Algorithm

for Mapping Boolean Network
to LUT Based FPGAs

a dissertation submitted in partial fulfilment of the
requirements for the M.Tech.(Computer Science)
degree of the Indian Statistical Institute

By
Jayasri Bhattacharyya(mtc9910)

under the supervision of
Dr. Sushmita Sur-Kolay
Adavnced Computing and Microelectronics Unit,
Indian Statistical Institute,

Kolkata- 700 035



indian Statistical Institute
203, Barrackpore Trunk Road
Kolkata 700035

Certificate of Approval

This is to certify that this thesis titled Algorithms for Mapping Boolean Network to
LUT Based FPGAs submitted by Jayasri Bhattacharyya towards partial fulfillment of
requirements for the degree of M.Tech. in Computer Science at Indian Statistical
Institute, Kolkata embodies the work done under my supervision.

ﬁ‘/ ”7 l}J /ﬂ Zﬂ- ) '—7/ A I\(Zm, ~ :I : QH/ g /o’ '
. - I ?W" - ) vy . L. 'J-;. - C e e ) w_____ —————

iy LN f ( ’

Susmita Sur-Kolay, CTrloweod Exon 'mmu.s

Associate Professor,
ACM Unit,

Indian Statistical Institute,
Kolkata-700 035.



Acknowledgement

I pay my sincerest gratitude to Dr. Susmita Sur-Kolay, for her guidance, advice,
enthusiasm and support throughout the course of this dissertation.

I would also like to thank Subhasis Bhattacharyya for his valuable support during the
course of this project.

My special thanks to the ACM unit for providing me with computing facilities.

I thank all of my classmates, who gave me numerous suggestions during my project, and
also a friendly atmosphere during my two years at ISI, Calcutta.

Finally, I express my heartiest thanks to the members of the M.Tech. Dissertation
Committee.

Date: 02 - O#® 2<vi | \BCN\-SCW“ WMNJ‘)

(Jayasri Bhattacharyya)



Contents

Page No.
1 Introduction 1
{.1 Introduction | 1
1.2 FPGA programming technologies 2
1.3 Designing with FPGASs 2
1.4 Scope 4
1.5 Organization of the report 4
2 Background 5
3 Problem formulation 7
4 'The DAG-Map algorithm 8
4.1 Transformation of arbitrary networks into two input networks 8
4.2 Technology mapping for delay minimization 10
4.3 Postprocessing 12
S Qur approach 15
5.1 Algorithm 1 i5
5.2 Algorithm 2 22
5.3 Implementation details 23
6 Results and conclusion 25
References 27

Appendix 29



Chapter 1

Introduction

1.1 Introduction

Field Programmable Gate Arrays (FPGAs) have become one of the most popular
implementation media for digital circuits. The key to FPGAs popularity is the ability to
implement any circuit simply by appropriately programming an FPGA . Other circuit
implementation options, such as Standard Cells or Mask Programmed Gate Arrays
(MPGAGS), require that a different VLSI chip be newly fabricated for each design. The use
of a standard FPGAs has two key benefits; lower hon-recurring engineering (NRE) cost
and faster time to market.

All FPGAs are composed of three fundamental components: logic blocks, I/0 blocks and
programmable routing. A circuit is implemented in an FPGA by programming each of
the logic blocks to implement a small portion of the logic required by the circuit, and
each of the 1/0 blocks to act as either an input pad or an output pad, as required by the
circuit. The programmable routing is configured to make ali necessary connections

Programmable
routing

Figure 1.1: An FPGA |



1.2 FPGA programming technologies

There are three different approaches of making FPGAs programmable. The most popular
technology today uses SRAM cells to control pass transistors, multiplexers, and tri-state
buffers in order to configure the programmable routing and logic blocks as required. Pass
gates are implemented with nMOS pass transistors because this results in higher speed

due to higher carrier mobility in nMOS  transistors. Alternative programming
technologies are antifuses and floating gate devices.

The logic biocks used in an FPGA strongly influences the FPGA speed and area
efticiency. While many different logic blocks have been used in FPGAs, most current
commercial FPGAs use logic blocks based on look-up-tables (LUTs). Figure 1.2 shows
how a 2-input LUT can be implemented in an SRAM based FPGA -- a K-input LUT

requires ZK SRAM cells and a ZK -input multiplexer. A K-input LUT can implement any

function of K-inputs; one simply programs the 2K SRAM cells to be the truth table of the
desired function.

2-inputs
-
4 [ T Out
SRAM | >
cells
r ’/

Figure 1.2: A 2-input LUT implemented in an
SRAM-based FPGA

1.3 Designing with FPGAs

The problem of determining how to map a circuit into an FPGA is normally broken down
into the steps given in F igure 1.3

The step for synthesis to logic block first converts the circuit description into a netlist of
basic gates. Then this list of basic gates i1s converted to a netlist of FPGA togic blocks
such that the number of logic blocks needed is minimum and/or circuit speed is
maximum. The conversion from a net list of basjc gates to a net list of logic blocks can be
divided into the steps given in Figure 1.4



[ Circuit description ]

v

[ Synthesis to logic blocks l

( Placement of logic l

hlocke in FPGA

;

Route connection
between logic blocks

y

4 ™y

FPGA programming file
\ y

Figure 1.3: A brief description on FPGA

Net list of basic gates

v

' Logic optimization '

'

{ Technology map to LUTs l

'

Pack L.UTs into CLBs

]

| Net hist of logic blocks

/

e

Figure 1.4: Details of synthesis procedure.



Logic optimization step removes redundant logic and simplifies logic whenever possib‘le. |
This step does not consider the type of elements by which the final circuit is
implemented, so it is called technology independent logic optimization.

In the technology mapping step respecting the limitations of the target FPGA, the
optimized net list of basic gates 1s mapped to LUTSs. In this step optimization is done to
reduce the number of LUTs and/or the number of levels.

1.4 Scope

In this report we are dealing with some aspects of technology mapping problem. The
salient criteria that characterizes the problem are minimization of the number of LUTs,
delay minimization and routability, Here we are primarily concerned with delay
optimization and then with area minimizatjon .

The goal is to compute a mapptng solution with small delay and small chip area. The
delay of an FPGA circuit is determined as: delay in interconnection paths and delay in K-
LUTs. Circuit-delay is approximated by the depth in S, as layout information is not
available at this stage and the access time of K-LUT is independent of the function
implemented. Therefore, the objective of our algorithm is to determine a mapping
solution S with minimum depth and small chip area .

Organization of the report

The remainder of this report 1S organized as follows: chapter 2 gives the existing
approaches, chapter 3 gives the precise problem formulation, in chapter 4 there is a
description of DAG-Map algorithm, in chapter 5 we have talked about our approaches.
Chapter 6 presents our experimental results and the conclusion .



Chapter 2

Background

The LUT based FPGA mapping algorithms can be roughly divided into three classes. The
algorithms of the first class emphasize on minimizing the number of LUTs in the
mapping solutions. This class includes MIS-pga and its enhancement, MIS-pga —new ,by
Murgai et al. based on several synthesis techniques[1,2], Chortle and Chortle-crf by
Francis et al. based on tree decomposition and bin packing techniques[3,4], Xmap by
Karplus based on the if-then-else DAG representation[5], the algorithm by Woo based on
the notion of edge visibility[6], and the work by Swakar and Thomas based on clique
partitioning approach[7].The MIS-pga program first decomposes a given Boolean
network into a feasible network using Roth-Karp decomposition and kernel extraction so
that the number of inputs at each node is bounded. MIS-pga then enumerates all possible
realizations of each network node and solves the binate covering problem to get a
mapping solution using the least number of look-up-tables. In the improved MIS-pga
more decomposition techniques are incorporated, including bin-packing, co-factoring,
and AND-OR decomposition. The covering problem is solved more efficiently via certain
preprocessing operations. The Chortle program and its successor Chortle-crf, decomposes
a given Boolean network into a set of fanout-free trees and then carries out technology
mapping on each tree using the dynamic programming approach. Bin-packing heuristics
are used in Chortle-crf for gate-level decomposition, yielding significant improvement
over its predecessor in the quality of solutions and the running time. The Xmap program
transforms a given Boolean network into an if-then-else DAG representation and then
goes through a simple marking process to determine the final mapping. The technology
mapping problem proposed by Woo, introduces the notion of invisible edges to denote
the edges which do not appear in the resulting network after mapping.

The algorithms in the second class emphasizes on minimizing the delay of the mapping
solution. This class includes MIS-pga-delay[8], Chortle-d}9], DAG-Map{14], and
FlowMap[10]. MIS-pga-delay[8] is an extension of MIS-pga, developed by Murgai et al.
It contains two phases, mapping and placement/routing. The mapping phase first
computes a delay-optimized two-input network, then traverses the network from the
primary inputs, collapsing the nodes in the longest paths into their fanouts to reduce the
network depth. During this procedure various decomposition techniques are used to
dynamically resynthesize the network. The basic approach used in Chortle-d, developed
by Francis et al. , is similar to that in Chortle-crf, i.e., decompose the network into fanout-
free trees and then use dynamic programming and bin-packing heuristics to map each tree
independently, minimizing at each step the depth of the node being processed. DAG-Map



algorithm is a graph-based algorithm that carries out technology mapping and delay
optimization on the entire Boolean network, instead of decomposing it into fanout free
trees. It is optimal for trees for any K-LUTs and Chortle-d is optimal for trees only when
K 1s no more than six. The FlowMap algorithm solves LUT-based FPGA technology
mapping problem for depth minimization optimally in polynomial time. A key step in this
algorithm is to compute a minimum height K- feasible cut in a network, which is solved
optimaily in polynomial time based on network flow computation. This algorithm also
effectively minimizes the number of LUTs by maximizing the volume of each cut by
several post-processing operations.

There are other algorithms like FlowMap-r [11] and CutMap {12} that minimize area and
depth simultaneously.

The mapping algorithms in the third class have the objective of maximizing the
routability of the mapping solutions. Although many existing mapping methods showed
encouraging results, these methods are heuristic in nature, and it is difficuit to determine
how far the mapping solutions of these algorithms are away from the optimal solution.



Chapter 3

Problem Formulation

A Boolean network can be represented as a directed acyclic graph (DAG) where each
node represents a logic gate and there is a directed edge (i) if the output of gate  is an
input of gate j. A primary input (PI) node has no Incoming edge and primary output (PQ)
node has no outgoing edge. input(v) denotes the set of gates which supply input to v.
Given a subgraph H of the Boolean network, inpur(H) denotes the set of distinct nodes
that supply inputs to the gates in H. Let v be a node in the network, a K-feasible cone at
v, denoted by C,, is a subgraph consisting of v and predecessors of v such that any path
connecting v and a node in C, lies entirely in C,, and |input (C, )| K. left(v) denotes the
left fanin of node v and right(v) denotes the right fanin of node v where v is two input
node The level of a node v is the longest path from any Pi node to v. The level of a PI
node is zero. The depth of a network is the largest node level in the network.

We assume that each programmable logic block in an FPGA is a K-input lookup table
that can implement any Boolean function. Thus a K-LUT can implement any K-feasible
conc of a Boolean network. The technology mapping problem is to cover a Boolean
network with K-feasible cones. A technology mapping solution S is a DAG where each
node is a K-feasible cone and an edge between (C, , C,) exists if u is in input(C, ). LUT,

denotes the K-LUT rooted at v. output(LUT,) is the set of LUTs which has LUT, as
mput.



Chapter 4

The DAG-Map Algorithm

The DAG-Map algorithm consists of three major steps. The first step transforms an
arbitrary Boolean network to two -input network. The second step maps the two input
network into a K-LUT FPGA network with minimum delay. The third step performs a
post processing area optimization of the network without Increasing the network delay.

4.1 Transformation of arbitrary networks into Two-Input Networks

For transforming an arbitrary Boolean network into a two input Boolean network
an algorithm DMIG is used.

algorithm: decompose-multi-input gate(DMIG)
Let V = input(v) = {u, ,uy ,us...... Un}:
while |V |> 2 do
let u; and u; be two nodes of V with smallest levels:
introduce a new node x :
fnput(x) =({u; ,Uj},'
level(x) = max(level(u; ), level(u; ) + 1;
V=(V-{u;, u; }yoix}
end-while ;
connect only two nodes left in V to v as its inputs:
return the binary tree T(v) rooted at v:
end-algorithm.

A straightforward way to transform an n-node arbitrary network into a two-input
network 1s to replace each m-input gate (m > 3) by a balanced binary tree. But this
straight forward transformation may increase the network depth by as much as an O(log
n) factor. It can be shown that the DMIG algorithm increases the network depth by at
most a smali constant factor.

Theorem 1: [14 ] For any arbitrary Boolean network G of simple gates, let G* be the
network obtained by applying the DMIG algorithm to each multi-input gate in
topological order starting from the PI nodes. Then

depth (G') <log 2d .depth(G) + log I, d=max degree of fanout in G:
/= number of PI nodes in G:



Now since d is bounded by a constant, so the depth of the two input network G’ is
increased by only a constant factor log 2d. Again for most networks in practice
depth(G) = O(log ). Hence the depth (G’ ) is only a constant factor time of depth(G).

Fig. 4.1(a) shows a 4-input gate v (where the numbers inside the node indicate their

levels) and  Fig. 4.1(b) shows the result of replacing it by a balanced binary tree.
However if we replace it by the binary tree in Fig. 4.1(c), the level of v remains 7.

| |
7 2 3 6

(a) A four input gate (b} Transformation using
Balanced tree

(c) Transformation using DMIG

Figure 4.1: Transforming a multi-input network into two input network



4.2 Technology mapping for delay minimization

This step maps the two input network tnto a K-LUT FPGA network with mininmum
delay. DAG-Map algorithm consists of two steps.

In the first step a level h(v ) is assigned to each node v of the two-input network,such that
h(v) 1s equal to the level of of the K-LUT in the final mapping solution. In the second
step K-LUTs in the final mapping solution are generated.

DAG-Map Algorithm:

algorithm DAG-Map
[*step 1: labeliling the network*/
for each Pl node v do
h{v)= 0;
T= list of non-Pl nodes in topological order;
while T is not empty do
remove the first node v from T;
let p = max{h(u} | u<sinput (v)} ;

if | input (Nx(v) Av}) | < K

then h(v) =p
else h{v) =p+1
end-while ;

[*step 2. generate K-LUTs*/
L = list of PO nodes;
while L. contains non-Pl nodes do
remove a non-Pl node vfromL,i.e. L=L - {V};
introduce a K-LUT v’ to implement the function of v such that
input (v') = input(Nn, (V) ;
L= Lu input(v’)
end-while ;
end-algorithm .

In the step 1 of the algorithm we want to make /4(v) as small as possible to minimise
delay. The nodes are labelled in topological order. The label of each Pl node is zero. If v
is not PI node and if the p is the maximum label of the nodes in input(v), then v is

assigned label p or p+1. N,(v) denotes the set of predecessors of v with label p. If | input
(N, (v) LAv}) | <K, h(v) 1s assigned p else it is assigned p+1.

In step 2 L s the set of outputs which are implemented using K-LUTs. Initially it
contains all the PO nodes. For each node v in L v is removed from L , a K-LUT v’ is

generated to implement v then L 1s wupdated to Luinput(v’) where

input(v’)=input(Ny.)(v)} . This step ends when L consists of only PI nodes of the original
network.

10



Advﬁntages of DAG-Map

1) DAG-Map does not decompose the network into fanout free trees, which gives better
mapping solution. As for example consider the network in 4.2(a), if we decompose into

fanout free trees then we have 2 level mapping solution with 3 LUTs. But using DAG-
Map we have a 1-level mapping solution with only 2 LUT’s.

a b c d a b b ¢ ¢ d
) | N
1

UlGIE ol
N
JU D

{(a) Original network (b) Decomposition into fanout free
trees

(c) Mapping solution using DAG-Map

Figure 4.2: A mapping example for K=3

2) In DAG-Map algorithm nodes are replicated when necessary to reduce network delay.
In the above fig we find that replication of node u; results into a one level mapping
solution. But if that node is not rephicated, the depth would be at jeast two.

Disadvantages of DAG-Map

I) The DAG-Map algorithm is optimal when the original network is a tree. When the
ortginal network is not a tree this algorithm may not give optimal solution.

[l



2) While giving the mapping solution this algorithm does not take care of the fact that if
an LUT contains some other LUT then the nodes of the bigger LUT which lies outside
the LUT contained in it could be packed in the higher level LUTs .But if this fact 1S
taken under consideration then there is a chance of reduction in number of LUTs in the
mapping solution without any increase in delay.

Theorem: [14 ] For any integer K, if the Boolean network is a tree with fanin no more
than K then at each node, the DAG-Map algorithm produces a minimum depth mapping
solution for K-LUT based FPGAs.

4.3 Post-Processing:-—Aréa optimization without increasing delay.

In DAG-Map the main objective is delay minimization. Afier applying DAG-Map two
post-processing operations are done which reduces the number of K-LUTs without
Increasing the depth in the mapping solutions.

Two processing operations are done. they are namely gate-decomposition and
predecessor packing.

The basic idea of gate decomposition is as follows. If node v 1s a simple gate of multiple
mputs in the mapping solution, for any two of its inputs u; and w;, if u; and u; are single
fanout nodes, we can decompose v into two nodes vi and v’ such that inpur(vy) = {u; U}
and input(v'} =input(v)oivy } - {u; . w;}. Such a decomposition produces a logically
equivalent network because of the associativity of the simple functions. Now in this case
if | input(u;) Unput(uy) | <K | then we can implement y; . u; and v using one K-LUT. So
number of K-LUTs are reduced by one (without any increase in delay ) moreover the
decomposed node v has one fewer mputs (beneficial for further post-processing). When v
implements a complex function Roth-Karp decomposition is used to determine if the
node can be feasibly decomposed to v’ and vii as described above. Given a Boolean
function F(X,Y), where X and Y are Boolean vectors, the Roth-Karp decomposition
determines if there is a pair  of Boolean functions G and H  such that
F(X,Y)=G(H(X),Y),and generates such G and H if they exist. In this case, F is the
function implemented by v, X=(u; . 1) , and Y consists of the remaining inputs of v. If the
Roth-Karp decomposition succeeds on a patr of inputs u; and ; of node v, and

input(uy) Cinput(u;)| < K, then the gate decomposition is applicable.

When corresponding to a decomposable node v there exists u; and «; with the properties
as described above then u, and 1; are said to be mergeable nodes. In general Roth-Karp
decomposition run in exponential time, but here since the number of fanins of a K-LUT is
bounded by a small constant K, so here Roth-Karp takes only constant time.

Another post processing operation for area optimization is called predecessor packing.
The idea behind this method is simple. For each node v, we examine all of its input

nodes. If |input(v) Cinput(uy) | <K for some input node u, , and u; has only a single
fan-out, then v and u; are merged into a single K-LUT . In this case we also say that node

12



u; and v are mergeable ,and call v the base of merge. This operation reduces the number
of LUT by one.

There are many pairs of mergeable nodes in a network, but not all of these operations can
be performed at the same time. For this an undirected graph G=(V,E) is constructed,
where the vertex set V represents the nodes of the K-LUT network, an edge (v,w)isin E
it and only if v and w are mergeable. A maximum matching in G is found and merge

operation is applied, then G is reconstructed and the above procedure is repeated until E
1S empty.

If n is the total number of nodes in the actual Boolen network DAG-Map takes O( n )

time and post-processing takes O(n’ ) time ,the complexity of maximum matching
algorithm being O(n’ ).

a b c d ¢ f

. |
l

5-LUT

1

a b ¢c d c f

— ‘
\/
|

\ /]

|

Figure 4.3: Predecessor packing for area minimization

13



g[ _

Figure 4.4: Gate decomposition for area optimization (assume K=5)



Chapter 5

Our approach
3.1 Algorithm 1

In the labeling phase of DAG-Map algorithm a label is assigned to each node which
reflects the label of the LUT in which it will be packed in the mapping solution. In order
to minimize the delay in DAG-Map each node v is assigned a label h(v) as small as
possible. In some cases it is possible that by packing an internal node, say v, in a LUT of
higher level the final delay of each output remains the same as in DAG-Map. If it
happens that both the fanins of v are output node of some LUTs then this packing results
in reduction of number of LUTs in the mapping solution.

Let us consider the two input network in Figure 3(a). The numbers within each node
denotes the label as assigned by DAG-Map algorithm and the numbers on the left side of
the node denotes the number of the node. In the mapping phase of the al gorithm we see
that 12 LUTs are needed in the mapping solution by using DAG-Map (assuming K=4).

The LUTs are as follows:

LUT rooted at 33 with inputs 18,25,28
LUT rooted at 32 with inputs 17,30
LUT rooted at 26 with inputs 21 ,23
LUT rooted at 25 with inputs 18 ,19,20
LUT rooted at 18 with inputs 0,1,2,3
LUT rooted atl7 with inputs 0,1,3
LUT rooted at 19 with wnputs 1,23
LUT rooted at 21 with inputs 7,89
LUT rooted at 20 with inputs 4,5,6,7
LLUT rooted at 30 with inputs 23,24
LUT rooted at 28 with inputs 19,20,23,21
LUT rooted at 23 with inputs 3,5,6,8

Now we see that node 18 can be packed with the LUT rooted at 33. Again node 30 can be
packed with the LUT rooted at 32. With this packing the LUTs rooted at 18 and at 30 are
no more needed. So by packing a node in an LUT in higher level there is a reduction in
the number of LUTs by 2 keeping the delay same as in DAG-Map.

All the PI nodes, PO nodes, and all those internal nodes that are output of an LUT (in the
mapping solution of DAG-Map) are called here temporary output nodes. Corresponding

15



to each node v we have a function t(v) such that t(v) is set to 1 when v becomes a
temporary output node, otherwise it is set to 0. Here when node 18 is packed with the
LUT rooted at 33 there is a reduction in the number of LUTs by one, the reason behind
this is that 18 is a temporary output node and both the fanins of node 18 are temporary
output nodes.

If they were not then the number of LUTs would not have decreased. Same is the reason
behind the reduction of number of LUTs when 30 is packed with the LUT rooted at 32.

tn our algonthm (Quick-Map-Spack) we have traced the temporary outputs in the
labelling phase of the algorithm. Then in the mapping phase when we have a temporary
output node v, we first check whether both the fanins of v are temporary output nodes or
not. Then we check whether this node could be packed in all the LUTs in output(LUT,).If

all these conditions hold true then we do the required packing and LUT count reduces by
L.

While packing a node we are not considering the fact that whether the node is on a
critical path or not. In our example we have packed node 18 and node 30 in higher level
LUTs.18 is on a non-critical path but node 30 is on the critical path. The packing of a
node on critical path is possible because a node, say v, becomes eligible for being packed
in the higher level LUT if and only if at least one of its two fanins becomes the root of
an LUT which is totally contained in the LUT rooted at v. i.e. this packing reduces the
number of LUTs but not the level. So while packing we do not have to see whether the
node is on a critical path or not.

16



algorithm l:Quick-Ma'p-Spack

[*step 1:labelling the network */
for each node v do
t{v) = 0;
for each Pl node v do
h(v)=0;
t(v)=1,
T= list of non-Pl nodes in topological order;
while T is not empty do
remove the first node v from T;
let p= max{h(u) | u einput(v) };
If |input (Np(v) (AV})] < K
then h(v) =p
else h(v) =p+T
'u einput(v) t(v)=1
end-while;

[step 2.generate K-LUTs*/
L = list of PO nodes:
while L contains non-PI nodes do
remove a non-Pl node v from L, i.e. L=L — {V} ;
if t(v)=1 and v is not a PO node
then introduce a K-LUT LUTy to implement the function of v such that
input (LUTy) = input(Nnw (V) ;
L= Lu fﬂpUtﬂ_UTv)
if t{left(v))=1 and t(right(v))=1
and if ¥ LUT, e output(LUTy) |input Npa(u) | <K - 1
then VLUT, e output(LUT,) modify the K-LUT LUT, such that
input(LUT ) = input(Nnuy(u)) o {left(v),right(v)} - v
remove K-LUT LUT,.
L= L v { left(v),right(v)} - input(LUTy);
end-if,;
end-if;
end-while ;
end-algorithm .

17



Using our algorithm (Quick-Map-Spack)the mapping solution of the two input network
in figure 3 needs 10 LUTs. The LUTs are as follows:

LUT rooted at 33 wtth inputs 17,2 ,25.28
LUT rooted at 32 with inputs 28,23,17
LUT rooted at 26 with inputs 21 ,23
LUT rooted at 25 with inputs 18 ,19,20
LUT rooted atl7 with inputs 0,1,3

LUT rooted at 19 with inputs 1,2,3

LLUT rooted at 21 with inputs 7,8,9

LUT rooted at 20 with inputs 4,5,6,7
LUT rooted at 28 with 1inputs 19,20,23,21
LUT rooted at 23 with inputs 3,5,6,8

18



Figure 3(a) :A two input Boolean network. Numbers on the left
side of the nodes give the node number and the numbers within
the nodes give the label of the node when the network is
labeled according to the DAG-Map algorithm.

19



e S

R e T A
L e
S

PR .nﬂm,. iy

=

] ...."....,. u..,,....."h...."..

S T L

i
Fot I e et )

Y

P

R T
Dy .a.....x.u. o
AR

Pty

A o

=

R
> %
L)
H

HL-H i

HEH
S
SR A L,
R
S

A T
A i v
a it oo,
R o T S
S ek e A
ﬂmﬁm&%ﬁiﬁ e e " ..,..n.n."... .,“....n..."."...... R Ry RO
[ s
PR R Y
e A Y
PRt e b SRR o
MM HEo ey :
e PG
o e Y e, it
. oy ) b
e :
A Ptk
i e A
i
b .....m.m o
St
T
R
H -
S
i praD
ey H o ] it
" S H A e S
SRR
i
}hﬂm.wuaﬁ,.i......c.? n..M.w.r.n.....
ey Rt e o e
¥ Thadmnd
+..f..
oot
TR
e L

AT s & H H P - H
(] e e L i L Lt eyt LA ' A
Lt L e e S e TR FetieH ot Lt = = i
%ﬁﬂ?ﬂbﬁﬁ&@k@%ﬁﬁ&iﬁwﬁcﬁsﬁﬁ”ﬁnﬁm‘mﬁﬁ>ﬂ$ S S R
e i s PR R
f{;..nu,......... ...ﬂ.....n,..,..v}.....,..ﬂ....,. AR et e e e e
;..f.f. :xsﬂx},ﬁixxéx ..ﬁ.,..ﬂ,..f...;f..ﬁi:« ..,....m...“....u...,.,n.,.,....{.,u.,...“..ﬁ.w u.h,,.,,..w.,....".,u...,.. oty SR ...m..,..,,.u.“.,..,ﬁ....r,..... ; : AL
S 2 S
4 11 -t R T AR

i
e - H
et e A
P e A S e e S
P e T S R



"y
O
! L3
T

e,

Fad -
T

.,
.,.....,..n.....y......,_..,.....
e

ot ,.,.....,.""W.M....”
-

§%< ks e

Lok e,

SRy

oy

.|
'

i R
i i A e A AN - e L F i
HLLLY SArHE e e LR LU ne e e e ECL LR L, B et e
SR TR R o R s LR s R Sz
i b e S, S L A e e L e b
et Ehh A e R e A A b R e S A
HH .m..ﬂw,". TErp e Y .,.............,,....m........w....w..,..%.....m.. H b
iy B A PR AL
e P e T e A ST T A
EEE Sl A A e :
.,.....:t...ﬁ....,........,..m.... A, S,,uﬂ,...,.........,..:..n,..m o

b

.,
i

. -
et H HRaRHE ST H

e LA R ] ! R e A S RN e L AR
..,..ﬂ.........ﬁ...{.._"..n e e L ,,.....,..f-.....n,....-....}...,...r. " R e Y b3t P w...n.n..u.......p,....... H euﬂw,ﬂ;“.ﬁ....nf}.”.{ H e gt xx,,w.ra.a.wrn...d.wwn."....ﬁ},.......

TR, T mig L e R L T, btk : Tt Lt R, A R e
e T o ﬁﬁﬁf S o o v :
=y ; o

ol
i
Lt
xgﬁ-

._...« ..J.,.,..,_;.n.,..u...,..“..{ .....,.....&..h... e A, Ny

E- o e .n.,,u...u,;ﬁ.n....r.ﬂ....- R oL AL
2 e ; e e b PR e
(...N..,r.{(ﬁ.. i .;.st. 2o ;ﬂa.wf :wﬂ.xﬂ;fr.mw”rﬁﬂwr{fs R x}..........r...}r.,,.{ %&%&Hﬂ{ﬁﬁx ......“.M.n,.....,.. S PR .}...,..........,.........r.p“..,n..q

e ,,Mr.v{...
amay

b

R R b



5.2 Algorithm2

In the DAG-Map after executing the DAG-Map algorithm on the two input Boolean

network some postprocessing is done to reduce the number of LUTs. In this
postprocessing phase nodes are merged using two methods namely, predecessor packing
and gate decomposition. In the following algorithm we have introduced the idea of
predecessor packing in a greedy manner while getting a mapping solution i.e. while
packing nodes in a LUT we have packed an LUT with its predecessor whenever possible.

algorithm2 : Quick-Map-Ppack

[*step 1: labelling the network*/
for each Pl node v do
h(v)=0;
T= list of non-Pl nodes in topological order;
while T is not empty do
remove the first node v from T,
let p= max{h(u) | ueinput (v)},
if linput (Ng(v) U{vh)l < K

then h{v) =p
else h(v) =p+1
end-while;

Istep 2:generate K-LUTs?/
flag=0;
.= list of PO nodes;
while L contains non-Pl nodes do
remove a non-Pl node v from L, i.e. L=L —{v},
TMP=input( Nh(p; (V) );
while{TMP is not empty)
remove u from TMP
if (Jinput( Niw(u) UNw(V))] < K+1)and(u is fanout free)
then L=LUfﬂpUt( Nh(v}( V) LzNhfu)( U)) - U,
introduce a K-LUT v’ to implement the function of v such that
input(v’)= input(Nnp(v)) cinput(Nyw(u))-u;
flag=1,;
break;
end-while;

if flag=0
then L =Luinput( Nh(v}( v)),
introduce a K-LUT v’ to implement the function of v such that
input(v’)= input(Nnw(v)),

end-while;
end-algorithm;

22



In the section 6 we have given a table comparing the number of LUTs needed when
algorithm 2 is executed on some MCNC benchmark circuit with the number of LUTs

needed when in the post processing step of DAG-Map algorithm only predecessor
packing is used .

In the postprocessing phase of DAG-Map, so that maximum possible number of nodes
can be merged the maximum matching algorithm is used repeatedly. Now maximum
matching algorithm takes O(n’) time while DAG-Map takes O(n) time. Time complexity
of our algonthm (algorithm 2) is O(n) ,Table 6.1 in section 6 shows that the number of
LUTs in the mapping solution using algorithm 2 is very close to the number of LUTs
needed in the mapping solution using DAG-Map and then applying predecessor packing
in the postprocessing step, though the former algorithm takes less time.

5.3 Implementation details

Input spectfication:

We have taken arbitrary Boolean networks in blif or pla format. Then we have processed
this circuit upto some extent using the SIS package. If the circuit 1s in pla(blif) format we
have used read pla (read blif) command of SIS package to read the circuit. Then
tech decomp -a 2 -0 2 is used which decomposes multi-input Boolean network into two
input Boolean network. Then we have used simplify command which performs two level
minimization, nodeopt command that rcmoves redundant nodcs and resct name
command that renames the nodes in an increasing order. These commands simplify,
nodeopt and reset_name are used in this order again and again until there is no reduction
in the total number of nodes. Then we have used write eqn command to write the output
on a given file. Our program takes this file as input. Our program takes also the number
of Pi, number of PO and the value of K as input.

Output specification:

Our program gives the total number of LUTs needed. It also gives the input (nodes) and
output (node) corresponding to each LUT .

Data Structures:
Three structures are used: dagnode, st node, list node.

dagnode- After reading the input a directed acyclic graph i1s formed. Corresponding to
each node in the dag we have a dagnode. It has the following important fields: left, right,
parent, name. |

left points to the dagnode corresponding to the left fanin of this node, right points to the
dagnode corresponding to the right fanin. parent points to an array of dagnodes
corresponding to the fanouts of this particular node. name contains the name of the node.

list_node --It contains a pointer ptr to a dagnode, and a pointer next to a list node.

23



st_node -- It contains a pointer ptr to a dagnode , and a pointer Iptr to a linked-list of
list_node. In fact Iptr of a node say, v ,points to a linked-list which contains pointer to
the dagnodes corresponding to the nodes in input(Ny)(v)) .

Important Modules:
Some mmportant modules in our implementation:

find_dag : The task of this function is to form the directed acyclic graph .
level_dag : this module performs the labelling part of our algorithms.

apply_map : this module performs the mapping part of our algorithms.

24



Chapter 6

Results and Conclusion

In this report, we have presented two graph based technology mapping algorithm for
delay optimization in look-up-table based FPGA design. Both the algorithm Quick-Map-
Spack and Quick-Map-Ppack carries out technology mapping on the entire Boolean
network. We have implemented Quick-Map-Spack and Quick-Map-Ppack algorithms
using the C language. We have taken arbitrary Boolean networks in blif or pla format.
Then we have processed this circuit upto some extent using the SIS package. If the circuit
1s in pla(blif) format we have used read_pla (read blif) command of SIS package to read
the circuit. Then tech decomp -a 2 -0 2 is used which decomposes multi-input Boolean
network into two input Boolean network. Then we have used simplify command which
performs two level minimization, nodeopt command that removes redundant nodes and
reset_name command that renames the nodes in an increasing order. These commands
simplify, nodeopt and reset name are used in this order again and again until there is no
reductton 1n the total number of nodes. On this resulting two input network we ran our
algorithm Quick-Map-Spack on that same two input Boolean network we apply the

DAG-Map as available in SIS package. The comparison of these two resuits is given in
the table 6.1,

Table 6.1 gives the reduction of the number of LUTs compared to the number of LUTs in

DAG-Map when Quick-Map-Spack is run on the MCNC benchmark circuits (given in the
leftmost column of the table), for K=3, 4 and 5.

_Table 6.1: Comparison of Quick-Map-Spack with DAG-Map

# nodes | # LUTs in DAG-Map -
in two # LUTs in Quick-Map-Spack
input
Boolean
{ network L
S | K=3 | K= _.__l K=5 |
- | count 395 12y 1t =)
Osym i 33} 24 1 0] 0|
Osymml | 307 1 16 | 0 0
2 4 558 66} 5 5
misex] 60 4 BT |
rd84 | 3284 EIY { 0 30
duke? 2145 145 10 | 14
alu4 3267 360 l 10 7
$a02 246 33 0 |

25



Before running Quick-Map-Ppack on a circuit we do the same preprocessing with SIS
package as mentioned above. In table 6.2 we showed the reductions in number of LUTs

for a range of values of K=3 to 5 by applying Predecessor Packing over DAG-Map
outcomes (column 2, 3 and 4) and Quick-Map-Ppack algorithm just after node labeling
(column 5, 6 and 7). In Column 8, 9 and 10 we have showed the difference between the
reductions in the # LUTSs by applying predecessor packing and QMPpack.

We observe that for K=3, 4 and 5 the differences are (on an average) 5, 3 and 2

respectively. We find that using a linear algorithm QMPpack we are getting a mapping
solution with number of LUTSs very close to the number of LUTs

solution with time complexity O(n” )

3

needed in a mapping

Table 6.2: Compares the result of Quick-Map-Ppack with DAG-Map + predecessor packing

# of | #LUTsreducedby | # LUTs in DAG-Map | #LUTs in QMPpack -
nodes in | applying predecessor (without post #LUTs in DAG-Map |
two packing on DAG- processing) - # LUTs | (with Predecessor
tnput Map algorithm. in QMPpack Packing)
Boolean
network o -
| K=3 | K=4 | K=5 | K=3 | K=4 | K=5| K=3 | K=4 | K=5
count 395| 16 17] 1] 16| 14| 12 0 3 3]
 Osym 331 24| 15 8] 24| 15| 7 0 0 1
Osymml 307 16 14 | 8 16| 14 8 0| 0 0
ve2 558 [ 107 34 19 01 20 15 16 14 4
| misex] 60| 12 2] 0] 12 21_.. 0 0 0 0
aludg 3267 | 380} 117 54 359 109 50 21 | 8 4|
rd84 32841 1008 | 30 140 | 1008 30| 140 0 0 0
 duke2 2145 273 71 70 272 68 65 | 3 5
sao2 246 ! 40 8 S 36 ] J | 4 i 0
Total T ] 2] 29 17

26



L L L L R

References:

[1] Murgai, R., Y. Nishizaki, , N.Shenoy , R. K.Brayton, and A. Sangiovanni-Vincentelli, "Logic

Synthesis Algorithms for Programmable Gate Arrays," Proc. 27" ACM/IEEE Design Automation
Conf., pp.620-625,1990

(2] Murgai, R.,N.Shenoy, R. K.Brayton, and A. Sangiovanni-Vincentelli, "Improved Logic

Synthesis Algorithms for Table Look Up Architectures, " Proc.lEEE Int"l Conf. on Computer-
Aided Design, pp.564-567,Nov.1991.

(3] Francis,R.J., J. Rose, and K. Chung, "Chortle: A Technology Mapping Program for Lookup
Table Based Field Programmabie Gate Arrays," Proc. 27" ACM/IEEE Design Automation Conf.,
pp.613-619,1990 |

[4] Francis,R.J., J. Rose, and Z.Vranesic, "Chortle-crf* Fast Technology Mapping for Lookup
Table-Based FPGAs ," Proc. 28™ ACM/IEEE Design Automation Conf.,pp. 613619, June 1991.

[5] Karplus,K.,"Xmap: A Technology Mapper for Table-Lookup Field Programmable Gate
Arrays," Proc. 28" ACM/IEEE Design Automation Conf.,pp. 240-243, June 1991,

[6] Woo,N.S.,"A Heuristic Method for FPGA Technology Mapping Based on the Edge
Visibility," Proc. 28™ ACM/IEEE Design Automation Conf. pp. 248-251, June 199]1.

[7] Sawkar,P. and D.Thomas, "Technology Mapping for Table-Look-Up Based Field

Programmable Gate Arrays,” ACM/SIGDA Workshop on Field Programmable Gate A rrays, pp.
83-88,Feb.1992

(8] Murgai, R.,N.Shenoy, R. K.Brayton, and A. Sangiovanni-Vincentelli, "Performance Directed

Synthesis for Table Look Up Programmable Gate Arrays," Proc.1EEE Int'l Conf. on Computer-
Aided Design, pp.572-575,Nov.1991.

[9] Francis,R.J., J. Rose, and Z.Vranesic, "Technology Mapping for Dely Optimization of
Lookup Table Based FPGAs," MCNC logic synthesis workshop,1991.

[10] Cong,J., A.Kahng, P.Trajmar,and K.C.Chen,"Graph Based FPGA Technology Mapping for

Dclay Optimisation," ACM nt' Workshop on Field Programmable Gate A rrays, pp.77-
82,Feb.1992.

[i1}). Cong and Y. Ding, " On Area/Depth Trade- off in LUT-Based FPGA Technology
Mapping, "IEEE Trans. on VLSI Systems, vol. 2, no. 2, pp. 137-148, June 1994

27



[12]Cong, J. and Y.-Y. Hwang, "Simultaneous Depth and Area Minimization in LUT-Based
FPGA Mapping," Proc. ACM 3rd Int'l Symp. on Field Programmable Gate Arrays,
pp. 68- 74, Feb. 1995.

[13] Roth, J. P. and R. M. Karp, "Minimization Over Boolean Graphs," IBM Journal of research
and development, pp.227-238, April 1962.

[14] Cong,J., A.Kahng,Y.Ding, P.Trajmar,and K.C.Chen,"DAG-Map: Graph Based FPGA
Technology Mapping for Delay Optimisation," IEEE Design and Test of Computers, pp.7-20,
Sep. 1992

28



/i**i*****i*****ii*i************it****it******t*ti****/

/******* Sﬂurce nge fc.r algﬂrithm 1******************/
/*t*******1*****************iii*****ii************t**i/

# include<stdio.h>
# include<ctype.h>
# define max(a,b) (a>b ? a : b)

int t nodes; /*t_nodes= total no. of nodes except the PI nodes*/
int lut count; /*lut_count= total no. of LUTs needed in the mapping soln*/
int g _depth=0;

typedef struct nodel

{

int if in;

int if out;

int tmp_out;

int name;

int label;

int lut;

int depth;

int slack;

struct nodel *left;
struct nodel *right;
struct nodel **parent;
}dagnode;

typedef struct node3

{

int name;

dagnode *ptr;
gstruct node3 *next;
}1ist_node;

typedef struct node2
{
int if lut;
int slack;
int is_in;
int name;
int left;
int right;
int t_nodes;
int p_count;
dagnode *ptr;
list _node *l1ptr;
}st _node;

typedef struct node4

{

int name;
int **chlid;
}1ut_dagnode;

/*iii*************************i***i*i************i*************i*******/



8t_node **read input (int n)
/*this fn reads the input from the file*/
{ | /*which contains the two input Boolean */
/*fns in eqgqn form*/ |

int j,i,flag,c,lna,flagl,d[lﬂ],val;int oF
St _node **g;

FILE *fp;

flag=0;

flagi=0;

Ino=0;

p=l01;

t nodes=0;

fp=fopen("input filename","r");

if (fp==NULL)

{

exit (0) ;

}

while ((c=fgetc(fp)) | =EOF)
{
if (c=='\n")
{
L_nodes=t nodes+l;
}
}

fclose (fp) ;
a= (8t node **)calloc(t_nadea+2*n,sizemf(Bt_nmde *));

for(i=0;i<t nodes+2*n;i++)
{
ali]=(st_node *)calloc (1, sizeof (st node)) ;
ali] ->name=1i;
alil]-»>left=-1;
ali)-»>righte-1;

}

fp=fopen("input filename", "r*).
if (fp==NULL)

{

exit{9);

}

while ( (c=fgetc(fp)) | =EOF)
{
i1f (c=='\n"')
1lno++;
1f(Ce='=")
flag=1;
if(c=='11")
tlagl=1;
if({c=='[")&&(flag==1))

{

{i=0;
1f (isdigit (c=fgetc(fp)))

{



dli++]) =c;
flag=3;

}

flag=4;
while({c=fgetc{fp))!="]")

{

if (isdigit (c))
d[i-l--l-] =C;
}

val=d (0] -p;

ealge

for{i=1;j<i;j++)
val=val*10 + {(d{i)-p);

1f(flag==3)
{

allno] -»left=val;
if(flagl==1)
{

exit (0} ;

}

}
if (flag==4)

{
if (flagt==1)

{

allno)->left=2*val+t nodes;

flagl=0;
}
else
aflno] ->left=2*val+t nodes+l;
}
}
flag=2;

}
if{{cer'[')&&(Elag==2))

{

{i=0;
if (isdigit (c=fgetc(fp)}}

{
dli++)=cC;

flag=3;

}

flag=4;
while( (c=fgetc{fp))!="']")

elsge



(
1f (isdigit (c))

dli++])=c;
}
val=d[0] -p;

for(i=1;j<i;j++)
val=val*10 + (d[j]-p);

1f (Flag==3)
{

aflno) ->right=val;

}
if(flag==4)

{

if(flagl==1)

{

allno] ->right=2*val+t nodes;
flagl=0;

}

allnol)->right=2*val+t nodes+1;

else

flag=0;
}

return a:

}

/*****************************ii*ii**ii**ii*****i***********/

dagnode *creat_ dagnode (int name)
| /*allocates space for dagnode*/
{

dagnode +*p;
p={dagnode *)calloc (1, sizeof (dagnode) ) ;

if(p==NULL)

{

printf ("no space available\n"}:
exit {0);

}

p->name=name;
p->lut=-1;
return p;

}

/*i****i****ii*****ii*******i**i*i*iii*i***********/

vold insert _leftlink(st_node **a,int i,int j)



/*inserts link between a dagnode*/

{ /*and its left fanin dagnode*/
1f(a(i]-sptr==NULL)

[

printf ("left link cannot be inserted due to non_existence of upper
node\n") ;

exit (0) ;

}
ali] ->ptr->lefteafj}->ptr;
afj)->p_count=a[jl->p count + 1;

/***********************i****ii**i**i*i************************t*********'.l'/

void insert rtlink(st_node **a,int i,int j)

/*ingerts link between a dagnode */

{ /*and its right fanin dagnode*/
1f(afi) - >ptr==NULL)

{

printf ("right link cannot be inserted due to non_existence of upper
node\n") ;

exit (0);

}
al{i) ->ptr->right=alj] ->ptr;
afj}->p_count=al(jl->p count + 1;

)

/****iii*****i****i***************i***ii*****ir***************************/

insert uplink(st node **a,int i,int j,int k)
/*inserts link between a dagnode and its */
{ /*fanout nodes*/
aljl->ptr->parent[{a[j]->t _nodes)++)=ali}->ptr;
a[k] ->ptr->parent((a{k)->t _nodes}++)=ali] ->ptr;

}

/*****************i*i***'l'*i***i****i*i**********i**ii******************/
st_node **find dag{st node **a,int n)
/*this function forms the directed acyclic*/

[ /*graph.insert_leftlink,insert_rtlink,insert“uplink * /
int i,3; /*are called from this function*/

for{i=0;i<t nodes+2*n;i++)

{

1f(a[i) ->ptr==NULL)
a[il->ptr=creat_dagnode(al[i] ->name) ;
}

for{i=0;1<t nodes+2*n;i++)

{
if (a(i]->left>=0)

ingert_leftlink(a,i,afi]->left);
if(a[il->right>=0)

insert _rtlink{a,i,al[i]->right);
}

for(i=0;i<t _nodes+2*n;i++)

{



if(a[i) ->ptr!=NULL)
ali] ->ptr-s>parent=(dagnode
**)calloc(a(i] ->p_count, sizeof (dagnode *}};

)

for(i=0;i<t nodes;i++)

{

if(afi) -sptri=NULL)

{

insert_uplink(a,i,afi}->left,afi]->right};

}

return a;

)

/**i***iii*******ii***********i**i******i'l"l'*i'************i**********/

int read level (st node **a,int n)

{
int 1,flag,c,val;
FILE *fp;

fp=fopen("input level filename","r"};
if {(fp==NULL)
{
printf ("\nerroxr\n");
exit (0} ;

}

printf {("¥x\n", fp);
for{i=t nodes;i<t nodes+2*n;i++)
ali) ->ptr->label=0;
while((c=fgetc(fp)}i='\n");

else

i=1;
while((c=fgetc(£fp}) | =EOF)
{
1f (c==1t:")
flag=1;
if{c=='\n"')
!
144
flag=0;
}
if(flag==1)
{
if (c=="[")
{
val=0;
while((c=fgetc({fp))!=*]")

{

val=val*10+(c-'0");

}



afval) ->ptr->label=i;

}

}
fclose (fp) ;

return i;

}

/*********************t****i******i*********t*********************f

dagnode **order node({st node **a,int n,int lev)
/*orders the dagnodes according to their levels*/
{

int 1i,3,p;
dagnode **head; .
head=(dagnode **)calloc(t_nodes+2*n, sizeof (dagnode *));
p=0;
for{i=0;ic=lev;i++)
for(j=0;j<t nodes+2*n;j++)
{
if(a{j]->ptr->label==i)
head(p++])=alj] ->ptr;

return head;

}

/**iiit***i*****ii****iiii**i*t**i**i*i****************************tt/

void mark_out (st node **a,int m) /*marks PO dagnodes*/
int 1;
for(i=0;icm;i++)
a{i]—:ptr~:if_nut=1;
/*ii******t************i***i*ii*******i***i**i*****************i*****i*/

void mark _in(st _node **a,int n) /*marks PI dagnodes*/
{
int 1i;
for(i=t nodes;i<t nodes+2*n;i++)
a[i) ->ptr-»>if in=1;
}

/i********i'ki‘i******t**ii************i*********************************/

void insert node(list_node *head,dagnode *b,st node **a) .
/*inserts node in alist*/
{

int p,q;

list node *tmp, *prev;

if (head==NULL)
{
printf {("error in insertion\n");
exit {0);



}

tmp=head;
if(b->if in==1)

{

pP=b->name-t_ nodes;

q=p%¥2;
p=p-q + t nodes;
b=a [p]l ->ptr;

}

while (tmp!=NULL)

{

if (tmp->ptr==b)

return;

prev=tmp;

tmp=tmp->next ;

}
prev->next=(list_node *)calloc(l,sizeof{list node));
prev-snext->ptr=b;
return;

}

/******t**************i***************iii*****it**t*****it********/

list_node *input_list(list_node *head,dagnode *b,int p,st node **a)

{

if(b->left==NULL)

{
}

{
if (b->left->1lut!=p)

ingert_node (head,b->left,a};
1f ((b->left!=NULL)&&(b->left->1lut==p))
head=input list (head,b->left,p,a);
if (b->right->1lut!=p)
insert_node (head,b->right,a};
if ((b->left!=NULL)}&&(b->right-slut==p))
head=input_list (head,b->right,p,a);
}

return head;

|

/i*******i*****t********t***iii*********i*************ii******/

int count_input{list node *head)
| /*counts the no. of nodes in a list*/
[

int i;
list node *tmp;
tmpe=head;
1=0;
while (tmp!=NULL)
i
1++4;
tmp=tmp->next ;

}

insert node (head,b,a);

else



return i-1;:

}

/i*****i***********i*********i*iii*i****i**ii*******************t/

dagnode **level dag(dagnode **head,st node **a,int n,int k)

/*this fn label the nodes according */
{ /* to the labelling phase of DAG-Map*/
int 1,p,q; '
list node *1, *m;

for(i=0;1i<2*n;i++)
head[i] ->lut=0;
for{i1=2*n;1i<2*n+t nodesg;i++)
{
if ({(head (i) ->left->1lut==-1) || (head{i}->right->1ut==-1))
{
printf("error in level dag\n");
exit (0Q);
}
p=max {head{i) ->left->1ut,head[i] ->right->1lut);
1=(list_node *)calloc(l,sizeof (list node)) ;
1->ptr=(dagnode *)calloc(1l,sizeocf (dagnode)) ;

l->ptr->name=-1; )
g=count_input (input list (1,head[i),p.,a});
if (g>k)

[
head (1] ->1lut=p+1;

g_depth=max (g_depth, head({i] ->1ut});
head[i] ->left->tmp out=1;
head{i) ->right->tmp out=1;

a[head(i] ->name) ->1ptr=1;

m=1->next=(list_node *)calloc(1l,sizeof(list node)};
m->ptr=head[i]->left;

m->next=(list node *)calloc(1l,sizeof (list node)};:
m->next-s>ptr=head[i) ->right;

}
{

head([i] ~>1lut=p;
g depth=max(g depth,head(i]->lut);
alhead[i] ->name] ->1ptr=input list (1,head(i),p,a);
}
}
return head;

}

else

/ii**************i*i*i*********i**ii*i**i*iii**********************/

void insert list(list_node *head,list node *new,st node **a)
/*inserts a list of nodes in a list of nodes*/
{

while (new!=NULL)

{

if (new->ptr->name!=-1)




insert node (head,new->ptr,a);
new=new->next;

}

return;

!

/******i*****************i*****i****i***i****i*********i*************/

int not_only_pi(list_node *head)

/*checks if the list pointed by head contains*/
/*any node other than the PI nodes*/

{
list node *tmp;
if (head-»>next==NULL)
return -1;
tmp=head->next;
while {(tmp!=NULL)
{
if { {tmp->ptr->left!=NULL) | ) {tmp->ptr->right!=NULL))
| return 1;
tmp=tmp->next;

!

return 0;

}

/****ti****i**iiii*iii*iii*iiiii**ii**ii***iii**iiiﬁ*t**i******ii***iii
**/
void display lut {list node *head,dagnode *a)
/*displays a LUT i.,e. its inputa and

output*/
{
list node *tmp=head;
printf ("output=%d\t",a->nane) ;
printf ("inputs are: ");
while (tmp!=NULL)

{

if (tmp->ptr->name!=-1)

printf (" %d\t", tmp->ptr->name) ;

tmp=tmp->next;

}
printf (*\n"); |
/*printf(“\n***************\n"};*/

j

/*i*********ii**i***ii****i*i**t********i*********************/



/**************************i**ti******************************/

int remove(list node *1,dagnode *p)
/*removes a dagnode from alist of
dagnodes*/
{
list _node *tmp, *prev;
tmp=1;
if (1->ptr==p)
return -1;
prev=tmp;
tmp=tmp->next;
while (tmp!=NULL)

{
1£({tmp->ptr==p)

{

prev-s>next=tmp->next;
return 1;

}

prev=tmp;
tmp=tmp-~>next;

)

return 0;

}

/**i****************i*****i***iii**i*ii******i*************i***!

list node *apply map(st node **a,int m,int k)
/*this fn performs the mapping to LUTs*/

{ /*this fn calls
insert node, insert_list, remove, */
int i,flag; /*not_only pi,count input*/

dagnode *p;
1ist node *1,*tmp, *heaqd, *prev, *per head;
int 11=0;

head={1list_node *)calloc(l,sizeof{list node)};
head->ptr=(dagnode *)calloc(l,sizeof (dagnode}};
head->ptr->name=-1;

for(i=0;i<m;i++)
insert node(head,ali] ->ptr);

per head=head->next;
flag=0;
while (not only pi(head)==1)

{

p=head->next->ptr;
if({p->left!=NULL)} &&{p->right | =NULL) )

{

if (p->if_out!=1)

if{({p->left->tmp out==1}&&({p->right->tmp out==1))

{

tmp=per head;



while (tmp!=NULL)
{
if (tmp->ptr==p)
break;
if(find{altmp->ptr->namel ->1lptr,p)==1)
if {count input (a{tmp->ptr->name]) -
s>1lptr) >=k-1)
flag=1;
tmp=tmp->next;

}

if (flag==0)
{
flag=2;
114+
tmp=per head;
while (tmp!=NULL)

{
if (tmp->ptr=ap)
break;
if (find{(a[tmp->ptr->name] -

{

ingert_node(al(tmp->ptr-

>lptr,p)==1)

>name] ->1ptr,p->left);
ingert node (al(tmp->ptr-

>namel ->1ptr,p->right) ;
if (remove{a[tmp->ptr->name] -

>lptr,p)==-1)
altmp->ptr->name) -

slptr=altmp->ptr->name] ->1ptr->next;

if (remove (per head,p)==-1)
per head=per head-
>next ;
insert node{per head,p-
»left)
insert node(per head,p-
>right};
}
tmp=tmp->next ;
)
}
}
if(flag!=2)
{
l=alp->name] ->1ptr;
insert_list (head,l);
}
)
head->next=head->next->next;
flag=0;

}
printf ("\n\n\nll==%d\n\n\n",11):

return per head;

}



/*i***********i********i*******i*************************************/

main()

{

int n,m,i,p,k,11;

gt node **%a;

dagnode **head;

list node *tmp, *tmpl, *q;
printf ("give the total no of input variables and output variables\n");
gcanf {"¥d %d %¥d4d", &n, &m, &K) ;
printf("%d %4 %d\n",n,m, k};
a=read input (n);

a=find dag{a,n);

display dag(a,n);

p=read level(a,n);
head=order node{a,n,p);
mark in{a,n);

mark out(a,m);

head=1level dag(head,a,n, k);
tmp=apply map(a,m,k);
show_dag{a, tmp) ;

calculate slack(a,m,n,p-1);
displayl(a,n};

}



/***ii************************ii****i****i********************/

[RrrrkrkCAirce code for algorithm 2 WAL A A ALAAS AR AL AEEEL L LY
/*The code for this algorithm is same as that for algorithm 1+*/
/*except the routine apply-map. apply map routine for*#*xxa#/
/* algorithm 2 is given below A A AL AAASAEELSALLLEEEE LIRS
f***i****iii**i*i**i****iii***it******i************************/
list _node *apply map(st node **a,int m, int k)

/*this fn performs the mapping to LUTg*/

{ /*this fn calls
insert_node, insert list, remove, */
int i, flag; /*not_only pi,count_input*/

dagnode *p;
list_node *1,*q, *tmp, *head, *prev, *per head;
int 11=0, mm=0;

head=(list_node *)calloc(1,sizeof(list node)) ;
head->ptr={dagnode *)calloc (1, sizeof (dagnode));
head->ptr->name=-1;

for(i=0;icm;i++}
insert node(head,a([i)->ptr,a);

per head=head->next;
flag=0;
while (not_only_ pi (head)==1)

p=head-s>next-s>ptr;

if ({p->left!=NULL)&& (p->right { =NULL) )
(a[p-:name]-:if_lut=1;
tmp=g=a [(p->name] ->1ptr;
while (tmp!=NULL)

{

1f (tmp->ptr->left!=NULL)
{
if (aftmp->ptr->name] ->1ptr==NULL)
printf ("error in packing\n");
/*if (count input (q) <k)
mm+ 4+ ; * /
if (a[tmp->ptr->name] ->p count==1)

{

if{cnunt“input(q)+count_input(a[tmp-:ptr—:name]—>1ptr)¢=k+1)

{

printf ("%d this node is packed with
$d\n", tmp->ptr->name, p->name) ;

11++;

flag=2;

ingsert_list(q,a(tmp->ptr->namel->1ptr,a);
if (remove(q, tmp->ptr)==-1)
g=g->next ;
insert list (per head,q,a):
if {remove (per head, tmp->ptr)==-1)
per_ head=per head-s>next;



break;

}

elge

}

tmp=tmp->next;

}
if(flagt=2)

{

l=a [p->name) ->1ptr;
insert_list (per head,l,a);
}

)
head->next=head->next->next;
flag=0;

}

printf ("\n\n\nll==%d \n\n\n",61l);
return per head;

}

mm++;

/****************i******i*****ii****i***************i*****************/



