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Chapter 1

Introduction

1.1 Motivation

Over the last decade, the progress in the filed of genetics has been phenom-
cnal.  In particular, the gene mapping and sequencing problem have drawn
the attention of mathematicians and computer scientists with the consequence
of the emerging field of computational molecular biology {1]. Many problems
related to identification and analysis of physical sequencing of DNA molecules
have been formulated very elegantly as combinatorial problems and even been
proven to be NP-hard. Herein lies the necessity for designing efficient heuristics.
Genetic algorithms have been found to be very successful in solving compu-
tationally complex problems. Thus the motivation for applying genetic algo-
rithms to combinatorially hard problems in genetics arose.

1.2 What are Genetic Algorithms?

GA is one of the most promising tools in the Soft Computing domain. Due to
its versatile ability to tackle optimization problems arising {rom almost every
branch of science and technology it has become an unportant tool to solve
hard’ problems nowadays [2, 3]. With GAs having such versatile abilities, one
might think that the inner workings of a GA would be very complex.In fact,
the opposite is true. Simple GAs are mainly based on simple string alteration
and substring concatenation,nothing more, nothing less. Even more complex
versions of GAs still use these basic ideas as the core of their scarch cugines.



BEGIN AGA
Create initial population at random.
WHILE NOT stop DO
BEGIN

Natural selection: Select parents fronn Lhe population,
Cross over: Produce children from the selectod parcnts,
Mutation: Mutate individual in the population.
Restore the children for the next generation population.
KNI
QOutput the best individoal found,

END AGA.

Figure 1.1: Structure of Genetic Algorithm.

1.2.1  Structure of a Genetic Algorithm

FFor applying GA on some particular optimization problem the Representation
of strings to encode the search space and an appropriate Cost Function are Lo
be judiciously designed belore hand. Once the string representation and cost
function are fixed, a set of initially chosen strings are subjected to a sct of
genetic operations,namely natural selection, cross over and mutation to obtain
the set of next generation strings. lach operation is associated with a non-
/00 prob;}}iiljty of beiug applied. Further details of these operators appoear
e section L& The sume process 1s repeated for some pre-defined numbeor ol
times. Over the generations the process converges and the genetic operations
give birth to the optimum strings. The pseudo-code of the abstract genetic

algorithm is furnished in Figure 1.1.

1.2.2  Stochastic nature and power of Genetic Algo-
rithm -

Many of the combinatorial optimization problems having substantial practical
inportance, are known to be computationally hard. The inherent stochaistic
nature of Genetic Algorithm is found suitable in solving such hard problems.
As the operations of the cenetic algorithm are very simple and can explore the
cntire search space very cthiciently, GAs are used extensively on computation-
ally hard optimization problems to get the near optimal result in considerably
small time.



1.2.3  Simple and Elitist. models

G As are broadly categorized into two models as follows:

Simple model of GA

These are GAs consisting of only the above mentioned Genetic Operators
namely natural selection, cross over and mutation. In this category there is
no explicit preservation of the better(and even the best) strings. So it may
very well happen that better(or the best) strings can get generated and lost
susequently over the generations.

Llitwst model of GA

I this category the GAs are equipped with one more operation called elitismn
apart from the above mentioned genetic operators. Elitism is basically a

method of preserving the best(sometimes better also) strings evolved out of
the genetic operations over the generations.

1.2.4 Basic Genetic Operators

One minor operator mnely natural seleetion and two main operators namely
cross over, mutation form the body of the GAThey are briefly deseribed below
with examples of binary strings of length 10,

Natural Selection

[t is the process of choosing strings in the working Population with probability
proportional to their cost(in case of maximization problem). This method

is an implementation of the law 'Survival of the fittest’. It is evident from
the choosing methods that multiple copies of the same string can exist in the
working population. This is even desirable, since the stronger strings will
begin to dominate, eradicating the weaker ones from the population. There
are also difficulties with this, as it can lead to premature convergence on a local
optimum.

Cross Over

Crossover in biological terms refers to the blending of chromosomes from the
parents to produce new chromosomes for the offspring., The analogy carries
over to Crossover operator in GAs. [ is a method of substring concatenation.



(tiven two parent strings {rom the working domain the GA first calculates
whether crossover should take place using a parameter called the Crossover
probability. If so then a Cross Over cut-point(ie. an index in the string) is
randomly fixed and both the parent strings are split at this cut point. Now
two offsprings are generated by cross-concatenating the four substrings.

Frample: Let the parent strings be pl = 1111010101, p2 = 0101001101 and let
4 be the Cross Over cut-point. Then the splitted substrings are p1{L) = 1111,
pl(R) = 010101, p2(L) = 0101, p2(R) = 001101. Therefore, after cross-
concatenation the generated offsprings are osl = p1(L)||p2(R) = 1111001101,
052 = p2(L)||pt () = 0101010101.

Mutation

Natural selection and crossover alone can obviously gencrate a staggering amount
of differing strings. However, depending on the initial population chosen, there
may not be enough variety of strings to ensure that the GA explores the entire
problemn space. Or the GA may find itsell converging on strings that are not
quite close to the optimum it secks due to a bad initial population.

Some of these problems are overcowe by introducing aonmtibion operator into
the GA. The GA has a mutation probability which dictates the frequency at,
which mutation occurs.The GA checks to see if it should perform a mutation
by randomly generating a number between 0 & 1 and then checking against
the Mutation probability. If it should, it randomly changes a position of the
string to a new one. In our binary strings, 1s

Ezample: Let the GA decide to mutate the bit position 4 of the string s;
= 1101000001. Then the resulting string after the Mututation will be s, =
11000G0001.

1.2.5 Convergence property

The basic philosophy of genetic algorithin lies in the fact that il the genetic
operators are appropriately designed for an elitist model of GA to solve a
specific problem in hand then the process is guaranteed to converge along with
the optimal strings in the final population after infinite iterations. If alone the
Mutation operation is properly designed so as to esure that cach string in the
working domain can be mutated to any string in one step then it can be proved
Lo converge Lo the optimum solution [4].
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1.3  Scope of this project

In the area of gene mapping, when a restriction enzymes is applied on a DNA ,
the DNA molecule is cut up into fragments at specific locations which depend
on the DNA sequence and the enzyme. By gel electrophoresis method, the
lengths of these digested fragments can be measured and then from the values
of these lengths, a valid map sequence has to be derived. 1t is known that data
from the application of a single enzyme does not suffice nor does that from
application of two different enzymes. However, it is possible to construct a
valid map by application of two enzynes separately as well as in conjunction on
the same DNA. Multiple valid solutions may be possible. This is the essence of
the Double Digest Problem (DDP), which is a well-known problem in genetics.

As DDP is an NP-complete problem, our major goal of this project is to design
an elitist GA to obtain all valid solutious to the Double Digest Problem (DDP).
Incidentally, not only is DDP NP-complete but also structurally it has certain
strong similarities with the famous NP’-complete problem of Traveling Salesman
Problem (TSP). Several heuristic approaches to TSP, including GA with a
variety of genelic operators, exist in the literature [5]. So, during the process
of designing a GA for DDP, GA solution approaches to TSP were revisited
aud a set of new genetic operators have been proposed. Finally, the GA for
DDP was designed with a totally new set of genetic operators and algorithinic
structure.

It needs to be empliasized that almost all the existing genetic algorithins pro-
duce an optimal solution to the given problem and terminate, but not all the
optimal solutions if there are more than one. Intuitively, producing all optimal
solutions seems to be more difficult especially for problems where the number
of optimal solutions can be very high. DDP happens to be one such problem
and hence the design of a GA for it is all the more challenging.

1.4 Organization of this report

In Chapter 2, the Travelling Salesman Problem(TSP) is revisited with a set of
new genetic operators. Chapter 3 consists of the definition of Double Digest
Problem(DDJI?), the compexities of the structure of its solution, existence of
multiple solutions, partioning its solution space and different approaches to
solve DDP. In Chapter 4, the DDP is addressed by genetic algorithm along
with detailed deseription of the string representation cost function, genetic
operators, results ete.



Chapter 2

TSP revisited with a new set of
genetic operators

2.1 Formal definition of TSP and its relevaice

The ‘Iravelling Salesman Problem is, given a collection of cities,to deterniine
the shortest tour which visits cach city precisely once and then returns to its
starting point.More formally we may define the TSP as follows:

Let for n number of cities an n x n Distance matrix C = [¢; ;] is given. We
want find the non-cyclic permutation 7 of the cities (1, ..., n) so as to minimize

the total distance, F

n—1

C= D Ca(i)m(i+1) + Cr(n)n(1) (2.1)

1=1

The Travelling Salesman Problem is a very well known NP-complete problem
and therefore any problem belonging to the NP-Class can be reduced to TSP
tn polynomial time. Therefore solving TSP has many fold implications as there
are several NP-complete problems in real life.



2.2 A new approach with modified Genetic op-
erations & Greedy amalgamation

[n this section a few modifications of the genetic operations are suggested
over the existing genetic operations as discussed in the preceding section. The
structure of the algorithm is given in Figure 2.1. Greedy heuristic method is
partially injected into the classical structure of genetic algorithm as will be
discussed shortly.

BEGIN ALGM_TSP
Make initial population of tours random.
WHILE NOT stop DO

BEGIN |
Natural sclection: Select parents from the population.
cross over: Produce children from the selected parents.
Mutation: Mutate the individaal, |
Blitism: Restore the best tour obtained among the present

and previous generation to the next generation.
END

Output the best mdividual found.
END ALGM_TSP

Figure 2.1: The abstract structure of Genetic Algorithmn

1

2.2.1 String representation and Cost function

As we are interested in finding the shortest tour for a given collection of n
cities, we designate the cities by 0 through n — 1 and without loss of generality
assume that the staring point is city #0. So there are as many as (n — 1)!
many different tours possible out of which we have to find the shortest one.

50 the natural choice of string representation is an array T of n — 1 number
of cities which basically a permutation of (1,...,n — 1). The starting point is
always assumed to be city #0 and thus dropped from the string.

The Cost, function

G {Set of all valid strings} —  {Set of non-negative real minbers}



is basically the total distance of the tour and defined in exactly in the similar
way as that of in eqn. 2.1 |

n—2
¢ = corn) + D er@)T+1) + Cr(n—1),0 (2.2)

1=1

Where, C = [c; ;] is an n x n cost matrix such that ¢;,; gives the cost of visiting
city #j from city #i, for all 4, 7. Therefore our goal in this case is to find the
string with minimum cost along with its cost-value.

2.3 Different Genetic Operators for TSP: Lit-
erature survey

Out of the different types of cross over and mutation operators used to solve
ISP by GA [5] two cross over and two mutation operators which are somewhat

related to our designed genetic operators are described below. with exatples.

2.3.1 'Two different Cross Over operations

Partially-Mapped Crossover (PMX)

The partially-mapped CrosSQver operator was suggested by Goldberg and Lingle
(1985). It passes on ordering and value information from the parent tours to the
offspring tours. A portion of one parent’s string is mapped onto a portion of the

other parent’s string and the remaining information is exchanged. Consider,
tor example the following two parent tours: (12345678) & (37516824)

The PMX operator creates an offspring in the following way. First, it selects
uniformly at random two cut points along the strings, which represent the
parent tours. Suppose that the first cut point is selected between the third
ancl the fourth string element, and the second one between the sixth and the
seventh string clement. For example, (123 x 456 « 78) and (375 * 168 « 24).
The substrings between the cut points are called the mapping scctions. In our
exatple they deline the mappings 4 <5 1,5 45 6 and 6 < 8. Now the mapping
section of the first parent is copied into the second offspring, and the mMapping
section of the secoud parent is copied into the first olfspring, growing oflspring
L (waw * 168 * 2:x) and oflspring 2: (xxa * 456 « zz). Then oflspring i(i — 1, 2)
is lilled up by copying the elements of the i** parent. In case a city is already
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present an Lhe ollspring i is replacod necording to the mappings, 1or exnnple,
the fiest. element of olspring L would e a 17 like the [irst, element. of Lhe first,
parent. However, there is already a ‘I’ present in offspringl. Hence, because
of the mapping 1 & 4 we choose the first element of ollspring 1 to be a 4,
The second, third and seventh elements of offspring 1 can be taken {rom the
first parent. However, the last element of offspring 1 would be an 8, which is
already present. Because of the mappings 8 < 6, and 6 < 5, it is chosen to
be a 5. Hence, offspring-1is (4 23 *168 * 7 5). And analogously, we find

offspring-2 to be (378 *456 * 2 1). It is worth noting that the absolute
positions of somne elements of both parents are preserved. '

A variation of the PMX operator is described in Grefenstette (1987): given
two parents the offspring is created as follows. First, the second parent. string
1s copied onto the offspring. Next, an arbitrary subtour is chosen from the first
parent. Lastly, minimal changes are made in the ofspring necessary to achieve
the chosen subtour. For example, consider parent tours (123456 7 8) and (1

037246 8) and suppose that subtour (3 4 5) is chosen. This gives offspring
(1340726 8).

Order Based Crossover (OBC)

The order based crossover operator (Syswerda 1991) selects at, random several
positions in a parent tour, and the order of the cities in the sclecteod positions of
this parent is imposed on the other parent. For example, consider the parents
(12345678)and (2468 7531) antl suppose that in the second parent the
second, third, and sixth positions are selected. The cities in these positions are
city 4, city 6 and city 5 respectively. In the first parent these cities are present
at the fourth, fifth and sixth positions. Now the offspring is equal to parent 1
cxcept 1n the fourth, fifth and sixth positions (1 2 3 * * * 7 8). We add the
missing cities to the offspring in the same order in which they appear in the
second parent tour. This results in (1 23465 7 8). Exchanging the role of
the first parent and the second parent gives, using the same selected positions,
(2438756 1):

2.3.2 Two different Mutation operations

Displacement Mutation (DM)

The displacement mutation operator (Michalowicy 1992) first selects a subtonr
at random. This subtour is removed from the tour and nserted in i randoin
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place. For example, consider the tour represented by (1 2345 ¢ 7 8); and
suppose that the subtour (3 4 5) is selected. Hence, after the removal of the
subtour we have (1267 8): Suppose that we randomly select city 7 to be the
city after which the subtour is inserted. This results in (12673458 ).
Displacement mutation is also cajled cut mutation (Banzhaf 1990).

Insertion Mutation (ISM)

The insertion mutation operator ((Fogel 1988); (Michalewicz 1992)) randomly
chooses a city in the tour, removes it from this tour, and inserts it in a randomly
selected place. For example, consider the tour (1234567 8); and suppose
that the insertion mutation operator selects city 4, removes 1t, and randomly
inserts it after city 7. Hence, the resulting offspring is The insertion mutation
operator is also called the position based mutation operator (Syswerda 1991).

2.3.3 Brief description of the new Genetic operators and
Greedy Heuristic method

I the following sections the additions, alterations and modilications of e
basic genetic operators are described.

Natural Selection

This operation is designed b‘}; 4 common method of doing natural selecton in
GA called the Roulette Wheel method. The Roulette Wheel method simply
chooses the strings in a statistical fashion based solely upon their relative (ie.
percentage) cost/fitness values. |

Here the Natural Selection is done by randomly choosing strings from the
working population with probability inversaly proportional to their cost,

Cross Qver

The primitive cross over operation as described in the previous chapter with
binary strings, might generate invalid strings in this case since here all the
strings are permutations of (1,..,n —1). e.g., Consider for 7 — 10, s, =
[,2,3,4,6,9,8,5,7, 8, = 2,1,9,8,5,6,3,7. 4 are two the two strings eligible

[or cross over and let the cross over cnt-point is fixed to be 4. Then ihe
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pair of offsprings generated by cross-concatenation of the lour substrings are
respectively, a) = 1,2, 3, 4, 5,6,3,7,4,ay = 2,1, 9,8,6,9,8 5,7 Clearly neither
of the offsprings are valid strings 3 & 4 in the first ollspring and 8 & Y in the
second oflspring are repeated.

So to get rid of this difliculty the cross over is done i the following way:

A random mumber is generated at fivst in 0, 1]. Tf the number is less than erogs-
over probability, then the cross-over aperalion takes place. A randomly choser
Cross over cut-point divides the parent strings in left and right substrings. T"he
left substrings of the parents s1 and sy are copied to the left substrings of the
oflsprings ¢, and ¢, respectively. Then the elements of the right substring of
51 are inserted in the right substring of ¢, in the order in which they oceur
in $y.  Similarly, the right part of ¢, is obtained by inserting the clements
of the right substring of s, in the order i occurs 1n 8;. For the previous
example now the generated pair of offsprings will be, by =1,2,3,4,9,8,5, 6,7,
b, = 2,1,9,8,3,4,6,5,7. Clearly this method allows only the generation of
valid strings. Apart from that it is a kind of order preserving cross over which
helps to attain the optima efiiciently. Regarding Cross Over probability it
is kept fixed across the generations and its value is fixed at 0.85 which is a
standard value recomended in the literature.

Mutation

For mutation operation also a slight modification is done over the primitive
version as discussed in the previous chapter with binary strings.

Heve in this case each clement of the string is made linble to be ntaded
as follows, For each 4, while mutating thae ith clement of the string, First a
random number between 0 & 1 is generated and compared with the Muta-
tion probability. If the generated randon niber happens to be less than or
cqual to the Mutation probability then, a random index hetwen 1 & n - 1 is
generated(say j) and the ¢ & ' elements of the string are swapped. For
cxample, let s = 1,3,2,5,4,9 8. 7,6 be the string and 3™ element is through
with the Mutation probability check. Let 7 is the randomly generated in-
dex for swapping. Therefore, after swapping the mutated string will look like
sl =1,3,8,5,4,9,2. 7 6. Clearly this mntation operation cusures the genera-
tion of valid strings only.

It 15 also clear from the description of of the mutation operartion that each valid
string can be mutated to any string in one step with non-zero probability.
As we discussed in the previous chapter this criterion is essential for faster
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CONVergence,

Regarding mutation prbability it is not kept constant over the generations.
Rather it 1s varied in cycles of appropriate intervals linearly from 1/(n — 1) to
0.45. The arguinent for applying this variation is that it helps in exploring the
search space efliciently and disallow the GA to get stuck in the local optima.

Elitism

In this operation the string with least Cost is preserved over the generations.
But as our GA method is amalgamated with greedy heuristic an appropriate no
of best strings are preserved over the generations to apply the greedy heuristic
on them. In the next section the greedy heuristic is discussed.

Amalgamation of Greedy heuristic

This basically a foreign operation injected in the classical structure of GA. This
works ol the set of best strings preserved over the geunerations by the Elitisin
operation. This works as follows,

FFor a chosen string and for all ¢, it finds the minimum cost, destination for going
from i element city to the set of cities lying in the right side of the ith index
from the cost matrix. It swaps the (2 + 1)th element with the city-element
corresponding to wmin-cost destination. After execuling the operation for all
it checks whether the resulting string has smaller cost than the original string.
It so, the original string is replaced by the resulting string.

As because it is a deterministic heuristic method which works with the cost
matrix in hand, it helps the stochastic environment of the working of GA to
derive some positive direction.

2.4 Results and Comparisons

One standard GA and our suggested amalgamated GA are run on three differ-
ent types of data sets namely, Practical, Artificial & Minimal Deceptive data
sets with #cities 50, 80 and 100 and then compared susequencly. These three
tvpes of data sets and the standard GA for comparison are briefly described
below.
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2.4.1 Practical Data Set

These are practical instances of the Travelling Salesman Problem. One can
casily colleet /generate the instances for testing the performance of algorithms.
There are a plenty of the Practical TSP instances which are considerad to be
Benchmark instances in ‘USPLIB. The Benehmark instances are tricd by several
algorithms from time to time and the best known solutions are recorded against,

cach instance. The Benchmark instances are recomended to work on to jndge
the performance of one’s algorithm.

2.4.2 Artificial Data Set

These are artificially generated data set such that the minimum cost tour can
be easily calculated by some nice mathematical formula. So the performance of
the algorithim on such instances can be easily evaluated since the very solution
is known, e.g., let the distance between the cily #1 & city #j is |i — j| for
all 7, j. If we assume w.l.g that the staring point is alwyas city #1 then it
can be shown that the optimum strings should be having a configuration of an
imcreasing sequence followed by a decreasing sequence with the relaxation that
any one sequnces can be also of zero length. Therefore, the optimuin cost will
he 21 — 2.

2.4.3 Minimal Deceptive Data Set

i
These instances are artificially constructed to judge the roboustness of CiAs.
These class has a peculiar property, In these instances, the mininuam strings are
surrounded by strings having very ligh costs. "I'hese are intentionally designed
to betool the GA search engines. Naturally it is the most difficult hardle for a
new algorithin to stand.

2.4.4 A standard GA developed by Michel Lalena

In this GA, the tours are encoded as a 2-dimensional array (an N x N matrix)
of bits that store city adjacencies in both directions.A set bit indicates a city
connection. If element [X,Y] is set, then city X connects to city Y. Only 2
bits will be set in every row and column. Now in every iteration, a number
of tours are chosen from the list of tours. This is the tournament set. The
hest two of these tours from the tournament will be combined to form two new
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Table 2.1: Performance of the algorithm on diflerent dita sels

Data Types | Data Size | Our algoritlun | Other algorithm

Artificial 50 98 408
Data Set 80 158 648

100 198 844
Practical 48 38,071 40,053
Data Set 70 776 895

100 25,330 27,800
Minimal 50 50 48,002
Deceptive 80 8( 72,008
Data Set 100 100 80,010

tours using crossover. These two new solutions will replace the worst two tours
from the tournament.

A greedy crossover operation combines the two tours to hopefully form two
better tours. All adjacencies that are shared by the parent are placed in both
children. This is done by performing a binary AND on the two parent matrices.
When the parents disagrec, the children alternate which parent they will get
an adjacency from. If an adjacency produces a conflict (city used twice or
incomplete tour), then a random city is used ingtead. As the crosg over itself

15 very powerful no mutation is needed in this case,
|
The results obtained are shown iu the following Table 2.1 with five different

initial populations per instance and for each initial population, the number of
trials is 10; and for each trial the number of iterations is 10,000.

2.9 Discussion and Conclusion

It is clear from the results obtained that the newly designed genetic operators

in our algorithm is strong enough to find its room in the literature. The most
attractive features are that even on artificial data set and minimal deceptive
data set its perforinance is superb.



Chapter 3

Double Digest Problem(DDP)

3.1 Formal definition of Double Digest Prob-
lem and its relevence

The Double Digest Problem is a very wellknown problem in biological com-
puting domain. The problem is basically related to the recognition of physical
sequencing of a DNA. Formally the problem is described as follows, Let, A & B
are two restriction enzymes and D is a DNA molecule of length L. We are given
three multisets @ = ||A]| = {a; : 1 < i < m},b = |Bl| = {bi : 1 <1< n} and
c = ||A&B|| = {¢; : 1 < i <1}. Those are the collection of fragments obtained
by the the application of enzyme A, enzyme B and enzymes A & B together

respectively on the DNA molecules. Clearly, in absence of any measurciment
Crror,

i) 1" 4
Zui:Zbizztﬁi:L (3.1)
For o a permutation of (1,2, ...,9) and 51 a permutation of (1,2,....,n), cali

(0, 1) & configuration. By ordering A & 3 acording to a&i,respectively we
obtain the set of location of cut sites.

r {
S={s:s=) aors=) a,;5;0<r<n,0<t<m} (3.2)
=1 g1

Because we want to record only the location of cut sites, the set is not allowed
repetitions, that is, S is not a multiset. Now label the elements of S such that,

S = {Sj 0 i:_ j < l} with 8; < Sq for 7 S] (53)
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The double digest implied by the configuration (o, ;) can now be defined by

Clo,p) = {cjlo, 1) 1 ¢j(o, ) = 85 — 8;-1 for some 1 < j < 1)

(3.4)

where we assume the set is ordered by size in the the index j. Then the problem

1 to find a configuration (o, ) such that C = C(o, u),where C = A&B is
determined by experiment. The problem in general is NP-complete.

3.2

Problem

Multiple solutions in the Double Digest

In many instances, the solution of DDP is not unique. For example, with
a = [|A|] = {1,3,3,12}, b = ||B|| = {1,2,3,3,4,6} and ¢ = ||C]|| = ||A& || =
{1, 1,1,1,2,2,2,3,6} two distinct solutions are shown in Figure 3.1. Qur goal

r:i

1

-+

12

L
F I

——

——

12

e

L
I

ellier

Figure 3.1: Existence of multiple solution of DDP

is to find all posible solutions of a given DDP. The criterion of getting all

possible solutions makes the task more diflicult.

3.3

Classifying Multiple Solutions

‘Though the structure of multiple solutions of DDP is very complex, a few types
of equivlence relatios can be defined over the set of all solutions. A few types

of equivalence relations are defined below with examples:
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3.3.1 Rellection Equivalence

Whenever 0 = (01, ...0,) and p = (uy, ..., iy, is a solution to DDP then clearly
o' = (0},...0;) and p' = (), ..., tm!) is also a solution to that DDP. In a very
real sense, they present the same solution to the problem, as they differ only by
an arbitrary choice of orientation. Therefore it is quite reasonable to consider
the set of solutions modulo the reflection relation.

3.3.2 Overlap Equivalence

Let a solution configuration M has ¢ — 1 coincident cut sites, then there are
t{connected) components in the map. If he components are permuted and Jor
any subset of the components are reflected and/or the set of petectly contained
enzyme fragments within any other enzyme fragment are permuted the result-
ing configurations still remain valid solutions. According to this observation
the overlap equivalence is defined as follows, If a solution configuration C can
be transformed to another solution configuration C’ by a sequence of above
mentioned operations, then , C and C' are said to belong in the same overlap
equivalence class.

3.3.3 Overlap Size Equivalence

Let us deline the overlap size data of a map to be
|
{(lAiaI!I'Bjal‘-'ICﬂ‘ : Cﬂ — Aia ﬂBJa} (35)

L'wo solutions to DDP with data {ay,...,as}, {b1,...b,} and {c;...} are said to
be overlap size equivalent if they have the same set of overlap size data.

3.3.4 Cassette Equivalence

This is more or less a generalization of the above three equivalence classes.
This equivalence class is based on cassette transformations of restriction maps.

To start let us define what a cassette is. For each pair i, j with 1 <t <3<
define,

I(; - {Ck . Ci S C/'k S CJ}

which is the set of intervals from C; to C;. The cassette defined by I is the
pair of sets of intervals (14, I'y), the sets of all blocks of A and I3, respectively,
that contain a block of I;. Define 14 & mip to be the minimal elements of
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the the leftmost blocks of 74 & 1, respectively, The left overlap is delined to
be g — my. The right overlap is defined siwilarly, by substituting maximal
for minimal, and rightmost for leftmost.

Now 1f two disjoint cassettes of solution |4, B} to DDP(a,b,c) have identical left
and right overlaps and if when the overlaps are non zero, the DNA comprising
the overlap is a single double digest problem, then they can be exchaged to
form a new solution A, 3] to DDP(n,b,e). Also if the lelt and right overlaps
of a cassette have same absolute value but different sign,thenr the cassette can
be reflected. These are two types of cassetie transtomations.See Figure 3.2 and

3.3

------------------------------------------------------------------------
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Figute 3.2: Cassette reflection

Now the cassette eqnivalence on the set of all solutions of to DDP ig defined
as lollows, [A, B] and [A’, B'] belong to the same cassette equivalence class if
and only if there is a sequence of cassette transformations and permutation of
itoh border block uncut fragments tarnsforming |4, B] into [A",l7]. The idea
of this cassette equivalence is simple enough yet a strong one. What basically
intended is to put the solution configurations, having same set containments
and boundary consisting of the superimposed fragments for all enzyme frag-
ments,in one equivalence class. More formally, we define the idea. below, Let,

I.(X) ={|C : C; C X} . It is a multiset where C,s are superimposed frag-
ments and X' is any enzyme fragment.

For [I(X)] > 1 define the following,

IT(X) = {|Ci] : C; € X&C; is either the leftmost or rightmost containment of
X}
For [I{X)| =1 ,we set I7(X) = {0,0}
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Figure 3.3: Cassette exchange

Now we can define the 7+ I which is the characteristic of an cqiivalence class
as {ollows.

[ D = ({(1;(Ai), 1,(Ai)) : A € A}, {5 (D5), 1,(By)) - B; € 13))

It is worth observing that cassette transformations do not change I * D of a
restriction map. Infact if the restriction map does not have coincident cut sites
then, [A, B] and [A’, '] belong to the same equivalence class if and only if
I'x DA, B] =1 xD|A', B]. For more general restriction maps with coincident
cutsites the defintion of valid cassette has to be altered a bit to retain the va-

lidity of the statement in general. The required modifications will be described
later.

3.4  Different techniques of solving DDP

The double digest problem is a typically well known problem in the Bio-
computing domain and is attemted by different techniques from titne to time.
Due to the basic difficulty of DDDP, we are not likely to obtain a polynomial
time algorithm for it.Still, other NP-complete problems are approached by use-
tul heuristic methods. In some cases the methods have great practical value.
Three different approaches are described below.
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3.4.1 Integer Programming
At the begining a few notations are needed. For a solution we assign dou-

ble digest fragments ¢y, ..ciagB| by (1, .., clae))E = (a1,..,a,), where E is a
|A& B| x n matrix of zeroes and ones.We have

. Similarly (c1, ..., cags)F = (b1, .., bn), where F is a |A&B| x m matrix of
zeroes and ones. Obviously we wish to assign each C fragment once and only
once to each single digest. Therefore we have the additional identities,

4 T
S o= 3 fu=
j=1 k=1
Now DDP is solved by flinding the consistent, solutions of the two systems:

minimize{a + 3} where o, f € I

—a<ag—(cE)y <aforalli=1,...,n

e;; € {0,1} for all i, j

Ze,-k= 1 foralli=1,...,|A&B|
k=1
-3 <bj~(cF); <Pforal j=1,...,m

fij = {U, 1} [or all 7, 9

Tt

Zfﬂc =1foralli=1,...,|A&B]|
k=1

This is a problem in integer linear programming and the packages available
have not proved too uscful for DDP.
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Jd.4.2 Partition Problem

Another approach to DDP is to consider it as a complex, interrelated partition
problem. Each ¢, is a sum of disjoint ¢,

41 = 2 keR, Ck

(dy = ZkERn Ck
where, UR; = {1,2,...,|A&B|}andRy N R; = ¢,i # j.

Likewise,

by = Zkesl Ck

Um = EkES“ Ck

where, US; = {1,2,..,|A&B|} and S;NS;, = ¢, # j.

Thus it is quite natural to ‘think DDP as partition problem. In fact this ap-
proach is just a restatement of the integer linear programniog formulation.

3.4.3 Travelling Salesman Problem

The TSP minimizes the cost of permutation of (1,2,...,n). Problem DDP has
two permutations, one of (1,...,n) and one of (1,...,m), but any computa-
tional scheme to minimize the salesman’s tour might be adapted to DDP.The
idea is to have two salesmen (named A and B) who work together to mini-
mize the route cost. They both tour disjoint sets of cities, n cities (for A} and
m cities (for B) and their reward is the goodness of fit in the double digest
data C. Different useful heuristics arc designed for these class of NP-complete

problems. DDDP is also attempted by Soft-Computing tools like Simulated An-

nealing etc. Here we attempt the problem with Genetic Algorithm for the first
time. It is presented in the next chapter.



Chapter 4

Solving DDP by Genetic
Algorithm

4.1  Basic Objective

First of all the structure of the solution of DDP is very complex and it is an
NP-complete problem in general. Apart from that we have multiple objectives

e.g.,

L. Partitioning the solution space with respect, to cassette equivalence rela-
tion and get hold of one representative solution from each of the parti-
. |
tions.

2. Generate all equivalent solutions corresponding to cach representative
solution. Thus basically generating the entire solution spage.

50, the accmulative effect of all these make it a very complicated affair. Nat-
urally, the classical Genetic operators are to be properly modified to tackle
such a peoblem. Though the structure of classical GA is also slightly modified
to create provisions for multiple solutions, in essence it remains the same. In
fact that is where basically the beauty of Genetic Algorithm lies. Its inherent

simpicity can be restored even in dealing with very complicated optimization
problem.

22



23
4.2 Structure of the algorithin

For DDP the Elitist model of Genetic algoriyhn_l 15 used here.Out of the four
operations of genetic algorithm namely Natural Selection, Cross over,Mutation

and Elitismm, other than Natural selection all the other three operations are
modified to fit into the problem.

In the algorithm a set of randomly selected configurations is treated s the
initial population. Then the set of configurations are subjected to Natural se-
lection, Order preseving werghted cross over, Partially deterministic compound
mutation and Equivalence checker elitism respectively to form the set of evo-

treated as as the initial population and subjected to the sequence of genetic op-
crations to form the next generation. In this way the whole process is repeated
until some predetermined terminting criterion is attained. After Lermination
of the process it is expected that one representative solution from each of the
cassette equivalence classes are recorded. The structure of the algorithm is
shown in Figure 4.1. "'he detailed deseription of the string representation,
cost function and modified genetic operators are described in the subsequent
sections.

4.3 String representation and Cost function

The string/configuration is represented as a doublet structure. Fach doublet
I$ consisting of one permutation of (a1, ..ay) and one permutation of (b1, ..y bp).
T'his is basically implemented by a structure of two arrays containing the two
permutations. Let Cy' = (¢, ..-C¢') is the superimposed fragment set in increas-
ing order and Cy = (cy, ..., ¢,) is the given set of fragments corresponding two

both the enzymes in increasing order.Now the cost of configuration is defined

as follows:
mazr(p,q)

(= ) (ci—c)? (4.1)
f== 1

I index runs out of bound for some sequence the corresponding element will
be assnmed zero. 1t is very clear from the definition of the cost function that
Hs value is always non negative and Lhe cost [unction value is zero i and only
i the conliguration is a solution. This cost function enables us to identify the
minimal configurations casily since its cost value is known to be zero unlike
other optimization problem where the characterization of optimal strings are
seldom known.
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BEGIN ALGM_DDP
Make initial population at random.
WHILE NOT stop DO
BEGIN

Natural selection: Select parents from the population,
Order preserving weighted cross over: Produce children
from the selected parents.
Partially deterministic compound mutation: Mutate the
individual. |
Equivalence checker elitism: Reserve the solution strings
subject to cassette equivalence check.

Randomly choose the next generation population from the

non-solution strings of the present and previous population.
END

Generate the partitions from the non-equivalen representative
strings.
END ALGM_DDP.

Figure 4.1: Structure of the DDP algorithin

4.4 Description of the modified genetic oper-
ators

4.4.1 Natural Selection

\

‘This operation is kept unchanged with the traditional natural sclection oper-
atlon. Here strings are randomly chosen from the population with probability
mversely proportional (as it is a minimization problem) to their costs as we
discussed previously.

4.4.2  Order preserving weigted cross over

Modification over the traditional cross over operation i1s necessary due to the
following reasoms:

1. Here strings are doublet structure.



2. The constituent of the doublet are individually permutations of frag-
ments. Iraditional cross over might generate invalid strings.

3. There can be repetition of fragments in the constituent permutation de-
pending on the fragment set, corresponding to an enzyme,

50 here the cross over is done in the following way:

Given two parent strings lirst a random number botwoee zero and one iy goner-
ated, if the number happens to be more than the cross over probability then
the perent strings are considered eligible for cross over operation. Once the
two strings are through with the cross over probaility check, a coin toss is done
to decide which of the permutations of the doublet will participate in the cross
over. Let p, and p, are thepermutations eligible for cross over. A random cut
point is fixed leading to the generation of the four substrings p, |, M,2y P2,1, D22
then the children permutations are generated as follows, the left parts of the
two children ¢, ; and Cz,1 are simply identical with p11 and P21 respectively.Now
the right part of the first child C1,2 18 prepared by reordering the elements of
P12 1n the order in which they occur in py along with matching the repetitive

weight. Similarly C2,2 15 prepared from p, , with the weighted ordering of p,.

For example, let the two eligible permutations are m = (1,3,2, 1,3,4,2,2)
and p2 = (1,2, 2,2,4,3,3,1) and let the randomly chosen cut point is 3.
Then the four substrings generated Pia = (1,3,2),p9 = (1,3,4,2,2),py, =
(1,2, 2)andp, 5 = (2,4, 3,3, 1) then €1,1 =p1,1 and ¢z = py ;. Now we assign a
two-tuple (e;, w;) for the ith element of P12 for all i, where ¢; is the fragment
length and w; is the count ofirepetition of the ith element in P; 1n its position.So
the tuples assigned for the elements of Pi2 are (1,2),(3,2), (4, 1), (2, 2),(2,3)
respectively.In the same way if we assign tuple for elements of P2, they will be
(1,1),(2,1),(2,2), (2,3), (4, 1),(3,1), (3, 2),}(1, 2). Acording to p, the ordering
of the tuples of p, », will be (2, 2),(2,3)(4,1),(3,2) and (1,2). So the resulting
(2 =(2,2,4,3,1) and sittlely e, == (3,1, 3,4, 2). Therefore, the two childron
acnerated are e = (1,3,2,2, 2,4,3, 1) and ¢, = (1,2,2,3,1,3,4, 2},

It is very clear from the description of the cross over that it would not generate
any invalid permutation and therefore, no invalid doublet. In addition the

Cross over operation is carefully designed so as to explore a large amount of
the search space efliciently.
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4.4.3 Yartially deterministic componnd mutation

(riven a string, here also o colnt toss is needed to determine which permutation
of the doublet is to be mutated. Once the eligihle permutation is decided, the
i'" element of the permutation is done in the tollowing way for all 7. A rayn.
dom number between zero and one is chosen. If this number is Jess than the
permutation probability than the jth position is mutated. For that a random
index within the bound of the permutation j is generated and the i and gth
elements are swapped,

Apart from this a some what deterministic swap is also done The minimum
and the maximum costs of the generation are maintained. ‘And depending
upon the cost of the processing string it is ranked within the population. As
1t is obvious from the definion of the cost function that more is the distance of
the unequal swaping fragments more will boe the change in cost. So according
to the rank of the working string in the gencration a swaping distance is fixed

in the unitary fashion. That if the rank is good then logs distance swaping and
if the rank is bad then more distence swaping. Then two random fragments

having such position difference is swaped with the anticipation that it would
gencrate low cost string.

The mutation operation so designed is having 1he property that from every
string any string can be ganerated in one step with non zero probability. This
condition is needed to ensure the uniform convergence of the elitist model of
GA to optimal solution after infinite number of iterations [4).

4.4.4 Equivalence checker elitism

\
This is basically a process of preseving good strings across the generations.
Though there exists characterization of the solution strings with respect to
our ‘designed cost function and thus a very simple way to identify them(by
checking whether its cost is zero), we do not have any notion of good strings
due to the structural complexity of the solutions of DDP A string having
a slight structural difference than some solution may have a very high cost.
S0, what is done instead is that whenever any solution string is generated
within the population it is taken away. Then it is stored in some reserve space
subject to cassette equivalence checking, with all other existing non-equivalent
solution strings. Since we want to get hold of one representatjve string from
cach partition. The equivalence checking is performed by checking the 1*D of
cach string as we explained in the previous chapter. After taking away the
solution strings the next population is formed from the present population and
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previous population by randomly choosing the non solution SLETNgS,

With this set of four genetic operations, it is expected that all non cquivalent
strings will be stored in the reserve space after sufficient number of iterations.

%fm Ao '
4.5 Generation of the whole- partition from a
representative string

We stated in the previous chapter that the very definition of a cassette needs
little modification to generalize the characterization of cassette equivalence
for configurations with coincident cut sites. As 1t is shown in Figure 4.2 the
dotted portion can be reflected and in Figure 4.3 the dotted portions can be
swapped with out changing the I*D. That is these operations allso give rise to
valid strings in that partition. But with our usual definition of cassette these

operations are not possible since the dotted portions are not atall a cassette.
S0 we include these in our definition of cassette ag follows.

For each pair ¢, 7 with 1 <5< j < define,
foo={Cy: Oy < Oy < CY)

which is the set of intervals from ¢ to Cj. The cassette defined by . is the
pair of sets of intervals (/4, Ip), the sets of all blocks of A and 3, respectively,
that contain a block of I.. In addition to this, if the left or right boundary of
I happens to be a coincident cut site then smaller of the enzyme A fragment
and enzyme fragment touching the coincident cut site externally will also be
included in (14, I'p) to form possibility. In case of a tie both the frgments will
be separately be included to (7,4, ] ) to form two more possibilities.

Clearly for a given [, = ler 16 < ¢ < ¢;} the cassette is not, utque now

rather there can be as Inany as nine cassettes possible in the worst case for a,
}_-.',‘iV(!H [(;

Here we simply find the closure of the given representative string with respect
to the cassette transforiations (both cassette reflection and cassette swaping)
and permutations of non border blocks uncut fragments. The algorithmic
structure is shown in Figure 4.4.
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4.6 Results

The designed algorithm is run on some artifical and practical data and the
result obtained is shown in Table 4.1, with five different initial populations per
Instance and for each initial population, the number of trials is 10; and for each
trial the number of iterations is 10,000.

lable 4.1: Results obtained by running the algorithm on different DDP in-
stances

- ——
T,

No of Equivalence | Total no. of
Classes solutions

Problem bescri ption

A = {1,2,2,3,3.4}
B = {1,1,2,2,4,5} I8 3210
A& B = {1,1,1,1,1,2,2.3 3
A={1,2,3456789)
B = {15,15,15 } 172 15840
={111122236¢6)
A= {1,2,3,3,4,4,5,5)
B = {1,2,3,3,3,7,8) 393 36660
A&B = {1,1,1,1,1,1,2,2,2,2,2.3 4 4}
A= {5509,5626,6527,6766,7233,16841)
I3 = {3526,4878.5643,5804,7421,21230 ) 1 2
A&B = {1120,1868,2564,27?2,3240,
3526,3758,3775,4669,5509,15721)
A= {1,3,312"}
B = {1,2,3,3,4,6} 18 208
A&B = {1,1,1,1,2,2,2,3,6 } ]
A= {18,877 |
B ={12,7,5,3,2,1,1,1,1} 65 930
A&B = {8,7,5,4,2,2,1,1,1,1,1)
A= {18,8,7}
B = {9,5,5,54,2,2,1) 52 686
A&B = {7,5,54,3,2,2,2,2,1}
A= {12,7,5321 11,1}
3 == {9,5,5,5,1,2,2 1} 376 9202()
ALB = {9,5,3,3,2,2,1,1,1,1,1,1,1,1,1}

g .

f— ol -




4.7 Conclusion

As the number of iteration of the genetic algorithm strictly depends on instance
size and its structural complexity, it may happen for very large instances with
very complicated structure that a few reprsentative strings are missed out. The
onlty remidy is to increase the number of iterations. But once we get hold of all
the representative strings the next part of gencrating the entire partitions ancl
thereby the entire solution space is a perfectly deterministic algorithm(though
a little bit costly) and therefore will certainly generate all the strings of the
parcions. To conclude we add that we have run our algorithm on the examples
with substantially large number of iterations and the observation in almost
all the cases is that the process converges within 5,000 iterations. This fast
convergence evaluates the power and efficiency of the designed genetic operators
and the algorithm.
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Figure 4.3: Non-minimal cagsette exchange
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proc GEN_PARTITION (string s)
begin

closure(s) = s:

while(there is a string in closure(s)
do

Let, a is such a string in closure(s) to be operatod.
while(there is scope of cagsetie trar

of uncut border block in a)
do

yet to be operated on)
1Isformations or permutation

Let, b is a generatoed string from a by any ot the operations.
if(b does not belong to closure(s))

closure(s) = closure(S)U{b};
od

od

end

Iligure 4,1

Algorithm for generating the partition from Lhe reproy
string.,

MlLadive
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