Algorithms for Finding Isomorphic Subgraphs

by

Pradeep Kumar Giri

M. Tech (C. S))
Roll No: MTC-9917.

under the quidance of

Prot. B. K. Roy
Applied Statistic Unit.

Indian Statistical Institute,
203-B. T. Road, KOLKATA-35

Certificate of Approval

This is to certify that the dissertation entitled Algorithm for Finding Isomor-
phic Subgraphs submitted by Pradeep Kumar Giri, towards partial fulfillment
of the requiremént for M. Tech. in Computer Science degree of the Indian

Statistical Institute, Kolkata, is an acceptable work for the award of the

degree.

N M 23700

Date : July 23, 2001. (Supervisor)

o M

(External Exammer

NN
e

ACKNOWLEDGEMENT

I gratefully acknowledge the inspiring guidance, advice, enthusiasm and crit-
icisms of my supervisor Prof. B. K. Roy, throughout the course of this
dissertation,

| express my heartiest regards and sincere thanks to my teachers for their
excellent courses they have offered which helped me in this work.

Finally I would like to thank all my friends and class mates in ISI, without

whose co-operation and support this work would not have been a success.

P’M.Aeet? \v(,ﬂ him
Pradeep Kumar Giri

Contents

J NP-completeness

lllllllllllllllllllllllll

iiiiiiiiiiiiiiiiiiiiiiiii

3.1 Introduction L.
3.2 Subgraph Isomorphism problem
3.3 Subgraph Occurence Problem

3.4 Maximum Subgraph Occurance problem
4 An Algorithm for Subgraph Isomorphism

4.1 Introduction Lo

4.2 A Simple Enumeration Algorithm for Subgraph Iso-

morphism

llllllllllllllllllllllll

4.3 Algorithm Employing Refinement Procedure

1 Introduction

In general subgraph isomorphism problem, given a “tezt” G and a “pattern” H,
one must either detect an occurrence of H as a subgraph of G, or list all oc-
currences of H as a subgraph of G. The subgraph isomorphism problem
consists in deciding for two given graphs whether one graph is isomorphic
to a subgraph of other, i.e., whether there is a bijective mapping from the
vertex set of one graph to a subset of vertex set of second graph such that the
edge connections are preserved. This problem is of considerable practical, as
well as theoretical, importance. Theoretically, subgraph isomorphism is a
common generalization of many important graph problems including finding
Hamiltonian paths, cliques, matchings, girth, and shortest paths [9]. Vari-
ations of subgraph isomorphism problem have been used to model various
practical problems such as molecular structure comparison [1], integrated
circuit testing (5], microprogrammed controller optimization [12], analysis
of Chinese ideographs [13], robot motion planning [14], semantic network
retrieval [15], and polyhedral object recognition [18]. One of the possible
applications of subgraph isomorphism is, for given the structural formulas of
chemical compounds, to finding whether a chemical compound is a subcom-
pound of another compound {7]. Subgraph isomorphism may be useful in
scene analysis for detecting a relationally described object that is embedded
in a scene {2,17).

In this report we are mainly concentrated on the occurrences of a graph
in another graph. In section 2 we have mentioned some results for different
class of graphs which are deciding atleast one occurrence of a graph as a
subgraph of another graph. But the number of occurrence may be more than
one. In section 3 we have considered the problem of distinct occurrences a
graph in another graph and proved that both decision and optimal version of
this problem is N P-complete. An algorithm, for finding all but not distinct

occurrences of a graph as a subgraph of another graph, is discussed in section
4.

2 Review Works

For any two given graphs G = (Vg, E;) and H = (Vir, Exr), -we say they
are isomorphic if there is 3 bijection f : Vo=V, such that (u,v)eEs if
and only if (f(u), f (v))€Ey. The problem, for deciding whether two graphs
are i1somorphic is not known to be N P-complete nor known to be in P 8].
However, to deciding whether a graph is a subgraph of another graph can be
proved N P-complete.

For a given positive integer k, a graph G is said to be k-regular if the
degree of each vertex of G is equal to k. Note that an I-regular graph is the
collection of vertex disjoint edges and 2-regular graph consists of a collection
of vertex disjoint cycles. In polynomial time one can decide whether a graph
contains an 1-regular graph as well as a 2-regular graph. But the problem is
not same when £t > 2. A 3-regular graph is called a cubie graph. The result
of the problem that decides whether a graph contains g cubic subgraph is
N P-complete was attributed to Chvatal in [11]. The problem of deciding
whether an arbitrary graph has a k-regular subgraph, for some given k>3, is
N P-complete via logspace reduction [19].

A graph is said to be planar if it can be drawn on a surface such that
no two edges intersect. If the graph H is either K, or K, then there can be
atmost O(|Vg]) instances of H as a subgraph of G, and that these Instances
can be listed in linear time 13]. Any wheel graph of a given fixed size can be
detected in a planar graph, in linear time [9]. A characterization of graphs
that occurring O(n) times as subgraphs of planar graphs is that they are the
3-connected planar graphs [10]. The special cases of finding C3 = K, and
C1 = Ky in planar graphs can be performed in linear time [6]). Richards [16]
gives (J(nlogn) algorithms for hinding Cs and C subgraphs.

The regular subgraph of degree 4 and 5 are called quartic and quintic
subgraphs, respectively. The problems deciding whether g planar graph has
a quartic subgraph, and whether a planar graph has a quintic subgraph, are
N P-complete via logspace reduction [19].

3 NP-completeness

3.1 Introduction

In graph isomorphism problem (GlIso), given two graphs G = (Vg, Eg) and
H = (Vy, Ey), it is required to determine whether they are isomorphic, i.e.,
whether there is a bijection f : Vo= Vg such that (u,v)eFEg if and only if
(f(u), f(v))€EEy. On the other hand, the subgraph isomorphism problem
(SGI) asks whether the given graph H is isomorphic to a subgraph of G. It
1s quite clear that when H is a graph with { vertices, both the enumeration
and decision problem can be solved in polynomial O(n!) time. But it is not
easy to decide when H is an arbitrary graph. We shall denote an instance
of this problem as a pair (G, H) of graphs. In this section we have discussed
three problems, including SGI, related to subgraph isomorphism and show
that these are N P’-complete.

3.2 Subgraph Isomorphism problem

Given two undirected graphs G = (Vg, E¢) and H = (Vy;, Ey), the subgraph
isomorphism problem is to determine whether GG contains a subgraph isomor-
phic to H | i.e., to determine whether there exists a subset VCV,; and a subset
ECEg such that |V| = |Vy| and |E| = |Ey|, and there exists an injective
function f : V=V satisfying (u, v)€ Ey if and only if (f(u), f(v))€FE.

The related decision problem, SGI, for the subgraph-isomorphism is
SGI = {((, H) : G contains a subgraph isomorphic to H}.
The following lemma shows that SGI is in class N P.
Lemma 3.1 SGI 13 in class NP,

Proof Given an instance (G, H) of SGland a certificate (V, E, f), we have
to verify whether the following conditions are satisfied:

1. VQVG and lV‘ = I‘HI
1. EQEG and IE' = ‘En‘.
iit. {u,v)eEy=(f(u). f(r))eE.

iv. f is injective.

For any two given sets A and B, it can be verified in O(|A| + |B|) time
whether ACB and |A| = |B|. Thus the conditions (i) and (ii) can be verified
in polynomial time.

For given (u,v)€Ey, to verify whether (f(u), f(v))€E, we need only
one comparison. Since |Ey|<O{|Vx|?), the condition (iii) can be verified
in polynomial time.

To verify whether f : Vj;—=V is injective we will take the elements of V in
an array V and can verify in polynomial time using the following algorithm.

begin
for every x€Vy do
search the position of f(z) in V;
if the position is not marked then mark this position;
else give output “f is not injective”,
end for,;
give output “f is injective”;
end;

Thus all conditions can be verified in polynomial time, and hence SGI is
in class NP, |

Given a graph G = (V, E) and a positive integer k, the clique problem is
to determine whether G contains a clique of size k, i.e., to determine whether
there exists a subset V'CV such that |V'| = k and any two vertices u,v in V'
are adjacent to each other in G. The related decision problem, CLIQUE,
for the clique detection is

CLIQUE = {(G,k): G contains a cligue of size k}.

It is known that CLIQUE is N P-complete|]. The following lemma uses
a reduction from CLIQUE to show SGI is NI’-hard.

Lemma 3.2 SGI is NP-hard.

Proof Given an instance (G, k) of CLIQUE, construct an instance (G’, H')
of SGI as follows:

i. G'isacopy of G .

ii. H' = Kj, a complete graph with k vertices.

3

Clearly the construction takes polynomial time. To complete the proof, we
show that the graph G has a clique of size of & if and only if the graph G
has a subgraph isomorphic to K k- But it is trivial, since G/ is & copy of G.
This complete the proof. |
Summarising the above two lemmas we have the following result.

Theorem 3.1 SQGI is NP-comlete.

J.3 Subgraph Occurence Problem

One may be interested to find the number of distinct occurances of a given
graph H in another given graph G. Given two undirected graphs G =
(Ve, Eg) and H = (Vie, En), and a positive Integer p, the subgraph oc-
curance problem is to determine whether G contains p number of subgraphs
1somorphic to H, such that no two subgraphs have identical vertex set, i.e.,
to determine whether there exist p distnct subsets Vi, -+, V, of the vertex set
Ve and p distinct subsets Ey, -+, E, of the edge set Eq of G, and p injective
functions f, : V- Vi, fy Vi—V,, such that |V = Vil, |Es] = |Eyl,
and (u,v}eEy=(f(u), f(v))eEy), for 1<i<p and the subsets Vi,++,V, are
pairwise distinct. The related decision problem, SGO, subgraph occurance
problem is

SGO = {(G, H) : G contains atleast p distinct subgraphs isomorphic to H }.

An instance of this decision problem can be denoted as (G, H,p), where
G and H are two undirected graphs, and p is a positive integer. The lemma.
given bellow shows that this problem is in class N P.

Lemma 3.3 SGO is in class NP,

Proof Let (G, H,p) be a given instance of SGO. Then for a given certifi-
cate {(Vy,--- Vi, E,, .. - Epi o, Jp), it is to verify whether the following
conditions are satisfied:

I fori=1,.-- p

(a) Vi€V and |Vi| = |Vy).
(b) E,'QE{; and Et’ = ‘Enl.
(c) (u:U)EEnzﬁ*:fi{H),fi(U))EEp

(d) fi:Vi—Viis Injective.
ii. the sets Vi, -, V}, are pairwise distinct.

For each i = I,--. p the verification of condition (i) is similar to that
we have used to verify a certificate in SGJ Thus the condition (i) can be
verified in polynomial time.

For any two sets 4 and B with |A| = |B] = n one can easily check that
A and B are distinct if and only if |ANB| < n. Thus, the verification of
two sets whether they are distnct, can be done in polynomial time by using
following algorithm:

begin
it Card = ();
for every z€ A do
search r in B;
if z i1s in B, then increase Card by 1.

end for;
if Card < n then give output " A and B are distinct.”
else give output “A and B are identical

end;

- The searching for an eleruent in B takes OJ(n) time. Since |A| = n, the
above algorithin will take (O(n?) time. In order to prove the sets V;, ... Ve
- are pairwise distinct we have to run the above algorithm for every pair of

sets Vi and V;. Since the number of pairs of sets is (g) = %p(p ~ 1), the

total time required for verifying the condition (#2) is O(p*n?), a polynomial
time,

This completes the proof. |
Now we will show that SGO is N P’-hard by using a reduction from SG'T :

Lemma 3.4 SGO ig NP-hard.

proof : Let (G, H) be an instance of SGI. A reduction algorithm which
reduces the instance (G, H) to an instance (G', H', p) of SGO constructs the
graphs G" and H', and integer p as follows:

i. G is a copy of G.
it. H'is a copy of H.

1, p= 1.

Since we can construct a copy of a graph in polynomial time this reduction
will take polynomial time to construct an instance of SGO from any instance
of SGI, and hence this reduction is a polynomial time reduction.

On the other hand, if (G', H', 1) is an instance of SGO corresponding to
the instance (G, H) of SGI, it is trivial that G contains a subgraph isomor-
phic to H if and only if G’ contains atleast 1 subgraphs isomorphic to H',
because G’ is a copy of G and H' is a copy of H.

This completes the proof. |

In last two lemmas we have already proved that SGO is in the class NP
and is also N P-hard, hence the following result:

Theorem 3.2 SGO is NP-complete.

3.4 Maximum Subgraph Occurance problem

To find all distinct occurrence of a graph H in another graph G is an optimal

problem. So here we may define the maximum subgraph occurrence problem
(MSGO) as follows:

MSGO = {(G, H) : list all distinct subgraphs of G isomorphic to H}.

An optimizatin problem is N P-complete if the associated decision problem
is N P-complete [8]. We have already proved that SGO is NP-complete.
Hence the following result:

Theorem 3.3 MSGO is NP-complete.

4 An Algorithm for Subgraph Isomorphism

4.1 Introduction

Because of reduction from Hamiltonian path and Clique finding problems, the
Subgraph Isomorphism decision problem is NP-complete. So subexponential
algorithms are unlikely. It is well known that isomorphism can be determined
by brute-force enumeration. In this section we will discuss an algorithm which
determines subgraph isomorphoism by means of a brute-force tree-search
enumeration procedure and another algorithm is also introduced that attains
efficiency by inferentially eliminating successor nodes in the tree search. In
section 2 we will discuss the original part of the algorithm which describes a
brute-force enumeration procedure that is actually a depth-first tree-search
algorithm. Section 3 consists of a procedure that is entered that each node
in the tree search. This procedure is a reduction procedure which reduces
the number of successor nodes that must be searched, and hence reduces the
total computer time required for determining isomorphism.

A graph G = (V, E} is an ordered pair consisting of a finite set of vertices
V and a finite set of edges E. Here we have considered only undirected
graphs. We will denote the degree of ith vertex of the graph G by the
symbol dg(1).

4.2 A Simple Enumeration Algorithm for Subgraph
Isomorphism

In this section a simple tree-search algorithm is formulated to find all of
the isomorphisms between a graph H = (Vy, Ey) and subgraphs of another
given graph G = (Vg, E¢). The number of vertices of H and G are m and n,
respectively. The adjacency matrix of H and G are A = [a;;] and B = [b;;],
respectively.

To get a vertex induced subgraph of G with m vertices, we define a matrix
M to be a mxn matrix whose entries are 1’s and 0’s, such that each row
contains exactly one 1 and each column contains atmost one 1. This matrix
can be used to permute the rows and columns of B to produce another
matrix C, the adjacency matrix of a vertex induced subgraph H' (say) of G.
Specifically, we define C = [¢;;] = MBMT, where T denotes transposition
of a matrix. Thus ith vertex of the subgraph H' will correspond to the jth

vertex of G iff m;; = 1. Since B is symetric and hence
C" = (MBM™)" = (MTTB"TMT = MBMT = C;

the matrix C is also symetric. So M gives an iIsomorphism between H and
an edge induced subgraph of G if

(V 1<i <j<m) (a5 =1) = (¢ ; =1)). . (1)

Also M will give an isomorphism between H and a vertex induced subgraph
of G if

(V 1<1 < jﬂ?ﬂ) ((aij = 1) <~ (Cij = 1)) (2)

In both cases, if m;; = 1, then the ith vertex of H corresponds to jth vertex
of G in this isomorphism. If we had any a priori reason to be sure that the
ith vertex of H could not correspond to the jth vertex of G in any subgraph
1somorphism, then the matrix M with m;; = 1 will not give an isomorphism
and hence, in this case, we always consider the matrices M with m;; = 0 for
these particular values of the indices i and 7. One of the a priori reason, the
ith vertex of H could not correspond to jth vertex of G in any isomorphism,
is that when d;; (i) > dg(j). So at the start of the enumeration algorithm,
we construct a mxn element matrix W = [w;;] as follows:

N I ,Whﬁ‘l’] dﬂr(?,) E dG(]);
71 0 ,otherwise.

The enumeration algorithm works by generating all possible matrices M
such that for each and every element my; of M, (my; = 1) = (wy; = 1).
For each such matrix M the algorithm tests for isomorphism by applying
condition (1). Matrices M are generated by systematically changing to 0
all but one of 1's in each of the rows of W, subject to the condition that
each column of a matrix M may contain atmost one 1.In the search tree, the
terminal nodes are at depth d = m and they correspond to distinct matrix
M. Each nonterminal node at depth d < m corresponds to a distinct matrix
M’ which differs from the matrix W in first d rows, and in each row of these
d rows all elements but one of the 1’s has been changed to 0.

The algorithm uses an n-bit binary vector (F\, - Fj,---, F,) to record
which columns have been used at an intermediate state of the computation
by setting F; = 1 if the ith column has been used. The algorithm also used
another vector (Ry,---, Ry, -, R;,) of m integers to record which column

10

has been selected at which depth by assigning the integer & to R, if the kth
column has been selected at depth d.

Let M be a matrix corresponding to a terminal node. Then each row
of M contains exactly one 1 and each column of it contains atmost one 1.
In order to testing the condition (1) for the matrix M it is necessary to
compute the matrix C, which is the product of three matrices. Without
computing the matrix multiplication we can compute matrix C by using the
information stored in the vector (F,-- -, F;, -+, F,). Note that for 1<i<m
and 1<k<n, we have my = 1 iff R; = k. Let X = [z;;] be the product of B
and MTe.i. X = BMT. Then for 1<i, j<m,

Cij = 2 k=t MikT;

o
53
n S
3.
3
&

1o
5
v 3 1

-
S 3
ER

2

t.e. ¢ = bpr;,V1<1, j<m. So the condition (1) reduced to the following
condition
(V 1<i<j<m) ((a; =1) = (bpp, =1)). (3)

and condition (2) reduced to the following condition
(V I<i<j<sm) ((a5=1) & (byr, =1)). (4)

When this condition is true. one isomorphism has been found, where the ith
vertex of H will correspond to R;th vertex of G, fori=1,.-. m.

For the algorithm we shall use the symbol := to denote assignment. Thus
d = d + 1 means set d equal to d + 1. The simple enumeration algorithm is
given below:

11

Stepl: d:=1;R; =0
forall t:=1,--. n, set F, = 0:
Step 2 : If there is no value of 7 such that 1<5<n,
wg; = 1, and F; = 0 then goto Step 7:
k= 0;
Step3: k:=k+1;
If wgr = 0 or Fy = 1 then goto Step 3:
Rd .= k;
Step 4 : If d < m then goto Step 6;
else use condition (3) or (4) and give output if an
isomorphism is found:
Step 5 : If there is no j such that k < j<n, we = 1
and F; == (then goto Step 7:
else goto Step 3:
Step6: Fr:=Ld:=d+1:
goto Step 2;
Step 7: If d = 1 then terminate algorithm;
e :=0;d:=d -1,k := Ry
goto Step 5;

The figure-1 is the flow chart of this algorithm.

4.3 Algorithm Employing Refinement Procedure

1o reduce the amount of computation required for hnding subgraph isomor-
phism we employ a procedure, called refinement procedure, that does not
select some 1's from the matrix M’, thus eliminating the computation for
successor nodes in the tree search.

Suppose that the matrix M’ = [m;j] corresponding to a nonterminal node
in the search tree at depth d. Then M’ differs from W in the first d rows,
where in each row all elements but one of the 1’s has been changed to 0. We
say that an isomorphism is an isomorphism under M’ if its terminal node
in the search tree is a successor of the node with which M’ is associated. If
m;; = 0 for all isomorphism under M’, then if m;; = 1 we can change mj; = 1
to m;; = 0 without losing any of the isomorphism under M’. Now we will
work out a condition that satisfied necessarily if m;; = 1 for any isomorphism
under M. If this necessary condition is not satisfied and mi; = 1, then the

refinement procedure changes mj; = 1 to mg; = 0.

12

Let v; be the ith vertex in Vi, and u; be the jth vertex in V. Let
{¥i\, Uiy, -+, ¥, } be the set of all vertices of H that are adjacent to v; in H
and {uj,,u;,, -, u;,} be the set of all vertices of G that are adjacent to u; in
G. Let us consider a matrix M corresponding to an isomorphism under M'.
If v; corresponds to u; in this isomorphism then by definition of subgraph
Isomorphism it is necessary that for each | = 1,2, --. o there must exist a
vertex u;, in Vg that is adjacent to u;, such that u;, corresponds to v; in
the isomorphism. Recall that if uj, corresponds to v;, in the isomorphism,
then the elements of M that corresponds to {v;,u; } is 1. Therefore if v;
corresponds to u; in any isomorphism under M’ then foreach = 1,2,-- -, o,
there must be a 1 in M’ corresponding to some {v;,u;,} such that u, is

adjacent to u;. In otherword, if v; corresponds to u; in any isomorphism
under M’ then

Since we are not computing the matrix M’ corresponding to a nonterminal
node in the search tree explicitly, it is essential to work out a condition
equivalent to the condition (5) in terms of the data stored in the integer vector

(Hy,--,Rq, -, R,,) and in the matrix W. The following two conditions
together is equivalent to condition (5).

(V 1<i<d) ((aq=1) = (Fk, 1<k<n)(miby, = 1)). (6)

(V d < I<_im) (((I,'; = l) — (Bk, nggn)(m}'kbki = 1)) (7)

For 1<i{<d, if a; = 1, then we have already selected an 1 from the Ith row
of W, and it is from the column R;. Since in any isomorphism under M’ the
vertex v; will corresponds to the vertex u r;, the vertex up, must be adjacent

to the vertex u; in G. Thus the condition (6) reduced to the following
condition:

(Vv 1SISd) ((an=1) = (bry =1)). (8)

Again for d < I<m, since the {th row of W and M' are same the condition
(7) can be written as

(V d<I<m) ((aq=1) = (Fk, 1<k<n)(wibe; =1)). (9)

Thus the conditions (8) and (9) together equivalent to the condition (5).
Suppose we have already selected d 1’s from the first d rows of W, one
from each row and no two 1's from a single column. Then before selecting an

13

1 from the (d + 1)th row the refinement procedure tests each 1 in each row
of M’ to find whether the conditions (8) and (9) are satisfied. If any 1 in the
first d rows does not satisfies the conditions (8) and (9), then the procedure
jumps to its FAIL exit, because there is no advantage in continuing. But for
any 1 in the remaining rows if it does not satisfies the conditions (8) and (9),
then it will be set to 0 in M’. To keeping track to this position we have used
another matrix W' = [wj;] of integers of size mxn. Initially the matrix W'
1s as follows:
. = { m ,when Wy, = 1
K 0 ,otherwise.

If w;; will be set to the integer d during the execution of the refinement
procedure, if its value is greater than or equal to d and its position does not
satisfy the conditions (8) and (9). If any one of these rows contains no values
greater than d then the procedure jumps to its FAIL exit. Otherwise the
procedure terminates at its SUCCEED exit.
The corresponding algorithm of the refinement procedure for subgraph
1Isomorphism is as follows:
Stepl: d:=1;R, :=0:
foralli:=1,---,n, set F; =0:
Refinement; if exit FAIL then terminate algorithm;
Step 2 : If there is no value of j such that 1<j<n,
wy; > d, and F; = 0 then goto Step 7;
k=)
Step 3: k:=k+1;
If wy, <dor Fy =1 then goto Step 3;
Ry:=kiFy =1;d:=d+ 1:
Rehnement; if exit FAIL then goto Step 5:
Step 4 : If d<m then goto Step 2;
else give output to indicate that an
isomorphism has been found:
Step 5: Fy:=0;d:=d—-1;k:= Ry;
If there is no j such that k < j<n and wg = 1
and F; = 0 then goto Step 7;
else goto Step 3;
Step 7: If d =1 then terminate algorithm;
else goto Step 5;

The algorithm of the refinement procedure, before searching an 1 fromdth

14

row, is as follows:

begin
fori=1,---,d-1do
J = HI[i;
for k=1,---,d—1do
1f aix =1 and bjyx) = 0 then return FAIL:
for k=d,---,m do
1f Qi — 1
for{=1,---,n do
if wj,>d and F; = 0, then break:
if | > n, then exit FAIL;
fori=d, ---,m do
for y=1,--.- ,ndo
if wi.>d
fork=1,---,d -1 do
if ay = 1 and by, ; = 0, then w;; = d;
fork=d,---,m do
1f iy = |
for =1, --- ndo
if wy > d and F; = 0, then break;
| if [> n, then w;; = d;
for) =0,--- .1 do
if wi;>d, then break;
if [> n, then exit FAIL:
en_d_;

We have implemented this algorithm in C, and tested the program for
some special graphs whether they are isomorphic to subgraphs of a second
graph. For a given special graph H program generate 50 graphs of fixed
number of vertices randomly using a pseudo-randem number generator to
construct the adjacency matrices. The program computes the average num-
ber of isomorphisms found, and the average time required to find all isomor-
phisms. The outputs for K5, K33, and K335 are given in the next page. In
this experiment we have consider the probability of occurrence of an edge in
Kg, K33, and K333 is 30, 30, and 50 respectively.

TABLE 1. Result of Experiments with K5 Detection.

(=

15

No. of Average No. Average Time
vertices | of isomorphisms | in seconds

20) 9.6 0.97

22 9.6 1.33

24 24.00 1.82

26 50.40 2.44

28 50.40 3.08

30 76.80 3.92

TABLE I].Result of Experiments with K33 Detection.

No. of Average No. | Average Time
vertices | of isomorphisms | in seconds

10 4.32 0.86

12 10.08 1.85

14 40.32 3.55

16 112.32 6.46

18 264.96 10.67

20 411.84 16.40

TABLE II[Result of Experiments with K3 3 3 Detection.

No. of Average No. Average Time
vertices | of isomorphisms In seconds

17 311.04 34.73

18 77.76 49.43

19 362.88 72.15

20) 570.24 104.92

21 1192.32 125.17

22 1399.68 162.29

23 3991.68 215.56

16

START

d:=1. R, =0,

F,:=0, foralli=I, ..., n.

:

Is there any
value j such that
<)<,
w, = I, and

-—

Yes

Is there
any value j

such thatk <j<n,
Wa,-: L F =

Print “One Isomorphic
Subgraph Found”.

Figure 1:

17

Fr:=0
d:=d-I
k .= Rd

Bibliography

(1} Artymiuk, P. J., Bath, Grindley, H. M., Pepperrell, P. A., Poirrette, A.

2]

3]

4

R., Rice, D. W., Thorner, D. A., Wild, D. J., Willet, P., Allen, F. H.,
and Taylor, R., Similarity searching in databases of three-dimensional

molecules and macromolecules, J. Chemical Information and Computer
Sciences, Vol. 32, pp. 617-630, 1992.

Barrow, H. G., Ambler, A. P., and Burstall, R. M., Some technigues for
recognizing structures in pictures, In Frontiers of Pattern recognition, S.
Watanabe, Ed., Academic Press, New York, pp. 1-29, 1972.

Bar-Yehuda, R. and Even, S., On approzimating a verter cover for planar
graphs. In Proc. 14th ACM Symp. Theory of Computing, pp. 303-309,
1982.

Bron, C., Kerbosch, J., Finding All Cliques of an Undirected Graph[H],
Communications of the ACM, Vol. 16, No. 9, pp. 575-577, September
1973.

Brown, A. D.. Thomas, P. R., Goal-oriented subgraph isomorphism tech-
nique for IC device recognition, IEE Proceedings I {Solid-State and Elec-
tron Devices), Vol. 135, pp. 141-223, 1988.

[6] Chiba, N. and Nishizeki, T., Arboricity and subgraph listing algorithms,

SIAM J. Computing, Vol. 14, pp 210-223, 1985.

7] Corneil, D. G.,Gotlieb, C. C., An Efficient Algorithm for Graph Isomor-

8]

phism, Journal of the Association for Computing Mechinary, Vol. 17, No.
1, pp. 51-64, January 1970.

Du, D. Z,, and Ko, K., Theory of Computational Complezity, John Wiley
& Sons, INC, New York, 2000.

18

9] Eppstein, D., Subgraph Isomorphism in Planar Graphs and Related Prob-
lems, J. Graph Algorithms and Applications, Vol. 3, No. 3, pp. 1-27, 1999.

10] Eppstein, D., Connectivity, graph minors, and subgraph multiplicity, J.
Graph Theory, Vol. 17, pp. 409-416, 1993.

(11} Garey, M. R. and Johnson, D. 8., Computers and Intractability: a quide

to the Theory of NP-completeness. W. H. Freeman and Co., San Fran-
cisco, 1979.

112] Guha, A., Optimizing codes for concurrent Jault detection in micropro-
grammed controllers. Proc. IEEE Intl. Conf. Computer Design: VLSI in
Computers and Processors (ICCD 87), pp. 486-489, 1987.

(13] Hong, D., Youshou, W., and X1aoqiag, D., An ARG representation for
Chinese characters and a radical eztraction based on the representation.
In 9th IEEE Intl. Conf. Pattern Recognition, Vol. 2, pp 920-922, 1988.

[14] Lang, S. Y. T., and Wong, A. K. S., A sensor model registrations tech-
nique for mobile robert localization, In Proc. 1991 IEEE Intl. Symp. In-
telligent control, pp. 298-305, 1991 .

115) Levinson, R., Pattern assocrativity and the retrieval of semantic net-

works, Computers and Mathematics with Applications, Vol. 23, pp. 573-
600, 1992

[16] Richards, D., F inding short cycles in planar graphs using separators, J.
Algorithms, Vol. 7, pp. 382-394, 1986.

[17] Sakai, T., Nagao, M., and Matsushima, H., Eztraction of invariant pic-

ture substructures by computer. Computer Graphics and Image Process
1, Vol. 1, pp. 81-96, April 1972.

[18] Stahs, T. and Wahl, F.. Recognition of polyhedral objects under perspec-
tive views, Computers and Artificial Intelligence, Vol. 11, pp. 1556-172,
1992.

[19] Stewart, I. A., F inding Regular Subgraphs in both Arbitrary and Planar
Graphs, Discrete Applied Mathematics, Vol. 68, pp. 223-235, 1996.

19

120} Ullmann, J. R., An Algorithm for Subgraph Isomorphism, Journal of the

Association for Computing Mechinary, Vol. 23, No. 1, pp. 31-42, January
1976. '

20

