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Abstract

Stnallest rectilinear paths are rectilinear paths with a minimum lenth and a minimum number
of bends simultaneously. Given two pairs of terminals within a rectilinear polygon, we describe
an algorithm to find a pair of noncrossing rectilinear paths within the polygon such that the
total number of lenths and total number of bends are both minimized. But such a smallest
pair may not exist for some problem instance. In that case, the algorithm presented will find,
among all non crossing paths with a minimum total length, a pair whose total length is the
shortest, or find, among all noncrossing paths with a minimum total length, a pair whose total
number of bends is minimized. We describe a simple linear time and space algorithm based
on the fact that there are only a limited number of configurations of such a solution pair.
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Chapter 1

Introduction

Given a set of obstacles and two distinguished points in the plane, the problem of finding a
collision-free path subject to a certain optimization function is a fundamental problem that
arises in many fields, such as motion planning in robotics, wire routing in VLSI and in different
logistics of operations research. In this thesis we emphasize its applications to VLSI design
and limit ourselves to the rectilinear domain in which the goal path to be computed and the
underlying obstacles are all rectilinearly oriented, i.e., the segments are either horizontal or
vertical. We provide a survey of results pertaining to routing in VLSI according to different,
routing environments, optimization criteria and problem solving approach.

In VLSI layout, a basic function unit or circuit module is represented by a rectilinear polygon,
whose shape may or may not be (rectilinearly) convex. The pins or ters.. inals of the same net
that lic on different modules need to be interconnected by wires that mnostly run either horizon-
tally or vertically. In a single layer model, the total length of the wires in the interconnection
15 often used as an objective function, as it affects cost of wiring and total delay. On the other
hand, the number of bends on a path affeets the resistance and henee the accuracy of expected
timing and voltage in chips.Unfortunately, they can not be both optimized simultaneously in
general. Therefore a best path can be categorized by either minimizing each of these measures
individualy, giving them different optimizing priorities, or fixing one at a certain bound and
minimizing the other. In addition to these optimization factors of rectilinear paths, the routing
models and the types of obstacles also affect the complexity of the problems.

- In VLI routing, an important problem is finding collision free rectilinear paths[2] and {3] in the
presence of rectilinear obstacles. Traditionally, one is interested in finding a shortest rectilinear
path connecting a given pair of points, or a path with a minimum numLcr of bends, called a
menimum —bend path. Here we address the problem, taking both factors, the number of bends
-and length, into account. For instance, among the minimum-bend paths, find one whose total
length 1s minimized or among the minimum length paths, find one whose total number of bends
is minimized. Within a rectilinear polygon, McDonald and Peters{5] have shown that there



always exists a path connecting two given points, whose total length and total number of bends
are both minimum. This path is referred to as the smallest path. In[5], McDonald and Peters
presented a linear time algorithm to find such a smallest path in a rectilinear polygon. In the
restricted two-layer routing model, where horizontal and vertical wires must go on separate

layers, the number of bends corresponds to the number of vias used([4]). Here a smallest path
minimizes both wire length and the number of vias.

Algorithms for finding between two terminals are adopted in practice as a basic routine module
for iteratively routing multiple two-terminal nets. But if more than one paths can be found
at a time minimizing the total cost of these paths would yield better overall results. Here,
we consider the problem of finding two noncrossing paths within a rectilinear polygon with an
aln to minimize both total length and total number of bends. This i our an initial attempt,
of attaking the general k > 2 pairs of noncrossing paths in a simply connected routing area
represented as a rectilinear polygon. Two paths are called noncrossing if they either are disjoint
or may overlap, but never cross,each other. Finding noncrossing paths has sevaral applications
in layout design in VLSI. (In robot motion planning this problem can be mapped to the layout
of multiple robots in the same room).



Chapter 2

Problem Formulation and some
Definitions

A rectilinear path is a path consisting of only vertical and horizontal segments. The length of a
rectilinear path is the sum of the lengths of all its segments. An obstacle is said to be rectilinear
if all its boundary edges are either horizontal or vertical. The point adjacent to a horizontal
segment and a vertical segment is called a bend. Let d(m) and b(r) denote, respectively, the
length and number of bends of a path . The rectilinear distance between two points p and

g equals |p.x — q.z| + |p.y — q.y] where, p.z and p.y are abscissa and the ordinate of point p,
respectively. |

From now onwords, apath refers to a rectilinear path and all the obstacles are rectilinear unless

otherwise specified.
b
Given a set of disjoint obstacles, a source point s and a destination point ¢, we define the

following problems:

Shortest path (SP) Problem: Find a shortest (collision-free) path fom s to t.

Minimum Bend Path (MBP) Problem: Find 2 path from s to ¢ with minitnum number
of bends.

Smallest Path (SMALLP) Problem: Find a path from s to ¢ such that it is of minimum

length and has a minimum number of bends simultaneously. Such a path is called smallest
path.

Minimum Bend Shortest path (MBSP) Problem: Find a path with minimum number
of bends among all the shortest paths from s to £. Such a path is called minimum bend
shortest path.
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Figure 2.1: A rectilinear path inside an isothetic polygon

Shortest Minimum Bend Path (SMBP) Problem: Find a shortest path among all the
minimum bend paths from s to t. Such a path is called shortest minimum bend path.

Minimum Cost Path (MCP) Problem: Find a minimum cost path from s to ¢, where the
cost 18 a non-decreasing function of the length and the number of the bends of a path.

Bounded Bend Shortest path (BBSP) Problem: Find a shortest path among all the

paths from s to ¢ with the number of bends no greater than a given bound. Such a
path is called bounded bend shortest path.

Bounded Length Minimum Bend path (BLMBP) Problem: Find a path with the min-
imum number of bends among all the paths from s to t with length no greater than a
given bound. Such a path is called a bounded length minimum bend path.

Here, we consider the following problem : given a simple rectilinear polygon and two pair
of terminals within the polygon find a pair of noncrossing paths among the corresponding
terminals within the polygon such that the total number of bends and total length are both
minimized. If simultaniously both are not possible then compromise one with the other..
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Definition 1 A Rectilinear Path connecting two points u and v consists of a sequence of
horizontal and vertical segments, represented as { 31 = P13 92,92 = P2, P31+, Sk = Pk Phrl};
where {p2,p3,...,px} are the end points of the segments, and u = p1,v = pry1.

Definition 2 A Simple Rectilinear Polygon is a rectilinear path whose two endpoints coincide
~and whose segments do not self-intersect, except at the end point between consecutive segments.

Definition 3 Two paths, | and w9, are said to cross each other if there is an overlap between
two segments 81,382 € my and 89,84 € Wy can be cyclically ordered as (sy, 82, 33,84). They are

said to be moncrossing otherwise If the total number of incident seqgment associaled with the
overlap 1s fewer than four, they are noncrossing.

Definition 4 A terminal is an end point of a path. A chord is a horizontal or a vertical line
segment from a point on O to another point on P without crossing any boundary segment
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Figure 2.3: Example of crossing and non-crossing paths

of P. ( where P is the name of the polygon and 0P is the boundary of the polygon ). An
edge-to-vertex visible pair refers to an edge and a vertexr that can be connected by a chord.
For an edge-to-vertex visible pair, the endpoint of the chord on the edge is called chord point
corresponding to the vertex. A vertez-vertex visible pair refers lo two vertices that can be
connected by by a chord. The corresponding vertices are called chord vertices.

Definition b A vertez p; i3 concave if the interior angle [p;_1pipir1 has a measure of 270"
(we assume pg = py, and py,.1 = p1.) An edge Pipiy1 13 an extreme edge if both p; and p; 4y are
concave. An exrtreme point refers to the middle point of an extreme edge.

Definition 8 A U-subpath of « path is a three-seqgment subpath, namely sy, 39, and s3; the
segments sy and s3 lie on the same side of the line L,,, containing the segments,. In a U-
subpath, if segment 3o coincides with an extreme edge or passes through a terminal, then we

say that the U-subpath is supported by the extreme edge or the terminal, respectively.

Definition 7 An XY path from one endpoint p (starting point) to another end point q {ending
point) is a path that only goes in +X or +Y directions. X(-Y), (-X)Y and (-X)(-Y) paths are
defined symmetrically. They are all referred to as staircase paths.
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Figure 2.4: Example of pushed-path: mgr = pushed XY-path, and mpg = pushed (—X)(-Y)-
path

Note that an XY path from p to ¢ is a (-X)(-Y) path from q to p and, similarly, an X(-Y) path
from p to q is a (-X)Y path from q to p. -

Definition 8 Given a path m between two terminals p and q, the eztreme sequence of T,
denoted as EX(m ), is the sequence of points that starts with p, followed by the sequence of the
extreme points supporting all the U-subpaths on w, and ends with q.

Definition 9 A path mpq is a pushed XY path from p to q if the following three conditions hold

(1) It 1s an XY path.
(2) For every horizontal segiment hihy on path ny,, hi.x < hy.x.
(3) For every vertical segment U103 on path my,, v1.y < va.y.
Definition 10 A canonical path from p to q is a path composed of a sequence of pushed

staircase subpath between e; and e;yy 0 < i < t, where ¢g = p and ¢; = ¢, and (ey, e, ey €1) 18
the extreme sequence of path.



Chapter 3

Overview of Algorithm

The overview of the algorithm for finding a pair of noncrossing paths 7., and npy, within a
rectilinear polygon is given below. Here 7., i8 the target path from a to o' and m, is the
target path from b to b'. These two paths will be referred to as goal pair.

Let 5z, denote any shortest path between two points z and y ((z,y) may be (a,a’) or (b, b ),
disregarding the crossing with the other path, if any. Now, any of the foillowing five configura-
tions may yield the goal pair.

(1) There is no U-subpath on mee or myy supported by a terminal. ‘Therefore, EX (m,,)
equals EX(Sqe') and EX (myy ) equals EX(Syy).

(2) There is no U-subpath on myy supported by a.Therefore, EX(muq) equals EX(S,y) and
EX (my) equals EX (Spa)||EX(Say ).

(3) There is no U-subpath on myy supported by a’Therefore, EX(n,.) equals EX{S,») and
EX(myy ) equals EX(Sp )HEX (Sary)-

(4) There is no U-subpath on meer supported by b.Therefore, EX (my ) equals EX(Syy) and
EX (Maar) equals EX (Ses)||EX (Shar )

- (5) There is no U-subpath on 7., supported by b’.Therefore, EX (my ) equals EX (Syy) and
EX(mew) cquals EX(S, )HWEX{(Sy ).

Algorithm 2NCP

1. For each of the five configurations described above, do the following:

1.1 Find the smallest paths that correspond to the regular paths defined in the config-
uration. (There are two regular paths in the first configurat.on and three regular
paths in the remaining four configurations.)
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Figure 3.1: U-subpath on nyy supported by o', where @ is the terminal of 7,

1.2 Find a canonical smallest path, 7y, from one of the two smallest paths, denoted
and my, or from the inner path if there are three paths, dend!ed 7y, T and w5, Call
it the first path.

1.3 Compute the canonical smallest path from another smallest path, m3. Call it the
second path. While computing the second path, we detect and record any interaction
between the first and sccond paths. .

1.4 1If the solution is not of the first configuration, find the third canonical smallest path,
m3 {called the third path if the coufiguration is not the first one ), and detect and
record any interactions between the first and third path.

Decide the types of all the interactions and resolve them according to their types.

S

O —
-y

) The optimal solution of the current configuration is the set f paths composed of all
individual optimal staircase subpaths after resolving all the interactions (by pushing
them into pushed paths).

2. 1f the goal pair is of the first configuration, then it is a smallest pair. Otherwise, compare
the resultant paths of the remaining four configurations, and return a smallest pair, if it
exists, or a minimum-bend shortest pair or a shortest minimum-bend pair as desired.



Chapter 4

Implementation Details

4.1 Data Structures

We store the polygon in a doubly link circular list, called P, and the paths in two doubly link
lists, say L; and L;. Each element of the link list contans a point c(Ze,Ye) in 2D, and two
pointers namely, next and prev. The next field of of an element in the link list P (corresponding
to the polygon) contains the vertex of the polygon next to point ¢ in anti-clockwise order, and
the prev field contains the vertex of the polygon previous to the point ¢ in clockwise order.
For the path L (Lg), the next field of an element contains the next point on the path from
source point to the sink point, and the prev field contains the next point on the same path if
observed from sink to the source.

4.2 Shortest Path Algorithm

We use P to denote the header of doubly connected circular link list ropresenting the polygon
P; Ly and Ly denotes the header of the respee tive link lists. Let p and ¢ denote the source
aed destination points of the path; both p and ¢ are inside Lhe polygon. T'he algoritlnn, thlml
below, returns the shortest path from p Lo g inside the reetilinear polygon.

To find a shortest path between two points p and q in a polygon P, start by drowing a vertical
line down from p until a boundary of P is encountere, let this point be s. And drowing another
vertical line down from q tntil a boundary of P is encountered, let this point be t. Then our
initial path is from p, then follow the boundary of P from s until t will be encountered, followed
by q. This 18 called starting path from p to q.

There are five different types of transformations which can be used to improve a starting path.
These transformation are shown graphycally in the figure 4.1. Transformations Vertex_Edge
visible and Vertex_Vertex visible reduce both distance and number of bends. A Vertex_Edge
visible transform replaces an arbitrary simple path with a line segment between a vertex and

11
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an edge. Transformation Vertex_Vertex visible similarly. Transformation U reduces distance
by ensuring that U-turns which go around an intruding part of the exterior of the polygon do
so it the shortest possible way. Transformation Z reduces the number of bends by removing

unnecesary horizontal and vertical shifts in Z-shaped(or S shaped) parta of a path. Transfor-
mation C is a "cleanup” operation that eleminates untiecesary vertices after applications of
the other types of transformations. Note that all tranformation (and their reflections) can be

applied in any of the four possible rectiliner orientations, not just the orientations shown in
the figure 4.1.

An ending path is a simple path that is obtained from a starting path by repeatedly applying
transformations from figure 4.1 until no further transformations can be made(by maintaning

the property that all intermediate paths that occur during this transformation process are
simple). Note that transformations Vertex_Edge visible, Vertex_Vertex vigible, C all reduce
the number of segments in the path, so they can not be applied more than O(n) times. To
show that transformation U can be applied at most O(n) times, first observed that there are
at most O(n) potential locations for a U-transformation in the starting path and that an ap-
plication of transformation U cannot create a "new” location for a U transformation. Each of
the other four transformatious introduces at most a constant number of *new” locations for a
U transformation because at most two of the segments in a path resulting from one of these
transformations is a new segment or has a different length than before the transformation. It

follows that transformation U cannot be applied more than O(n) times. The ending path is a
a shortest path. |

Function Shurtest..Path_in_u_S:’mplp_Rectilineur_Poiygon
[

Begin |
call initial_path(P, p, y, y1,n).
call final_path{(P,p, z,, 1, n).
End.

Algorithm initial_path(P, Ly, p, q,n)

'/* Input parameters are the pointer P, the points p and ¢, and the number of vertices of the
polygon n */

/* Output parameter is the header L, of the link list representing the path */

Begin
insert p in Lq;
m = just_down_point(P,p,a,); (* a; is an element of the path L, *)
insert a; in the link list L;;
m = just_down_point(P,q,b1); (* b; is also an element of the path L, ¥)
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o )
—

set_previous_point( P, a,);
t1 — next,;
to = sel.previous_point( P, bl);'
while (tl 7"—' tg) do
insert £; in Ly;
T = tl—lrne:r:t;
Endwhile
msert £y in Ly:
msert b; in Lq;
insert g in L;;
return L;
End

i
i
|

Function set_previous_point(P, a,)

/* Input parameters are the pointer P, a point a; on the boundary of the polygon. */
/* This function returns a vertex v of the polygon such that a; lies on the segment v, v = nezt

*/

Begin
f1 P;
ty + (t)—next);
found +— FALSE;
while (found = FALSE) do
if ((¢1oxc = ta—z.) and (a) >z, = ta—z,)
and ({1 -y. < a1y < ty—ye Or t; oy, > a1—Yyc > ta—y.)) then
found = TRUE;
return {;: !
Endif
if ({1 =y, = ta—y,. and ) —=Ye = ta—1yc).
and (617, < a2z, <ty Or {1, > ay =z, > t2—z,.)) then
found = TRUE;

return ¢;;
Endif
L1 = 1a;
t1 = ly—next;
Endwhile

End

Function just_down_point(P, a)

/" Input parameters are the pointer P, a point ay inside the boundary of the polygon. */
/* This function relurns a vertex v on the boundary of the polygon P v is the nearest point of
the polygon from a, in the downword direction */
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Begin
distance = 1000; m = 0,
£y '(-—P;
fpd~(t)- next);
while(i, # P)do

if(t, -y, = L2y and t;—x, < ay =& and gz, > L) —T,)
if(t1 2y, < a1, and distance > |ay >y, — t1—y, )

sel pownt v such that a1 >z, as 2 component and ty—y, as y component;
m = 1; distance = |a; 9y, — t1 =y

Endif
L1ty Lo (t1— next);
Endif
ti1y; tQ{-—(tl-—} ﬂEiEt);
Endwhile
Mt =y, = t, -y, and h—xe < a1z, and ty—z, > a1z, )
if(t; 9y, < a1y, and distance 2 a1y ~ t1—yc |)
set powtnt v such that a1 =*Z. a8 z component and t;—y,
m = 1; distance = |a; -y, — ti—ye |
Endif
Endif

returm m;
End

as y component,

Similar Algorithms for
o 1) just_up_point
* 1) just.right_point
* 1) justleft_point

Function final_path

/*Input parameters are the pointer P, the
of the extreme scquence of the path), n */
/¥ This function returns nothing */

pointer p (header of the path), a pointer E(header

Begin
call pre_final_path(P, p, n);
for (every vertez of path p)do

call harizontal_uerte:z:_edge-m’sz’ble-tmnsfurm(P, p, n);
Endfor

tor(every vertex of path p)do



call vertical_vertex_edge_visible_ transform(P, p, nJ);
Endfor

call c_transformation(p);
while(path p change)do

call u_transformation(P, p, E, n);
Endwhile
while(path p change)do

call z_transformation(P, p, E, n);
Endwhile

call ¢_transformation(p);
End

Function pre_final_path

/TInput parameters ave the pointer P, the pointer p (header of the path), n */

/* This function returns nothing */

Begin
For each of the vertex namely first and last vertez of the parh,
find the visibility in the direction left and right of the path by
calling the routines just_left_point and just_right_point and if
possible, take one which minimizes the path over another.

Adjust(by minimizing path length) the path accordingly.
End

Function horizontal_vertex_cdge_visible_transform

/* Input parameters arve the pointer P, the pointer p, t1 {a vertex
whose visibility we found), n */

/* This function returns nothing */

Begin
For the vertex ty, find the visibility in the direction left and right (which
applicable for the point ty) of the path by calling the routine just_left_point;
or just_right_point (accordingly);

If possible, adjust the pcth by minimizing the path length;
End

15
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Strmilar Function for vertical _vertex_edge_visible_transform.

Function c_transformation
/T Input parameters are the pointer p */
/* This function returns nothing */

Begin
Let byt and ty are three consceutive vertez of the path p, initially t; is the header of p;
change = 0;
while(ty # p)do
if(t;,t2 and t3 are in a straight line)then
remove ly from p;

change = 1;
Endif
if (change = 1 )then
tg = 13,
i3 = to— nexi;
change = (
else
I = iy
ty = I3,
las = o — nert,
End if
Endwhile

End

Function u_transformation
/*Input parameters are the pointer P, the pointer p (header of the path), a pointer E (header
of the extreme sequence of the path), n */

/¥ This function returns 0, if path not change by this transformation and 1 otherwise. */

Begin
Let €y, to, 83 and t4 are four conseculive vertex of the path p, where initially
t1 ts the header of p;
change = 0;
while(t; £ P)do
if(t,to,t3 and ty form a u-subpath)
find the visible points py and py from t| and t4 respectively in the direction t4 and t; respectively



find the nearest points; between P1 to p2 on the polygon from t,;
make the distance 0 between 31 and ty by changing t; and 5 approately;
if( ty change)then |

change = 1;

Endif
mnsert the extreme point (if exists) in E:
Endif
Ly =ty
fy = tg;
ty = t4;
i =ty — next;
Endwhile
return change;

End

Function z_transformation

/*Input parameters are the pointer P, the pointer p (header of the path) */
/* This function returns 0, if path not change by this transformation and 1 otherwise. ¥/

Begin
Let ty,ty, t3 and t4 are three consicutive vertez of the path p, initially
ty s the header of p;
change = (;
while(?; # p)do
if(t1,to, 13 and ty form the z-subpath)then
check the visibility from t;,t3 & to, t4 (by checking which set applicable) and
check the validity of decreasing one bend pf the path. If decreasing possible

then decrease the appropriate bend of the path p, by taking appropriate action;
change = 1

Endif

I = to;

lg = tﬂ;

t;; — t4,’

l4 = 14— next;
Endwhile
return change;

End

This is the end of finding Smallest path algorithms.

17
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4.3 Detection of crossing of two given paths :

Now we can find smallest paths using the algorithms g.sen wn section 4.2 for given polygon
and a pair of terminals. So we, first find a pair of paths using the above algorithm, then check
whether they are crossing or not. If they are cross then we will Jind detour. SO now, our task
ts to checking, after finding a pair of paths, they are cross or not.

To detect shortest paths Sgqr and Syy cross or not, We do the follounng. We first compute the
the extrem sequences of paths En,y = (a,a;, 0k, @' ) and Empy = (b, by, ..., by, ') (in the time
of U-transformation), where k, | > 0. Call the staircase paths from a to a; and a; to a’ the
leading part and trailing part of S,,, respectively, and the canonical path from ay to ay, the
main part of Saqr. It is possible that the main part of S,, is empty, tn which case, S,y con-
tains just one(k = 0) or two(k = 1)staircase subpaths. Now we divide detecting crossing in two
parts. First part check crossing between two main parts of the paths and second part consist of
checking leading and trailing part of S, with Syy and leading and trailing part of Spy with S,,.

To check the first part we check k, | geq 0 or not. If k, | < 0 then checking this part is
not required. If k, 1 geq then consider a homeomorphic transformation of 6§ P(boundary of
polygon) in to a unit circle, und extreme poimt mapped to the wnit circle accordingly (shown
mn figure 4.2). Then map the first and last extreme points of the both patis on that unit circle.
Then check(by lincar scanning the extreme sequence of polygon) the four extreme points on
that untt circle are came in alternate from both paths or not. If they are in alternate then the
paths are cross each other, otherwise not.

In second part of checking crossing, we check the crossing of aay and aga’ with each of bby by b,
..., byb" and check the crossing of bby and bb' with each of aay,a1a9, ..., ara’. To check the
crossing between asa;y1 and bjb; 1, we take the intersection rectangle R defined by a;, a4
and bj, bj1.If the intersection points of a;a;11 with R and intersection points of bjb; 1 with R
alternative when we round the rectangle in any direction then the portions aiai+1 and bj, by
are cross with each other, otherwise not.

Function find_poly_cxtrempoint

/% Input parameters are the pointer P, EP (adress of the header of extreme sequence of the
polygon) */

/* This function returns 0, if the number of extreme point is none and 1, otherwise. */

Bogin
Let ty,ta, t3 and t4 are three consicutive pointers to the vertices of the path P, initially ¢,
is the adress of the header of P; -
while(ty # P)do
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if(tafs i an extreme cdge)then
wisert the midle point of the edge I3k in EP;

Endif

h {5,

to — 1,

fq = 34;

f4 = 14— next;
Endwhile

End

Function check_.cross_e_extrem
/* Input parameters are the pointers EP, E1, E2 (pointers to the headers of extreme sequences
of the polygon, path_1 and path_2 respectively) */

/* This function returns 1, if within the extreme sequence two paths are crossed and 0, other-
wise. */

Begin
Let ty € £y are the pointers of first €4 last extreme point respeclively of the path_ 1 and
ty by are the pointers of first # last extreme poind respectively of the path 2. Also let
pir 18 the pointer of first extreme point of the polygon,
cross = ();
while(p) not traverse the all extreme points in EP)do

check whether py takes alternative from { t1, t3} and { t3, t4} or not;
if(alternative) then

cross = 1;
break;
Endif
Pl = p1— next;
Endwhile

return cross;
End

Function check_eross_e_simple

/¥ Input paramelers are the pointers K1, E1, E2 (pointers to the headers of extreme sequences
of the polygon, path_1 and path_2 respectively) and the pointers pl & p2 (pointers to the headers
of path_1 and path.2 respectively) */

/* This function returns 1, if leading part or trarling part of path-1 cross with path-2 or if
leading part or trailing part of path-2 cross with path-1 and 0, otherwise. */
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Begin
Let A = {pa,p3,..px_1} and B = {q2,q3,...qr~1} be the extreme sequence from source to

destination of the path-i and path-2 respectively and M & pr are re pectively source and

destination of path-1 and q, & q, are respectively source and destiration of path-2.
rross = (),

for (every scgment from ¢; to qi41,i=1,2,..r — 1)do
draw two rectangles with diagonal $155 and GiGit1;
find the intersection rectangle R
Let t) and t3 are two intersection point of path-1 with R. Also let ts and t4 are two
intersection point of path-2 with R;
Now traverse the rectangle in any direction;
if(points come alternatively from the set { t1, t3} and { t3, 4} then
cross = 1;
Endif
Endfor
similar for loop for rectangles with diagonal PPk and GiGi1. 1= 1,2,..r — 1;
siumilar for loop for rectangles with diagonal gip; and gidir1- 1 =1,2,...k -1;
Similar for loop for rectangles with diagonal p,—7p, and GiGi+i- 1 =1,2,...k - 1;

)
return cross;
End

4.4 Detour of the Paths :

Let [a,a'] and [b,b'] be two smallest paths inside the polygon. We detour paths, if paths are
crossing. Let [a,a'] and [b,5!] are crossed path. Our goal is to find the noncrossing optimal

paths. So, we detour the paths a, ali and b,b'. There are four type of detour can be possible,
namely,

sone path is [a,a'] and another path is the union of two paths, namely, [b,a] and [a,b!].
sone path is [a,a'] and another path is the union of two paths, namely, b,a'] and [al,b!].
eone path is (b, bl] and another path is the union of two paths, namely, [a,b] and fb,a'].
sone path is [b,b'] and another path is the union of two paths, namely, [a,b'] and !, al].

In each of the above type of detour, we first find the smallest path by the algorithms, given in
section 4.2. Clearly these paths will be decleard as noncrossing, if we check by the algorithms
described in section 4.3. But always this can not happen in the figure 4.8 So, we need to find
canonical paths, which we will describe in next section. After finding canonical paths, we find

which of the four type of paths, is optimal with respect to our optimal criteria and we report
accordingly.
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4.5 Canonical path

Definition of a Canonical path is already defined in Chapter 2. Here we describe the algorithm
of constructing a canonical path from a smallest path.

Function canonicalpath

/¥ Input parameters are pointers P, P, E, n{ where P, p, E, points to header of polygon, path,
extreme sequence of the path and n is the number of vertices of the polygon */

/" This function returns to the pointer p */

Begin
Let {t3,t3,...,tk—1 } be the sequence of extreme points of the path p. Also let t; and t; are
respectively source and destination points of the path p;
for (each t;,, t;y) (i=1, 2, ..., k- 1}))do
if((ti.xz > tiy1.2 and iy > tig1.y) || (tiz < tiy1.7 and ti.y < t;+1.y))then
call canonical_pushed_zy(P, p, t;, t;11, n);
else
call canonical_pushed_cross_zy(P, p, t;, ti1q, n);
Endif
Endfor
refurn p,
End r

I

Function canonical_pushed_zy
/* Input parameters are pointers P, and p. Pointers e; and ey pointing two points, between
which we find canonical path */

/* This function returns nothing */

Begin

Let ty and ty are vespectively just previous point of ey and eq, but in the case of source

point of p, | = e and i the case of destination point of p, to = ¢o. Let {v1,v2,..., 05}

be the sequence of vertices of the path p from t| to its;

if(e;.x > e9.7 and e1.y > ey.y)then

for (each vy 1 = 2, ..., r- 1) do
if(v;.y = v;41.y Jthen
see the visibility of the points v; and vy, in downward direction on the polygon.
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Let m and n e two visible point. Find the mazimnum height of the vertices from
m to n on the polygon;

if possible decrease the height of T;U;77 by changing the value of y co-ordinate of
vi and v;4q;
else

see the visibility of the points v, and vit+1 i left direction on the polygon. Let m
and n be two visible point. Find the mazimum z co-ordinate of the vertices from
m ton on the polygon;

if possible decrease the value of z co-ordinate of Vili+1 by changing the value of z
co-ordinate of v; and vyyq;
Endif

Endfor
else
for (eachTio 7 i = 2, ..., r - 1) do
v,y = viy1.y Jthen
sce the visibility of the points v, and Vi1 M upward direction on the polygon. Let
m and n be two visible point. Find the minimum Yy co-oruinale of the vertices from
m to n on the polygon;
of possible increase the height of B;Ti11 by changing the value of y co-ordinate of
(L and Viyiy
else

see the visibility of the points v; and Vi m right direction on the polygon. Let m

and 1 be two visible point. Find the minimum o co-ordinate of the vertices from
m to n on the polygon;

tf possible increase the value of z co-ordinate of TiUi+1 by changing the value of ¥
co-ordinate of v; and Vit1;
Endif
Endfor
Endif
End

e Sumilar algorithm for the routine canonical_pushed_cross_zy except the iype of paths. Routine
canontcal_pushed_zy compute canonical path of type XY or (-X)(-Y)} from the same type, but

routine cenonical_pushed_cross_zy compute canonical path of type (-X)Y or (X)(-Y) from the
same tlype.
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mapping of extreme points to the circle
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Figure 4.3: Interaction of two X — Y paths
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Chapter 5

Experimental Results

Here we give two results, details of these results are in tables and in Jigure shown below.

# of vertices | # of extreme point | Lengths | Bends | CP U: Time
Polygon 46 8 210 46
figure 5.1 0.01 sec
Pathsfaa’:bb’] 15 6 159 15
Polygon 48 9 231 48
figure 5.2 0.002
Pathsfaa’:bb’] 17 i ] 132 17
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Figure 5.1: One of the experimental result
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Figure 5.2: One of the experimental result




Chapter 6

Conclusion

We have presented a O(n?) algorithm for finding a pair of noncrossing rectilinear paths
connecting two distinct pairs of terminals within a simple rectilinear polygon. We have shown
that the noncrossing pairs of paths that have a minimum total length and minimum total
number of bends may not exist. The O(n?) time algorithm comnputes such an optimal pair if
it exists, and computes an optimal pair with either the length or the number of bends as the
primary measure and the other is the secondary measure. The algorithm can also be modified
to report an optimal pair of paths whose combined cost, an increasing function of both length
and the nmnber of bends, is minimum. the query mode in which two pairs of terminals are
given as a query, and the best pair based on a prespecified optimization criterion is being
investigated. Complexity of our algorithms is O(n?) due to find the visibility point, in[1], they
find triangulation of a simple polygon in O(n) and using this result in[6], they find the visibility
in O(n) time. The complexity O(n), is theoritically possible, but in implementation issue it is
imposible to do the result in O(n) time. Generalization to k > 2 case of this problem remains
open,

b
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