.1} is related to the following polynomial over GF(2)

Clz)=1+caz+cea?+ - +cpah (1.2)

The (1.2) is called the Connection Polynomial of the LFSR.

The LFSR-generated sequence of the linear-recurrence—relatinn(lrr) related
to a connection polynomial is same as the one for the corresponding Irr of
muitiple polynomial of the connection polynomial.



Connection polynomial

\. | T, L4zttt

¥ bs | bal b3l bz b1 bo . Output bit

LFSRi-— v Tnitial condition : bsbabsbabibo
X> State after one clock : bgbsbabababy
F— 0

LF‘.S‘RE F 5__$___C l‘ Y bs=biDh @b

. ¥ bs | bs) ba| b | ba| by [~ 00
LFSR,]_“.

(a) LFSR based encryption scheme (b)) LFSR : One step evolution

Figure 1.1: Stream Cipher System

In the stream-cipher systems, the key-stream 1s usually generated by com-
bining the outputs of more than one LFSR using a nonlinear boolean function.
This arrangement significantly increases the robustness of the system against
possible attacks. This keystream is bitwise XORed with the message bitstream
to produce the cipher. The decryption machinery is identical to the encryption
machinery (see Figure 1.1).

In such a system, n bits from n different LFSRs are generated at each
clock. These n bits are the input to the boolean function F(X1, X2, X3,..., Xn).
The output of the boolean function F is the key-straem K.The cipher stream C
is the XORing of K and the message stream M.ie, C=K& M.

Consider the connection polynomial of degree @

¢+ ag 129 +agoex® P+ +arx +1 (1.3)

where a; € {0,1},Vi,1 € ¢ < d~ 1. We take an LFSR corresponding to the
connection polynomial of size d with least significant bit starts from the right
hand side and the most significant bit at the leftmost postion. There is a tap at
3t" position if and only if a; = 1.The output b, XORing of all taps is connected
to the leftmost bit. The rightmost bit is the output of the LFSR system and all
the bits are shifted by one bit towards the right hand side.

To resist cryptanalytic attacks on LFSR system, the connection polynomial
must be primitive polynomial over GF(2) with high weight and also there should
not be any sparse multiple of moderate degree for the connection polynomial.

Various types of attacks exist on stream-cipher systems that use LF$Rs for
key-stream generation. These attacks try to infer the cryptosystem parsmeters
i.e., the connection-polynomials and the seeds of the LFSRs using verious known
information like the statistical nature of the message source, the encrypted text,
the actual combining-function used etc.

A category of theses attacks, known as » fast-correlation” attack, assume
that the number of LFSRs in the system and their connection-polynomials are



known. The attack takes the key-stream sequence i.e., the output of the com-
bining function as input and tries to identify the seed of one of the LFSRs.
The attack works only for those cases where the output-sequence of the at-
tacked LFSR is strongly correlated’ with key-stream. The attack views the
key-stream sequence as a pertubation of the original LFSR sequence by a bi-
nary symmetric memoryless noise source with prob(0)=correlation probability.
The ”fast-correlation attack” algorithm (see [5]) for the attack systematically
constructs atleast as many digits in the actual LFSR sequence as there are num-
ber of terms in the associated recurrence-relation. It uses these actual digits and
the actual recurrence-relation employed and solves for the seed of LFSR using
linear-algebra.

In [2] , it has been shown that there exist exactly 2¢4-1 _ 1 distinct trinomial
multiples of degree atmost 2¢ _ 2 for a given primitive polynomial of degree d.
We give an algorithm for finding the least degree trinomial multiple of a given
primitive polynomial. We give the list of least degree trinomial multiples of
their corresponding primitive polynomials. Also they proved that the number
of cyclotomic cosets mod (2¢ — 1) of prime length p is 22‘2. Here , we prove that

the number of cyclotomic cosets mod (2° — 1) of length l,where l is any positive
integer (I > 1} is

_ ) ,
% From—4-3 2% + 27 (7575770 )

L =1

where the prime factorization of 1 is p"'p3* - pp, s 2 1,n 2> 1.

1.1 Motivation

In the previous section, it was remarked that LFSR systems with their
connection polynomials very sparse are particularly very vulnerable to various
known attacks. There are trinomial multiples of very low degree for connection
pelynomial of high weight for a reasonable degrees.

The main motivation of this dissertation work is to find the primitive poly-
nomials for designing ”good” stream cipher system. My motivation in this effort
is finding the least degree trinomial multiple of a given primitive polynomial.

1{wo sequences are correlated if the probability that a randomly chosen bit in one sequence
is same as the corresponding bit in the other sequence is > 0.5



Chapter 2

Preliminaries

2.1 Definitions

In this section, the definitions of basic terms and with some basic results
which are used in this document are provided. Most of these definitions are
taken from [6, 7, 8]. We denote the field of prime order p by GF(p) and we
denote the extention field of dimension d over GF(p) by GF(p®). In the rest of
document, the bsse field is GF(2).

Definition : Galois Field of order p¢

Let p be a prime and let d be any positive integer.Then there exists a field
(It is unique up to Isomorphism) of order p?. This field is called Galois Field of
order p* and it is denoted by GF(p?). |
The set GF(2%)* of non zero elements of GF{29) is a cyclic group under mul-

tiplication with a generator a and oP" 1 = 1, Generator a ¥ called Group
Fi |
Primitive Element of GF(2%). GF(24) = {0,1,a,02,a3,- - -, a2 ~21,

Definition : Irreducible Polynomial over GF(2)
A polynomial of degree d is called an Irreducible Polynomial over GF(2) if
it 1s not a product of two polynomials of degree < d over the field GF(2).

Definition : Primitive Polynomial over GF(2)
Let f(z) be an irreducible polynomial of degree d. Then f(z) is said to be
a Primitive Polynomial of degree d if the roots of f(z) are the generators of the
field GF(29).
d_l)

The number of primitive polynomials is A . , where ¢ is an Fuler phi-
function.

Definition : Euler phi function
The Euler phi function ¢ is defined by letting ¢(n) be the number of positive
integers less than or equal to n that are relatively prime to n, where n is any



positive integer.
The Euler phi function ¢ is completely determined by the properties : d{mn) =
¢(m)p(n) < ged(m,n) = 1 and o(»") =" Y(p-1),p prime, n > 0,

Definition : Polynomial belongs to an Exponent

Let f(x) be a polynomial of degree d (d > 1) with f(0) £ 0. Then there
exists a least positive integer ¢ (e < p®—-1) such that f(z) divides 5~ 1. The ¢
is called an exponent /order of the f(z} and we say the polynomial f(x} belongs
to exponent e.

If f(x) is a primitive polynomial of degree d then f(z) belongs to an exponent
e=2%_1,

Definition : Cyclotomic Coset mod (2¢ — 1) of length { containing m
For a given positive integer d, Cyclotomic Coset mod (24 — 1) of length |

containing m is defined as the set {22m mod (2 - 1|z =0,1,2, . ({—1)},

where [ and m are positive integers.

.e., The cyclotomic coset containing m consists the elements m , 2lm, 22m

m ..., 24 - 1)m with mod (2¢ — 1) where ! is the smallest positive integer

such that m2' = m mod (2¢ - 1).

Deflnition : t-nomial over GF(2)

A polynomial with ¢ non zero terms, one of them being the constant term is
called t-nomial, or in other words a polynomial of weight ¢.
Note that, in literature, by a polynomial with sparse weight generally means
t < 10.
The general form of a Trinomial of degree m is ™ + " + 1 , Where m.n are
positive integers and m > n .

Definition : Least Degree Trinomial Multiple of a Polynomial

Let f(z) be a polynomial. Then the trinomial ™ + x™ + 1 of degree
m is said to be the Least Degree Trinomial Multiple of f(x) if f(z) devides
™ + " + 1 and if ¢(z) is a trinomial multiple ( of degree & } of f(x) then
m < k.

Definition : Maximal Divisor
A divisor m of [ is said to be a Mazimal Divisor if forevery divisor k of :
m < k < {, m does not divides k. '

2.2 Notations

In this section, the notations which are used in this document are provided.

1. Let { and d be any two positive integers.
Then the set {m | m(2! — 1) = Omod (29 — 1), 1 < m < ¢ — 2}
1s denoted by S 4.

te, Ora = {m|m(2 ~ 1) = 0mod (24 — 1), 1 < m < 29 _ 2}.

5



2. For a given positive integer d.
The Cyclotomic Coset, mod (2¢ — 1) of length [ containing m is denoted
by C‘rri:,f-
e, Cmi = {2%mmod (29— 1) | =0, 1,2, (Il - 1)}

3. For a given set S, The cardinality of S is denoted by |$ 3
2€., S| is number of elements in the set §.

4. It [ divides m then we donote ! | m.

0. We denote gcdik is mazimai(2% — 1) for the greatest common divisor
(GCD} of all numbers of the form 2% — L, where kis mazimal divisor of [
We define ged of a number is 1. 1.€., if there is only one maximal divisor
of [ then ngkH,k 19 ma:cimai(2k R 1) = 1

2.3 Relationship between 514 and C,,,

In this section, I provide some results on the sets 514 and Cp, ;. We see the
relationship between the sets St,.¢ and C,, 1.

Lemma 1 : Let [ and d be any two positive integers such that [ | d. Then
| Stqa] = 20 -~ 2.

Proof : Sincel | d, (20 —1) | (2¢ — 1). and hence 8; 4 can be written as the set

T={m|m = 0mod &=U 1 <m< 24 _ g

—_—

e
Since the congruence m = 0 mod g; — 11)) has 2! — 2 marny number of non

zero solutions in between 1 and 29 — 2. Therefore Tl = 2 — 2. Hence
| Sia ] = 28 - 2.

Corollary 1 : Let {,d; and dy be any three positive Integers such that { | d;
and I | d3. Then |8, 4,| = |S1.d. |-

Proof : By lemma 1, | §;4, | = 2 — 2 and | Sidy | = 2! — 2 and hence
ISf:ﬂfl I = ‘ Sffﬂfz I

Lemma 2 : Let !, [ and d be any three positive integers such that {, 1y, 1| d
and {sld. Then Si.d € 8,4

Proof : Let z € 5y, 4. Then r satisfies the congruence relation z(2" —1) = 0
mod (2% — 1) and hence (2%~ 1) | z(2"* = 1). Since oy (29~ 1) | (2% - 1).By
transitivity property, (2¢ — 1) | x{2!2 — 1).This implies that x satisfies the con-
gruence relation (22 — 1) = 0 mod (2¢ — 1) and hence z ¢ Sty 4.



Corollary 1 :
U Skd € Siq

k|l

Proof : The proof follows from the above Lemma 2.

Lemma 3 : Let d and ! be two positive intgers. Then for any integer m,
Cm,ﬂ ‘; S.!,d-

Proof : Let x € C,,; then r satisfies the congruence (2! —1) = 0 mod (29-1).
Therefore C,,; C {z]z(2! - 1) = 0mod (29 - 1), 1 < o < 24 _ 2} = Si4.

Corollary 1 :
U Cm,l ¢ Si,d'

Proof : The proof follows from the above Lemma 3.
Lemma 4 : Cm:g = ijg , V& € Cﬂhg.

Proof : let z ¢ Cini.Since o & Czt 80 Cpy C Czp. Let y € Czi- Then
y = 2%z mod (2¢ — 1) for some integer & (0< k< (1-1). Since z € Cpny, so
z = 29m mod (2°-1). Thereforey = 2%+%m mod (29-1) = 2"m mod (24-1),
where 7 is the remainder when ! divides k +¢q. Hence C,,; C Cri.

Corollary 1 : C,,; N Cot = B, VadCny
Proof : Let z ¢ Cm,1.Suppose y € Cmid [) Cri. Then by above Lemma 4.

Cmi = Cypand Cp; = Cy.i. This implies that Cmi = C,; and hence
T € U y. A contradiction. Hence the Corollary.



Chapter 3

On Number of Cyclotomic
Cosets

In this chapter , I provide the result related to number of cyclotomic cosets for
a given integer d.

Lemma 1:

U Cmt = Sia — L Sk,d-

™ k|l, k& is mazimal

Proof : Suppose I € U Cm,ts
m

then z € Cy,; for some m. Let k be any
maximal divisor of I. It is enough if we prove z ¢ Sk 4. Suppose that z € Sk4
then z satisfies the congruence z(2* — 1) = 0 mod (2% — 1). Since £ € Ci
, so | is the least positive integer such that z(28 — 1) = 0mod (2¢ — 1) ,this
implies that [ < k, A contradiction.

Hence « ¢ U Sk.d-

kil, k is maximal

We proved that

) Cmit € Sia - ) Ska

m kil, k is mazimal

Now we will prove that

Sid — U Ska © U Cm -

kjl, k is mazimal

Let T € Siq — U Sk.d-

k|l, k i3 mazimal



Then z satisfies the z(2' — 1) = 0 mod (2¢ — 1) and z & Skq Yk, k is
a maximal divisor of 1. Therefore z ¢ S, 4 for any proper divisor g of { (by
Lemma2,Chapter 3). This implies that ! is the least positive integer such that

x satisfies £{2! — 1) = 0 mod (2¢ — 1) and hence z € Cp ;.

Lemma 2:

g Ok,d

kll, k& is maximal

— E lSk,dl —_ (2gmkil,k ia mamima!k — 2)

k|, k is mazrimal

Proof : Since the congruences z(2¥ — 1) = 0 mod (2¢ — 1), where k is maximal
divisor of I are having gedi(2®¥ — 1) — 1 many number of commom non zero
solutions of these relations, so we have

9, Sk,d

k|l, k is mazimal

= Z |Sk,d| - ngkH,k is mamimu!(gk — 1) — 1)

k|l, k is mazimal

Since gedy(2¥ — 1) = g9cdik _ 1 (see [8],volume 1,Chapter 4) So Lemma
2 holds.

Theorem 1 : The number of cyclotomic cosets mod (2% — 1) of length I,where
! is any positive integer (! > 1} is

1 - ke ..:_. od (...LL... _L)-
7 2 +o2n—4 - 2% 4 270\

=1

where the prime factorization of { is p§'p3? -+ pp™,a; 2 1, 2 1.

Proof : Let N be the number of cyclotomic cosets mod (2¢ — 1) of length
I where [ is any positive integer (I > 1). By above Lemma 1,

U Cmt = Std — U Sk.d
i

k|l, k is maximal

= 1Um Cm:'!‘ = lSL.d T Uk I, k& i8 mazimal Sk:dl

= iUm C:'lli"':'ﬂt':l'!l = |Siid| o LLJ‘!H, k is mazimal Sk,di
= IN = (2'-2) - [Zku, e is magimat |Skd| — (29°%ibk s mazimatk — 2)]

Let p$ips? -+ po~, (a; > 1,mn > 1) be the prime factorization of {.

A T R &
pLtpa’py’ " Pu

Then the maximal divisors of [ are



[ edy \
So IN = (2-2) ~ (TSl - 27 - 2)]

{

= (-2 - [TiEE -2 - @ - 2)]

t

24 —d - ToE 4 299

Hence
i T , 1 x ]
2‘!+2n~4-223 + gcd (?TTJE':_)

=1 . ]

ey
I
Do | =2

2P -2

Corollary 1 : The number of cyclotomic cosets of prime length p is

Proof : Take [ = p in the above theorem. Thenn =1 and N = %(23" +2-4-
2+ 2) = }%(23} — 2).

Corollary 2 : For a given d , There are

2. % (2* +2n — 4 — Z?‘ + 29 (?‘L_P_))

tr iy Ly o —
”dn '!:-_'_Plli”gz'”pnn - t=1

many number of cyclotomic cosets.

Proof : By the proposition 3.1 of 2|, cyclotomic cosets of length { exists < I|d.
Hence the Corollary holds by above theoremn.
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Chapter 4

4.1 Algorithm for finding Least Degree Trino-
mial Multiple

In this section, an algorithm to find the Least Degree Trinomial Multiple ( LDTM)
for a given primitive polynomial is provided.

We represent primitive polynomial over GF(2) as a string of 0’s and 1’s,
Suppose (1.3) is a primitive polynomial of degree d. Then we can represent
(1.3) as a string 1 aq_; ag_o ag_q - az a1 17 of length d + 1. The input to
this algorithm is a primitive polynomial with string representation. Let o be a
root of the primitive polynomial.

Algorithm :
1. Generate alpha table up to degree d (i.e., generate a', a2 a3, ... , %)
2.t =d+1

3. Find o' and store the string o
(by using left shift operation on =) and if the left most bit of a*—1) is
'1” then bitwise XOR operation with o )

4. Compute a* + 1 (by XORing the rightmost bit of o with bit '17)

- Search the alpha table for the string o + 1.
If there is any string af equal to the string of + 1, then z* + 27 + 1is
the Least Degree Trinomial Multiple and terminate the program.
Otherwise increase the value of ¢ by 1 and Go to Step 3

b

11



We suggest the following data structure to implement this algorithmn.

struct GFElementNode

{

int *Alpha; /* Alpha is a pointer to array which represents a* */
long int Index; /* The power of o (i.e., af™e% ) */

struct GFElementNode *next; /* Pointer to next node (1) */

b

In this algorithm, we are searching for the least degree trinomial construct-
ing the alpha table on-the-fly. So we can allocate the space for GFElementNode
whenever it is necessary. If we generate a 'reasonable’ number of at’s before
searching j then we can reduce the number of iterations required to search 7.
With the above proposed algorithm, we observed that the results are coming
in a ‘reasonable time’ up to degree 32. The list of least degree trinomial mul-
tiples {or some primitive polynomials of degree upto 32 is provided in section 4.2.

In [1},it has been shown that if * +x? + 1 is a trinomial multiple of a primi-
tive polynomial then ¢ and j belong to the same length cyclotomic coset. Hence
we can modily this algorithm slightly at step 5. Suppose 7 belongs to the cyclo-
tomic coset of length {. We can search for j in ¢yclotomic cosets whose length is {.

4.2 List of Least Degree Trinomial Multiples of
Primitive Polynomials

In this section, List of least degree trinomial multiples of corresponding primi-
tive polynomials are provided. We represent polynomials in index form.

For example, If 2'% + 2% + 2? + 2! + 1 is a primitive polynomial of degree
12, then we write 12,6,4,1,0.

All primitive polynomials over GF({2) contains constant term z° = 1. So
each polynomial {index form representation) contains 0. We denote LDTM for
Least Degree Trinomial Multiple in the table.

12



Degree Primitive Polynomial LDTM
2 2,1,0 4,2.0
3 3,1,0 5,4,0
3,2,0 5,1,0
4 41,0 8,2,0
4,3,0 5,60
5,2,0 10,4,0
5 5,3,0 10,6,0
5,4,3,2.0 8,5,0
6,1,0 12,2,0
6 6,4,3,1,0 8,70
6,5,4,1,0 11,3,0
7,1,0 14,20
7 7,4,3,.2.0 10,9,0
7,6,9,4,2.1.0 19,2,0
8,4,3,2,0 21.10,0
s 8,7,6,5,4,2.0 13,2,0
8,7,6,1,0 27,19.0
94,3,1.0 29,24 0
9 9,7,5,4,2,1,0 27,15,0
9,8,7,6,5,4,3,1,0 55,5,0
10,3,0 20,6,0
10 10,9,8,4,2,1,0 59,14,0
10,9.8,7,6,5,4,3,0 65,59.,0
11,9,8,6,3,1,0 88,75,0
11 11,10,9,8,7,6,5,4,0 101,190
11,10,9,7,6,5,4,1,0 31,11,
12,6,4,1.0 107,97,0
12 12,10,9.8,6,1,0 115,2,0
12,10,9,6,2,1,,0 161,84,0
13,4,3,1,0 34,13,0
13 13,9,8,7,2,1,0 239,12.0
13,12,11,10,9,8,7,6.5,1,0 141,82.0
14,5,3,1,0 224.77,0
14 14,8,7,5,4,2.0 101,65,0
14,11,10,9,8,7,5,4,3,1,0 266,265,0
15,1,0 30,2,0
15 15,8,7,6,4,3,2,1.0 197,53.0
16,12,10.9,4,2.0 644,561,0
16,5,3,2,0 567,543,0
16 16,9,8,7,2,1.0 452,431,0
16,14,12,11,8,7,6,5,4,3,2,1,0 | 461,368,0
17,3,0 34,6,0
17 17.,8,6,56,3,2.0 328,103
17,14,12.8.6,5,3,1,0 682,493

13




Degree Primitive Polynomial LDTM
18,5,2,1,0 1347,1020,0
18 18,10,5,4,3,2.0 313,94,0
18,14,8,5.4.2.0 179.8,0
19,5,4,3,2,1.0 1549, 540.0
19 19,9,8,6,5,3.0 1241,669,0
19.11,7.543.0 77,34
20,3.0 40,6,0
20 20,9,8,7,6,5,4,3,2,1,0 1831,221,0
20,10,8,7,4,3,2.1.0 ~ 667,588,0
21,2.0 42,4,0
23 21,8,6,3,2,1,0 2531,2284 0
21,9,8,4,3.1.0 3301,316.0
22,10,9,8,7.6,2.1.0 4871,598.0
22 22,11,8.7.6,1.0 4102,3430
22,12.10,9.86,5.4,0 4279,122.0
23,5,0 46,10,0
23 23,8,5,32,1,0 1434,171,0
23,9,6,4,3,1.0 5375,0
24,4,3.1,0 5839,5530,0
24 24,7,6,542.0 442238430
24,23,20,16,15,10,9,6,5,3,2.1,0 4643,1498 0
25,3,0 50,6,0
25 25,3,2.1,0 3590,1729,0
25,24,22,18,17,16,12,9,6,5,4,.2.0 15113,892,0
26,6,2,1,0 2603,476,0
26 26,6,3,2,0 11141,6634,0
26,25,24,23,22,21,17,15,14,11,8,7,5,2,0 | 21099,14702.0
27,8,5,4,0 1095,120,0
27 27,8,6,43 2.0 28849.8192.0
27,8,6,5,4 3,0 11441,9220 0
28,3,0 56,6,0
28 28,6,4,1.0 34033,20967 .0
28.8.7.643210 31160,12809,0
29.2.0 58,4,0
29 29,20.11,2.0 31648,2719,0
29,26,5.20 30587,27485.,0
30,6,4,1,0 12033,1181,0
30 30,8,4,1,0 18478,1017.0
30,7,5,4,3,2.0 33558,24505.0
31,3,2,1,0 341,5,0
31 31,6,0 62,12.0
31,7,0 62,14,0
32,8520 120301,73148,0
32 [ 32,0530 56500,36121,0

32,27,75,22 20.18,16,10,9.5.4.2.0

14632,6209
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