M.Tech. (C.S.) Dissertation Series

Safe Encoding: Making the encoded text of an
instantaneous code as random as possible

A dissertation submitted towards partial fultilment

of the requirements for the M.Tech (Computer Science) degree of

Indian Statistical Institute

By

Nagendar Gouru

Under the supervision of

Prof. Bimal Kumar Roy

Indian Statistical Institute

203, Barrakpore Trunk Road
Calcutta - 700 035.

Certificate of Approval

This is to certify that the thesis entitled Safe Encoding: Making the encode
text of an instantaneous code as random as possible submitted by Nagendar
Gouru, towards partial fulfilment of the requirement for M.Tech. In
Computer Science degree of the [ndian Statistical Institute, Calcutta, 1s an
acceptable work for the award of the degree.

Date: July 23, 2001 M,A L—/‘/)/

(Supervisor) 3 % 77.0 |

(External Examiner)

&\f_ QPTL— Lq)‘?,?_,o'g)
W\ MO

Acknowledgement

My sincere gratitude goes to Prof. Bimal Kumar Roy for his guidance,
advice, enthusiasm and criticisms throughout the course of this dissertation.

I am indebted to all my teachers.
Finally I would like to thank all my classmates , juniors and Mr.Sreenivasa

Rao without whose co-operation and support this work would not have been
a SUCCess.

Nagendar Gouru.

Contents

0 Abstract

1 Introduction

1.1 Path length and Huffman tree

1.2 Information Theory: Channel and mutual information
1.3 Cipher text only attack

2 Padding algorithm
3 Case Study
4 Conclusion

Bibliography

Abstract

We know from information theory that the channel capacity is achieved
when the input events are statistically independent and have the same
probability distribution and the channel capacity is the maximum amount of
information we can send through the channel. Here a padding algorithm is
designed which takes any plain text (i.e. message) as input and outputs the
corresponding encoding scheme whose encoded text will have the
frequencies of strings “00”, “01”, “10”, “11” close together. This makes the
encoded text close to random, since English language can be considered to
be a Markov Process of order 1. This also protects against cipher text only
attack by transmitting symbols randomly giving almost zero information to
the eavesdropper. Without loss of generality, Huffman code is taken as the
coding scheme in initial steps to the algorithm. Since the minimum variance
code ensures less degradation of the coding scheme in presence of noise, the
least skewed Huffman tree is considered. About the closeness bound of the
frequencies of strings “007, “01”, “10”, “11” is discussed .

Safe Encoding: Making the encoded text of an
Instantaneous code as random as possible

Nagendar Gouru
Indian Statistical Institute
Calcutta

July 23, 2000

Chapter 1

Introduction

First we will try to get the least skewed Huffman tree. Then we will discuss
the necessity to design a padding algorithm in detail. The results that are
needed in our work are also provided.

1.1 Path length and Hutffman tree

Let us extend each binary tree diagram by adding special nodes wherever
2 null sub tree was present in the original tree, so that

O
/ \
0O O
/ /N
0O 0 O
\

O

bocomes

O

/\

O

A"

O

O/O
VANVANVAN
Y

The latter is called an extended binary tree. After the square shaped
nodes have been added in this way, the structure is sometimes more
convenient to deal with. It’s clear that every circular node has two sons and

: . e Abaped
every square node has none. If there are n circular nodes and s eifdeigr
nodes, we have n+s-1 edges(since the diagram is a connected acyclic graph),
and, counting another way, by the number of sons, we see there are Zn
edges. Hence it is clear that

i.e.. the number of “external” nodes just added is one more than the number
of “internal” nodes we have originally.

Assume that a binary tree has been extended in this way. The external
path length of the tree, denoted by E, is defined to be the sum — taken over
all external (square) nodes — of the lengths of the paths from the root to each
node. The internal path length , denoted by 1, is the same quantity summed
over the internal (circular) nodes.

In fig(1.1) the external path length is E = 3+3+2+3+4+4+3+3 = 25, and the
internal path length is I = 2+1+0+2+3+1+2 = 11. These two- quantities are
always related by the formula |

Where n is the number of internal nodes.

To prove formula (1.3), consider deleting an internal node V at a
distance k from the root, where both sons of V are external. The quantity E
goes down 2 (k+1), since the sons of V are removed, then it goes up Kk,
since V becomes external, so the net change in E is k-2. The net change in |
is —k, so (1.3) may be proved by induction.

It is not hard to see that the internal path length(and hence the external
path length also) is highest when we have a degenerate tree with linear
structure;
in that case the internal path length 1s

(n-1)+ (n-2)+ ...+ 1 +0=0.5(»"- n).

Consider now the problem of discovering a binary tree with n nodes having
minimum path length; such a tree will be important, since it will minimize
the computation time for various algorithms. Clearly, only one node (the

root) can be at zero distance from the root; at most two nodes can be at
distance 1 from the root, at most four can be 2 away, etc. S0, we sce that the
internal path length is always at least as big as the sum of the first n terms of
the series

0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,...
This is the sum Y'|log,k},, which is same as

1<k <n
(n+ 1)q-2“" +2, where q = _logzﬂ"ﬂ (1.4)

(Proof follows from the following:
We know that Y (a,, -a,)b,=a,b, -a,b, - PCACETN

1<k <n

Puttingb_ =n, weget > g, =na, - ka., -a) N> 0)

l<k<n 1<k<n
hence the result is just by substitution)

The optimum value (1.4) is essentially of the fofm n log n; this
optimum is clearly achieved in the complete tree with n internal nodes where
we may number the nodes 1,2,3...n; this numbering has the useful property

that the father of node k is node | k/2 | the sons of node k are nodes 2k and
yk+1. The external nodes are numbered n+1 through 2n+1, inclusive.

It follows that a complete binary tree may be simply represented 1n
sequential memory locations. These results have an important generalization
if we shift our point of view slightly. Suppose that we are given m real
numbers wi, W, Ws... W, the problem is to tind an extended binary tree with
m external nodes, and to associate w;,wz,W3...Wp with these nodes in such a
way that the Y w/, is minimised, where l; is the length of path from the root

and the sum is taken over all external nodes. It is not hard to realise that a
perfectly balanced tree does not give the minimum weighted path length
when the weights are 2, 3,4, and 11. Although we have seen that it does give
the minimum in the special case wi=w,=...Wp=1.

An elegant algorithm for finding a tree with minimum weighted path
length has been given by D. Huffman: First find the two w’s of lowest
values, say wl and w2. Then solve the problem for m-1 weights
w14+Ws...W,, and replace the external node of weight w1+w?2 in this solution

by an internal node having two external nodes of weights w; and w, as its
children.

It’s not hard to show that this method does in fact minimise the
weighted path length by induction on m. Suppose that m=2 and wl< w2 <
wle...wm. And suppose that we are give a tree which minimises the
weighted path length. (Such a tree certainly exists, since only finitely many
binary trees with m terminal roots are possible) Let B an internal node of
maximum distance from root. If wl and w2 are not the weights already
attached to the sons of V, we can interchange them with the values that are
already there, and not increase the weighted path length. Thus there is a tree
which minimises the weighted path length and which contains the internal
note having two external notes weights w1l and w2 as its children. Now it is
to see that the weighted path length of a such a tree is minimised iff the tree
with the internal node having two external nodes of weights w1l and w2 as
minimum path length its children replaced by the external node of weight
wl + w2 has minimum path length for weights wl+w2, w3...wm, since the
numbers which appear in the circular notes of an extended binary tree are
equal to the sums of the weights in the external nodes of the corresponding

sub tree and sum of all values in the circular notes is equal to the weighted
path length.

In general there are many trees, which minimise » w/ . If the

w’s are kept in order throughout the construction and if when w1 and w2 are
removed, the quantity wl+w2 is placed higher in the ordering than any of
the same value, then the tree constructed by Huffman’s method has the
smallest value of max 1j and of)/ . Among all trees which minimize

Y wi . This can also be accomplished in another way. We need not change

the Hoffman algorithm, and suppose that we got a Hoffman tree T. If this
tree 1s unique up to the lengths and sum of the lengths, there is nothing to do.
If not, there must exits three nodes of equal weights, one of which is neutral.
Now interchange the position, of sub trees rooted. At the internal node and
the extern node (in case of ties take one that is closer to the root) of equal

weight if it reduces either) / or Max lj. Do the above step until no such

interchange is possible. This will change T to the least skewed Huffman tree.
We can jump into information theory from here after observing the
following connective:

Weighted path length = length of encoded text or cipher.

1.2 Information theory : Channel and mutual
information:

- The average code length of an encoding scheme is define to
be L= p ! , where]; is the length of the representation of the i™ symbol s;.

In the notation of a jth order Markov process, P(si/si1,Sii...s;) 1s the
conditional probability of seeing si given that we have just seen all the letters

Si1,Si1- .. Sij, in that order. The entropy of a signalling system S having symbols
si and probabilities pi is defined as |

q
H.(S)= Zp,. log (1/ p,)
i=]

Where s1,s2,...sq are the source symbols that are to be sent. And the code’s
alphabet as is symbols (ere for the radix of the system).
We consider the case r=2.

Of course Hr(S)=H,(S)log,(2).
It can be proved from the two facts.

1. log(x)ﬁx-l, and
2. if xi and yi are two probability distributions (i.e » x, =) » =1 and

each xi and yi is non-negative) then
1{ .
in log, () <0
i= |

That the entropy bounded above by log,(q) i.e. Hr(S)<log(q).

The relation between the average code length L and the entropies H(S) is
given byHr(S)<L.

Channel:

An information channel is statistical model of the medium through which the
signal processes. We need to formalise this idea in order to compute how
much information goes through in this channel. A channel is described set £
confinable probabilities P(bj/ai), which are the probabilities that an input ai
from an alphabet of q letters will paper as sum bj from an alphabet of s

letters. The sizes of g and s of the alphabets need not be the same. In this
model the channel is completely described by the matrix of conditional
probabilities

P; = (P(bj/ai)).

A row contains all the probabilities that a particular symbol ai becomes bj.
We can define system entropies as follows.

Entropy of information source A is

Hr(A) = Zp(a,.)logr(l/ p(a,))

i=1
The entropy function has the'following properties:

(1)H(A) = 0

(2) H(A) < log, g

(3)H,(A) = log, ¢, when all the source symbols are equally likely.
Similarly the entropy of the received symbols H,(B) can be defined as

H,(B) =Y pb,)log, 1/ p(b,)

This quantity measures the uncertainty of the output symbols and has the
same properties as the entropy of the source.

Similar expressions for conditional entropy given a particular bj, is given by
4
H,(B)=) pl(a,/b)log,(1/ p(a,/b)))
i=1

we can also define H(A/B) and H,(B/A) similarly. To measure the

uncertainty of the joint even for both source and receiver, we define the joint
entropy in a similar way: |

H (4,8)=YY pla,b)log,(/ p(a, b))

i=l j=1
It is easy to see that
Hy(A,B) = H(B) + H(A/B).
Consider again the afore mentioned transmission system. The input symbols
are the ai and the output symbols are the bj, and the channel is defined by the
conditional probabilities 7, ;.

Prior to reception, the probability of the input symbol ai was p(ai) . This is a
priori probability of ai. After reception of bj, the probability that the input

symbol was ai becomes p(ai/bj), the conditional probability that we sent ai
given that we received bj. This is an a posterior probability of ai. The change
in probability measures how much the receiver learnt from the reception of
bj. In the ideal channel with no noise, the a posterior probability is 1, since
we certain from the received bj exactly what was sent. In practical systems
there are finite non zero probabilities that errors will occur and the receiver
cann’t be absolutely sure that what was sent. The difference between the
information uncertainty before and after reception of a bj measures gain in
information due to the reception of the bj. This information is called the
mutual information and is naturally defined as

I(a;b,) =log,(1/ p(a,)) —log,(1/ p(a,/ b)) = log,(p(a,/ b))}/ pla,) |
Here also we can define conditional mutual information I(A; bj) which is the
information gain provided by the reception of bj. Finally I(A;B) , which 1S
symmetric in the two alphabets, can also be defined naturally to be the
measure of the information gain of the whole system and doesn’t depend on
the individual input and output symbols but only their frequencies; it is
called the system mutual information..
We can see that
I(A;B) =0
I(A;B) = 0 if and only if A and B are independent
I(A;B) = I(B;A) from symmetry.
I(A;B)=H(A)+ H(B)-H(A,B) = 0
Hence I(A;B) = H(B)- H(B/A) = H(A) — H(A/B).
We define the channel capacity C as the maximum mutual information over
all possible assignments of the p(a),
C = max I(A;B)

P(a)
It can be proved that the binary symmetric channel has the channel capacity
C provided that the two input symbols are chosen with equal frequency.
Hence we need to design codes, which produces random strings of code’s
alphabet.

Another main reason for the desire to get random encoded text 1s to prevent
cipher text only attack.

[.3 Cipher text only attack.

We assume that the channel we are using is public in the
sense that anybody can have access over it partly or fully. In this light, we
classify the attempts of an opponent as follows: cipher text only, known
plain text, and chosen cipher text in the increasing order of strength. In the
cipher text only attack, the opponent possesses a string of cipher text. Since
we are making it random, opponent hardly gets any information from that.
The crypto analyst is assumed to have full knowledge of the encoding and
decoding functions. In addition, he or she may also have a variety of side
information such as language statistics, knowledge of context, etc. in cipher
text only attack which is the weakest one, opponent will have some cipher
text, and doesn’t know the key. Perfect secrecy can be realized in one time
pad, where the plain text and the key are both bit strings of a specified
length, and the cipher text is constructed by making the bit wise ex-or of the
plain text and key. But the key must be randomly generated. We are using
this idea here by making the encoded text random. Cipher text only attack
fails completely if no opponent can predict with better than average success
the next bit to be emitted. Since complete randomness is not practical, we
would be satisfied if the above prediction is not possible in reasonable time.
Since English language is a Markov process of order 1, the encoded text
would be sufficiently random if we achieve equal number of 00,01,10,11.

2.Padding algorithm

Input: Plain text (message)

Output: The code of each source symbol which will make the
frequencies of the strings "00", "01", "10", "11" close together.

Algorithm:

(Steps 2 to 5 are considered to be Trivial Twisting steps.
Note: In the below steps from step3 to step5 there will be
effect on frequencies of strings other than "ab", so in each place where the

interchange takes place we have to calculate the frequencies of strings "00",
!!01", "10", "1 1"‘.

And also note that in step3, we have to consider the symbols
which is coming next to the symbols which are participating in the
interchange, in step4, we have to consider the symbols which is coming
previous to the symbols which are participating in the interchange, in steps,
we have to consider the symbols which are coming next to the symbols and
the symbols which are coming previous to the symbols which are
participating in the interchange.

(In Steps 6 and 7, which are extension steps, not much
calculation is needed)

(In step8 which is also extension step, but here we have to
consider the symbols which are coming next to the symbol whose code we
are extending and we have to calculate the changes in the frequencies of
strings "10"/"11" depends upon the codes of the symbols next to this symbol
and codes with first symbol 0/1 and with the help of the conditional
probabilities (the number of such pairs.).

In step9 which is also extension step, but here we have to
consider the symbols which are coming next to the symbol whose code we
are extending and we have to calculate the changes in the frequencies of
strings "00"/"01" depends upon the codes of the symbols next to this symbol
and codes with first symbol 0/1,and with the help of the conditional
probabilities (the number of such pairs).

Step 0: Calculate the frequencies of source alphabet and construct Huffman |
tree and calculate the frequencies of strings "00", "01", "10", "11" 1in

corresponding cipher text. Repeat steps 1 to 9 until all four strings covered.

Stepl: Find the Maximum frequency and minimum frequency among the
frequencies of the strings "00", "01", "10", "11". The difference between

the Maximum and minimum frequencies is say delta. Say the minimum
frequency string is "ab".

Step2: Go for the codes of symbols with same code length and which

are having same beginning and ending code symbols and the string "ab" as
sub string in one or more places. Interchangethe codes of symbols if there is
a gain 1n the frequency of the string "ab" and this gain should be at most
delta and the closeness should not be worse than before(means the new delta
value should be less than the previous value, then only we will
interchange).If the symbol is participated in this step then it is locked to stop
participating further. Repeat this step until there are no symbols to be
covered.

Step3: Go for the codes of symbols with same code length and which are
having same beginning but not ending code symbols and the string "ab" as
sub string in one or more places. Interchangethe codes of symbols if there is
a gain 1n the frequency of the string "ab" and this gain should be at most
delta and the closeness should not be worse than before(means the new delta
value should be less than the previous value, then only we will
interchange).If the symbol is participated in this step then it is locked to stop

participating further. Repeat this step until there are no symbols to be
covered.

Step4: Go for the codes of symbols with same code length and which are
having same ending but not beginning code symbols and the string "ab" as
sub string in one or more places. Interchangethe codes of symbols if there is
a gain in the frequency of the string "ab" and this gain should be at most
delta and the closeness should not be worse than before(means the new delta
value should be less than the previous value, then only we will
interchange).If the symbol is participated in this step then it is locked to stop
participating further. Repeat this step until there are no symbols to be
covered.

StepS: Go for the codes of symbols with same code length and which are
having different beginning and ending code symbols and the string "ab" as
sub string in one or more places. Interchangethe codes of symbols if there is
a gain in the frequency of the string "ab" and this gain should be at most

delta and the closeness should not be worse than before(means the new delta
value should be less than the previous value, then only we will
interchange).If the symbol is participated in this step then it is locked to stop

participating further. Repeat this step until there are no symbols to be
covered.

Step6: If the string with minimum frequency is "00", then go for the symbol
code among the symbol codes ending with code symbol 0 and having the
frequency close to delta and extend the code of the symbol with padding
code symbol 0 and closeness should not be worse than before (means the
new delta value should be less than the previous value). Then go for the next
maximum frequency symbol code and apply this step, repeat this step until
there is no further improvement in getting closeness.

Step7: If the string with minimum frequency is "11", then go for the symbol
code among the symbol codes ending with code symbol 1 and having the
frequency close to delta and extend the code of the symbol with padding
code symbol 1 and closeness should not be worse than before (means the
new delta value should be less than the previous value.) Then go for the next
maximum frequency symbol code and apply this step, repeat this step until
there is no further improvement in getting closeness.

Step8: If the string with minimum frequency is "01", then go for the symbol

code among the symbol codes ending with code symbol 0 and having the
frequency close to delta and extend the code of the symbol with padding
code symbol 1, if the new value of delta is less than the old value of delta. .
Then go for the next maximum frequency symbol code and apply this step,
repeat this step unti] there is no further improvement in getting closeness.

Step9:1f the string with minimum frequency is "10”, then go for the symbol
code among the symbol codes ending with code symbol 1 and having the
frequency close to delta and extend the code of the symbol with padding
code symbol 0, if the new value of delta is less than the old value of delta.
Then go for the next maximum frequency symbol code and apply this step,
repeat this step until there is no further improvement in getting closeness.

3.Case Study:

OUTPUT 1:
Input message 1s : aabbccbce
Huffman code 1s: a—----10, b----11, c¢----0.

The length of the plaintext and strings(cipher
text) are: 8 13

cipher text 1s5:1010111100110

In cipher text frequencies of strings "00", "01",
lll()"ll'r I!ll":

(
(
(
(

= = O O
|
|
I
I
N L VN

End of padding Algorithm Cipher text 1S:
1010111100001100

End of padding Algorithm , in cipher text the
frequencies of strings "0OO"™, "O1", "10", "11":

== O O

)____
)____
)____
)____

O O
B W

End of padding Algorithm Codes of input alphabet
are

a----10,

p----11,

c-=---00

For this example in the 1initial stage the cipher
text length is 13 and after making the frequencies
of strings "O0O", "01", "10", "11" close together,
the cipher text length 1s leo.

So, the average code length initially is 13/8 1i.e.
1.624.

the average code length after applying padding
algorithm is 16/8 1i.e.Z

——————_——_———--————_—————_——-—*—————-—-ﬁ_—__—-—__—“_—

OUT PUT 2:

INPUT (MESSAGE) :

makingtheencodedtextofaninstantaneouscodeasrandomas
possiblehereapaddingalgorithmisdesinedwhichtakesany
instantaneouscodeasinputandoutputsthecorrespondinge
ncodengschemewhichwearelookingfor

HUFFMAN CODE:

L]

110-——=~-——=-———————- a
11111110-=-====——=———~- b
00110--=-==—==———————— C
1010--=-———=——=——————=- d
010---——=m——=———=-——= e
111110--——==———=———=~ £
00111----=———=——————- g
1110--=====—==——=—=—= h
0110--———=——————————- 1
101110--—-==——=——=———— k
101111 --==—==—=——=———— 1
01111l----=—=="—————- m
100-——==———=———————~- n
0000-—-—-—==—=~———————=- O
11110--—-——==——=———=—- P

0010==——m—m—m e r
10110 ~—=——m e N
011110 ===~ oo y
1111110 -~—————e %
11111111 === —m——m e v

The length of the plaintext and cipher text are
lnitially(before applying padding algorithm): 186
757

Average code length initially: 757/186 i.e. 4,067

Cipher text initially (before applying padding
algorithm) ;

0111ll110101110011010000111001011100100101000011000
001010010101000100101111110001000001111101101000110
100000100101101000010110100010000010110000100110000
010100101100001011101101001010000001111111000011111
000000001000101101111111010111101011100100111001011
011110110101010100110100001111101011110011100000111
001100010111001111101100001101001000010110100010101
001111011100110001101110001011010111001000011101001
111111101101000001001011010000101101000100000101100
001001100000101001011000010110100111101011000101101
001010000010110001011110101100010000100101110010001
100000011100111001000011111000001001010011010000111
01010000110000010100101000011100010011011100100111l
101001111011lOOl10001101110011110010110011100101011
1100000000101110011010000111111110000001110

In cipher text the frequencies of strings "0O0",
"01", "10™, "11" initially:

(0 0)----=210
(0 1)-----185
(1 0)----~185
(1 1)-—=——=- 176

In cipher text the frequencies of strings "00",
"o1", "10", "11" after applying Padding algorithm:

(0 0) 193
(0 1) 196
(1 0) 195
(1 1) 204

After applying the Padding algorithm , the cipher
text 1s:

011111110111110101101001011010010111001001010011110
100001010010101000100101111110001000001011101101000
1101000001100101101000010110100010060000011000011111
101000010100101100001100111110100101000000111111100
001101110000000011000110110111111101011110101110010
001110101100111011010101010011010010110111010111110
110100000011101100010111001111101100001110100100001
101101000101010011110111001101111011110001011011111
010100001111010011111111011010000011001011010000101
101000100000001100001111110100001010010110000110110
100011100011000101101001010000000110001001110001100
010000110010111001011110100000011100111010000110111
000001001010011010010110101010011110100001010010100
101101000111111011110010011111010011110111001101111
011110011110010110001110101011110000000011111010110
100101101101110000000111

Average code length, after applying the Padding
algorithm = 788/186 = 4,236

OUTPUT 3:

INPUT (MESSAGE) :

thedocumentsdistributedherehavebeenprovidedasameans
toensuretimelydisseminationofscholarlyandtechnicalw

orkonanoncommercialbasiscopyrightandallrightstherei
naremalntalnedbytheauthorsorbyothercopyrightholders
notwithstandingthatthevhaveofferedtheirworkshereele
ctronicallyitisunderstoodthatallpersonscopyingthisi
nformationwilladheretothetermsandconstraintsinvoked
byeachauthorscopyrighttheseworksmaynotberepostedwit
houttheexplicltpermissionofthecopyrightholdercomple
xityandalgorithmsforreasoningabouttimeagraphtheoret
icapproachmpaperdealswithproblemsinreasoningaboutsu
chintervalswhentheprecisetopologicalrelationshipbet
weenthemisunknownonlypartiallyspecifiedthisworkunif
lesnotionsofintervalalgebrasinartificialintelligenc
ewlththoseofintervalordersandintervalgraphsincombin
atorics

HUFFMAN CODE:

1000-———==>—=———— a
10111l-==-——=——~ b
11110-———"—==—-——- C
10110-———===~-——- d
0l10———=m————— e
011110-—-——==-==———- f
111110-—-—===———- g
0110-————=—=co—- h
000=——=—=ce—— 1
1111111] - k
11010=w=—=====~—~ 1
110110--=-—————- m
1110————= e n
1100-—==mm————— O
01l1110~=—===————— 0
100l-==w———————— r
1010-—-=+-———————~ S
00l-—————————— t
01111]-----==~—~ u
1111110-=-=~-———- v
101110-——===———- W
11111110~—-—————— X

The length of the plaintext and cipher text are
initially(before applyling padding algorithm): 772
3225 |

Average code length initially: 3225/772 i.e. 4.177

In cipher text the frequencies of strings "00",
"o1", "10", "11" 1nitially:

(0 0)-——--666
(0 1)-=---- 843
(1 0)--——- 843
(1 1)-==—- 872

In cipher text the frequencies of strings "00",
"o1"™, "10", "11" after applying Padding algorithm:

(0 0)--—-- 811
(0 1)-----865
(1 0)=-—--—- 865
(1 1)----- 870

Average code length after applying padding
algorithm: 3412/772 i.e. 4.42

4, Conclusion

We discussed the padding algorithm achieves the closeness of strings

00", "01", "10", "11". Observe that steps 1 to 9 in padding algorithm are
applied to each string. After applying to all once, we can apply again the
steps 1 to 9 to get more closeness if possible. This sets trade off between
randomness and cost afforded. we could stop the algorithm anywhere when
we are satisfied with the achieved closeness about the strings or there is no
turther improvement in getting closeness about the strings.

The above algorithm is in greedy approach, so there may be effect on further
gain in getting closeness by the steps we have taken before.

As we have seen in case study, the average code length is increasing by 5%
of the initial average code length on approximate, after applying this
padding algorithm.

Bibliography

[1] Knuth, Fundamental Algorithms (The Art of Computer Programming
Volume 1) Second Edition: Narosa Publishing House.

[2] Richard Wesley Hamming, Coding and information theory: Prentice
Hall, Inc., Englewood Cliffs, New Jersy 07632

[3] F.J.Mac Williams and N.J.A.Sloane, The Theory of Error Correcting

Codes Part I: North Holland publishing company, Amsterdam, new york,
oxford. |

[4] Douglas R.Stinson, Cryptography: Theory and Practice: CRC Press Boca
Raton London Tokyo

[5] Steven Roman, Coding and Information theory:springer-verlag.

[6] Robert M.Fano, Transmission of Information:M.I.T. Press and John
Wiley and Sons.

