Hyperelliptic Curve Cryptosys.em

A dissertation submitted in partial fulfillment
of the requirements of M.Tech.(Computer Science)
degree of Indian Statistical Institute, Kolkata
by

Pradeep Kumar Mishra

under the supervision of

Dr. Rana Barua
Stat-Math Unit

Indian Statistical Institute

203, Barrackpore Trunk Road
Kolkata-700 108.

25" July 2002

i
Acknowledgements

I am profoundly grateful to my supervisor Prof Rana Barua,Stat-Math Unit ISI, who has given
e ample scope to make use of hijs expertise and experience while I was working for this dissertation.
Particularly I am thankful to him for keeping his door open for me whenever I found some stumbling
blocks on my way. His busy schedule has never come in my way of getting my doubts cleared. Also
I am thankful to Dr Palash Sarkar, Applied Statistics Unit, ISI who has immensely helped me in my
works. His pleasant and encouraging words have always kept my spirits up. Algo, I can never forget
the inspirations I have received from Prof Bimal Roy,Applied Statisticg Unit,ISI,Kolkata.

I am greatly indebted to all my family members who have always supported my endeavours, Par-

ticulary I am greatly indebted to my wife Jyotsna and son Siddharth who whole-heartedly co-operated
and supported my self-exile to ISI,Kolkata to pursue this course.

Also I am thankful to all my classmates and friends(whose list is long) who cooperated in all possibie

ways and stood by me in hard times. Also] must thank them for all the fun and frolic we had togather
in last couple of years.

P K Mishra

Indian Statistical Institute

203, Barrackpore Trunk Road,
Kolkata-700 108.

Certificate of Approval

) o Ny

(Rana Barua)
Professor, Stat-Math Unit,

Indian Statistical Institute,
Kolkata-700 108.

iii

To my father,
I could not see his last days in this world
because of this course.

jv

research. The reason Jor search of newer cryplosystems is twofold: firstly,to increase the ease at which
the task of encrypiton and decryption can be carried out angd secondly, to reduce the computational

In PKC’s the breaking of the cryplosystem is the getling hold of one’s secret private key with feasible
amount of computations. Naturally, the larger the private key, the more secyre 13 the cryptosystem.
However the length of the private key is g computational overhead and a smaller key length means more

In thss trade-off between efficiency and level of security, the hyperelliptic curve cryptosystem (HEC(C)

13 @ natural winner. Jt provides the same leyel of security as many a existing PKC's with much smaller
key-length, However, HEC(C ;s yet Lo establish itaclf as a feasible alternative tp ezisting popular PK(C's
due to the inherent complezity sn the snplementation of certain operations snvolved.

In this thesis, we examine different aspects of implementation of a HECC

Contents

1 INTRODUCTION .
1.1 What is Cryptology and et
1.2 Cryptography : Block Ciphers and Stream Ciphers
1.3 Cryptﬂgraphy : From Julius Caesar To Neil Koblitz

1.3.1 Private key Cryptography : . ., ===
1.3.2 Public key Cryptugraphy

...................

lllllllllllllllllllllllllllll

llllllllllllllllllllllllllll

llllllllllllllllllllllllll

lllllllllllll

llllllllllllllllllllll

iiiiiiiiiiiiiiiiiiiiii

llllllllllllllllllllllllll

lllllllllllllllllllllllll

4.4 Implementation of the cryptusy;tem Ce e
4.5 Furthur Developments and Conclusion . .

llllllllllllllllllllllll

llllllllllllllllllllllll

domains of studies: cryptography and cryptanalysis. Cryptography is "kryptos” +"graphein“(writing).
Thus, Cryptography is the art of secret writing i.e. the art of ensuring that messages are secure from
those recipients to whom it i3 not addressed. Cryptanalysis is the art of devising methods for getting
back the original message from the encrypted messages and analyzing the performance and efficiency
of such methods. Significance of cryptography has increased manifolds in thig erg of the Internet. Now
a days it 18 not only restricted to military use and statecraft, but has percolated to the massges, who

use on-line banking, internet stockbroking and e-commerce in general, Cryptology has received much
attention since the rise in the use of electionic communication for the exchange of financial information

In modern Cryptography, ciphers can be broadly divided into -
1. Block ciphers

2. Stream ciphers,

In block ciphers the whole message (plain text) is divided into several blocks of fixed size and each

block is encrypted in the same way to yield the ciphertext. The substitution cit her, as described in
the next section is an example of block cipher, where a block consists of one letter of the plain text.

In stream cipher the whole nessage i3 treated as a bit stream. A key bit stream’ig generated using a

1.3 Cryptography : From Julius Caesar To Neij] Koblitz

1.3.1 Private key Cryptography :

Use of cryptography dates back to the period of Romang Empire.History notes down that Julius Caesar
was first to use substitution alphabet ciphers, where the letters of the original message (called plain text
in the Cryptography literature) are substituted by letters at a fixed distance in the alphabet to yield the
encrypted message (called the ciphertext). This fixed distance is a secret key. One with the knowledge

History also says that Kautilya has written abouyt ciphers in his treatise on statecraft Arthashastra,
So cryptography was also 'n use in India at least during the Mauryan peri_ 1.

Substitution eipher is not & secure method of encryption. An adversary can resort to ¢xhaustive
search method to decipher a message encrypted using substitution cipher. In fact, continual advance-
ment in computer technology, particularly increase in the speed of computation has rendered many a

earlier cryptosystems useless, where sometimes, even a naive exhaustive search method to break the
encryption becomes feasible.

Cryptographic techniques have become more and more sophisticated. Several new avenues, which were
earlier pursued by mathematicians and researchers for purely aesthetic reasons, have been explored and
have been successfully employed in impfementing newer cryptosystems to keep ”the peeping eyes” at
bay. For example block ciphers now employ elements of finite group (which as sophisticated as points
of an elliptic curve or divisors of an hyperelliptic curve) to encrypt messages, where the key length
i8 of the order of 160 to 1024 bits. Also, this motivates for the study of sther cryptosystems in the
hope to increase the transmission efficiency and to make the cryptosystems implementable in resource

constrained machines by decreasing the number of bitg required for the key while maintaining the same
level of security.

1.3.2 Public key Cryptography

One drawback of the secret key cryptosystems was that the secret key is 41 be communicated to the
intended receiver through a secure channel, before any Communication can actually begin. Till sev-

enties all the Cryptosystems were private key cryptosystems. The secure channel was not available
always or was too expensive for the common man. This difficulty lead to the discovery of public key

L

cryptosystems. In 1976, the idea of public key Cryptosystem(PKC) was p~oposed by Diffie and Hellman
in their famous paper [1). This added an entirely new dimension to cryptography and later became the

mainstream of it. Public key cryptography, not only obviated the need of sending a secret key to the
receiver, but also put the method of encryption itself above board.

In public key Cryptosystems, each of the users ig required to publish his/her public key in directory
accessible to everybody. Also, the whole Infrastructure and method used for encryption ig published.
Each user also possesses a private key. A message addressed to a user can be accessed only if one has
the knowledge of the user’s private key. Needless to mention, a user generally does not share his/her
private key with anyone else. At the heart of PK(C’s lies a special kind of functions, called trapdoor
oneway functions. Oneway functions are the ones whose values are easy to compute. But given a valye
of the function it is computationally infeasible to compute its inverse without the knowledge of a special
key value, called the trapdoor. Number theory says that given two large primes p and q, it is easy to

compute n = pq. But given n, it is computationally very difficult to find p or q. Thia hard problem is
called the integer factorization problem. In a cyclic group of large order with base a,given p, it is very
simple to find f(p) = aP. But, given § = f(p), it is very difficult to find p. This function f is another
example of oneway functions.The problem of inverting f is called the discreet logarithm problem. The

Diftie-Hellman key exchange protocol and so many other PKC’s considered secure now-a-days are based
on discreet logarithm problem.

Since the discovery of Diffie-Hellman key exchange protocol, several public key cryptosystems have
- established themselves commercially. The Knapsack systems were the simplest ones, whose security
rested on the NP-completeness of the knapsack problem. However, in 1986, Shamir showed how
knapsack problem can be effectively broken and then it became a part of the history. Two other
most popular PKC’s are RSA and ElGamal cryptosystems. The RSA “Typtoeystems discovered by
Rivest, Shamir and Addleman derives its strength from the hardness of the integer factorization prob-
lem, while, the ElGamal Cryptosystems depends on the hardness of the discrete logarithm problem.

In 1987, Neal Koblitz[2] and Victor Miller [13] independently discovered the elliptic curve cryptosys-
tem. Although elliptic curves were extensively studied for over a hundred of years prior to that and
there was a vast literature on them, it was done purely for aesthetic reasons. The genius of Koblitz
and Miller could see that they could be efliclently used for creating public key cryptosystems. Elliptic
curve cryptosystems could achieve the same level of security as RSA with much smaller key-length.,

Hyperelliptic curves, however, did not receive that much of attention as elliptic curves, from the
- research community. There were very few results specific to the hyperelliptic curves and most of the
results were general in nature to algebraic curves. In 1989, Koblitz in his epoch-making paper 3],
demonstrated how the divisor class of hyperlliptic curves can serve as a rich urce of finite abelian
groups suitable for implementing public key cryptosystems. Since then, a lot of work is going on to

explore hyperelliptic curve Cryptosystems, on their performance, efficiency and ony cryptanalytic attacks
which can be launched on them. -

In this work we have implemented a hyperelliptic curve cryptosystem over prime fields.

Chapter 2

AN INTRODUCTION TO
HYPERELLIPTIC CURVES

very general in nature, even the underlying field being the field of complex numbers or an algebraically
closed field. After discovery of hyperelliptic curve cryptography by Neil Koblitz in 1989, these curves
have begun to draw attentions from cryptologists and researcher working on similar areas. Recently, the
hyperelliptic curves have found applications in Beveral other areas of research activities like primalit -

proving, design of error correcting codes and integer factorization problem.In this chapter we give a
brief introduction to the theory of hyperelliptic curves.

Definition 2.1 Let F be a field and let K be the algebraic closure of F. A hyperelliptic curve C of
genus g (g > 1)over F is an equation of the form
C:v° + h(u)y = f(u) - (2.1)

where h(u) in Flu] is a polynomial of degree at most g f(u) in F[u] is a monic polynomial of degree 2g
+ 1, and there are no solutions (u, v) in K x K, which simultaneously satisfy thé equations

v’ + h(u)v = f(u) (2.2)
C:2v+ h{u) =0 (2.3)
h'(u)v — f'(u) = 0. . (2.4)

A singular point on C ig a solution (u, v) € K x K which simultaneously satisfies'the equations 2.2, 23
and 2.4. Thus, a hyperelliptic curve, by definition, does not have any singular pdints. |

It is simple to prove that ;

Proposition 2.2 For a hyperélliptic curve C over F,
* If the polynomial h(u) is identically 0, then characteristic of F is not 2.

e If characteristic of K is not 2, then the change of variables 4 — u,v — (v — h(u)/2) transformg C
to the form v? = f(u) where deg.f = 2g + 1.

¢ Let C be an equation of the form (1) with h(u) = 0 and characteristic of Kisnot 2. Then Cis a
hyperelliptic curve if and only if f(u) has no repeated roots in K.

(@ ¥) €LxL:y’ +hiz)y = f(z)} U {0}

where O is a special point, called the point at infinity . The set of points C(F) will simply be denoted
by C. The points in C other than O are called finite points. The oppos.te point of a finite point P(x,

y)on the curve C is defined to be the point P(x, -y - h(x)). (Note that P is indeed on C). We also
define the opposite of O is to be itself, If a finite point P satisfies P = P then the point is said to be a
special point; otherwise, the point P is said to be ordinary,

In Cryptography, we are particularly interested in Hyperelliptic curves over finijte fields.

2.2 The field of rational functions on C

Definition 2.4 Let I be the ideal of Flu, v] generated by the polynomial v? + h(u)y — f (u) ie. I =

(v + hlu)v— ¢ (#)).The quotient ring of Flu,v] /T is called the coordinate ring of C over F, denoted by
F(C]. Similarly, the coordinate ring of C over K is defined as

K[C] = K[u,v]/(v? + h(u)v — f(u)).
An element of K[C] is called a polynomial function on C.

Since the polynomial Pu,v) = v + h(u)y - f (u)is irreducible over K, K[C], is an integral domain.
Further, we observe that, since the polynomial p(u, v} is of degree 2 in v and K|} contains polynomials
modulo p(u, v), degree of v in any polynomial function G(u, v) in K[C] can be at most one. In other
words, every polynomial G(u, v) in K[u, v] has a unique representation of the form
G(u,v) = a(u) — b(u)v , for some polynomials a(u), b(u) in Kl[u].

Deflnition 2.5 For a polynomial function G(u, v) = a(u) - b(u)v be in K[C]ithe conjugate of G(u,
v) is defined to be the polynomial function G(u,v) = a(u) + b(u)(h(u) + v).The norm of G, denoted by

N(G), is defined to be G.G i.e. N(G) = GT.
The next proposition follows directly from the definition of norm.

Proposition 2.6 Let G, H ¢ K{C] be polynomial functions.
* N(G) is a polynomial in K [u).

¢ N(G) = N(G).

¢ N(GH) = N(G)N(H).

We define the degree of a polynomial function in K{C] as follows; let degree of u be 2 and that of v

be 2g + 1. It sounds fair considering the powers of u and v occurring in the equation of a hyperelliptic
- curve. Then obviously,

Definition 2.8. Let G(u, v) = a(u) - b(u)v be a non-zero polynomial function in K[C]. The degree
of G is defined as -

deg(G) = maz{2degya(u), 2deg,b(u) + 2¢ + 1)}.
The next proposition is a routine one following this definition.

Proposition 2.9.Let G, H be in K([C].

o deg(G) = degy(N(G)).
¢ deg(G) = deg(G) where G Is the conjugate of G.
¢ deg(GH) = deg(G) + deg(H).

The rational functions on a hyperelliptic curve play a vital role in the hyperelliptic curve cryptosys-
-tems. Next, we define them:. -

Definition 2.7. The function field F(C) (resp K(C)) of C over F (resp K) is the field of all fractions
of polynomial functions in F[C] (resp K[C]). An element of K(C) is called a rational function on C. A
poiynomial function is also a rational function. That is so as K|[C] is a subring of K(C).

The value of a rationa! function at infinity is defined in a similar fashion as real rational functions
are defined at infinity in the extended real number system. We define,

Definition 2.8. Let R = G/H be a rational function on C. The value of R at 0o
o is 0 if deg(G) < deg(H).
¢ is 00 if deg(G) > deg(H).

e i3 the ratio of leading coefficients (with respect to the degree function) of G and H if deg(G) =
deg(H).

We define order of a rational function R to be non-zero at the points where it vanishes or where it
becomes infinity. Orders of R at these points determine what is called the divisor of R. The divisors of

rational functions play a important role in hyperelliptic curve cryptography. Before going that far, we
define:

Definition 2.9, Let R € K(C), be a rational function on C and let P € C, be a point on C. The
point P is said to be a zero of R if R(P) = 0 and P is a pole of R if It(P) == oo,

The order of a polynomial function at a point is defined in terms of a rational function, called the

uniformising parameter of the related point. The next theorem defines and establishes the existence
uniformising parameter.

Theorem 2.10. Let P € C. A rational function U € K(C) with U(P) = 0 is said to be a uniformising
parameter for P if the following condition holds: let G € K[C]* be any non-zero polynomial function
on C. Then there exists an integer d and a function S € K(C) which neither has a pole nor a zero at P
and G = U4S. Moreover, the value of d is independent of the choice of U.

The existence of uniformising parameter can be proved by construction. If P(:E,y) is an ordinary
point then it can be seen that U = (u - x) can be a uniformising parameter. For a special point U =

(v - y) perfectly fits the bill. If P = 0o then U = (19)/v does the same. A detailed and elegant proof
of the theorem can be found in [4].

Uniformising parameters are used to define the order of rational functions.

Definition 2.11. Let G € K[C]* be a polynomial over C. The order of G at P is defined to be
d, if G = U4S, where U is a uniformising parameter of P and S is a rational function such that S(P)

0 nor 5(P)# oo . If R = G/H then order of R at P is denoted by ordp(t) and is defined to be
ordp(R) = ordp(G) — ordp(H).

The order of a rational functim? satisfies certain important properties. We note down them below
as a proposition for future reference.

Proposition 2.12. Let R,, Ry be non-zero ratiqnal functions. Then
(i) ordp(R1 R3) = ordp () + ordp(ty). |
(ii) Let ordp(Ry) = oy,0rdp(R3) = 03 and R;, # —R,. If 0y # 0, then

ordp(R, + Hz) = min{o1,02}.
Otherwise,

ordp(R; + Rz) = min{o;, 03}
(iii) Any non-zero rational function R has a finite number of zeroes and poles. Mor¢over, Y pecordp(R) =
0.)

iv) R is a non-zero polynomial function then ordp(R) = ords(R), where R the conjugate of R and
P is the opposite point of P.

2.3 Divisors

The most important and somewhat complicated concept in hypereliiptic curve cryptography is that
of divisors, which come into picture because, unlike the points on an elliptic curve, the points of an
hyperelliptic curve do not form a group. So to implement a cryptosystem like the one like ElGamal,
at the heart of which lies a finite cyclic group of suitable order, we take a subgroup of the free abelian
group generated by the set of points on an hyperelliptic curve C, each element of which is a finite formal
sum of points on C with integer coeflicients. Each of these formal sums is called a divisor. The set of
divisors form a group under an additive operation, defined pointwise. More formally,

Definition 2.13.A divisor D is a formal sum like,

DZZmpP, mp€Land PeC
PeC

where Z is the set of integers and only finitely many of mp’s are non zero. The degree of D is the

integer
> mp
PeC

and order of D at P is, ordp (D) = mp. Let D stand for the set of all divisors. For Dy =)" pec mpP
and Dq = EPEcin in D, we define,

D+ Dy = Z (myp +np)P.
PeC
It is mere mathematical common sense to gee that (D, +) i8 a group. Also, the set Dy of all divisors
of degree 0 forms a subgroup of D.

Also we define the greatest common divisor (scd) of two divisors Dy = ¥ pec MpP and Dy =
> pecnpP in D as

ged(Dy,D3) = Y min(mp,np)P.
PeC
A rational function has an order at each point on the curve, which is non-zero only at a finite number
of points. Moreover, by proposition 2.12(iii), the sum of orders of a rational function over all points
on C is zero. Hence, given a rational function R, we can define a divisor D — >_pecc mpP, where

mp = ordp(R). By proposition 2.12(iii), D € Dy. Such a divisor D is called the divisor of the rational

function R and it belongs to an important class of divisors, called the principal divisors. Put more
succinctly,

Definition 2.14. Let R € K(C). . The divisor of R is

diU(R) — Z ordp (R)P.
PeC |
A divisor D is called a principal divisor if D = div(R) for some rational function R. The set of all
principal divisors P is a subgroup of D,. If D,,D; € D, then D, and D, are said to be equivalent,

written as Dy ~ Dy , if Dy — Dy € P. It is easy to see that, ~ is an equivalence relation on the set
D,. The set T of all equivalence classes is called the jacobian of the curve C. In other words, 7 is the

quotient group D,/P.

The following proposition on divisors of rational function is a simple consequence of properties of
order.

Proposition 2.15. Let R = G/H ¢ K (C)* then
div(R) = div(G) - div(H).
Also if R, S € K(C)* then div(RS) = div(R) + div(S).

Definition 2.16. For the divisor D = Py pec MpFP, the support of D is the set,
Supp(D) = {P € C:mp #£0}.

Among the divisors, two special types of divisors, semi-reduced and reduced divisors are of much
importance to us. Next, we define them. |

Definition 2.17. A semi-reduced divisor D is a divisor of the form " m; P, - (3°my) , where,

e eachm; >0

* P;’s are finite points such that when P, & supp(D) then P; ¢ auw(D)
o if P =15i then my; = 1.

It can be proved that, for every divisor of degree 0, there corresponds an equivalent semi-reduced
divisor. In fact, truth is stronger than what this statement says. Truuh is, to every divisor D there

corresponds a semi-reduced divisor D’ = ¥ m;P; — (2_my) such that 3" m; < g, where g is the genus
of the curve C. Such a divisor is called a reduced divisor. More formally, |

Deflnition 2.18. A Bemi-réduced divisor D = } " m; P ~ (3. m;)is said to be a reduced divisor if
Y omy; < g.

Theorem 2.19. For each divisor D € D, there exists a unique reduced divisor D such that D ~ Dy .

Thus each coset of the quotient graup J = D, /P has exactly one reduced divisor. Hence we can
identify each coset with its reduced divisor.)

Let C be a hyperelliptic curve of genus g defined over a finite field F, whose algebraic closure is K,

~ and let J be the Jacobian of C. If P = (z,y) € C, and ¢ be an automornhism of K over F, then P?,
defined as (x?,y7), is also a point on C.

A divisor D = " mpP is said to be defined over K if D¢ = > mpP? ig equal to D for all automor-
phism ¢ of K over F.

Instead of always looking for an algebraically closed field K we may prefer to work in the field F
itself. The algorithm for divisor addition requires divisors to be defined in the underlying field. So,
the question is, when is & divisor defined over F 7 It is not difficult to see tha} a principal divisor is
defined over F if and only if it is the divisor of a rational function that has coefffcients in F. The set 7
contains divisor classes each of which can be represented by a reduced divisor. These reduced divisors

10

representing the a class each in 7 may not be defined over F. The algorithm for divisor addition requires
the input divisors to be defined over the underlying field F. So the divisor addition can not be applied
to the whole of J.Let Jo(F) be the set of all divisor classes in J that have a representative that is
defined over F. Jo(F) is a subgroup of J. Each element of Jco(F) has a unique representation as a
reduced divisor div(a, b), where a,b € K|u], deg(a) < g9,deg(b) < deg(a). Hence Jo(F) is in fact a finite
abelian group. Thus we are home! We have defined a finite abelian additive group on which we can im-
plement an ElGamal type cryptosystem. However, we need suitable data structures for representation
of reduced divisors and algorithms to efficiently implement addition of reduced divisors. Neil Koblitz,
in his original paper had solved both of these problems, although he had not given proof of correctness

of his algorithms. Later, Cantor[5) had proved them, but his proofs were not wholly correct. Menezes
et al have given the correct proofs in [4].

The next theorem specifies an elegant way to represent semi-reduced divisors as a pair of polynomi-
als over F,

Theorem 2.20. Let D = Y m;P; - (2_m;)be a semireduced divisor, where Fi = (z;,y;). Let
a(u) = [](u — z;)™. Let b(u) be the unique polynomial satisfying: |
(i) degb < dega, |
(ii) b(.’l.‘-'i) = W for all i for which my ?‘-’ 0,
(iii) a(u) divides d(u)? + b(u)h(u) — f(u).
Then D = ged(div(a(u}), div(b(u) - v)).

NOTATION: To be brief, we write: ged(div(a(u)), div(b(u) - v)) as div(a{u), b(u) - v) or, simply as
div(a, b). Thus every semi-reduced divisor can be effectively represented by two polynomial functions
in Flu].

Now, we need tools to work with divisors in Jo(F). That is, we need, methods to implement addition
operation of Jo(F) on its elements, which are reduced divisors. Algorithm 1 precisely does that. It
takes two reduced divisors as input and adds them up and outputs the result.

Algorithm 1 *
Input: .
Reduced divisors Dy = divia;,b,) and D, = div(ag, !32) both defined over 1..
Output:
A semireduced divisor D = div (a, b) defined over K such that D ~ D+ Dy,

1. Use the extended Euclidean algorithm to find polynomials d;, eq, e3 € K [u] where d, = ged(ay,a3)
and d; = e;a; + €209 .

2. Use the extended Euclidean algorithm to find polynomials d,¢;,c; € Klu] where d = gcd(d,;, b; +
b+ h) and d = ¢;dy + ca(by + by + h).

3. Let 8 =C1€1,89 = clﬂg,ﬂﬂdﬂa =, 8O that
d = 8141 + 82a;3 + 83(b) + by + h)

11

4. Set a = aa3/d? and
b = 818109 + 89a2by + ﬂﬂ(ble + f)
d

However, the output of Algorithm 1 is not necessarily a reduced divisor. It is a semireduced one.
We need to convert the output of Algorithm 1 into a reduced divisor. There are two algorithms that
are used for the reduction step: Gauss reduction and Lagrange reduction [6]). In the first algorithm
the computation of the ay (where ay is the value of a in the iteration k of the algorithm) involves one
multiplication and one division of high degree polynomials. Each step is independent of the previous
one. However, as soon as a reduction step has been carried out, the formula for as can be rewritten
using information from the previous step. Lagrange reduction takes advantage of this fact. Paulus and
Stein published the Lagrange reduction algorithm for hyperelliptic curves over a field of odd charac-
teristic (7]. Enge gave a generalized version for arbitrary characteristic in {6]. Algorithms 2.1 and 2.2
summarize Gauss and Lagrange reductions, respectively.

(mod a)

Algorithm 2.1(Gauss Reduction)
Input:

A semireduced divisor D = div (a, b) defined over F.
Ouiput:

The (unique) reduced divisor D, = div(a,,b;) such that Dy, ~ D,

1. Set
a1 = (f —bh —b*)/a
and
by =(—h—->0) {(mod a)

2. If deg a) > g then set a + a;,b + b; and go to step 1.
J. Let ¢ be the leading coeflicient of a;, and set a; « a,/c.
4. Qutput (a4, by). H j

Algorithm 2.1(Lagrange Reduction)
Input:
A semireduced divisor D = div (a, b) defined over F.
QOuipul:

The {unique) reduced divisor D, = div (a', b’) such that D, ~ D.
1, Set ag = a,bg = b;

2. ay = (f — boh — b3)/ao;

12
3. ~bo — h=qia;, + b;
4. while(deg ax > g)

ay = ax_2 + @r—1 (g1 — br_3);

~bk—1 — h = g + by with deg by < deg ay;

d. output(a’ « ap,d’ « by)

The hyperelliptic curve cryptosystem is built on the strength of the discreet logarithm in the jaco-
bian group of reduced divisors of the curve. We end this chapter with the statement of the discreet
logarithm problem on the jacobian of an hyperelliptic curve.

Deflnition 2.21. The hyperelliptic discrete logarithm problem (HCDLP) takes on input a hyper-
elliptic curve of given genus, an element D, of the Jacobian, its order n , and another element D3 in
the subgroup generated by D; . The problem is to find an integer A mod n such that D, = AD,.

Chapter 3

IMPLEMENTATION AND
SECURITY ISSUES

3.1 Why Hyperelliptic Curve Cryptosystem 7

The discrete logarithm problem (DLP) became important to cryplographists with the invention of

public-key cryptography by Diffie and Hellman in 1876 [1]. The best algorithm known for solving DLP
in prime fields is the number field sieve 14] which has a subexponential expected running time:

ezp((1.923 + o(1)) (log p)'/*{log log p)?). To circumvent this attack, the prime p should be chosen to
be sufficiently large. As of today’s computer technology, a prime p of length 1024 bits is recommended
for medium-term security. For long-term security, even a larger modulus is recommended. Ag a con-
sequence of this, the implementation of discrete log cryptosystems using the group Z, is infeasible or

impractical in some resource constrained computational devices like smart cards and hand-held wireless
devices, such as cellphones and pagers.

Since the discovery of Public Keyi Cryptography in 1976, a variety of groups have been proposed for
use in discrete log cryptosystems. These include:

1. the multiplicative group of a finite field of characteristic 2 or a proper subgroup of it,
. the group of units of Z,, , n being a composite integer,
the group of points on an elliptic curve defined over a finite field,

. the Jacobian of a hyperelliptic curve defined over a finite field ,

<A B~ JC R X

. the class group of an imaginary quadratic number field and

6. the Jacobian of a superelliptic curve defined over a finite field .

Why are we considering so many alternative groups for the purpose? There are two primary reasons.
First one is, the operation in some groups may be easier to implement in software or in hardware than
the operation in other groups. Secondly, the DLP in the group may be harder than the DLP in other
groups. Consequently, one could use a group G that is smaller than Zp while mnintaining the same

13

14

level of security. This potentially gives rise to smaller key sizes, bandwidth savings, and faster imple-
mentations.

Among these groups, E(F,), the group of Fa-rational points of an elliptic curve E, defined over a
finite field F, , is an attractive choice. By Hasse’s Theorem, the order of the group is almost equal to
q. If the largest prime factor of this order is n, then the best algorithm known for the DLP in E(F,)
(Pollard’s rho attack) takes O (/n) steps; i.e., the algorithm take fully exponential time. As a result,
E(Fy) where q is a 160 bit integer, can achieve the same level of security as when a group Z, is used
with a 1024 bit integer. That is almost a 84 percent saving of bandwidth !

The order of Jo(Fy), the Jacobian of a hyperelliptic curve C of genus g defined over F, , is roughly
g° . Jacobian elements can be compactly represented by a pair of polynomials of degree at most g
over Fy , and efficiently added using Cantor’s algorithm. When g is large, there is a subexponential
algorithm due to Adleman, DeMarrais and Huang [8] for the discrete logarithm problem in Jo(F,).
Moreover, when g > 5, Gaudry’s algorithm [10] is faster than Pollard’s rho algorithm. If g = 2 or g =
3, and n is the largest prime divisor of #J¢(F,), the best algorithm known takes O(4/n) stepa, i.e., the
algorithm takes fully exponential time. Consequently, a cryptosystem based on a hyperelliptic curve of

genus 2 over Fq, where q is a 80 bit integer, can achieve the same level of security as when a group Z,
is used with a 1024 bit integer.

Now, one natural question arises, Why can not we use the jacobian of a.y other algebraic curve for
cryptographic purposes 7 In fact we can use any algebraic curve, but we have to address two problems,
which arises. One is finding a canonical representation of the elements of t..c jacobian. Another impor-
tant one is to find efficient methods to add two elements of the jacobian. In case case of hyperelliptic
curves both of these have been elegantly solved. An element of the jacobian i.e. a reduced divisor can

be represented as a pair of polynomials and also there are efficient methods for divisor addition and
reduction. 1

One disadvantage of using curves of higher genus instead of elliptic curves is that the group op-
eration in the former may be camqutationally more expensive and more complex, even though the
underlying field size is8 much smaller. In fact, in cryptography there is still much scope for research in

that direction. Also, this disadvantage can be overcome by designing specific hardware, to be used in

resource constrained systems [9)].) .

3.2 - How Secure a Hyperelliptic curve cryptosystem ?

As we have seen the hyperelliptic discrete logarithm problem (HCDLP) takes on input a hyperelliptic
curve of given genus, an element D; of the Jacobian, its order n , and anothér element D, in the
subgroup generated by D, . The problem is to find an integer A mod n such that D, = AD,. Possible
attacks on the HCDLP can be viewed as of three types. Some attacks are of general nature, applicable
to any DLP. In the second category come the attacks that have been successfully launched on some
particular elliptic curve discreet logarithm problem (ECDLP) and there is possbility of generalizing
them to hyperelliptic case. Attacks specific to HCDLP can be put in the thi: 1 category. We give below
a list of such attacks, which by no means can be claimed to be exhaustive.

15

. Naive Exhaustive Search: Compute D, 2Dy, 3D, ...until D2 i8 obtained. Obviously it can
take n = (D) steps. So taking the value of n large enough is sufficient to check this attack.

. Pohlig - Hellman Algorithm: Exploits factorization of n — O(D1).The algorithm reduces the
problem of recovering A to the problem of recovering A modulo each prime factor of A, A is then

recovered by Chinese remainder theorem. This attack can be avoided by selecting an HC the
order of whose jacobian is divisible by a large prime factor n.

check if this element is equal to some second component of some pair in the ligt. If Ba=Im = ot
for some i, then 8 = a/m+i 4pq hence x =jm+1 and we are done. The algorithm requires a table .
of m entries.To sort the table and search the table for each J requires O(m log m) operations.If

the group order is 107° then in the current state of computer technology this attack is infeasijble.

. Pollard’s Rho Algorithm: J Pollard’s method of computing discreet logarithm is probabilistic,
but does not require the precomputation of previous algorithm. Here, we partition the group
G into 3 sets Sy, Sy and S3 of almost equal size. Some care is taken during this partition, like
1 ¢ S3. Then we define a sequence of group elements as To, Z1, . . . by 25 =1 and for each i > 1,
T = Priy, if 24, € 8,
— .Ti_.12) if Ti—] € S':h
=Qazxi_y, iz € 83,
The sequence of group elements defines two sequence of integers a; ana b; where Zy =agh ¢ >
0,a0 = by = 0, where a;,;, = 6¢ +1 or 2a; or a; (mod n) and biv1 = &4, 2b; or by+1 (mod n) de-
pending on which set contains Ti—1. Making the use of Floyd’s cycling algorithm, we can compute
the six tuple (z;, a;, bi, Zai, Gaq, byy) for i = 1,2,until z; = z,;.At this stage we have
o' =0
where, r = q; - ay; and 5 = bzil- b; (mod n).This gives rlogaff = 8 (mod n) There are only d =

ged(r, n) possible values for logaf . If d is small each of these values can be tested to find the
correct value of log, /3.)

[§

If z;’s are assumed to be a random sequence of elements of G, then expected running time of this
algorithm is O(m).

. Parallelised Pollard’s rho algbrithm: executes Pollard’s rho algorithm parallelly in r proces-
sors. Runs in O(m)/(2r) steps.

. Pollard’s Lambda Algorithm : another randomised algorithm due ‘o0 Pollard. It can also be

parallelised with a linear speedup. Slightly slower than parallelised rho method. Faster if A ls
known to be in a subinterval [0, b] of [0, n-1) where b < 0.39n. |

16

7. Index-Calculus Method: First of all we attempt to find the logarithms of elements of a fixed
subset

S = {ﬂ'],ﬂ'g,. . .,LTT}
of G, called the factor base. We pick a random integer 8 and try to express o’ as

ay a9

a
Ul 0'2 ---uﬂ.f

T

. If we are successful, then taking logarithms we get,

After collecting a sufficient number of such relations, we can hopefully solve for the indetermi-

nates log,0;. Next, we repeatedly pick random integers 8 until a’f can be written as a product
of elements in S, i.e.

a’f=odad .. ob

Taking logarithms in both the sides we get

logy B = bilogaoy + balogaos + ... + brlogaor — 8 (mod n)
The running time for this algorithm is O(ezp((2 + o(1))(Inp)'/2(Ininp)'/3)) for Ky,

8. MOV attack: Menezes et el and Frey and Ruck showed how ECDLP can be reduced to the
DLP in the multiplicative group of some extension field Fy of Fy, where the number field sieve
algorithm applies. To avoid this attack one only needs to check that n, the order of the divisor
D, does not divide ¢* — 1 for for all small k, for which DLP in Fyu is tractable.Although this is
an algorithm for ECDLP, there is possiblity for it to be generalised to HCDLP.

9. Attack on HCDLP for higher values of genus g: When g, the genus of the hyperelliptic

curve is large, there is a subexpﬂnential algorithm to solve HCDLP, due to Addleman, Huang

and DeMarraise [9]). So it is recommended that the hyperelliptic curve chosen for cryptographic
purposes should have smaller genus.

L

10. Gaudry’s Algorithm: Gaudry [10]has devised an algorithm which is faster than the Pollard’s
~ rho method if g is small and g > 5.In general if g = 2 or g = 3 and n is the largest prime factor of
#Jc(F), then the best known algorithm for attacking the HCDLP takes fully exponential time,
O(n) time to be precise. Hence one can use a hyperelliptic curve of genus 2 over a finite field F,,

where p is of order 2°* to achieve the same level of security as when DLP over & finite field F, is
used with q of the order 21024,

3.3 Some Implementation Issues

The first task for implementing a discrete log cryptosystem using hyperellipti¢ curves is , choﬁsing'a
suitable curve C and underlying finite field F must be selected. Desirable properties of the selected

17

curve and field include the ‘ollowing:

l.Arithmetic in the underlying finite field F should be efficient to implernent; finite fields of charac-
teristic 2 are certainly a very attractive chojce.

2.To awvoid Pohlig Hellman attack, the order of the Jacobian Je(F) of C, denoted by #Jo(F), should
be divisible by a large prime number. Under the current scenario of computer technology, it is recom-
mended that #Jc (K) should be divisible by a prime number r of at least 45 decimal digits. In addition,
to avoid the reduction attack of Frey and Ruck [11] which reduces the discreet logarithm problem in
Jc(F) to the discreet logarithm problem in an extension field of F = Fy |, r should not divide ¢* - 1 for
all small k for which the discrete logarithm problem in F. is feasible (1 < k < 2000/ (logaq) suffices).
Several algorithm for calculating #Jc(F) are available in the literature. A hyperelliptic curve should be
chosen randomly (see [12]) and a suitable algorithm for calculating #J¢(F) should be used to calculate

Jo(F} and on the basis of whether #Jc(F) satisfies the security requirements or not, a curve generated
randomly should be accepted for use or rejected.

Next, we describe a technique of selecting a hyperelliptic curve for cryptographic purposes.

Let J be the jacobian of the hyperelliptic curve C defined over Fy, and given by the equation
v? + h(ulv = f(u). Let Fy denote the degree n extension of Fyp, and let N,, denote the order of the

(finite) abelian group Jo(F,). Let M, denote the number of Fyrational points on C. The zetafunction
awsociated with C is, defined aw:

Definition 3.1. Let C be a hyperelliptic curve defined over F, | and let M, = #Jo(Fgr) forr > 1,
The zetafunction of C is the power series

I'zc(t) = ezp(Y" M, " /1) (1)

r>|

We need the following properties satisfied by the zeta function:

Let C be a hyperelliptic curve of genus g defined over F, and let Zo(t) be the zetafunction of C.

1

Property 1.
Zc(t) € Z(t)

More precisely,

P(t)
(1-¢)(1 - pt)
where, P(t) is a polynomial of degree 2¢ with integer coefficients. P(t) is of he form

Zc(t) =

18

Property 2. P(t) can be factorized as

P(ty=]] (1-a)(1-at

1<i<pg

where oy is a complex number of modulus p and @y is the complex conjugate of Q;.

Property 3. If N,, = #Jc(Fq), q = p*, then

N, = H 11— al[?

1<i<y

Hence to compute N,, we have to determine a;’s i.e. coefficients of P{.}.These can be obtained by
factorising P(t). Multiplying both sides of (1) by (1 - t){1 - pt), we get,

P(t) = Zc(t)(1 - £)(1 - pt)
Taking logarithm and differentiating both sides with respect to t,

P‘t r4+1y,r
P((t)) “‘Z(Mr+l —~1~q"t')e

r >0

By equating the coefficients of %,¢!,..., 9= of both sides, we see that the first g values of M,
suflices to determine the coeflicients ay, a3, ...,a,, from which N, can be determined.

The. foliowing is an important result concerning the size of Jo (Fpn); which follows from the proper-
ties of Z¢(t), described above.

Theorem 3.1. Let C be a hyperelliptic curve of genus g defined over .7, and let N, be #Jo(Fpn).
Then

|
(Pnj2 = 1) < Np < (p™2 + 1)%

Thus,
| #JG (F H) = pﬂg

approximately.

Chapter 4

OUR IMPLEMENTATION

This chapter discusses the implementation details of a hyperelliptic curve Cryptosystem over prime fields
and more precisely over Zyp, where p is prime . In the next few sections, data structures and algorithm
details are presented for the three main areas that were implemented, the underlying field and its arith-
metic, the polynomial arithmetic and the divisor arithmetic. The implementation of divisors includes
defining an algorithm for their addition and their multiplication with a big integer. The code for this
project, including all the field and divisor operations was written in C.

4.1 Field Arithmetic Implementation

The elements of the Jacobians are represented as a pair of polynomials whese coefficients are elements
of a finite field. To manipulate divisors one needs tools to manipulate polynomials.In order to perform
polynomial operations, it is necessary to be able to realize the field operatic-ns. We only concentrate on
prime fields. The advantage of using a prime field is that with slightest modification the same program
can be used for a class of fields and experiment can be carried out. The program can also be easily
modified to cater to fields of characteristic 2. In this section we describe implementation of the field

operations and in the next section we will focus on the polynomial operations. To perform an addition
in the Jacobian we need the field operations: addition, multiplication/squaring and inversion.

To make the best use of the existing facilities of the Solaris system used to implement this project

the field size was chosen to be a unsigned long long integer, which is 64 bits in length. A user defined
new data type was defined by the C statement: -

typede! unsigned long long usint;

For the implementation of the underlying field operations we used a structure GFP _element to
store a field element. Functions were defined to implement unary and binary operations on these field

elements.If p is any prime then an element in Zy is an integer lying between 0 and p-1. So the data
structure representing a field element is as simple as : f

19

{

20

typedef struct

usint val;
} GFP_element;

The value of p was maintained as a global variable via a pre-processor directive statement. The

following functions were used to manipulate the field elements:

/*®

/

GFP_element addf (GFP_element ,GFP_element):
adds two field elements and returns the sum */

GFP_element subf (GFP_element ‘,GFP_element);
subtracts two field elements and returns the difference »/

GFP_element mulf (GFP element ,GFP_element);
multiplies two field elements and returns the product #*/

GFP_element divf(GFP_element ,GFP_element):
divides two field elements and returns the quotient #*/

GFP_element asainf (GFP_element);
assinement of one field element to another »/

int equf (GFP element ,GFP_element);
compares two field elements, returns 1 if equal, 0 otherwise */

GFP _element getf(usint);
takes an integer as input and returns a field element whose value = the integer */

int iszerof (GFP_element);
checks if a given field element is zero */

void rite(GFP_element):)
prints the value of a field element */

usint Inverse(usint):
Using Euclid’s extended algorithm finds the inverse of a field element */

4.2 Implementation of Polynomial Arithmetic

In our program a polynomial was implemented as a C structure as defined below: typedef struct

{

int degree;
GFP_element coeff [MAX_COEFF];

} Poly;

21

Thus, the polynomial structure has two members : degree - an integer representing the degree of
the polynomial and coeff - an array of field elements representing the coefficients of the polynomial,

MAX_COEFF isg a global variable defined by a preprocessor directive limiting the number of terms of
a polynomial.

Again, functions were defined to implement polynomial arithmetic. The most important of them
being the one finding the ged of two polynomials using the Extended Euclidean Algorithm. This, in

turn, uses another important function finding the quotient and remalnder when one polynomial divides
another. A list of functions used in the program runs thus:

Poly create poly(int,GFP_slement+);

/* Creates a polynomial from an array of field elements used as coefficients and an integer
representing its degree */

Poly addp(Poly,Poly);
/* For adding two polynomials */

Poly subp(Poly,Poly);
/* For subtracting two polynomials #/

Poly mulp (Poly,Poly);
/* For multiplying two polynomials */

void asainp (Poly *,Poly);
/% Assigning a polynomial to an empty structure =/

int equp (Poly,Poly);
/* For comparing two Polynomiala, returns 1 if equal, 0 otherwise * /

Poly divp(Poly,GFP element);
/* Divides a polynomial by a field element*/
Poly square(Poly); |
/* Finds square of a Polynomial */

void show(Poly); .
/* prints a polynomial */

Poly modp(Poly* , Polyx);
/* Finds residue of a polynomial modulo another polynomial %/

Poly gcd(Poly* , Poly+);
/* Finds gcd of two polynomials */

int iszerop{Poly*);
/* tests if a given polynomial is zero */

Poly uminp(Poly);
/* Finds the minus of the polynomial */

22

void pulyudiv(Puly*,Puly*,Pnly*,Pnly*);
/* Divides a polynomial by another pPelynomial, finds the quotient and remainder also */

void exgcd (Polyw, Poly», Pﬁly#, Poly*,Poly*);
/* Finds gcd of two polynomials using Extended Euclidean Algorithm »/

GFP.element LT(Poly#* q); |
/* finds the leading coefficient of a polynomial =/

It is worthwhile to mention the algorithms used to implement the above functions. Addition and
subtraction are plain, we do not have any choice, but to do it term by term. Nor it is that expensive
computationally. Multiplication and division are certainly expensive operations and we have done them
in traditional high school method, leaving a lot of scope for improvement. In fact a lot of optimised
algorithms for implementing these operations over GF(2")are available in the literature. The functions

gcd and xged extensively use multiplication and division. So they will also behave optimally once these
Operations are optimized.

4.3 Implementation of Divisor operations

Divisors are represented in Mumford’s notaion in the program. Every divisor is thus a pair of poly-

nomials over the prime field. In C a divisor can be represented by a structure with two polynomial
-nembers. Thus in our program we have defined a devisor type variable by

typedef struct

{

Poly a;
Poly b:
} Divisor;

Three important functions are used to manipulate divisors. One is to add two reduced divisors.
Another function reduces a semi-reduced divisor into a reduced divisor usiag the Gaussian reduction
algorithm. The third one multiplies a divisor by a large integer. Besides these, functions are written

to create a divisor from two given polynomials, to write a divisor on the console, to assign a divisor to
another and for other such mundane tasks.Some of them are :

Divisor reduce(Divisor,Polyx ,Poly* intx);
/% reduces a given semi-reduced divisor into a reduced dividor by Gausa Algorithm =/

Divisor addDiv(Divisur,Diviaur,Puly* yPoly* ,int*);
/* returns sum of two given reduced divisors #/

Divisor mulDiv(Divisor,usint n,Poly *,Poly* ,intx*);
/* finds the product of a reduced divisor by a large integer */

Divisor assinDiv(Divisor)
/* for divisor assignment */

23

int compDiv(Divigor yDivisor);
/* compares 2 divisors, returnas 1 if equal, 0 otherwises/

void BhnHDiv(DiviHor);
/* displays a divisor */

int iazeruDiv(Divianr);
/* compares a divisor with the zero divisor, returns 1 if equal, 0 otherwige, */

The curve itself was Yepresented by two global polynomials F and H. The pointers to thege poly-
nomials are passed to any function which needed them for computations. The genus of the curve wag
set as another global integer variable G. Although this value can be easily changed in the program,

considering the fact that the secure hyperelliptic curves for Cryptographic purposes are the ones with
small genus, we have fixed the value of the global variable to be 2.

4.4 Implementation of the cryptosystem

On the basis of the groundwork as described above an El Gamal-type cryptosystem waa developed.

Before describing our implementation we give a brief overview of the ElGamal Cryptosystem over any
finite cyclic group G.

ElGamal Cryptosystem

Let G be a cyclic group with generator ar. A user Boh chooses an integer A\ and computes § = a*. He
then publishes 4 in a public directory as his private key. Any user Alice who wishes to send a message
z € G to Bob, chooses a random integer k. Computes a* and zB* abd sends the pair (a*, z9%). Bob,

on receiving the message decrypts this as follows He raises a* to the power A to obtain §*.Finds the
inverse of A% and multiplies the inverse with zf* to get back x.
i

To be more formal, the encryption function ig

Ej;(.‘lf) = (Ul: yz):
where 1 = a* and y, = 28*% and the decryption function ig

S50 to implement an EIGamal Cryptoaystem over the group of divisor classes of a hyperelliptic curve
we need to convert all information into group elements, i.e. reduced divisors. A reduced divisor can

be represented by a pair of polynomials (a(u),b{u)) where, deg a < g, the ganus of the curve and
degb < dega and a(u)divides 5(u)? 4 h(u)b(u) ~ f(u), where h(u) and f(u) are the polynomials occuring
in the equation of the hyperelliptic curve, Since the genus of the curve in this implementation is 2,aisa

24

of a(u) and 2 such integers are taken to be the coefficients of b(u). Thus every twenty or lesser number
of characters give us a divisor. Ofcourse, the polynomials so generated may not satisfy the criterion a

divides ¥* + hb ~ f . To ensure that the polynomials satisfy this condition cach coefficients are padded
with some random bits which are neglected during the decryption process.

4.5 Furthur Developments and Conclusion

Honestly speaking, this a primitive implementation of HECC implementing the basic techniques and
algorithms presented in [2). There is a lot of scope for furthur improvements both in terms of perfor-
mance and security considerations.In this section we describe some aspects where the implementation
has scope for improvement.In fact ag & consequence of relatively new nature of this field ther are many
aspects of HECC that are not fully reported upon.Even, the algorithms reported in literature for addi-

tion and reduction of divisors may not be optimal in nature.However,in this section we are highlighting
possible improvements of this implementation only.

Underlying fleld In this implementation we have chosen prime fields ag the underlying field of
the cryptosystem.Although that is not a bottleneck in tetms of efficiency nor does it compromise on
security aspects, we can implement HECC on other fields of characteristic & ag well.One advantage of
using fields of characteristic more than 2 is that over such a field the polynomial h(u) in the equation
of the hyperelliptic curve can be taken to be zero(see Proposition 2.2). '

Choice of Algorithms Wherever possible, optimised algorithms have been used in this work and
their originsg have been referenced in this thesis. However, many solutions to problema,of which no
precedence could be found, naive solutions have been used. The performance of the program can be
greatly improved if optimised algorithms are used at all places.

)

Use of Lagrangian Reduction Algorithm In this implementation we have used the Gauss’ re-

duction algorithm for reduction of a semi-reduced divisor into a reduced one.The performance can be

improved if Lagrangian algorithm ig utilised, because it takes advantage of partial computation done in
each iteration.

25

GCD Calculation One of the bottlenecks of addition of two reduced. divisors is the calculation
of ged of polynomials using the Extended Euclid’s algoritm. It is a relatively costly operation. Per-
formance of the implementation will greatly improve if gcd is calculated in a more efficient way. One

suggestion in this regard is to try calculating ged's using the lattices as suggested in D. E. Knuth’s Art
of Computer programméng.

Conclusion

We have presented materials relevant to implementation of a hyperelliptic curve cryptosystem.lt
has defined the initialisation of the cryptosystem and the methods for encryption and decryption of
information using the ElGamal Scheme. This thesis has demonstrated the motivation for the study of
hyperelliptic curves and shown that they can be a feasible encryption technique. With the considerations
presented in this chapter and further developments suggested in this section it is conceivable that

HECC could provide a commercially secure alternative to elliptic curve cryptosystems, with atleast the
efficiency of elliptic curves, if not more so.

Bibliography

[1] W Diffie and M Hellman; ” New Direction in Cryptology™;IEEE Transactions on Information
Theory; 22,(1976)

2] N Koblitz "Elliptic Curve Cryptoaystem“;Mathematics of Cnmputations“;48;(1987).

3] N Koblitz; ” Hyperelliptic Curve Cryptosystem”:Journal of Cryptolagy;l,(lQBQ).

4 A] Menezes,Y H WuR J Zuccherato;” An Elementary Introduction to

Hyperelliptic
curves”; Technical Report;University of Waterloo,(1996): CORR-96-19.

(5] D Cantor; "Computing in the Jacobian of the Hyperelliptic Curves” ;Mathematics of Computa-
tions;48;(1987)

[6] A Enge; "The Extended Euclid Algorithm on Polynomials and the Computational Efficiency of
hyperelliptic Curves”;Nov 1999;Pre-print.

[7] S Paulus and A Stein; " Comparing Real and Imaginary Arithmetic for Divisor Class Groups of

Hyperelliptic Curves”;Algorithmic Number Theory:; Vol 1423;Springer-Verlag Lecturer Notes on
Computer Science.

8] L Addleman,] DeMarrais.M Huang; ” A Sﬁb—exponential Algorithm for Discreet Logarithm
over the Rational Subgroup ofithe Jacobians of Large Genun Hyperelliptle Curves over Finite
Fields”;Algorithic Number Theory;Lecture Notes on Computer Science;*77(1994).

9] T Wollinger: ”Computer Architecture for Cryptosystems based on Hyperelliptic curves”:M.S. The-
8is; Worcestor Polytechnique; UK, | |

[10] P Gaudry; ”An Algorithmfor Solving the Discreet Logarithm Problem on Hyperelliptic Curves”;
Advances in Cryptology Eurocrypt 2000;LNCS 1807,2000.

/ (11] G Frey and Ruck; " A Remark Concerning m-divisibility and the Discreet Logatithms in the Divisor
Class Group of Curves”;Mathematics of Cnmputatinns;62;(1994).

[12] F Hess, G Seroussi, N Smart; "Two Topics in Hyperelliptic Curve Cryptegraphy”: HP Tech
Report, HPL-2000-118.

(13] V Miller; Uses of elliptic curves in cryptography”; Advances in Cryptology - Proceedings of
Crypto’85, LNCS, 218(1986).

| .
{14] D Gordon " Discreet Logarithm in GF(p,) using the Number Field Sieve” ,pre-print(1991).

26

